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We thank the reviewer for their positive response and careful reading. The suggestions
offered and questions raised are well taken, and we have done our best to incorporate them
into the paper.

Responses to specific comments follow. The reviewer’s comments will be shown in red,
our response in blue, and changes made to the paper are shown in black block quotes.
Unless otherwise indicated, page and line numbers correspond to the original paper. Figures,
tables, or equations referenced as “Rn” are numbered within this response; if these are used
in the changes to the paper, they will be replaced with the proper number in the final
paper. Figures, tables, and equations numbered normally refer to the numbers in the original
discussion paper.

This manuscript seems to focus largely on how the updated model chemistry/emissions
and the daily vs. monthly averaged a-priori profiles impact the performance of the BEHR
NO2 retrieval. But there were other pertinent updates in the retrieval: vary- ing tropopause
height, directional surface reflectance, and a new combined surface pressure dataset. Are
the differences in retrieval performance against observations as a result of these updates very
minor compared to the differences attributed to the updated model chemistry and profile
temporal resolution? It seems worthwhile men- tioning/commenting on. I wondered whether
there were any specific instances/cases where some of these other updates could be relatively
more important.

Our decision to focus most strongly on the modeled NO2 profiles was due primarily to two
reasons:

1. In discussions with other members of the NO2 remote sensing community, concerns
were raised about the accuracy of such high spatial and temporal resolution profiles.

2. In Laughner et al. (2018), we showed that the effect of the a priori profiles on the NO2

VCDs has one of the two greatest effects on the NO2 VCDs.

Because accurately simulating day-by-day high resolution NO2 profiles accurately is chal-
lenging, and because to our knowledge, this is the first time an NO2 product using such
profiles has been generated for such a large time period and domain, we felt it was most
important to validate that component separately. The other scientifically interesting mod-
ifications either are or will likely be standard for state-of-the-art NO2 retrievals (BRDF,
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Vasilkov et al. 2017; surface pressure, Zhou et al. 2009; variable tropopause, Bucsela et al.
2013).

During testing, we had found that using the hypsometric surface pressure correction rec-
ommended by Zhou et al. (2009) (instead of the simple scale height relationship used in
v3.0A and earlier) had a comparatively large effect on the agreement between BEHR and
aircraft + Pandora VCDs during the DISCOVER-CO campaign, which took place in the
Rocky Mountains. This is interesting, because the Zhou et al. (2009) method was originally
intended to downscale very coarse resolution (3°×2°) modeled surface pressure to OMI pixel
resolution; we did not expect it to provide a large advantage over using an already high
resolution surface elevation database with a scale height calculation. We have added a short
section describing this to the supplement:

“While we did not carry out an explicit test of how each change to the BEHR
algorithm between v2.1C and v3.0B affected the comparison vs. aircraft and
Pandora data, we did investigate the effect of different methods of computing
the surface pressure of the OMI pixels. The AMF calculation requires a priori
knowledge of the average surface pressure of the each OMI pixel, as the location
of the surface affects the shape of the scattering weights (e.g. a low reflectivity
surface high up in the atmosphere will cause the scattering weights to decrease
more rapidly with decreasing altitude than a surface lower down in the atmo-
sphere).

In BEHR v3.0A and earlier versions, this surface pressure was computed by av-
eraging surface elevation data from the GLOBE database (Hastings and Dunbar,
1999) within the OMI pixel, which is then converted to from elevation to pres-
sure using a 7.4 km scale height. In v3.0B, surface pressure taken from the same
WRF-Chem model that supplied the NO2 profiles is adjusted using the same
average GLOBE surface elevation in the method described by Zhou et al. (2009).
The Zhou et al. (2009) method was originally intended to downscale very coarse
(∼ 3°×2°) modeled surface pressure to OMI pixels using a high resolution terrain
database, therefore the effect of using it with already high resolution modeled
surface pressure has not been tested.

Laughner et al. (2018) showed that switching to the (Zhou et al., 2009) method
increased BEHR NO2 VCDs by ∼ 5 to 10% over the Rocky Mountains during the
summer months. This is a small but systematic change, and so was investigated
as a way to correct the low bias in BEHR NO2 VCDs vs. aircraft and Pandora
measurements during the DISCOVER-AQ Colorado campaign.

Figure R1 shows regressions of BEHR VCDs against aircraft + Pandora VCDs
using both the scale height and hypsometric equation methods of computing
surface pressure. The latter method improves the slope by ∼ 18%, and while
there is a small increase in most BEHR VCDs, the reduction of the 4 largest
aircraft VCDs has a larger effect on the slope. The aircraft VCDs change because,
when computing a VCD from the aircraft profiles, we integrate from the OMI
pixel surface pressure to its tropopause pressure, for consistency between the
aircraft VCD calculation and BEHR AMF calculation.
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Figure R1: Regression of BEHR v3.0B (D) VCDs vs. aircraft + matched Pandora VCDs for
the DISCOVER-CO campaign. The blue series and fit used surface pressured
computed using a 7.4 km scale height to convert GLOBE elevations into pressures;
the red series used the hypsometric equation as in Zhou et al. (2009).

As the two methods of calculating surface pressure do not significantly alter
the BEHR VCDs in this comparison, we cannot say explicitly that the surface
pressure calculated with the hypsometric equation improves the BEHR retrieval.
However, using that surface pressure does lead to greater consistency between
BEHR and aircraft VCDs when also applied as the lower limit for integrating the
aircraft profiles.”

Abstract: I suggest including the detail that BEHR is focused on retrievals over North
America in the abstract.

We have added:

“Version 3.0B of the Berkeley High Resolution (BEHR) OMI NO2 product is
designed to accurately retrieve daily variation in the high spatial resolution map-
ping of tropospheric column NO2 over continental North America between
25◦ N and 50◦ N.”

Introduction: The introduction includes some background on previous evaluation ef- forts
for the NASA SP and KNMI DOMINO products. Given the focus of this paper on evaluating
this latest version of the BEHR algorithm, some details on how previ- ous versions of this
algorithm have been evaluated (and its performance) also seems relevant. This could add
more motivation/context for the necessity of updating the al- gorithm (in addition to the
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already cited work from Laughner et al. 2016 that focused on the importance of daily
profiles).

We have added the following paragraph near the end of the introduction:

“Russell et al. (2011) evaluated the original BEHR algorithm over California
using data from the Arctic Research of the Composition of the Troposphere
from Aircraft and Satellites (ARCTAS-CA) field campaign. As the ARCTAS-CA
campaign did not include a large number of tropospheric profiles, Russell et al.
(2011) computed aircraft-derived NO2 VCDs from times when the aircraft was
flying in the boundary layer. Assuming a well-mixed boundary layer, Russell et al.
(2011) extrapolated the measurements within the boundary layer to the surface,
and combined with measurements in the free troposphere from the remainder of
the ARCTAS-CA campaign, were able to estimate tropospheric NO2 VCDs from
aircraft measurements for a larger number of coincident OMI pixels than would
have been possible with traditional aircraft profiles, at the expense of increased
uncertainty in the aircraft-derived VCDs. Russell et al. (2011) found that both
the original BEHR product had similar agreement as the NASA SP v1 product
with the aircraft data (both with slopes near 1), but BEHR had better correlation
(R2 0.83 vs. 0.72). Since then, the plethora of aircraft campaigns and expansion
of the Pandora ground based spectrometer network across the United States has
provided better datasets to evaluate the BEHR product in a variety of locations.”

p. 5, l. 29-30: The authors mention using the GEOS-Chem global chemistry model to
extend aircraft profiles to the surface. It could be relevant here to include at least the
horizontal resolution of the model output used. Is the model output identical to the model
experiment run cited in Nault et al. (2017)? It wasn’t clear to me whether these authors
were directly using output from that experiment.

This is data from the same GEOS-Chem simulation as Nault et al. 2017. We have clarified
this:

“We use modeled NO2 profiles from the “updated + 33%” GEOS-Chem simula-
tion described in Nault et al. (2017) (v9.02 of the GEOS-Chem global chemical
transport model (Bey et al., 2001) at 2.5◦ × 2◦ resolution, with updated HNO3,
HO2NO2, and N2O5 chemistry and lightning emission rates).”

p. 6, l. 18: I wonder whether some summary statistics might more easily advance the
authors’ argument that model output from v3.0 “show better agreement” than model output
from v2.1. At the moment, there is only a description of the more obvious qualitative details.

We have added Table R1 and the following paragraph after the second paragraph of section
3.1:

“

We evaluate the agreement quantitatively by calculating the mean absolute bias
between the average WRF and aircraft profiles (Table R1). We divide the profiles
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BL (p > 775 hPa) BL (no SEAC4RS) FT (p ≤ 775 hPa) FT (no SEAC4RS)
V2 965 902 71 86
V3 Monthly 530 609 74 87
V3 Daily 482 618 108 66

Table R1: Mean absolute bias between each of the types of simulated NO2 profiles and the
aircraft profiles shown in Fig. 1. Values are given for the boundary layer (BL)
and free troposphere (FT), with the divide at 775 hPa (∼ 2 km). All values are
in parts per trillion by volume (pptv).

into boundary layer (BL) and free troposphere (FT), as different processes (e.g.
anthropogenic vs. lightning emissions) govern them. As the SEAC4RS campaign
has an obvious error in the free troposphere (which will be discussed below), we
calculate these values with and without the SEAC4RS campaign. In the BL, the
version 3 profiles have one-half to two-thirds the bias of the version 2 profiles
(depending if SEAC4RS is excluded). In the free troposphere, there is little
difference in the mean bias between profile types, unless SEAC4RS is included,
in which case the daily profiles have a 33% greater bias.”

p. 6, l. 31: “since the strongest lighting occurs. . .” Replace “lighting” with “lightning”
Corrected, thank you.

p. 9, l. 29: I suggest inserting “modeled” between “daily” and “profiles” so the point is
very clear.

