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Abstract. The accurate identification of the presence of cloud in the ground scenes observed by remote sensing 1 

satellites is an end in itself. Our lack of knowledge of cloud at high latitudes increases the error and uncertainty in 2 

the evaluation and assessment of the changing impact of aerosol and cloud in a warming climate. A prerequisite for 3 

the accurate retrieval of Aerosol Optical Thickness, AOT, is the knowledge of the presence of cloud in a ground 4 

scene. 5 

    In this study observations of the up welling radiance in the visible (VIS), near infrared (NIR), shortwave infrared 6 

(SWIR), and the thermal infrared (TIR), coupled with solar extraterrestrial irradiance are used to determine the 7 

reflectance. We have developed a new cloud identification algorithm for application to the reflectance observations 8 

of Advanced Along-Track Scanning Radiometer (AATSR) on European Space Agency (ESA)-Envisat and Sea and 9 

Land Surface Temperature Radiometer (SLSTR) onboard the ESA Copernicus Sentinel-3A and -3B. The resultant 10 

AATSR/SLSTR Cloud Identification Algorithm (ASCIA) developed addresses the requirements for the study AOT 11 

at high latitudes and utilizes time-series measurements. It is assumed that cloud free surfaces have unchanged or 12 

little changed patterns for a given sampling period, whereas cloudy or partly cloudy scenes show much higher 13 

variability in space and time. In this method, the Pearson Correlation Coefficient (PCC) parameter is used to 14 

measure the ‗stability‘ of the atmosphere-surface system observed by satellites. The cloud free surface is classified 15 

by analyzing the PCC values at the block scale 25×25 km
2
. Subsequently, the reflection of 3.7 μm is used for 16 

accurate cloud identification at the scene level either 1×1 km
2
 or 0.5×0.5 km

2
. The ASCIA data product has been 17 

validated by comparison with independent observations e,g. Surface synoptic observations (SYNOP), AErosol 18 

RObotic NETwork (AERONET) and the following satellite-products from i) ESA standard cloud product from 19 

AATSR L2 nadir cloud flag, ii) one method based on clear-snow spectral shape developed at IUP Bremen (Istomina 20 

et al., 2010), which we call, ISTO, iii) Moderate Resolution Imaging Spectroradiometer (MODIS). In comparison to 21 

ground based SYNOP measurements, we achieved a promising agreement better than 95 % and 83 % within ±2 and 22 

±1 okta respectively. In general, ASCIA shows an improved performance in comparison to other algorithms applied 23 

to AATSR measurements for cloud identification at high latitudes. 24 

1    Introduction 25 

The large trends in warming over the Arctic in recent decades, has received much attention from the global and 26 

regional climate change research community (Wendisch et al., 2017; Cohen et al., 2014). This study is part of 27 
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research activities to meet the scientific objectives of Collaborative Research Centers, CRC/Transregio 172 ―ArctiC 28 

Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³ (Wendisch 29 

et al., 2017). A number of studies using global observations and climate models confirm this phenomenon, called 30 

Arctic Amplification and provide evidence that it grows beyond the Arctic (Kim et al., 2017; Cohen et al., 2014). 31 

Though, the attribution of the origins this phenomenon is controversial (Serreze et al., 2011; Pithan et al., 2014), 32 

cloud cover is well-known to play a role in the Arctic surface-atmosphere radiation balance (Kellogg et al., 1975; 33 

Curry et al., 1996). The accurate identification of Arctic clouds in the ground scenes of remote sensing 34 

measurements made from space is therefore of intrinsic importance. However, cloud screening over the Arctic is a 35 

challenging task. Since, all developed cloud detection methods encounter many obstacles originating from the 36 

unique atmosphere and surface conditions in the Arctic (Curry et al., 1996). The Arctic clouds are mostly optically 37 

thin and low with no remarkable contrast in commonly used visible or thermal or microwave measurements to the 38 

underlying surface covered with highly reflecting snow and ice (Rossow and Garder 1993; Curry et al., 1996).  39 

    In addition to the importance of clouds to Arctic Amplification, errors in the identification of cloud in scene are 40 

also one of the major sources of error in retrievals of a variety of data products for both satellite and ground-based 41 

measurements at high latitude. For instance, the interference of cloud contamination in the Aerosol Optical 42 

Thickness (AOT) retrieved by passive satellite remote sensing is a well-known issue (Shi et al., 2014; Várnai and 43 

Marshak, 2015; Christensen et al., 2017; Arola et al., 2017). This limits the reliability and usefulness of the AOT 44 

products in the assessment of the direct/ indirect impact of aerosols in Earth‘s energy balance in particular over the 45 

Arctic. To avoid the uncertainty included in AOT products due to significant misclassification of heavy aerosol load 46 

by thin clouds (which have similar reflectance properties) the development of an adequate cloud identification 47 

algorithm is a prerequisite (Martins et al., 2002; Remer et al., 2012; Wind et al., 2016; Mei et al., 2017a, 2017b; 48 

Christensen et al., 2017). 49 

    One recent approach to detect cloud-free snow and ice for aerosol retrieval over high latitudes used the spectral 50 

shape of clear snow, ISTO (Istomina et al., 2010). The latter analyses the spectral behavior of each ground scene and 51 

identifies clear snow or ice scenes from Advanced Along-Track Scanning Radiometer (AATSR) measurements. 52 

Thresholds of the reflectance were empirically determined in seven spectral channels from the VIS to TIR. Defining 53 

a reliable threshold which can guarantee a successful separation of cloud and cloud-free regions for the wide range 54 

of atmospheric conditions and surface types is a challenging task. This is because of the similarity between spectral 55 

reflectance of cloud and snow-ice (Lyapustin et al., 2008). In spite of progress made by this approach, adequate 56 

discrimination of thin cloud above ice or snow is an inherent limitation of such threshold based techniques. 57 

    The European Space Agency (ESA) standard cloud product from AATSR is another example of an existing cloud 58 

data product over the Arctic. This operational cloud mask is called the Synthesis of ATSR Data Into Sea-Surface 59 

Temperature (SADIST) and is based on the latitudinal thresholds for various cloud types (Ghent et al., 2017). The 60 

SADIST was initially developed for cloud screening over the ocean (Zavody et al., 2000). Birks et al. (2007) 61 

modified this method to apply it over land. Later, Kolmonen et al. (2013) reported that the cloud flags included in 62 

AATSR product are noticeably restricted and using this cloud product results in aerosol episodes not being observed. 63 

Sobrino et al. (2016) reviewed different cloud clearing methods including the AATSR operational cloud mask in the 64 
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framework of Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature 65 

(SEN4LST) project and highlighted the potential uncertainty in different versions of this product, which result in 66 

these errors being propagated in subsequent data products. For example, the AATSR operational cloud mask falsely 67 

detects cloud in ~ 16 % of the observations. This is attributed to the flagging of land features (such as rivers) 68 

incorrectly as cloud (see Sobrino et al., 2013). 69 

    To avoid the uncertainty arising from the similarity of spectral characteristics of snow, ice and clouds, we decided 70 

to develop an algorithm based on a different strategy namely the use of time series measurements. The use of abrupt 71 

changes of TOA reflectance in time with the aim of cloud identification has been reported previously (Gómez-Chova 72 

et al., 2017; Lyapustin et al., 2008). An early example of this idea was proposed for low to middle latitudes by 73 

Rossow and Garder (1993) in the International Satellite Cloud Climatology Project (ISCCP). This method later 74 

evolved as a part of MultiAngle Implementation of Atmospheric Correction (MAIAC) algorithm (Lyapusitn et al., 75 

2008), which is mainly designed for use with observations over land (low to middle latitudes), where the aim to 76 

simultaneously retrieve aerosol and surface properties. However, it has also been utilized by another study to 77 

identify snow grain size over Greenland (Lyapustin et al., 2009). Though, further optimization for the Arctic region 78 

is required and reported, a better performance in comparison to Moderate Resolution Imaging Spectroradiometer 79 

(MODIS) cloud mask is reported by Lyapustin et al. (2009). 80 

    The central assumption used in these algorithms for cloud identification, is that clear-sky reflectance is different to 81 

that of clouds, which exhibit high variation as a function of time (Lyapustin et al., 2008; Gómez-Chova et al., 2017). 82 

Knowledge of cloud-free scenes within a given time period, is achieved from knowledge of the variability of the 83 

measured TOA reflectance. Covariance analysis is used to estimate the spatial coherence. This has a long history in 84 

remote sensing studies using time series measurements (Leese et al., 1970; Lyapustin et al., 2008). The covariance 85 

computation assumes changes in the textural patterns of the observed scene, which originate from natural and man-86 

made features such as topography, lakes or urban areas (Lyapustin et al., 2008). The use of the covariance analysis, 87 

which accounts for geometrical structures, minimizes issues originating from illumination variation and results in the 88 

same algorithm being applicable over both dark and bright surfaces (Lyapustin et al., 2008). For these reasons we 89 

decided to use Pearson Correlation Coefficient (PCC) as a function of covariance value for cloud detection over the 90 

Arctic. However, Lyapustin et al. (2008) reported that in spite of relative good performance, the covariance itself is 91 

not alone adequate for cloud identification in the case of homogenous surfaces or thin clouds. Therefore, we decided 92 

to use a combination of a PCC analysis and the reflectance of solar radiation at 3.7 μm. The latter utilizes the 93 

contrast between cloud and underlying surface making it possible to distinguish cloud-free snow and ice. 94 

    Another argument in favor of the use of time series analysis is the availability of multiple images by the AATSR 95 

and Sea and Land Surface Temperature Radiometer (SLSTR) sensor over the Arctic. For AATSR the revisit time of 96 

3-4 days over mid-latitudes (Kolmonen et al., 2016) with more frequent at higher latitude which increase to 2 days 97 

over the Arctic (Soliman et al., 2012; Mei et al., 2013). For the two SLSTR it is 0.9 days at the equator (Coppo et al., 98 

2010) with these values increasing at higher latitudes due to orbital convergence. 99 

    The AATSR/SLSTR Cloud Identification Algorithm (ASCIA) has been developed for use in the (AC)
3 

project 100 

(Wendisch et al., 2017). The project aims to identify, investigate and evaluate parameters and feedback mechanisms 101 
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which contribute to Arctic amplification (Wendisch et al., 2017). Consequently, a long-term data record of AOT and 102 

cloud is required. It is planned to use the ASCIA to identify cloud free scenes for AOT retrieval. It is also planned to 103 

be applied to the observation by the SLSTR onboard Sentinel-3A and Sentinel-3B launched in 2016 and 2018 104 

respectively which provide continuity of AATSR observations. 105 

    A full description of the new cloud identification and its application to AATSR data is presented in the following 106 

sections of this manuscript. First, a brief data description is presented in Sect. 2. The theory and methodology, used 107 

in our new ASCIA, are discussed in detail in Sect. 3. We evaluated the performance of the ASCIA by comparison of 108 

the cloud identification with that of the ESA standard cloud product for AATSR level2 nadir cloud flag while 109 

ASCIA is also applied to AATSR nadir observations, those obtained by applying ISTO, the MODIS cloud mask, the 110 

Surface synoptic observations (SYNOP) and the AErosol RObotic NETwork (AERONET). The results of the 111 

comparisons with five different source of cloud data are reported in Sect. 6. A discussion and set of conclusions, 112 

drawn from the study, are presented in Sect. 7. 113 

2    Instruments and Data 114 

2.1    AATSR data 115 

The AATSR flown on board polar orbiting Envisat was primarily designed for measuring Sea Surface Temperature 116 

(SST) with accuracy higher than 0.3 k after ATSR-1 and ATSR-2 on European Remote Sensing-1, ERS-1 and ERS-117 

2 (http://envisat.esa.int/handbooks/aatsr/CNTR.html). The AATSR delivered data from March 2002 until Envisat 118 

failed in 2012. The unique design of spectral coverage of AATSR enabled this sensor to measure reflected and 119 

emitted radiances in the VIS, (0.55 μm, 0.66 μm), NIR (0.87 μm, 1.6 μm) and three TIR channels (3.7 μm, 10.85 120 

μm, 12.00 μm) with spatial resolution of 1×1 km
2
 at nadir view and swath wide of 512 km. In Fig. 1 one example of 121 

the AATSR image over Svalbard is shown. It comprises three different wavelengths to highlight different 122 

information, which one can gain from the wide spectral coverage of this instrument. For example, in upper right 123 

panel in Fig. 1 the large drop of reflectance over snow/ice created a notable contrast between the cloud and the 124 

underlying surface at this wavelength in comparison to that found from the VIS channels used in the R(0.66 125 

μm)G(0.87 μm)B(0.55 μm) image. A similar separation of snow/ice and cloud is observed in the reflectance at 3.7 126 

μm shown in the lower left panel in Fig. 1. However, at the longer wavelength of 11 μm thin cloud patterns appear 127 

in the south-western scenes close to and above Svalbard, which have small signatures in the shorter wavelength. 128 

Combining the information from the different channels in an appropriate way enables the presence of cloud in the 129 

ground scenes to be accurately identified. 130 

    The conical imaging geometry of AATSR yields the dual viewing capability of this sensor. Each scene was 131 

imaged twice. The first measurement of the ground scenes is in the forward direction at a viewing angle of 55°. The 132 

second occurs 150 sec later at a near-nadir viewing angle. This capability is a design feature of AATSR to deliver an 133 

optimal and accurate atmospheric correction and thereby invert an accurate surface reflectance. The two views 134 

theoretically yield independent information about atmosphere and the surface to be retrieved. 135 