Added.

p. 12, l. 2: The word “adequately” is used rather subjectively here. I know it is dis-
cussed later in the manuscript, but I wonder whether there is any way to quantitatively
evaluate just how well the WRF-Chem NO2 profiles are indeed capturing the day-to- day
variability. If not, perhaps this caveat could be more clear, and you could mention here that
you propose some suggestions later in the manuscript.

Unfortunately, developing a quantitative metric that accurately evaluates the important
aspects of the agreement between the daily variability in the modeled NO2 profiles and the
real world is quite difficult. Structure functions have been used with success before (Follette-
Cook et al., 2015), but are insufficient for our application: since structure functions measure
average difference vs. separation, a simulated plume and a real plume with similar shapes
but going in different directions will still have similar structure functions, even though they
differ in a crucial way.

Developing the necessary methods to quantify how well the simulated daily profiles match
reality would be an interesting and worthwhile endeavor, unfortunately it is outside the scope
of this paper. Therefore we have added the following text to Sect. 3.2:

“While we recognize that this conclusion is highly qualitative, the specific char-
acter of agreement that is important for these profiles (overall plume size and
direction, rather than exact agreement between modeled and real concentrations
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or column densities) is rather difficult to evaluate quantitatively. We recognize
that developing such methods is necessary and offer several possible approaches
in Sect. 5.”

p. 12, l. 12-15: This explanation of negative VCDs in the DISCOVER-CO dataset is
unclear to me.

We have expanded this explanation and reorganized the surrounding text slightly to ac-
comodate it:

“For the DISCOVER-CO aircraft comparison, negative VCDs were removed.
Negative VCDs occur when the estimated stratospheric NO2 column is greater
than the total NO2 column, thus Vtrop = Vtotal − Vstrat < 0; they cannot be
introduced by the AMF correction of the tropospheric SCD to VCD as the AMF
is a multiplicative factor and always > 0. Since all versions of BEHR use the
same stratospheric NO2 column as their respective NASA SP products, an error
in stratospheric subtraction will be present in all products, and it cannot be
corrected in the BEHR retrieval. Aircraft VCDs, by their nature, cannot be
negative, so for these comparisons we remove the negative VCDs so as to avoid
increasing the regression slopes by trying to fit these erroneous points. (However,
we do note that this is a special case where individual pixels or small groups of
pixels are being compared against other VCDs. Most applications of BEHR data
should retain the negative VCDs to avoid transforming the essentially Gaussian
random stratospheric error into a systematic error by removing part of the bell
curve.) Since the stratospheric VCDs are added back to the BEHR or NASA SP
tropospheric VCDs for comparison with the Pandora VCDs, negative VCDs are
not an issue with Pandora comparisons.”

p. 12, l. 28-30: The authors introduce the notation of “BEHR v.30 (M)” and “(D)” for
the first time here, I think. While it’s fair to say it is obvious, the authors could explicitly
clarify that “(M)” refers to the product using monthly average profiles, and “(D)” refers to
the product using daily profiles

We have added the following sentence to the end of Sect. 4:

“Throughout, BEHR v3.0 (M) refers to BEHR using monthly NO2 profiles; like-
wise, BEHR v3.0 (D) refers to the product using daily NO2 profiles.”

Table 2 and 3: I was wondering whether there would be value in reporting correlation
coefficients in addition to slopes. Can the authors explain why they haven’t included these
in their evaluation of the product performance? For example, I wondered whether they can
demonstrate that in addition to improving a bias, using daily profiles (D) explain more of
the variability than monthly profiles (M) alone.

We do report R2 values in the supplement (Table S3). We chose not to include them in the
main paper as this section was already fairly dense (with a three-way comparison between
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NASA, BEHR v2, and BEHR v3) and the slopes are the main indicator of the accuracy of
each products’ columns. Further, there is no clear pattern in the R2 values. We have added
the following sentence in Sect. 4 stating this:

“We will focus on the regression slopes here; intercepts and R2 values are given
in Table S3 in the supplement; however we note that there is not a clear pattern
of any one product having a consistently better R2 value than the others.”

Section 4.2: Can the authors clarify why they have chosen to separate their evaluation by
looking at all the Pandora data, vs. just the Pandora data during coincident aircraft spirals?
Is this meant to demonstrate how continued long-term monitoring is superior to short-term
campaign coverage for evaluation purposes?

We should clarify that both cases include aircraft and Pandora data. Our main purpose
was to provide both a regression that used all available data and one that weights the
Pandora and aircraft data equally; when using all Pandora data, the sheer number of data
points essentially overwhelms the aircraft data. Since both measurements have strengths and
weaknesses for comparison with satellite columns, we wanted to show both a comparison over
long time periods (all Pandora data) and one that gave the aircraft data fair weight. We
have expanded Sect. 4 to describe this:

“For the DISCOVER campaigns, we compare BEHR against aircraft-derived
and Pandora VCDs together, calculating a single regression line for the com-
bined dataset. These two measurements have unique strengths and weaknesses
for comparison against satellite VCDs: Pandoras give a precise column measure-
ment and can be deployed for long time periods, but have a very small footprint
(leading to possible representativeness errors) and provide a total, not tropo-
spheric, column. Aircraft profiles have a footprint more similar to an OMI pixel
size, but introduce uncertainty due to missing parts of the profile (near the sur-
face and in the upper troposphere in the DISCOVER campaigns) and cannot be
deployed for long term, routine observations.

In order to take advantage of each methods’ strenghts, we use two compar-
isons, in one, only Pandora data that has a coincident aircraft profile is include
(“matched”), in the other, all cloud-free Pandora data is used (“all”). We do
so because, when including all Pandora data, the number of Pandora compar-
isons available will overwhelm the number of available aircraft profiles in the
regression. Therefore the regressions using all Pandora data are representative
of longer time periods, but weighted strongly towards the Pandora data, and the
regressions using only the coincident data represent shorter time periods, but
give more weight to the aircraft data.”

We also remind the reader that these regressions are aircraft+Pandora in Sect. 4.2:

“Using aircraft data plus just Pandora data coincident with aircraft spirals,
v2.1 performs better.... However, using aircraft data plus all Pandora data,
v3.0 (D) performs better....”
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Evaluation of version 3.0B of the BEHR OMI NO2 product

Response to Anonymous Referee #2

Joshua L. Laughner, Qindan Zhu, and Ronald C. Cohen

November 8, 2018

We thank the reviewer for their positive comments. We acknowledge that there is a large
volume of information presented here, and believe that the suggestions we have incorporated
should help make the major points more apparent to the reader.

Responses to specific comments follow. The reviewer’s comments will be shown in red,
our response in blue, and changes made to the paper are shown in black block quotes.
Unless otherwise indicated, page and line numbers correspond to the original paper. Figures,
tables, or equations referenced as “Rn” are numbered within this response; if these are used
in the changes to the paper, they will be replaced with the proper number in the final
paper. Figures, tables, and equations numbered normally refer to the numbers in the original
discussion paper.

Section 4. The comparison of VCD should include some scatterplots. Presenting the
comparison as a table (Table 2) only is a bit difficult to follow. Especially, the results with
separated Pandora and aircraft VCDs should be shown. Some of these plots could go in the
supplementary material.

Scatterplots with separate aircraft and Pandora data were already included in the supple-
ment. Figures S1-S6 show separate aircraft and, where available, Pandora comparisons for
each of the 6 campaigns used for validation. We have added a figure showing scatter plots
for the combined aircraft and Pandora data to the main paper (Fig. R1).

You use a quite precise spatial collocation criteria (pandora site within the OMI pixel,
so no spatial smoothing in practice) and then you time average Pandora observations ±1 h
from the OMI observation, which is quite large time frame. Can you open a little bit about
this choice? How does the results change with a shorter time interval?

The ±1 h averaging is the same as done in Goldberg et al. (2017). Part of our reason
for using that averaging window is to make our results comparable with that study. Given
the average wind for cities where the DISCOVER-AQ campaigns took place (4.5 m/s, from
WRF simulations), a shorter averaging time window, e.g. ±0.5 h, might make more sense
as this means an airmass would travel ∼16 km, which is similar to the length of an OMI
pixel at nadir in either dimension (13 or 24 km). However, no slope changes by > 0.05 (max
∼ 8%) using the shorter window, so we prefer to be consistent with Goldberg et al. (2017)
so that readers can compare our results. We have added a sentence to sect. 4 explaining
this:
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Figure R1: Scatter plots of the BEHR v2.1C, v3.0B (M), and (where available) v3.0B (D)
VCDs against coincident aircraft and Pandora VCDs. All Pandora VCDs are used
for these plots. Each panel is one campaign: the (a) Maryland, (b) California,
(c), Texas, and (d) Colorado DISCOVER-AQ campaigns. For slopes, see Table
3; for intercepts and R2 values, see Table S3.