(http://envisat.esa.int/handbooks/aatsr/CNTR.html). The dual view approach intrinsically provides more information 136 
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than the single view for the study of surfaces with complex reflectance characteristics, such as snow and ice 137 

(Istomina, 2012).  138 

    Examples of AOT algorithms applied to AATSR data are as follows: the AATSR Dual-View algorithm (ADV) 139 

which was initially proposed by Veefkind et al. (1999) and AATSR single-view algorithm (ASV) by Veefkind et al. 140 

(1998), the Swansea University (SU) algorithm (North et al., 1999) and Oxford RAL Aerosol and Cloud retrieval 141 

(ORAC) algorithm (Thomas et al., 2009). These algorithms typically not optimized for the retrieval of AOT at high 142 

latitudes. As the first task in delivering an algorithm, which delivers AOT at high latitude, the new ASCIA to 143 

identify cloud and cloud free ground scenes has been applied to AATSR measurements. 144 

2.2    SLSTR data 145 

The SLSTR on-board Sentinel-3A was launched on the 16
th

 February in 2016 as the successor of AATSR series to 146 

provide the continuity of long term SST measurements. The Sentinel-3B satellite, which contains an identical 147 

payload, was also launched by a Rockot/Breeze-KM launch vehicle from the Plesetsk Cosmodrome in northern 148 

Russia, on the 25
th

 April 2018. The design of the SLSTR instrument has some significant improvements with respect 149 

to ATSR (Coppo et al., 2010). For example, the swath width of single view and dual view was increased from 500 150 

km to 1420 km and 750 km respectively. This yields global revisit times of 1.9 days at equator for the dual view and 151 

1 day for the single view. There are measurements of two additional channels in the SWIR, at the wavelengths of 152 

1.37 μm and 2.25 μm, which are used to provide more accurate cloud, cirrus and aerosol information and used to 153 

correct for atmospheric radiative transfer effects in the determination of surface reflectance (Coppo et al., 2010). The 154 

Fig. 2 upper right panel shows the use of the new 1.37 μm measurements to detect thin cirrus clouds, which are only 155 

weakly identified in reflectance at 3.7 μm shown in Fig. 2. As the radiance and TOA reflectance at this wavelength 156 

are not measured by AATSR and because of currently unresolved calibration issues in SLSTR data, the current 157 

design of ASCIA does not yet include 1.37 μm measurements. In addition, water vapor absorption above and within 158 

clouds is considered as an obstacle in using this channel for cirrus detection (Meyer et al., 2010). Nevertheless, the 159 

use of the measurements at this wavelength in thin cirrus detection should improve the performance of ASCIA in 160 

future. SLSTR also has a higher spatial resolution of 0.5×0.5 km
2 

in the VIS and SWIR measurements and two 161 

channels dedicated to fire detection (Coppo et al., 2010). The use of the observations from SLSTR and AATSR 162 

enables a long-term time series of clouds and aerosol parameters including AOT over the Arctic to be derived. 163 

2.3    Data used in the cloud identification comparison studies 164 

2.3.1    SYNOP 165 

The SYNOP have been provided by World Meteorological Organization (WMO) with the purpose of mapping large 166 

scale weather information around the world. However, the availability of the data is limited in the Arctic studies due 167 

to the coverage of SYNOP stations in this region. For example, there are almost absent in central parts of the Arctic 168 

Circle as is shown in Fig. 3. The SYNOP measurements made by an observer or automated fixed stations are 169 

available in a standardized layout of numerical code which is called FM-12 by WMO (1995). The SYNOP reports 170 

include a variety of meteorological parameters such as temperature, barometric pressure, visibility etc. as well as 171 
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cloud amount which are observed at synoptic hours simultaneously throughout the globe. We used SYNOP cloud 172 

fraction, which have a temporal resolution of 1-3 hours, to evaluate the performance of our new developed ASCIA 173 

over the Arctic region. 174 

    The use of SYNOP measurements to validate a cloud identification algorithm, or for that matter the cloud 175 

predicted by a climate model, the fact that the SYNOP cloud fraction is reported in okta scale, which ranges from 0 176 

(completely clear sky) to 8 (completely obscured by clouds) has to be appropriately taken into account. Converting 177 

discrete okta values to continuous percentage ones has been done in different ways by climatologists. A common 178 

assumption is that 1 okta equals 12.5 % of cloud coverage (Boers et al., 2010; Kotarba, 2009). For use in this study 179 

it was necessary to make an estimate of the error or uncertainty in the okta in measurements. It is assumed that the 180 

man-made nature of cloudiness okta estimation have errors of ±1 okta and even larger values of ±2 okta in the non 0 181 

or 8 okta situations (Boers et al., 2010; Werkmeister et al., 2015). Boers et al. (2010) suggested defining a larger 182 

range of 18.75 % for 1 okta instead of commonly used value of 12.5 %. We used this approach and defined 183 

percentage of cloud values for each okta, which are given in Table 1. More details about validation procedure are 184 

provided in Sect. 6. 185 

2.3.2    AERONET 186 

The AERONET is a network of approximately 700 ground-based sun photometers established by National 187 

Aeronautics and Space Administration (NASA) and PHOtométrie pour le Traitement Opérationnel de Normalisation 188 

Satellitaire (PHOTONS). This globally distributed network aims to provide long-term and continuous measurements 189 

of AOT, inversion products and perceptible water in diverse aerosol regimes (Holben et al., 1998). The high 190 

temporal resolution of 15 minutes, expected low accuracy of ~ 0.01 to 0.021 (Eck et al., 1999) as well as readily 191 

accessible public domain database provides a suitable dataset for aerosol research and characterization. 192 

    AERONET data are categorized and available in 3 levels: Level 1.0 (unscreened), Level 1.5 (cloud screened and 193 

quality controlled) and level 2.0 (quality assured). The data used in this work are selected from Level 1.5 to validate 194 

cloud identification results from newly developed ASCIA. More details of validation procedure are discussed in 195 

Sect. 6. 196 

3    Theoretical background 197 

3.1    Pearson Correlation Coefficient (PCC) 198 

The PCC was proposed by Karl Pearson (1896) and is used in this study as an indicator of the correlation between 199 

sequential AATSR measurements. The PCC is also known as the Pearson Product-Moment Correlation 200 

Coefficient (PPMCC). It is a standard dimensionless statistical parameter commonly used to measure the strength 201 

and direction of the linear association between a pair of variables (Benesty et al., 2009). This parameter has 202 

extensively been used in many studies which pursue pattern analysis and recognition. 203 

    Our use of the PCC analysis is to separate the surface reflectance at a given viewing angle, which is stable over 204 

short time periods, from the cloud reflectance, which is highly variable over short time period. To describe the 205 

computational procedure developed here, let assume x, y as two random variables, then PCC can be written as a 206 
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function of covariance of x and y which is normalized by square root of their variances (Rodgers et al., 1988; 207 

Benesty et al., 2009): 208 

    
   (   )

    
                                                                                                                                                                         ( ) 

where COV(x,y) is the covariance of variables and   is the root-mean-square variations of each random variables  209 

(Rodgers et al., 1988; Benesty et al., 2009): 210 
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∑∑(    ̅)(    ̅)        
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where  ̅ and  ̅ are the mean value of x and y variables respectively. The correlation coefficient parameter has values 211 

between -1 and +1 (Rodgers et al., 1988). The PCC values were prepared in this study. The association between the 212 

two variables is stronger if the absolute value is closer to 1, whereas if two variables are independent or in another 213 

word ―uncorrelated‖ PCC value will become 0 (Benesty et al., 2009). As a consequence of the above the PCC values 214 

computed between several data pairs for ground scenes of the same area at different times provide an indication of 215 

whether the scene is cloud covered or free of clouds.  216 

    For this aim, the use of all seven channels (0.55 μm, 0.66 μm, 0.87 μm, 1.6 μm, 3.7 μm, 11 and 12 μm) was 217 

investigated. The visible channels (0.55 μm, 0.66 μm) on their own are not optimal to separate cloud free form 218 

cloudy scenes, in particular for thin clouds. The SWIR and TIR such as 1.6 μm and beyond, where liquid water and 219 

ice absorb provide useful information. There is a large reduction of reflectance between clear snow/ice as compared 220 

to clouds between 0.87 μm and 1.6 μm (Kokhanovsky, 2006). Our routine takes advantage of this contrast through 221 

the PCC calculation. One major contributors of error in aerosol retrieval is misclassifying heavy aerosol loads with 222 

clouds. Using 1.6 μm reflectance which is less affected by aerosols than visible wavelengths addresses in part this 223 

issue (Lyapustin et al., 2008). 224 

    A second question in PCC analysis (after wavelength selection) is definition of the optimal size of the block of 225 

ground scene for PCC calculation. In early version of current algorithm, we set up 10×10 km
2
 as the block size. 226 

Since, aerosol retrieval would be carry out with the same spatial resolution. However, our investigations and 227 

previous studies show that 10×10 km
2
 is not sufficient to capture surface patterns. Thus, blocks of 25×25 km

2
 area 228 

as proposed in previous studies (Lyapustin et al., 2008) were used. The implementation of PCC analysis as used in 229 

this study is discussed in more detail in Sect. 4. 230 

3.2    Reflectance of 3.7 μm thermal infrared channel 231 

The reflectance part of TIR Channels at 3.7 μm and 3.9 μm have been used in different studies to determine cloud 232 

properties such as cloud effective radius and thermodynamic phase of the cloud or to discriminate cloud and 233 
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snow/ice covered surface (Meirink et al., 2016; Klüser et al., 2015; Musial et al., 2014; Khlopenkov, et al., 2007; 234 

Pavolonis et al., 2005; Rosenfeld et al., 2004; Spangenberg et al., 2001; Allen et al., 1990). The reason for the wide 235 

application of this channel in cloud identification methods is the difference in Single Scattering Albedo (SSA) at this 236 

band compared to shorter VIS and INR wavelengths, which in turn results from the significant sensitivity of SSA to 237 

thermodynamic phase and particle size of clouds (Platnick et al., 2008). For example, the scattering of liquid clouds, 238 

having small droplets, is relatively larger than absorption and the ratio of NIR/VIS reflectance approaches 1 while in 239 

the case of large liquid droplets or ice particles, the absorption increases and this ratio is closer to zero (Platnick et 240 

al., 2008). 241 

    In addition, cloud-free snow reflects at a relatively weak level in comparison to clouds at 3.7 μm channel (Derrien 242 

et al., 1993; Platnick et al., 2008). Therefore, the contrast due to different physical properties and radiance of 243 

snow/ice and cloud at 3.7 μm makes the use of this channel advantageous for the identification of clouds. During 244 

daytime, the measured Brightness Temperature (BT) at 3.7 μm is determined from the upwelling radiation which 245 

comprises both reflected or scattered solar radiation and the thermal emission from the surface (Musial et al., 2014). 246 

To use TOA reflectance at 3.7 μm, procedures are needed to account for and subtract the emission portion of 247 

measured BT at 3.7 μm wavelength (Allen et al., 1990). To achieve this goal independent information about the 248 

surface TIR is needed. This is estimated from observations at 11 μm where absorption by water vapor and other 249 

trace gases is very small, most phenomena behave as blackbodies and the measured BT considered as the real 250 

surface temperature (Istomina et al., 2010; Musial et al., 2014). 251 

    To do that, we use the method described in Meirink et al. (2016) and Musial et al. (2014), where the reflectance of 252 

3.7 μm can be written as: 253 

     
         (   )

             (   )
                                                                                                                                                         ( ) 

where      is the reflectance i.e. the ratio of scattered radiance to incident solar radiance; L is measured radiance at 254 

3.7 μm. The contribution from thermal emission at 3.7 μm is the Planck function radiance     (   ) estimated from 255 

the temperature value obtained from the measurements at 11 μm;        is the solar constant at 3.7 μm which is 256 

weighted by    as the cosine of solar zenith angle. 257 

    Theoretical reflectance values at 3.7 μm band, computed by Allen et al. (1990) have been compared to satellite 258 

measurements at the same channel from Advanced Very High ReSolution Radiometer (AVHRR). The results of this 259 

work are summarized in Table 2. According to this study, the reflectance of liquid clouds primarily depends on 260 

droplet size and solar zenith angle, whereas for ice clouds, ice particle shape and size distribution are of great 261 

importance together with Cloud Optical Thickness (COT) and sun-satellite geometry. The observed reflectance is 262 

reported in a range of 0.08 to 0.36 for liquid clouds and 0.02 to 0.27 for ice clouds (Allen et al., 1990). Arking and 263 

Childs (1985) calculated 3.7 μm reflectance for ice clouds which varies between 0.01 to 0.30 for the COT of 0.1 to 264 

100 and ice crystal effective radius of 2 μm to 32 μm, solar zenith angle of 60°. Spangenberg et al. (2001) reported a 265 

typical value of 0.04 to 0.4 for clouds. In the case of snow covered surface 3.7 μm reflectance is dependent on many 266 

factors including snow grain size, solar zenith angle, liquid water content, snow impurities and etc. Considering the 267 
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snow grain size of 50 μm to 200 μm, with a solar zenith angle of 40° to 80°, the modeled values for snow reflectance 268 

varies between 0.005 and 0.025 at 3.7 μm (Allen et al., 1990). However, a range of 0.02 to 0.04 is observed from the 269 

satellite measurements over the same wavelength for snow cover. This difference between model calculations and 270 

measurements is explained by snow impurities (Allen et al., 1990). For land areas, the 3.7 μm reflectance is 271 

impacted by soil type, vegetation type, coverage and moisture content. An average value of 0.15 is derived for clear 272 

sky land scenes at 3.7 μm (Allen et al., 1990). In order to use the remarkable contrast between snow cover and 273 

clouds at 3.7 μm channel, two main issues have to be taken into account: 1) the interference between snow and ice-274 

cloud values; 2) the interference between cloud and land reflectance. The latter is easily solved by using information 275 

from visible channels with 3.7 μm reflectance. This is because land scenes are dark in comparison to cloud and 276 

snow. The first issue, discriminating ice clouds from snow is a challenging task. To detect ice clouds, we combined 277 