“As stated in sect. 2.3, we average all data within 1 hour of OMI overpass (i.e.
13:30 local time ±1 h) to be consistent with Goldberg et al. (2017). A shorter
averaging window (±0.5 h) was tested; the maximum effect on the slope was
∼ 8% with most of the “matched” data showing differences of ≤ 5% and the
“all” data changing by ≤ 3.5% in all but one case.”

You mention several times in the text that changes in emission information as input have
a role in the discrepancies you observe between different versions of the algorithm. Could
you actually show them? For example, plotting or mentioning the quantitative the emission
changes over the areas of study.

While the emissions files used in the original BEHR product are no longer available, we
have reproduced their likely value based on the description in Russell et al. (2011) and Russell
et al. (2012) and added a figure to the supplement (Fig R2).

Fig. 1: the plot is quite small, it could be a bit bigger so that the the different lines can
be better separated? Also, the legend can be shown only once.

We have done our best to enlarge this figure within the space constraints of the AMT
template.

P12 L11 only Pandora data that has a coincident aircraft profile is include -¿ only Pandora
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Figure R2: Absolute (a) and percent (b) change in WRF-Chem NO emissions between the
EPA NEI 2005 inventory, unscaled, and the EPA NEI 2011 inventory, scaled to
2012 levels.

data that have a coincident aircraft profile are included
Corrected, thank you.

Conclusions P17 L12 I think you refer to Sentinel 4, as Sentinel 5 is not planned on a
geostationary orbit.

Yes, thank you for the correction.

Figure 1 and 3: the different panels would benefit from a title mentioning the different
sites considered in the plot

Added.
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Abstract. Version 3.0B of the Berkeley High Resolution (BEHR) OMI NO2 product is designed to accurately retrieve daily

variation in the high spatial resolution mapping of tropospheric column NO2::::
over

:::::::::
continental

::::::
North

:::::::
America

:::::::
between

::::
25◦

::
N

:::
and

:::
50◦

::
N. To assess the product, we compare against in situ aircraft profiles and Pandora vertical column densities (VCDs).

We also compare the WRF-Chem simulation used to generate the a priori NO2 profiles against observations. We find that using

daily NO2 profiles improves the VCDs retrieved in urban areas relative to low resolution or monthly a priori by amounts that5

are large compared to current uncertainties in NOx emissions and chemistry (of order 10% to 30%). Based on this analysis,

we offer suggestions to consider when designing retrieval algorithms and validation procedures for upcoming geostationary

satellites.

1 Introduction

NOx (≡ NO+NO2) is an atmospheric trace gas emitted by anthropogenic activity (predominantly combustion, e.g. motor10

vehicles and power plants), lightning, biomass burning, and soil microbes. It plays an important role in air quality, as a major

controlling factor in ozone and aerosol production, as well as being toxic itself.

Satellite observations of NO2 have proven to be extremely useful in constraining anthropogenic (e.g. Richter et al., 2005;

Kim et al., 2006, 2009; van der A et al., 2008; Konovalov et al., 2010; Russell et al., 2010; Beirle et al., 2011; Castellanos and

Boersma, 2012; Russell et al., 2012; Zhou et al., 2012; McLinden et al., 2014; Lu et al., 2015; Liu et al., 2016, 2017; Miyazaki15

et al., 2012, 2017), lightning (e.g. Beirle et al., 2004; Martin et al., 2007; Beirle et al., 2010; Bucsela et al., 2010; Miyazaki

et al., 2014; Pickering et al., 2016; Nault et al., 2017), soil (e.g. Bertram et al., 2005; van der A et al., 2008; Hudman et al.,

2010, 2012; Zörner et al., 2016), and biomass burning (e.g. Mebust et al., 2011; Huijnen et al., 2012; Mebust and Cohen, 2013,

2014; Bousserez, 2014; Schreier et al., 2014; Castellanos et al., 2015; van Marle et al., 2017) emissions.

Satellite observations of NO2 relate absorption of light in the ∼ 400–460 nm range of reflected Earthshine radiances to a20

total column measurement of NO2 using differential optical absorption spectroscopy (DOAS, Boersma et al., 2001; Richter

and Wagner, 2011) or a similar technique (e.g. van Geffen et al., 2015). Most applications of satellite NO2 observations to

constrain emissions or otherwise study air quality are focused on the tropospheric contribution to the total column; therefore

the stratospheric column must be removed. Several methods have been implemented to do so (e.g. Boersma et al., 2007; Bucsela

et al., 2013). The tropospheric slant column density (SCD) is then converted to a vertical column density (VCD) through the25

1



use of an air mass factor (AMF, McKenzie et al., 1991; Slusser et al., 1996; Burrows et al., 1999; Palmer et al., 2001) that

accounts for the effect of path length, surface reflectivity and elevation, NO2 vertical distribution, clouds, and aerosols.

There have been numerous studies evaluating OMI NO2 products against in situ aircraft profiles and ground based column

measurements. This is not meant to be an exhaustive list, but to provide a summary of the results of evaluations of existing

standard OMI NO2 products.5

The first-generation NASA Standard Product (SP) and KNMI DOMINO products were evaluated by Bucsela et al. (2008)

and Hains et al. (2010) using aircraft profiles from multiple campaigns and Russell et al. (2011) using an extrapolation method

with ARCTAS-CA aircraft data. These studies all identified a high bias in the DOMINO VCDs; by comparing the DOMINO

a priori profiles to aircraft and lidar profiles Hains et al. (2010) found evidence that this was caused by insufficient vertical

mixing in the DOMINO a priori profiles, which was corrected in DOMINO v2.10

Lamsal et al. (2014) undertook a detailed evaluation of the NASA SP v2, primarily focusing on data from the Deriving Infor-

mation on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ)

campaign in Baltimore, MD, USA. This work combined evaluation of the a priori profile against aircraft measurements along

with validation of OMI VCDs with aircraft and ground-based VCDs. They found that the NASA SP v2 VCDs were generally

biased low in urban areas and high in rural or suburban areas. This is consistent with the effect of coarse a priori profiles15

(Russell et al., 2011); in a large urban area like the Baltimore/Washington D.C. urban corridor, a coarse profile can capture the

average urban characteristic profile, but on the edge, a coarse profile cannot capture the transition from urban to rural.

Krotkov et al. (2017) and Goldberg et al. (2017) both evaluated the NASA SP v3, primarily using ground based VCD

observations. They found it to be biased low by ∼ 50% in the Baltimore area (Goldberg et al., 2017) and 50% or more Hong

Kong (Krotkov et al., 2017), but better than SP v2 in remote areas, due to the improved total column fitting implemented in20

version 3. Ialongo et al. (2016) also compared versions 2 and 3 of the NASA SP and version 2 of DOMINO against ground

based column measurements in Helsinki, one of only a few studies at high latitudes (> 60◦). They found that SP v3 was biased

30% low, while the version 2 products were not. They attributed this to cancellation of errors in the version 2 products, namely

the high bias in the total OMI columns corrected by van Geffen et al. (2015), and the representativeness mismatch between

OMI pixels and Pandora measurements.25

:::::::::::::::::
Russell et al. (2011)

:::::::
evaluated

:::
the

:::::::
original

::::::
BEHR

:::::::::
algorithm

::::
over

:::::::::
California

:::::
using

::::
data

:::::
from

:::
the

::::::
Arctic

::::::::
Research

:::
of

:::
the

::::::::::
Composition

:::
of

:::
the

::::::::::
Troposphere

:::::
from

:::::::
Aircraft

:::
and

::::::::
Satellites

:::::::::::::
(ARCTAS-CA)

::::
field

:::::::::
campaign.

:::
As

:::
the

:::::::::::
ARCTAS-CA

:::::::::
campaign

:::
did

:::
not

::::::
include

:
a
:::::
large

::::::
number

::
of

:::::::::::
tropospheric

:::::::
profiles,

:::::::::::::::::
Russell et al. (2011)

::::::::
computed

:::::::::::::
aircraft-derived NO2 :::::

VCDs
::::
from

:::::
times

::::
when

:::
the

:::::::
aircraft

:::
was

::::::
flying

::
in

:::
the

::::::::
boundary

:::::
layer.

::::::::
Assuming

::
a
::::::::::
well-mixed

::::::::
boundary

:::::
layer,

:::::::::::::::::
Russell et al. (2011)

::::::::::
extrapolated

::
the

:::::::::::::
measurements

:::::
within

:::
the

:::::::::
boundary

::::
layer

:::
to

:::
the

:::::::
surface,

:::
and

:::::::::
combined

::::
with

::::::::::::
measurements

::
in

:::
the

::::
free

::::::::::
troposphere

:::::
from30

::
the

:::::::::
remainder

::
of

:::
the

::::::::::::
ARCTAS-CA

:::::::::
campaign,

::::
were

::::
able

::
to

:::::::
estimate

:::::::::::
tropospheric

:
NO2 :::::

VCDs
:::::
from

::::::
aircraft

::::::::::::
measurements

:::
for

:
a
:::::
larger

:::::::
number

::
of

:::::::::
coincident

:::::
OMI

:::::
pixels

::::
than

::::::
would

::::
have

::::
been

::::::::
possible

::::
with

:::::::::
traditional

::::::
aircraft

:::::::
profiles,

::
at
:::
the

:::::::
expense

:::
of

::::::::
increased

:::::::::
uncertainty

::
in

:::
the

:::::::::::::
aircraft-derived

::::::
VCDs.