3.7 μm reflectance with PCC analysis. A full description of this new method is given in Sect. 4. 278 

4    Methodology 279 

The ASCIA implementation is initiated by preparing a time series of data. A time span of one month for the ground 280 

scene was selected. Hagolle et al. (2015) indicated that in Sentinel-2 measurements with revisit time of 5 days, most 281 

of the given scenes would be observed cloud-free at least once a month. Consequently, we also assume that every 282 

scene of AATSR measurements, which have a higher revisit time of 3 days, will be cloud-free at least once a month.  283 

    Depending on the latitude and the time of year the number of downloaded data varies from 10 to 50 or more over 284 

the same scene. AATSR provide more data over higher latitudes, which increase in spring and summer time due to 285 

longer polar days and solar illumination. The AATSR L1b data are already provided as gridded and calibrated 1×1 286 

km
2
 scenes, which include geo-location information interpolated from the tie point scenes which are equally 287 

distributed across a single AATSR image (http://envisat.esa.int/handbooks/aatsr/CNTR.html). Therefore, there is no 288 

necessity to re-grid them for geo-referencing step which is considered as an advantage to preserve the original 289 

reflectance value of each scene for following steps. However, the time series data are acquired by the satellite from 290 

different viewing geometries. To compute PCC values over the same areas from different days, the ASCIA looks for 291 

the closest similar scenes using geo-location information provided in the data. The closest distance is often found to 292 

be within 0.006 degree and increases to 0.01 degree in the worst case and thus of negligible significance. After 293 

finding the same blocks over different dates and building blocks, the ASCIA comprises two main parts: i) PCC 294 

analysis at 1.6 μm; ii) Applying thresholds on reflectance of 3.7 μm channel. 295 

    In the first step, a PCC analysis for a block of ground scenes (25×25 km
2
) is used to identify cloud and cloud-free 296 

blocks which are assumed to have low and high PCC values respectively. The output of this step is a binary flag at 297 

the block level. This serves as input for the second step to produce at ground scene level (1×1 km
2
 or 0.5×0.5 km

2 
298 

depending on spatial resolution of instrument) cloud identification, by using the knowledge of the reflectance of 299 

solar radiation at 3.7 μm channel. The combination of these two constraints is necessary because neither PCC 300 

analysis nor reflectance part of 3.7 μm channel is adequate on its own for accurate cloud detection. A high PCC 301 

value cannot guarantee the clearness of the whole block of scenes (Lyapustin et al., 2008) because some ground 302 

scenes may still contain clouds, which are not enough in number to decrease significantly the PCC value. This case 303 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-231
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 26 July 2018
c© Author(s) 2018. CC BY 4.0 License.



10 

 

occurs frequently over small or semitransparent clouds where the textural pattern of surface is still observable 304 

through the clouds (Lyapustin et al., 2008). Small PCC values may be caused by a rapid surface change or high 305 

aerosol load or the lack of recognizable spatial pattern, which is often the case over homogenous snow covered 306 

surface (Lyapustin et al., 2008). A PCC value of 0.63 is suggested by Lyapustin et al. (2008) to separate cloud-free 307 

blocks over middle latitudes. Considering less surface patterns in a large area of the Arctic compared to lower 308 

latitudes, and our PCC analysis over both middle and high latitudes, we defined a lower threshold of PCC 0.4 over 309 

the Arctic region and found the PCC of 0.6 is appropriate for middle latitudes based on large number of statistical 310 

analysis. 311 

     After computing the first binary cloud flag at block level using last measurement and one previous image, the 312 

ASCIA keeps the result in memory and repeats the procedure with second previous data and so on, until the last 313 

measurement of the data series is involved in PCC analysis. The final binary blocks are imported through the second 314 

step to identify cloudy scenes based on thresholds defined for blocks with low and high PCC value differently. 315 

However, we would like to underline that, the snow/ice reflectance at 3.7 μm channel (~0.005-0.025) has 316 

interference with those of ice clouds (0.01-0.3) at this wavelength. To avoid the uncertainty arising from this 317 

problem we defined the PCC analysis as a decision point of ASCIA requiring further optimized analysis: 318 

(i) For the high PCC ≥ 0.4, the whole block is considered to be cloud free and then the ASCIA starts looking for 319 

remaining small cloud scenes within a block; scenes with      larger than the maximum value observed over 320 

snow at 3.7 μm:          , (Allen et al., 1990). 321 

(ii) For PCC < 0.4, the block is assumed to be cloudy; ASCIA removes all scenes within the block and only keeps 322 

scenes which satisfy the            test. This threshold is equal or lower than the lowest observation of ice 323 

cloud reflectance at 3.7 μm (Allen et al., 1990). 324 

    In our method, PCC analysis constrains the procedure and strict decision is only made within low PCC blocks. 325 

The loss of some clear scenes in low PCC blocks is an unavoidable side effect of using strict criteria in particular 326 

over land scenes, having low PCC and high 3.7 μm reflectance values. However, the ASCIA detects the presence of 327 

thin cirrus cases with a relatively high confidence level. A schematic flowchart of the ASCIA is shown in Fig. 4, 328 

with the use of the two main constraints being highlighted. In addition to picking out clear scenes, a simple land 329 

classification procedure is undertaken in this step of the ASCIA. Snow/ice scenes are identified with low 3.7 μm 330 

reflection whereas land scenes with high reflection are classified with the aid of the darkness test over visible 331 

channels. The corresponding thresholds for land classification scheme are described in the Table 3. 332 