:::::::::::::::::
Russell et al. (2011)

::::
found

::::
that

::::
both

::
the

:::::::
original

::::::
BEHR

::::::
product

::::
had

::::::
similar

::::::::
agreement

:::
as

:::
the

::::::
NASA

::
SP

:::
v1

:::::::
product

::::
with

:::
the

::::::
aircraft

::::
data

:::::
(both

::::
with

:::::
slopes

::::
near

:::
1),

:::
but

::::::
BEHR

::::
had

:::::
better

:::::::::
correlation

::::
(R2

2



::::
0.83

::
vs.

:::::
0.72).

:::::
Since

:::::
then,

:::
the

:::::::
plethora

::
of

::::::
aircraft

:::::::::
campaigns

:::
and

:::::::::
expansion

::
of

:::
the

:::::::
Pandora

::::::
ground

:::::
based

:::::::::::
spectrometer

:::::::
network

:::::
across

:::
the

::::::
United

:::::
States

:::
has

::::::::
provided

:::::
better

:::::::
datasets

::
to

:::::::
evaluate

:::
the

::::::
BEHR

::::::
product

::
in
::
a
::::::
variety

::
of

::::::::
locations.

:

Here we present an evaluation of version 3.0B of the BErkeley High Resolution (BEHR) OMI NO2 retrieval. Version 3.0B

implements several changes over v2.1C:

– Daily profiles for selected years5

– Updated 12 km WRF-Chem NO2 profiles with a more complete chemical mechanism (Zare et al., 2018), updated

anthropogenic emissions, lightning NOx emissions added

– Use of v3.0 NASA Standard Product (SP) tropospheric SCDs

– Directional surface reflectance

– Variable tropopause height10

– Surface pressure combining a high resolution terrain database with WRF-simulated surface pressure

The motivation for this upgrade stems from ideas developed in Laughner et al. (2016), where we showed that daily, high

resolution a priori profiles are necessary for a retrieval to simultaneously retrieve NOx VCDs and lifetime to accuracies better

than 30%. As our goal is to study the relationship between changes in NOx VCDs/emissions and NOx lifetime across the US,

and resolving open questions requires higher relative precision and high accuracy than prior retrievals, we have developed a15

new product with daily 12 km a priori profiles. Therefore, in this work, we first evaluate the simulated WRF-Chem profiles

against aircraft measurements and OMI SCDs to demonstrate that the daily profiles accurately represent the real atmosphere.

We then directly evaluate the retrieved VCDs using both aircraft and Pandora observations and show that v3.0 is generally

superior to v2.1C, and that using daily profiles improves the overall quality of the retrieval.

2 Methods: models and observations20

2.1 BEHR

The BEHR OMI NO2 retrieval is described in detail in Laughner et al. (2018f). Briefly, the BEHR retrieval calculates a

tropospheric air mass factor (AMF) using high resolution a priori input data for surface reflectance, surface elevation, and

NO2 vertical profiles; the NO2 profiles are simulated with WRF-Chem (Sect. 2.2). To capture the day-to-day variation in

NO2 profiles, daily profiles are used. Currently, 2005, 2007–2009, and 2012–2014 are available. Other years will be posted as25

processing is completed. A second subproduct uses monthly average profiles (simulated for 2012) to retrieval all years of the

OMI data record.

The BEHR AMF is used to convert the tropospheric slant column densities (SCDs) available in the NASA OMI NO2

standard product to tropospheric vertical column densities (VCDs). For full details of the AMF calculation, see Laughner et al.

(2018f). The BEHR product is available for download as HDF version 5 files at behr.cchem.berkeley.edu.30

3
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2.2 WRF-Chem

The WRF-Chem model version used to simulate the a priori NO2 profiles for BEHR v3.0B is v3.5.1 (Grell et al., 2005). The

model domain is 405 (east-west) by 254 (north-south) 12 km grid cells centered on 39◦ N 97◦ W with 29 vertical levels.

Meterological initial, boundary, and nudging conditions are taken from the North American Regional Reanalysis (NARR)

product; boundary conditions and four-dimension data analysis (FDDA) nudging (Liu et al., 2006) is applied every 3 hours.5

Temperature, water vapor, and U/V winds are nudged with nudging coefficients of 0.0003 s−1.

The chemical mechanism used is described in Zare et al. (2018), which has a very detailed description of alkyl nitrate and

nighttime chemistry. Methyl peroxynitrate (MPN) chemistry was added (Browne et al., 2011) to improve upper tropospheric

chemistry. Anthropogenic emissions are from the National Emissions Inventory, 2011, scaled by EPA annual total emissions

(EPA, 2016) to the model year. Biogenic emissions are from the Model for Emissions of Gases and Aerosols from Nature10

(Guenther et al., 2006). Lightning emissions are parameterized following Laughner and Cohen (2017) for a simulation with

FDDA active (500 mol NO flash−1, 2x base flashrate).

Chemical initial and boundary conditions are interpolated to the WRF grid using the MOZBC utility (https://www2.acom.

ucar.edu/wrf-chem/wrf-chem-tools-community). For 2007 and later model years, chemical data is obtained from the MOZART

model runs available at https://www.acom.ucar.edu/wrf-chem/mozart.shtml. For 2005 and 2006, chemical data is obtained from15

a GEOS-Chem model run, described in Laughner et al. (2018f).

2.3 Pandora ground-based columns

Evaluation of satellite NO2 VCDs usually uses one of two methods. First, total satellite columns can be directly compared

to a ground-based column measurement, such as a Pandora spectrometer (Herman et al., 2009) or multi-axis DOAS (MAX-

DOAS) instrument (Hönninger et al., 2004). In the case of a direct-sun measurement, such as a Pandora spectrometer, the AMF20

required is only a geometric AMF to account for the path length difference between the slant and vertical column, since the

multiple scattering that necessitates the use of a more complex AMF in the satellite retrieval is a much smaller signal than the

direct-sun signal (Herman et al., 2009).

We compare against Pandora ground based column measurements taken during the four DISCOVER-AQ campaigns. For

each OMI overpass, pixels are matched with Pandora sites that lie within the pixel boundaries defined by the FoV75 corners25

in the OMPIXCOR product (Kurosu and Celarier, 2010). Only pixels meeting the criteria in Table 1 are used. If multiple

valid pixels from the same overpass encompass the Pandora site, their VCDs are averaged. As in Goldberg et al. (2017), the

stratospheric VCD from the NASA Standard Product is added to the tropospheric VCD to obtain a total column, since the

Pandora columns do not separate stratospheric and tropospheric contributions.

Pandora observations are matched in time to the OMI observations using the exact time of observation for each pixel given30

in the OMI data files. As in Goldberg et al. (2017), Pandora observations ±1 h from the OMI observation are averaged.

4
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Data field Condition

XTrackQualityFlags Must be 0

VcdQualityFlags Must be an even number

CloudFraction Must be ≤ 0.2

BEHRAMFTrop Must be a non-fill value > 10−6

Table 1. Criteria that OMI pixels must meet to be used in any comparison.

2.4 In situ aircraft profiles

The other common method of evaluating satellite VCDs is to use in situ measurements of NO2 by instrumented aircraft that

flies a vertical profile to calculate a VCD by integrating the NO2 concentrations vertically. Ideally, the aircraft should fly a spiral

path that provides a complete vertical sampling of the troposphere over a ground footprint similar in scale to the satellite pixel;

the DISCOVER-AQ campaigns held in Maryland, California, Texas, and Colorado between 2011 and 2014 were designed to5

provide this sampling over the lower troposphere. In other cases, the VCD calculated from integrating the aircraft profiles is

often matched to satellite pixels in which the boundary layer is sampled (e.g. Bucsela et al., 2008; Hains et al., 2010), on the

assumption that upper troposphere (UT) sampling from adjacent pixels is sufficient.

We calculate tropospheric VCDs from in situ NO2 profiles measured from aircraft. We use six campaigns: the four DISCOVER-

AQ campaigns (https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html) in Maryland (2011), California (2013),10

Texas (2013), and Colorado (2014), the Southeast Nexus campaign (2013, southeast US, SENEX Science Team, 2013), and the

Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS, 2013,

Toon et al., 2016). For the DISCOVER-AQ and SEAC4RS campaigns, we use 1 second NO2 data from the TD-LIF instrument

is used (Nault et al., 2015; Wooldridge et al., 2010; Day et al., 2002; Thornton et al., 2000). For the SENEX campaign, we use

1 second data from the chemiluminescence instrument (Ryerson et al., 1999).15

We draw on methodology from several papers (Bucsela et al., 2008; Hains et al., 2010; Lamsal et al., 2014) for our approach.

Similar to (Hains et al., 2010), only profiles with a minimum radar altitude < 500 m and at least 20 measurements below 3

km above ground level (AGL) are used. In the DISCOVER-AQ campaigns, individual profiles are demarcated in the data

by a profile number. In the SENEX and SEAC4RS data, profiles were identified manually as periods when the aircraft was

consistently ascending or descending. The profile measurements are binned to the same pressure levels used in the BEHR20

algorithm and the final profile uses the median of each bin.

Profiles are spatially matched to OMI pixels if any of the 1 second measurements in the bottom 3 km AGL lies within the

FoV75 pixel boundaries. As with Pandora data, OMI pixels must meet the criteria in Table 1 to be included; all VCDs from

valid pixels intersecting the profile are averaged to yield a single VCD to compare against the profile. Only profiles with an

mean observation time of all points in the bottom 3 km AGL within 1.5 h of the mean OMI observation time for the orbit are25

used.

5
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To calculate a VCD from the in situ measurements, the aircraft profiles are integrated from the average surface pressure to

the average tropopause pressure of the matched pixels. The surface and tropopause pressure are used from the product being

evaluated, i.e. aircraft profiles are integrated between BEHR surface and tropopause pressure for comparison with BEHR

VCDs and NASA surface and tropopause pressures for comparison with NASA VCDs. For BEHR v2.1C comparisons, 200

hPa is used as the fixed tropopause pressure. Aircraft profiles that do not span the necessary vertical extent are extended5

similarly to Lamsal et al. (2014). The aircraft profile is extended to the surface by using the ratio of modeled concentrations

at each of the missing levels to the lowest level with aircraft data to scale the bottom bin with aircraft data. Missing profile

levels above the top of the aircraft profile are replaced with model data. We use modeled NO2 profiles from
:::
the

::::::::
“updated

:
+
:::::
33%”

:::::::::::
GEOS-Chem

:::::::::
simulation

:::::::::
described

::
in

::::::::::::::::
Nault et al. (2017) (v9.02 of the GEOS-Chem global chemical transport model

(Bey et al., 2001)
::
at

::::::::
2.5◦ × 2◦

:::::::::
resolution,

::::
with

:::::::
updated HNO3, with the updated HO2NO2:

,
:::
and N2O5 chemistry and lightning10

emission ratesdescribed in Nault et al. (2017)). The NO2 profiles are monthly averages of model output from 2012 sampled

between 12:00 and 14:00 local standard time. We avoid using the a priori WRF-Chem profiles for this so that the aircraft VCDs

are independent of the retrieved VCDs.

We also used the extrapolation method from Hains et al. (2010), where the median of the top 10 and bottom 10 points are

extrapolated to the tropopause and surface pressures, respectively. The median of the top 10 points must be < 100 pptv. As in15

Hains et al. (2010), a detection limit of 3 pptv is assumed, and if the median to be extrapolated is less than 3 pptv, it is set to

one-half of the detection limit, 1.5 pptv.

In addition, we directly compare the a priori profiles to the in situ aircraft profiles. This is done as in Laughner and Cohen

(2017); for each 1 second data point in the aircraft data, the nearest WRF-Chem output time is selected, and the model grid

cell containing the aircraft location is sampled. This effectively samples the model output as if the aircraft were flying through20

the model world.

We use a similar set of aircraft campaigns here as for the VCD evaluation (Sect. 2.4); the only difference being that we use the

Deep Convective Clouds and Chemistry (Barth et al., 2015) instead of SENEX. The DC3 campaign focused on outflow from

convective systems (i.e. thunderstorms) and so is used to evaluate the lightning NOx parameterization. The DC3 campaign had

better UT sampling but far fewer profiles than SENEX. The DISCOVER-AQ campaigns focused on satellite validation, flying25

repeated spirals over 6–8 sites during each campaign; however, for the average comparison, we use all data, not just that taken

during the spirals.

3 WRF-Chem profile evaluation

3.1 Comparison with in situ aircraft profiles

Figure 1 shows campaign averaged profiles matched with WRF profiles from the four DISCOVER-AQ campaigns, the DC330

campaign, and the SEAC4RS campaign. We compare the monthly average NO2 profiles from BEHR v2.1C and v3.0B for all

campaigns, as well as the daily v3.0B profiles. The plots shown only use data between 12:00 and 15:00 local standard time,

6



Figure 1. Comparison of average WRF-Chem and aircraft NO2 profiles from the (a) SEAC4RS, (b) DC3, and DISCOVER-AQ campaigns,

the latter in (c) Maryland, (d) California, (e) Texas, and (f) Colorado. Aircraft profiles are shown in black, BEHR v2.1 profiles in green,

BEHR v3.0 monthly profiles in red, and (where available) BEHR v3.0 daily profiles in blue. The WRF and aircraft data are matched as

described in Sect. 2.4 and binned by pressure. Uncertainties are 1 standard deviation of all profiles averaged. Note that for SEAC4RS the v2

profile reaches a maximum of ∼ 8000 pptv, off the plot axes.

7



:::
BL

:::::::
(p > 775

:::
hPa)

: :::
BL

::
(no

:::::::::
SEAC4RS)

::
FT

:::::::
(p≤ 775

::::
hPa)

::
FT

:::
(no

:::::::::
SEAC4RS)

::
V2

: :::
965

: ::
902

: ::
71

::
86

::
V3

:::::::
Monthly

: :::
530

: ::
609

: ::
74

::
87

::
V3

:::::
Daily

:::
482

: ::
618

: :::
108

::
66

Table 2.
::::

Mean
::::::
absolute

:::
bias

:::::::
between

::::
each

::
of

::
the

:::::
types

::
of

:::::::
simulated NO2 :::::

profiles
:::
and

:::
the

:::::
aircraft

::::::
profiles

:::::
shown

::
in
::::
Fig.

:
1.
::::::
Values

::
are

:::::
given

::
for

:::
the

:::::::
boundary

::::
layer

::::
(BL)

:::
and

::::
free

:::::::::
troposphere

::::
(FT),

::::
with

:::
the

:::::
divide

:
at
::::

775
:::
hPa

::::
(∼ 2

::::
km).

::
All

::::::
values

::
are

::
in

::::
parts

:::
per

:::::
trillion

:::
by

::::::
volume

:::::
(pptv).

since the v3.0 monthly average profiles are calculated as a weighted average that only includes contributions from ±1 h from

OMI overpass; this way all profiles get a fair comparison to the observations.

In general, the v3.0 profiles show better agreement with observed profiles than the v2.1 profiles, except during the California

DISCOVER-AQ campaign. The most dramatic example is the Maryland DISCOVER-AQ campaign, where the factor of ∼ 2

reduction in NO2 concentration (likely due to updating emissions from 2005 to 2012
:
,
::::
Fig.

:::
S10) brings the modeled profiles5

into substantially better agreement with the observed profiles. In the California DISCOVER-AQ campaign, the v2.1 profiles

managed to capture an elevated layer of NO2 that the v3.0 profiles did not; though we note that transport in California’s central

valley is notorious difficult to model (Hu et al., 2010, and references therein). In Texas, the v3.0 profiles and v2.1 profiles lie on

opposite sides of the observed profiles, possibly suggesting that emissions in Houston did not decrease as much in fact as in the

NEI inventory driving the v3.0 WRF simulations. In Colorado, both the v3.0 and v2.1 profile match observations reasonably10

well. The daily profiles do a better job capturing the decrease in NO2 between 750 and 600 hPa than the v3.0 monthly or

v2.1 profiles; this may be due to day-to-day variability in recirculation from the upslope/downslope winds (e.g. Sullivan et al.,

2016).

:::
We

:::::::
evaluate

:::
the

:::::::::
agreement

::::::::::::
quantitatively

:::
by

:::::::::
calculating

:::
the

::::::
mean

:::::::
absolute

::::
bias

:::::::
between

::::
the

::::::
average

::::::
WRF

:::
and

:::::::
aircraft

::::::
profiles

::::::
(Table

:::
2).

:::
We

::::::
divide

:::
the

:::::::
profiles

::::
into

::::::::
boundary

:::::
layer

::::
(BL)

::::
and

::::
free

::::::::::
troposphere

:::::
(FT),

::
as

::::::::
different

::::::::
processes

:::::
(e.g.15

:::::::::::
anthropogenic

:::
vs.

::::::::
lightning

:::::::::
emissions)

::::::
govern

:::::
them.

:::
As

:::
the

:::::::::
SEAC4RS

::::::::
campaign

:::
has

:::
an

:::::::
obvious

::::
error

::
in

:::
the

::::
free

::::::::::
troposphere

::::::
(which

:::
will

:::
be

::::::::
discussed

::::::
below),

:::
we

::::::::
calculate

:::::
these

:::::
values

::::
with

::::
and

:::::::
without

:::
the

:::::::::
SEAC4RS

::::::::
campaign.

:::
In

:::
the

:::
BL,

:::
the

:::::::
version

:
3
:::::::
profiles

::::
have

::::::::
one-half

::
to

:::::::::
two-thirds

:::
the

::::
bias

:::
of

:::
the

::::::
version

::
2
:::::::
profiles

::::::::::
(depending

::
if

:::::::::
SEAC4RS

::
is

:::::::::
excluded).