    It is important to note that if one scene, although characterized as land, may include soil, different types of 333 

vegetation cover or even melting snow. The latter mix with soil and became dark enough to be filtered out from the 334 

snow class. Sea-ice is distinguished from water on the basis of its higher brightness; one scene might be white 335 

enough to be considered as ice. However, melting or broken ice would not be labeled as ice. Snow over sea-ice is 336 

not distinguished from pure sea-ice and both of them are labeled as sea-ice. This also means that ice over land is also 337 

marked as snow as well as pure snow.  338 

    A representative examples of the block level 25×25 km
2
 and scene level 1×1 km

2
 results of the ASCIA on 339 

AATSR observations on the scenes within the region over northwest of Greenland in spring time enclosed in the 340 
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coordinates for four corners (75°N, 48°W), (75°N, 75°W), (81°N, 48°W), (81°N, 75°W) taken on the 18 May 2008 341 

are shown in Fig. 5. This example selected to show the performance of ASCIA over a combination of fairly 342 

homogenous snow cover, land, ocean, sea-ice and cloud. As we discussed earlier, the ambiguity of the PCC analysis 343 

over homogenous surfaces on the right side of AATSR scene in Fig. 5, is entirely compensated by using additional 344 

information from 3.7 μm channel. Another example over a surface with highly variable topography in March with 345 

relatively higher solar zenith angle (>80
°
) is selected over Svalbard enclosed in the coordinates for four corners 346 

(75°N, 4°E), (75°N, 32°E), (81°N, 4°E), (81°N, 32°E) taken on the 1 March 2008. 347 

5    Results   348 

In this study, we applied our recently developed ASCIA to identify cloud in the scenes using AATSR L1b (TOA 349 

reflectance) and SLSTR L1b gridded data. The input file to the process chain is one scene of AATSR L1b product 350 

the output comprises 5 classes of surface types including snow/ice, sea ice, water, cloud and land. The procedure of 351 

surface classification is explained in Sect. 4. The location and time of selected case studies are used to show that the 352 

identification of cloud by our new ASCIA is adequate. In this regard, the AATSR data are selected from several 353 

years starting from 2006, during strong Arctic haze episode, which originated predominantly from agricultural fires 354 

burning in Eastern Europe. The event has been reported in previously (Law et al., 2007). A second episode in 2008 355 

is also considered for which validation data are available from SYNOP stations. One month of data from the 356 

targeted seasons spring, summer and autumn vis. March, May, and July respectively have been acquired over 357 

Greenland and Svalbard to assess the performance of the ASCIA in a wide range of solar zenith angles (60°-85°) 358 

observed at high latitudes. In order to take into account various surface types in the Arctic, we selected case studies 359 

including, highly variable topography and fairly homogenous snow cover, coast lines, land and ocean along snow 360 

and ice covered surface. The design criteria for the ASCIA are optimized for an over various regions of the Arctic in 361 

different solar illumination conditions with the exception of the dark winter period. The results obtained are 362 

compared with i) the AATSR L2 nadir cloud flag and ii) those results obtained with ISTO (Istomina et al., 2010) 363 

and iii) MODIS. 364 

    As we discussed in Sect. 1, misclassifying thin cirrus cloud with clear snow is reported as an unresolved problem 365 

of ISTO approach. Two representative scenarios of this problem are illustrated in Fig. 6 and Fig. 7 over Greenland 366 

and Svalbard respectively in which thin cloud is detected as clear snow by the ISTO method whereas ASCIA 367 

confirmed the presence of cloud. In fact, over such a homogenous surface like Greenland, the second step of the 368 

ASCIA plays the main rule. Since, the lack of structural patterns on surface lead to low PCC values in first step and 369 

consequently overestimation of cloudy scenes. However, the reflection part of 3.7 μm could help to label and bring 370 

back clear homogenous surface as cloud free snow in second step. The right panel in Fig. 6 and 7 shows the 371 

difference between the result of ASCIA and ISTO. In this panel, the dark blue scenes show clouds which are not 372 

detected by ISTO while the ASCIA could identify them sufficiently. On the other hand, reddish scenes show cloud 373 

free scenes which ISTO failed to detect them but the ASCIA labeled them as cloud free. As we can see, in addition 374 

to the edge of clouds which are difficult to detect specially over snow and ice, we have a remarkable number of 375 
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undetected cloud scenes in ISTO results which are identified successfully by the ASCIA. However, for the rest of 376 

these two scenes, both of two algorithms show a promising agreement. 377 

The ESA cloud product from L2 data, shows a significant overestimation of clouds which leads to missing clear 378 

snow and ice scenes. The tendency of this product to flag clear scenes as cloud is also visible in Fig. 6, 7. The results 379 

in Fig. 8 show undetected clouds as another problem of AATSR level 2 cloud product, which happens frequently in 380 

winter time. To have a better understanding of this misclassification, we validated the AATSR L2 nadir cloud flag 381 

against SYNOP measurements and results are described in Sect. 6.  382 

    The lack of good performance in winter time over the Arctic with high solar zenith is observed in all of the results 383 

using ISTO method. Figure 8 is an example over Svalbard in March 2008. Over such a highly variable surface type 384 

like Svalbard, reflection part of 3.7 μm could approach the highest values such as 0.035, which is similar to that 385 

from cloud reflection. In this difficult case, PCC analysis is of great importance to keep cloud free snow scenes from 386 

the strict criteria of second step in particular in winter time with higher solar zenith angle. The ASCIA in high PCC 387 

block accounts a wide range of solar zenith angle (40-80 degree) and results in the reflectance of snow/ice being 388 

defined as between 0.02 and 0.04 at 3.7 μm channel. On the right panel, one can see the large number of red scenes 389 

which are falsely detected as cloud in the ISTO method. 390 

    Figure 10 shows one example of a haze event over Svalbard on 3
rd

 of May, 2006. Both of ESA and ISTO cloud 391 

products had good performance for this case with the exception of the undetected thin cloud scenes which are falsely 392 

detected as clear snow by the ISTO. In fact, the appropriate design and application of PCC analysis over 1.6 μm 393 

enables cloud to be discriminated from heavy aerosol load. However, aerosol load over cloud could not be separated 394 

from cloudy scenes.  395 

    The only season, in which all three approaches detected clouds with similar success, was summer in July as 396 

shown in Fig. 9. Although ASCIA shows an overall better performance in particular for thin clouds, the required 397 

computational time for cloud detection and surface classification is higher than two other methods. In addition, we 398 

compared our results with those from the MODIS cloud identification algorithm used for masking clouded scenes. 399 

As an example, Fig. 11 shows the AATSR scene over Svalbard on 14
th

 July 2008, where a large part of sea-ice is 400 

covered with thin clouds which have a small signature in visible channels. The middle panel shows the MODIS 401 

cloud mask for the same area. Although there is a small time difference of 15 minutes between MODIS and AATSR 402 

overpasses, we see that scenes identified with cloud by ASCIA correspond well with those of MODIS. 403 

    Figure 12 shows another example over northwest of Greenland on 18 May 2008. The thin and broken clouds are 404 

well detected over the snow cover by ASCIA, as well as the clouds over the southern part of the scene, which is 405 

covered with snow and ocean. As we can see from the comparison between ASCIA and MODIS cloud scene 406 

identification, cloudy scenes in the northern part of scene are not captured by MODIS product but the presence of 407 

clouds is seen in the RGB image in left panel. We observed other cases with similar differences especially for the 408 

case of thin and broken clouds. There are two potential sources of these differences, 1) time differences, which are 409 