:::
In

:::
the

::::
free

::::::::::
troposphere,

:::::
there

:
is
:::::

little
::::::::
difference

::
in
:::

the
:::::

mean
::::
bias

:::::::
between

::::::
profile

::::::
types,

:::::
unless

:::::::::
SEAC4RS

::
is

::::::::
included,

::
in

::::::
which

::::
case

:::
the

::::
daily

:::::::
profiles

:::::
have

:
a
::::
33%

::::::
greater

:::::
bias.20

We include the SEAC4RS and DC3 campaigns to check the simulation of lightning NOx in the profiles. The daily profiles

show similar agreement to the DC3 observations as in Laughner and Cohen (2017). Restricting the DC3 data to 12:00–15:00

local standard time as we have done here reduces the strength of the lightning signal, since the strongest lighting
::::::::
lightning

occurs after OMI overpass (Lay et al., 2007; Williams et al., 2000). Compared to Laughner and Cohen (2017), the discrepancy

between modeled and observed profiles decreased around 500 hPa, increased around 400 hPa, and is similarly small around25

200 hPa. Surprisingly, the difference between the v2.1 and v3.0 profile around 200 hPa is not as significant as the difference

8



between the lightning and no-lighting cases in Laughner and Cohen (2017). This is unexpected as the v2.1 profiles did not

include lightning NOx emission. It is possible that convection of greater surface NOx concentrations is driving the v2.1 UT

concentration.

The SEAC4RS campaign covers the southeast US, which has very active lightning (Hudman et al., 2007; Travis et al., 2016).

The daily profiles demonstrate a substantial overestimate in UT NO2 (between 600 and 200 hPa). This is centered in the SE5

US; model-measurement discrepancies between 600 and 200 hPa in the rest of the country are < 500 pptv (not shown). As

discussed in Laughner et al. (2018f), the southeast US exhibits greater NO2 VCDs (and therefore smaller AMFs) when using

daily profiles; that is opposite with the profiles seen here, as greater NO2 at higher altitudes results in larger AMFs. Laughner

et al. (2018f) showed that the 3 month average daily shape factor over the SE US had less contribution from UT NO2 than

the monthly profiles; this indicates that on average pixels in the SE US are not influenced by lightning, but that the SEAC4RS10

sampling tended to select for convective outflow. However, this does indicate that the simulation of the UT in the southeast US

is biased high.

To investigate the cause of this bias, we compare the WRF lightning flash density to that measured by the Earth Networks

Total Lightning Network (ENTLN). ENTLN is a ground-based lightning observation network with more than 900 sensors

deployed in the contiguous US. The sensors record lightning-produced stokes as well as accurate time and location. Strokes15

are then clustered into a flash if they are within 700 milliseconds and 10 kilometers. The detection coefficient is larger than

70% across southern contiguous US (Rudlosky, 2015).

For the comparison, the WRF-Chem simulation is that described in Sect. 2.2. ENTLN and WRF-Chem are sampled from

May 13 to Jun 23 2012 over the middle and east US domain, where active lightning events are detected. Both observed and

simulated lightning flashes are converted to flash density by dividing flash counts by corresponding grid areas and time range.20

Figure 2a and b show the spatial distribution of flash density in number per km2 per day observed by ENTLN and simulated

by WRF-Chem. The largest biases are located over the southeast US (outlined by red on the map). In this region, WRF-Chem

substantially overestimates flash density in general and a detection coefficient of 70% for ENTLN cannot account for the

discrepancy. The simulated flash density is the highest primarily along the coast, which is not detected by ENTLN.

The scatter plot of daily flash density over the southeast US from two datasets in Fig. 2c demonstrates that the WRF-25

Chem consistently overestimates flashes in the southeast US over the study period. However, outside of the southeast US, the

agreement improves. The simulation captures the spatial pattern over the regional scale (Fig. 2a–b) and the simulated flash

densities are consistent with the observed flash densities and the correlation improves as well (Fig. 2d).

Currently, the cause of the discrepancies between the flash density from WRF-Chem simulation and ENTLN observation,

is unknown. However, it is clear that it is the flash density, rather than the per-flash production rate of NO, is the cause of the30

disagreement in the UT between the daily profiles and SEAC4RS data. Further research is required to optimize the lightning

parameterizations and improve flash density simulations in the southeast US for our model simulation.

9



Figure 2. Comparison between observed and simulated flash density from May 13 to June 23 2012. (a) and (b) show the mean flash density

averaged over the study period from ENTLN and WRF-Chem, respectively. Both are gridded at 12 km grid spacing. (c) and (d) show the

correlation between total flash density per day between WRF and ENTLN in (c) the southeast US (denoted by the red box in a and b) and

(d) elsewhere in CONUS.
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Figure 3. R2 values for correlation between aircraft data and spatiotemporally matched WRF-Chem data for the (a) DISCOVER-CA, (b)

DISCOVER-TX, and (c) DISCOVER-CO campaigns, binned by pressure. Left column: absolute R2 values for each bin. Right column: the

difference in R2 values using monthly average and daily profiles for each bin.

3.2 Evaluation of variability in daily profiles

As demonstrated in Laughner et al. (2016), simulating the day-to-day variability in the a priori NO2 profiles can have a signifi-

cant impact on the retrieved NO2 VCDs, due primarily to the day-to-day variation in wind speed and direction driving outflow

from emissions sources, e.g. cities and power plants. To examine how well WRF-Chem captures the day-to-day variability in

NO2 profiles, we compare aircraft data from three DISCOVER-AQ campaigns and the matched WRF-Chem data (Sect. 2.4).5

For each profile in the DISCOVER data, we binned the NO2 concentrations by pressure and calculated the correlation between

WRF-Chem and aircraft NO2 concentrations (one data point per profile per pressure bin). The results are shown in Fig. 3.

In California (Fig. 3a), the monthly average profiles correlate better with the aircraft data. However, as mentioned before, the

Californian Central Valley is known to be difficult to model accurately (Hu et al., 2010). In Colorado (Fig. 3c), the daily profiles

do a slightly better job overall, getting the variability at the surface and in an elevated layer more accurately than the monthly10

average profiles. The difference in Texas is quite dramatic (Fig. 3b), with the daily
:::::::
modeled

:
profiles performing substantially

11



Figure 4. A comparison of OMI SCDs (a) and WRF monthly average (b) and daily (c) VCDs. The star marks the location of the Four

Corners power plant. Data is from 4 Mar 2007.

better. This suggests that daily profiles are able to capture variability caused by small, concentrated urban plumes much more

effectively than monthly average profiles.

As a second check, we also compare WRF-Chem tropospheric VCDs to OMI SCDs to evaluate the general accuracy of wind

direction and speed in the daily model profiles. The OMI SCDs do not depend on modeled vertical profiles, and so constitute

an independent check on the plume direction. In order to have strong isolated NOx sources, we use Atlanta, Chicago, Las5

Vegas, Los Angeles, New York, and the Four Corners power plant for this study. For each of these sites, 5 days from 2007 are

randomly chosen. If insufficient OMI SCDs are available for any day (> 10% of OMI pixels are cloud covered or in the row

anomaly), another day is randomly chosen.

For each day, the agreement between the relative spatial distribution of WRF-Chem VCDs and OMI SCDs is manually

evaluated, focusing on whether the model plume is advected in the same direction as the OMI SCDs indicate. Each day’s10

agreement is evaluated qualitatively as good or bad. This, whether the WRF-Chem daily VCDs are significantly different from

the monthly average WRF-Chem VCDs, and the confidence in the comparison are recorded for each comparison. Because of

the number of factors that affect the absolute magnitude of SCDs, we look for qualitative, rather than statistically quantitative,

agreement between the modeled VCDs and OMI SCDs. This is relevant since Laughner et al. (2016) noted that it is primarily

the plume shape that drives the day-to-day variability in AMFs, therefore a direct, qualitative evaluation of the plume shape is15

desirable.

Figures 4 and 5 show two example comparisons, one good (Fig. 4) and one poor (Fig. 5). By studying randomly chosen days

for 6 large NOx sources, we find that about 67–73% of days with sufficient data to be evaluated show good agreement between

the OMI SCDs and WRF-Chem daily VCDs. (The range is due to different levels of confidence filtering.) This indicates that the

WRF-Chem simulated NO2 profiles are adequately capturing the day-to-day variability due to wind speed and direction.
:::::
While20

::
we

:::::::::
recognize

:::
that

::::
this

:::::::::
conclusion

::
is

::::::
highly

:::::::::
qualitative,

:::
the

:::::::
specific

::::::::
character

::
of

:::::::::
agreement

:::
that

::
is
:::::::::
important

::
for

:::::
these

:::::::
profiles

::::::
(overall

::::::
plume

:::
size

::::
and

::::::::
direction,

:::::
rather

::::
than

:::::
exact

:::::::::
agreement

:::::::
between

::::::::
modeled

:::
and

::::
real

::::::::::::
concentrations

::
or

:::::::
column

::::::::
densities)
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Figure 5. A comparison of OMI SCDs (a) and WRF monthly average (b) and daily (c) VCDs. The star marks the location of New York, NY,

USA. Data is from 29 Sept 2007.

:
is
:::::
rather

:::::::
difficult

::
to

:::::::
evaluate

::::::::::::
quantitatively.

:::
We

:::::::::
recognize

:::
that

:::::::::
developing

:::::
such

:::::::
methods

::
is

::::::::
necessary

:::
and

:::::
offer

::::::
several

:::::::
possible

:::::::::
approaches

::
in

::::
Sect.

::
5.
:

Both comparisons (vs. OMI SCDs and aircraft measurements) show that daily WRF-Chem profiles do, on average, a better

job than monthly average profiles capturing the day-to-day variation in profile shape. Therefore, the core improvement in BEHR

v3.0, the transition to daily, high-resolution a priori profiles, is fundamentally sound. Daily profiles are especially important for5

applications that focus on upwind/downwind differences in NO2 columns around a NOx source (Laughner et al., 2016) and,

as we will see in Sect. 4, generally improve the retrieval in dense urban areas.

4 Column density evaluation

For the DISCOVER campaigns, we compare BEHR against aircraft-derived and Pandora VCDs together, calculating a single

regression line for the combined dataset. We
:::::
These

::::
two

::::::::::::
measurements

::::
have

::::::
unique

::::::::
strengths

:::
and

::::::::::
weaknesses

:::
for

::::::::::
comparison10

::::::
against

::::::
satellite

::::::
VCDs:

::::::::
Pandoras

::::
give

:
a
::::::
precise

::::::
column

::::::::::::
measurement

:::
and

:::
can

::
be

::::::::
deployed

:::
for

::::
long

::::
time

::::::
periods,

:::
but

:::::
have

:
a
::::
very

::::
small

::::::::
footprint

:::::::
(leading

::
to

:::::::
possible

::::::::::::::::
representativeness

::::::
errors)

:::
and

:::::::
provide

:
a
:::::
total,

:::
not

:::::::::::
tropospheric,

:::::::
column.

:::::::
Aircraft

:::::::
profiles

::::
have

:
a
:::::::
footprint

:::::
more

::::::
similar

::
to

::
an

:::::
OMI

::::
pixel

::::
size,

:::
but

::::::::
introduce

:::::::::
uncertainty

::::
due

::
to

::::::
missing

:::::
parts

::
of

:::
the

:::::
profile

:::::
(near

:::
the

::::::
surface

:::
and

::
in

:::
the

:::::
upper

::::::::::
troposphere

::
in

:::
the

::::::::::
DISCOVER

::::::::::
campaigns)

:::
and

::::::
cannot

:::
be

:::::::
deployed

:::
for

::::
long

:::::
term,

::::::
routine

:::::::::::
observations.

:

::
In

:::::
order

::
to

::::
take

:::::::::
advantage

::
of

:::::
each

::::::::
methods’

:::::::::
strenghts,

:::
we

:
use two comparisons, in one, only Pandora data that has a15

coincident aircraft profile is include
:::
are

:::::::
included

:
(“matched”), in the other, all cloud-free Pandora data is used (“all”).

::
We

:::
do

::
so

:::::::
because,

:::::
when

:::::::::
including

::
all

:::::::
Pandora

:::::
data,

:::
the

:::::::
number

::
of

:::::::
Pandora

:::::::::::
comparisons

::::::::
available

::::
will

:::::::::
overwhelm

::::
the

::::::
number

:::
of

:::::::
available

::::::
aircraft

:::::::
profiles

::
in

:::
the

:::::::::
regression.

:::::::::
Therefore

:::
the

:::::::::
regressions

:::::
using

:::
all

:::::::
Pandora

::::
data

:::
are

::::::::::::
representative

::
of

::::::
longer

::::
time

::::::
periods,

:::
but

::::::::
weighted

::::::::
strongly

::::::
towards

:::
the

:::::::
Pandora

:::::
data,

:::
and

:::
the

::::::::::
regressions

:::::
using

::::
only

:::
the

:::::::::
coincident

::::
data

::::::::
represent

::::::
shorter

::::
time

::::::
periods,

:::
but

::::
give

:::::
more

::::::
weight

::
to

::
the

:::::::
aircraft

::::
data.

:::
As

:::::
stated

::
in

::::
sect.

:::
2.3,

:::
we

:::::::
average

::
all

::::
data

:::::
within

::
1

::::
hour

::
of

::::
OMI

::::::::
overpass20

:::
(i.e.

:::::
13:30

:::::
local

::::
time

:::
±1

:::
h)

::
to

:::
be

::::::::
consistent

::::
with

:::::::::::::::::::
Goldberg et al. (2017).

::
A
:::::::

shorter
::::::::
averaging

:::::::
window

::::::
(±0.5

::
h)

::::
was

::::::
tested;
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::
the

:::::::::
maximum

:::::
effect

:::
on

:::
the

::::
slope

::::
was

:::::
∼ 8%

::::
with

:::::
most

::
of

:::
the

:::::::::
“matched”

::::
data

:::::::
showing

::::::::::
differences

::
of

:::::
≤ 5%

::::
and

:::
the

::::
“all”

::::
data

:::::::
changing

:::
by

:::::::
≤ 3.5%

::
in

::
all

:::
but

::::
one

::::
case.

Slopes and their 1σ uncertainties for combined aircraft and Pandora VCDs are shown in Table 3.
::
To

:::::::
evaluate

:::
the

::::::::
southeast

:::
US,

:::
we

:::
use

:::
the

:::::::
SENEX

::::
and

:::::::::
SEAC4RS

::::::::::
campaigns,

:::::
which

::::
only

:::::
have

::::::
aircraft

::::
data.

::::::
These

::::::
results

:::
are

:::::
shown

:::
in

:::::
Table

::
4.

:::::
More

:::::
details

::::::
(slope,

:::::::::
intercepts,

:::
R2

::::::
values)

:::
can

::
be

:::::
found

::
in

::::::
Tables

:::
S1,

:::
S2,

:::
and

:::
S3.

::::::
Figure

:
6
:::::
shows

::::::
scatter

::::
plots

::
of

:::
the

::::::
BEHR

:::
vs.

::::::
aircraft5

:::
and

::
all

::::::::
Pandora

::::
data

::
for

::::
the

:::
four

::::::::::::::
DISCOVER-AQ

::::::::::
campaigns.

::::::
Scatter

:::::
plots

:::::::
showing

::::::
aircraft

::::
and

:::::::
Pandora

::::
data

:::::::::
separately

:::
are

:::::::
available

::
in

:::::
Sect.

::
S1

::
of

:::
the

:::::::::::
supplement.

For the DISCOVER-CO aircraft comparison, negative VCDs were removed. Such VCDs result from an overestimated

stratosphere; since
:::::::
Negative

::::::
VCDs

:::::
occur

:::::
when

:::
the

::::::::
estimated

:::::::::::
stratospheric NO2::::::

column
::
is
::::::
greater

::::
than

:::
the

::::
total

:
NO2 :::::::

column,

:::
thus

:::::::::::::::::::::::
Vtrop = Vtotal −Vstrat < 0;

::::
they

:::::
cannot

:::
be

::::::::
introduced

:::
by

:::
the

::::
AMF

:::::::::
correction

::
of

:::
the

::::::::::
tropospheric

:::::
SCD

:
to
:::::
VCD

::
as

:::
the

:::::
AMF10

:
is
::
a
:::::::::::
multiplicative

:::::
factor

::::
and

::::::
always

::::
> 0.

:::::
Since

:
all versions of BEHR use the same stratosphere

:::::::::::
stratospheric NO2 ::::::

column as

their respective NASA SP products, an error in stratospheric subtraction will be present in all products, and since they
:
it cannot

be corrected in the BEHR retrieval, do not contribute useful information to the evaluation. To evaluate the southeast US, we use

the SENEX and SEAC4RS campaigns, which only have aircraft data .
:::::::
Aircraft

::::::
VCDs,

::
by

::::
their

::::::
nature,

::::::
cannot

::
be

::::::::
negative,

::
so

:::
for

::::
these

:::::::::::
comparisons

::
we

:::::::
remove

:::
the

:::::::
negative

:::::
VCDs

::
so

:::
as

::
to

::::
avoid

:::::::::
increasing

:::
the

:::::::::
regression

:::::
slopes

::
by

::::::
trying

::
to

::
fit

::::
these

:::::::::
erroneous15

:::::
points.

:::::::::
(However,

:::
we

:::
do

::::
note

:::
that

::::
this

::
is

:
a
::::::
special

::::
case

::::::
where

::::::::
individual

::::::
pixels

::
or

:::::
small

::::::
groups

::
of

:::::
pixels

:::
are

:::::
being

:::::::::
compared

::::::
against

::::
other

::::::
VCDs.

:::::
Most

::::::::::
applications

:::
of

::::::
BEHR

::::
data

::::::
should

:::::
retain

:::
the

:::::::
negative

::::::
VCDs

::
to

:::::
avoid

:::::::::::
transforming

:::
the

:::::::::
essentially

:::::::
Gaussian

:::::::
random

:::::::::::
stratospheric

::::
error

::::
into

:
a
:::::::::
systematic

::::
error

:::
by

::::::::
removing

::::
part

::
of

:::
the

:::
bell

:::::::
curve.)

:::::
Since

::
the

:::::::::::
stratospheric

::::::
VCDs

::
are

::::::
added

::::
back

::
to
::::

the
::::::
BEHR

::
or

::::::
NASA

:::
SP

::::::::::
tropospheric

::::::
VCDs

:::
for

::::::::::
comparison

::::
with

:::
the

::::::::
Pandora

::::::
VCDs,

:::::::
negative

::::::
VCDs

:::
are

:::
not

::
an

::::
issue

:::::
with

:::::::
Pandora

::::::::::
comparisons. These results are shown in Table 4. More details (slope, intercepts, R2 values) can be20

found in Tables S1, S2, and S3.