10 minutes in this case, or 2) a proper performance of the MODIS cloud mask over bright surfaces covered by snow 410 

and ice. 411 
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    Due to the loss of Envisat and thus AATSR data in 2012, and the need for long time series of data, we tested 412 

ASCIA on the AATSR successor SLSTR as well. Figure 13 shows some results over Svalbard on the 18
th

 April 413 

2017. Due to the smaller swath width of AATSR compared to SLSTR, the ASCIA is not applied to the full coverage 414 

of SLSTR and the selected scene is cropped to have the similar coverage of 500×500 km
2
. In spite of some 415 

unresolved calibration issues in this sensor, the higher spatial resolution in SLSTR clearly helps to improve cloud 416 

identification in first step, because the PCC analysis is more sensitive to smaller changes in 0.5×0.5 km
2 

scenes 417 

compared to 1×1 km
2
. Moreover, the shorter revisit time of the Sentinel-3 satellite provides more acquired images 418 

over the same scene. This results in a larger number of reference images, compared to those from Envisat. Overall 419 

these effects result in the ASCIA application on SLSTR data being improved to the performance with AATSR. 420 

However, the comparison of MODIS and ASCIA results indicates that ASCIA detected more cloudy scenes than the 421 

MODIS algorithm. 422 

6    Validation 423 

In this section, we present a quantitative validation of our ASCIA results by making comparisons with simultaneous 424 

ground-based SYNOP and AERONET measurements. The ESA standard cloud product is also compared with these 425 

validation data sets. The difference in spatial and temporal resolution of the new cloud identification datasets and the 426 

data sets used to validate this dataset has to be taken into account. The difference in the time of satellite and SYNOP 427 

measurements is small being below ±20 minutes in most cases and generally does not exceed ± 45 minutes. To 428 

compare surface measurement from SYNOP hemispheric view with the cloud identification at a spatial resolution 429 

1×1 km
2
 resolution satellite measurement, we calculated cloudiness as the percentage of cloudy scenes within a 430 

window of 20×20 km
2
 around each SYNOP station. This is a similar distance to that used in previous studies to 431 

validate satellite based cloud identification SYNOP or similar surface measurements (Kotarba, 2017; Werkmeister 432 

et al., 2015; Minnis et al., 2003). The cloud detection data product was then compared to the three months (March, 433 

May and July) of SYNOP observations. These comprise 100 measurements over Svalbard and Greenland.  434 

    In Fig. 14 we present the relation between the calculated Cloud Fractional Cover (CFC) from ASCIA and SYNOP 435 

measurements and density plot of occurrences of the CFC by ASCIA as a function of SYNOP following the idea of 436 

Werkmeister et al. (2015). We find that these two data sets have a correlation coefficient of R=0.92. In 31 % of 437 

scenarios, ASCIA estimates 1 okta more than SYNOP while in 14 % of match-ups SYNOP shows higher CFC of 1 438 

okta. Figure 14 also reveals that most of ±1 okta differences occur when either SYNOP or ASCIA estimates 7 or 8 439 

oktas which could be due to definition of 8 oktas (100 % CFC) and conversion of continuous percentage to okta 440 

(Werkmeister et al., 2015). For instance, CFC of 99.9 % is considered as 7 oktas by using Table 1 while the CFC 441 

difference is only 0.1 % with 8 oktas. The underestimation of CFC by SYNOP is also confirmed in the histogram of 442 

difference between ASCIA-SYNOP in Fig. 15 which was indicated in previous studies as well (Kotarba, 2009; 443 

Werkmeister et al., 2015). We also indicate the higher accuracy of ASCIA for cloud detection compared to ESA 444 

cloud product. The results of the validation are summarized in Table 4. The cloud cover reported from SYNOP has 445 

an overall agreement of 96 % (within ±2 okta) and 83 % (within ±1 okta) with cloud identification data from 446 

ASCIA. As we discussed earlier error of ±1 to ±2 okta would be expected form SYNOP cloud cover values due to 447 
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man-made nature of its observation and viewing conditions (Boers et al., 2010; Werkmeister et al., 2015). The ESA 448 

cloud product agrees 68 % (within ±2 okta) and 50 % (within ±1 okta) with SYNOP CFCs. The larger differences of 449 

SYNOP and ESA cloud product are also indicated in Fig. 16 where the CFC values in percentage are shown for 450 

ASCIA, ESA and SYNOP for validation scenarios. The blue error bars, indicate the range of okta values for each 451 

SYNOP according to Table 1.  452 

    We also validated ASCIA cloud identification results with AERONET level 1.5 measurements. In 86.1 % of 36 453 

studies scenes over Svalbard, both ASCIA and AERONET confirm the presence of clouds.  454 

7    Conclusion 455 

A new cloud detection algorithm, called ASCIA, for use at high altitudes above bright surfaces has been developed 456 

to generate stand-alone products and for subsequent use in the retrieval of AOT over the Arctic. ASCIA uses data 457 

from the European instruments using AATSR on ESA Envisat (2002 to 2012) and SLSTR on ESA Sentinel 3A or 458 

3B. The ASCIA employs initially a time series analysis of PCC to identify cloud presence, the stability and cloud-459 

free conditions at the block scale of scenes (25×25 km
2
). It then uses the 3.7 μm solar reflectance to discriminate 460 

cloud presence at the spatial resolution of the scene level, which is 1x1 km
2
 or 0.5×0.5 km

2
 for AATSR and SLSTR 461 

measurements respectively. The PCC parameter analysis is independent to a first approximation of threshold 462 

settings, which lead to misclassification of cloud and snow due to the similarity of their spectral characteristics. The 463 

brightness temperature measurements from 3.7 μm channel provide information to convert a block level (25×25 464 

km
2
) to a scene level (1×1 km

2
 or 0.5×0.5 km

2
) cloud identification. ASCIA thereby exploits the contrast in 465 

reflectance between snow/ice and cloud at 3.7 μm wavelength. 466 

    The results of applying the new developed ASCIA are compared and validated against 5 existing products and 467 

methods over the Arctic: 1) SYNOP measurements, 2) AERONET measurements, 3) one of existing methods based 468 

on spectral shape of clear snow 4) AATSR L2 nadir cloud flag, 5) MODIS cloud product. The validation is resulted 469 

in overall agreement of 96 % (within ±2 oktas) and 83 % (within ±1 okta) between SYNOP and ASCIA. The 470 

comparison of the ASCIA and ISTO methods shows a better performance of ASCIA in extreme situations, such as 471 

high solar zenith angle conditions.  472 

    The validation results indicate that the current ESA AATSR L2 nadir cloud flag often falsely identify clouds over 473 

snow/ice with the exception of during summer. The comparison between ESA AATSR L2 cloud product and 474 

SYNOP measurements resulted in 68 % (within ±2 oktas) and 50 % (within ±1 okta). The overall better 475 

performance of ASCIA has also been shown by the SLSTR data. However, more investigation and optimization are 476 

needed for the detection of cloud over land (soil, vegetation etc.) in the PCC blocks with lower values. Since, the 477 

strict performance of the ASCIA in cloudy blocks results in scenes of clear land (without snow cover) being 478 

identified as cloud due to high reflectance of land scenes at 3.7 μm channel. Additionally, sub-scene cloud detection 479 

has not been studied with the current version of ASCIA. The use of reflectance in the 1.37 μm channel will be tested 480 

in the future to improve thin cirrus detection in ASCIA. 481 
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Table 1. Calculation of cloudiness in percentage for corresponding okta values 638 

Percentage of Cloud okta 

0 0 

0 < % < 18.75 1 

18.75 ≤ % < 31.25 2 

31.25 ≤ % < 43.75 3 

43.75 ≤ % < 56.25 4 

56.25 ≤ % < 68.75 5 

68.75 ≤ % < 81.25 6 

81.25 ≤ % < 100 7 

100 8 
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Table 2. Simulated and observed reflectance values at 3.7 μm (Allen et al., 1990) 639 

Surface/cloud Type 
Simulation of 3.7 μm 

Reflectance 

Observation of 3.7 μm 

Reflectance 

Ice cloud 0.01-0.3 0.02-0.27 

Liquid cloud 0.1-0.45 0.08-0.36 

Clear land ~0.15 0.03-0.1 

Snow cover 0.005-0.025 0.02- 0.04 
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Table 3. Land classification criteria in cloud-free scene. 640 

Surface Type Simulation of 3.7 μm Reflectance Description 

Water           & NDSI≥0.4 MODIS snow and 

ice mapping ATBD 

(Hall et al., 2001) Sea-ice           & NDSI≥0.4 

Land     >0.04 &           || NDSI<0.4 Allen et al.,1999 

             Snow     ≤0.04 Allen et al., 1999 
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Table 4. A summary of the comparison of ASCIA and ESA cloud product with SYNOP measurements used to validate these 641 

products. 642 

 Criteria 

Cloud data within ±2 oktas within ±1 okta 

ASCIA vs. SYNOP 
96 % correct 

4 % incorrect 

83 % correct 

17 % incorrect 

ESA vs. SYNOP 
68 % correct 

32 % incorrect 

50 % correct 

50 % incorrect 
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Figure 1. Upper left: the RGB image of AATSR over Svalbard, 10 May 2006, upper right: 1.6 μm reflectance, lower left: 3.7 μm 643 

reflectance, lower right: 11 μm brightness temperature. 644 
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Figure 2. Upper left: the RGB image of SLSTR over Svalbard, 18 April 2017, upper right: 1.37 μm reflectance, lower 645 

left: 1.6 μm reflectance, lower right: 3.7 μm reflectance. 646 
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Figure 3. SYNOP network coverage over the Arctic, the dark blue points indicate the location of SYNOP stations. 647 
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Figure 4. The schematic flowchart of ASCIA. 648 
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Figure 5. Examples of the results of ASCIA on AATSR observations on the scenes over Greenland (upper panels) and Svalbard 649 

(Lowe panels), taken on the 18 May 2008 and 1 March 2008 respectively, Left panels: RGB images, middle panels: Cloud 650 

detection at block level (25×25 km2), right panels: cloud detection at scene level. 651 
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Figure 6. (a) The RGB image of AATSR over northern Greenland, 24 May 2008, (b) Nadir cloud flag from AATSR L2 product, 652 

(c) cloud detection based on spectral shape of clear snow, (d) cloud detection of ASCIA, (e) difference between ISTO and 653 

ASCIA  654 

                

Figure 7. (a) The RGB image of AATSR over Svalbard, 10 May 2006, (b) Nadir cloud flag from AATSR L2 product, (c) cloud 655 

detection based on spectral shape of clear snow, (d) cloud detection of ASCIA, (e) difference between ISTO and ASCIA.  656 

                                                                                         

 

Figure 8. (a) The RGB image of AATSR over Svalbard, 18 March 2008, (b) Nadir cloud flag from AATSR L2 product, (c) cloud 657 

detection based on spectral shape of clear snow, (d) cloud detection of ASCIA, (e) difference between ISTO and ASCIA. 658 
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Figure 9. (a) The RGB image of AATSR over Svalbard, 6 July 2008, (b) Nadir cloud flag from AATSR L2 product, (c) cloud 659 

detection based on spectral shape of clear snow, (d) cloud detection of ASCIA, (e) difference between ISTO and ASCIA. 660 

                                                                                     

 
Figure 10. (a) The RGB image of AATSR over Svalbard, 3 May 2006, (b) Nadir cloud flag from AATSR L2 product, (c) cloud 661 

detection based on spectral shape of clear snow, (d) cloud detection of ASCIA, (e) difference between ISTO and ASCIA. 662 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-231
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 26 July 2018
c© Author(s) 2018. CC BY 4.0 License.



31 

 

 
Figure 11. Left panel: RGB image of AATSR over Svalbard, 14 July 2008, 16h 40min 45s, middle panel MODIS cloud mask 663 

algorithm retrieved data: 1- cloudy, 2- probably cloudy, 3- probably clear, 4- clear, (red rectangle shows the coverage of 664 

AATSR) for 16h 25 min, right panel: the results for the cloud detection of ASCIA. 665 

 

                              
Figure 12. Left panel: RGB image of AATSR over Greenland, 18 May 2008, 23h 13min 38s, middle panel: MODIS cloud mask: 666 

1- cloudy, 2- probably cloudy, 3- probably clear, 4- clear, (red rectangle shows the coverage of AATSR) for 23h 5min, right 667 

panel: Cloud detection of ASCIA. 668 
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Figure 13. Left panel: The RGB image of SLSTR over Svalbard, 18 April 2017, 10hr 15min 6s, Middle panel: MODIS cloud 669 

mask: 1- cloudy, 2- probably cloudy, 3- probably clear, 4- clear, (red rectangle shows the coverage of AATSR) for 11h 30m, 670 

right panel: Cloud detection of ASCIA. 671 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-231
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 26 July 2018
c© Author(s) 2018. CC BY 4.0 License.



33 

 

 

Figure 14. Density plot of occurrences of the CFC by ASCIA as a function of SYNOP. 672 

 

Figure 15. Histogram of CFC differences (blue: ASCIA minus SYNOP; red: ESA cloud product minus SYNOP). 673 

 674 

 675 
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Figure 16. CFC in percent by ASCIA (red), SYNOP (blue) and ESA Cloud Product (green) for 100 scenarios of March, May and 676 

July 2008 over Svalbard and Greenland. Light blue error bars show the range of percentage values for each okta from SYNOP 677 

measurements. 678 
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