In the following sections, we will evaluate the new BEHR v3.0 VCDs from three perspectives: performance compared to the

current NASA SP, performance compared to the previous version of BEHR, and performance using daily a priori profiles

compared to using monthly a priori profiles.
::::::::::
Throughout,

::::::
BEHR

::::
v3.0

::::
(M)

::::::
refers

::
to

::::::
BEHR

:::::
using

::::::::
monthly NO2 :::::::

profiles;

:::::::
likewise,

::::::
BEHR

::::
v3.0

:::
(D)

:::::
refers

::
to

:::
the

:::::::
product

::::
using

:::::
daily NO2 ::::::

profiles.
:::
We

::::
will

:::::
focus

::
on

:::
the

:::::::::
regression

:::::
slopes

::::
here;

:::::::::
intercepts25

:::
and

:::
R2

::::::
values

:::
are

:::::
given

::
in

:::::
Table

::
S3

:::
in

:::
the

::::::::::
supplement;

:::::::
however

:::
we

::::
note

::::
that

:::::
there

::
is

:::
not

:
a
:::::
clear

::::::
pattern

::
of

::::
any

:::
one

:::::::
product

:::::
having

::
a
::::::::::
consistently

:::::
better

:::
R2

:::::
value

::::
than

:::
the

:::::
others.

:

4.1 Comparison vs. SP v3.0

For all the DISCOVER campaigns, BEHR v3.0 shows better agreement with both aircraft and Pandora measurements than the

NASA SP v3.0 (slopes closer to 1). This is expected, since these campaigns generally centered on one or more cities, and a key30

feature of the BEHR retrieval are the ∼ 12 km a priori profiles (∼ 10x high resolution than the NASA SP v3.0 profiles) which

better capture the urban profile shape.

In the SENEX and SEAC4RS campaigns, BEHR’s performance is more mixed. These campaigns include the southeast US,

where we found that the WRF-Chem simulation that generated the a priori profiles overestimated the lightning flash density
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Campaign Product Slope (Matched) Slope (All)

DISCOVER-MD

BEHR v3.0B (D) N/A N/A

BEHR v3.0B (M) 0.80± 0.08 0.64± 0.03

BEHR v2.1C 1.3± 0.1 0.87± 0.05

SP v3.0 0.79± 0.08 0.50± 0.03

DISCOVER-CA

BEHR v3.0B (D) 0.49± 0.04 0.68± 0.04

BEHR v3.0B (M) 0.51± 0.04 0.66± 0.04

BEHR v2.1C 0.57± 0.05 0.68± 0.04

SP v3.0 0.41± 0.04 0.54± 0.03

DISCOVER-TX

BEHR v3.0B (D) 0.69± 0.07 1.00± 0.06

BEHR v3.0B (M) 0.60± 0.05 0.87± 0.05

BEHR v2.1C 1.1± 0.1 1.33± 0.08

SP v3.0 0.53± 0.05 0.74± 0.05

DISCOVER-CO

BEHR v3.0B (D) 0.66± 0.06 0.66± 0.03

BEHR v3.0B (M) 0.70± 0.06 0.63± 0.03

BEHR v2.1C 0.74± 0.06 0.68± 0.03

SP v3.0 0.53± 0.05 0.50± 0.02

Table 3. Slopes and 1σ uncertainties of BEHR vs. combined aircraft (extended with GEOS-Chem profiles) and Pandora VCDs. Matched

slopes use only Pandora data approximately coincident with aircraft profiles to get similar sampling; all uses all valid Pandora data. Outliers

and negative VCDs are removed before computing slopes.

Campaign Product Slope (GEOS-Chem) Slope (Extrap.)

SENEX

BEHR v3.0B (D) 2.3± 0.5 1.7± 0.5

BEHR v3.0B (M) 1.0± 0.2 0.9± 0.3

BEHR v2.1C 1.4± 0.4 1.5± 0.5

SP v3.0 1.1± 0.2 0.8± 0.3

SEAC4RS

BEHR v3.0B (D) 0.9± 0.4 0.7± 0.3

BEHR v3.0B (M) 1.2± 0.4 1.0± 0.3

BEHR v2.1C 2.6± 0.5 2.5± 0.7

SP v3.0 1.0± 0.3 0.8± 0.3

Table 4. Slopes and 1σ uncertainties for RMA regression of satellite VCDs against in situ calculated VCDs. Both methods of extending

the profiles (using GEOS-Chem modeled profiles or extrapolating the top/bottom ten points) are included. Outliers are removed before

calculating these parameters.
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Figure 6.
:::::
Scatter

::::
plots

::
of

:::
the

:::::
BEHR

::::::
v2.1C,

:::::
v3.0B

::::
(M),

:::
and

:::::
(where

::::::::
available)

:::::
v3.0B

:::
(D)

:::::
VCDs

::::::
against

::::::::
coincident

::::::
aircraft

:::
and

:::::::
Pandora

:::::
VCDs.

:::
All

:::::::
Pandora

:::::
VCDs

:::
are

::::
used

::
for

:::::
these

:::::
plots.

::::
Each

::::
panel

::
is
::::

one
::::::::
campaign:

:::
the

:::
(a)

::::::::
Maryland,

:::
(b)

::::::::
California,

:::
(c),

::::::
Texas,

:::
and

:::
(d)

:::::::
Colorado

::::::::::::
DISCOVER-AQ

:::::::::
campaigns.

:::
For

:::::
slopes,

:::
see

::::
Table

::
3;

:::
for

:::::::
intercepts

:::
and

:::
R2

:::::
values,

:::
see

::::
Table

:::
S3.

(Sect. 3.1). In SEAC4RS, whether BEHR v3.0 (M) performs better or worse than the NASA SP v3.0 depends on the method

used to extend the profile (Sect. 2.4). This indicates that uncertainty in the measurement is greater than the difference between

these two products. BEHR v3.0 (D) performs poorly in the SENEX campaign; this will be explored in Sect. 4.3. Overall,

BEHR v3.0 (M) is not significantly affected by the overestimated lightning flash density in the southeast US, as the monthly

average profiles smooth out the overlarge UT lightning NO2 signal.5

4.2 Comparison vs. BEHR v2.1

Using
::::::
aircraft

::::
data

::::
plus

:
just Pandora data coincident with aircraft spirals, v2.1 performs better in all DISCOVER campaigns

except MD. However, using
:::::
aircraft

::::
data

::::
plus

:
all Pandora data, v3.0 (D) performs better than or similar to v2.1 in all DIS-

COVER where daily profiles are available. The Pandoras provide more observations than the aircraft profiles, and, due to their

small footprint, are more sensitive to narrow, highly concentrated NO2 plumes. The v2.1 profiles used 2005 emissions; as seen10

in Fig. 1, this led to too much NO2 being placed at the surface, which will increase the retrieved VCD. This suggests that the

better performance of v2.1 in some cases is due to cancellation of errors; overestimated surface NO2 is canceling out the lack

of temporal variation in the profiles. That is, the higher average surface concentration in the v2.1 profiles may be similar to the

in-plume concentrations resolved by the daily v3.0 profiles.
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In v3.0, when daily profiles are available, the agreement is similar to or better than v2.1 if
::::::
aircraft

::::
and all Pandora data

is used. Therefore, daily profiles are able to capture at least some enhancements in surface NO2 where and when they occur,

without overestimating the average profile. This is not evident using
::::::
aircraft

:::
and

:
just the coincident Pandora data because of the

smaller number of comparisons. As the comparison expands (using all Pandora data), the improvement becomes evident. The

better performance of daily profiles suggests that even though Laughner et al. (2016) did not see large effects in a multi-month5

average using daily instead of monthly profiles, that daily profiles will provide a more accurate representation of urban VCDs

over longer averaging periods.

BEHR v3.0 performs better in the SENEX and SEAC4RS comparisons than v2.1 (excluding 3.0 (D) in SENEX). The v2.1

profiles did not include lightning emissions, as it was a limitation of WRF-Chem at that time (Laughner et al., 2018f). This

indicates that, even though the contribution of lightning to the southeast US profiles is too large, the inclusion of lightning NO210

in the profiles did improve the representation of the southeast US. Laughner et al. (2018f) also showed that implementing a

variable tropopause pressure decreased VCDs in the southeast US during summer; this also would help reduce the high bias

compared to SENEX and SEAC4RS seen in BEHR v2.1.

4.3 Comparison of BEHR v3.0 (M) vs BEHR v3.0 (D) in the SE US

In the SENEX campaign, v3.0 (D) performs significantly worse than v3.0 (M). From Fig. 1 we know that the daily a priori15

profiles overestimate the UT NO2, and from Fig. 2 we know that this is due to a significant overestimate of the flash density

in our WRF simulation. The comparison in Table 4 would seem to indicate that this overestimate has a severe impact on the

retrieved VCDs, but we must also consider the uncertainty in the SENEX-derived VCDs.

Figure 7a shows the ensemble of profiles from SENEX used to calculate VCDs. The circles mark levels that had to be

calculated using model data for > 50% of the profiles. In SENEX, that is all levels about ∼ 700 hPa, which means that the20

SENEX aircraft data provides very little constraint on the UT. The lightning contribution to the SENEX columns must come

from the GEOS-Chem monthly averages or extrapolation from a lower altitude, which means the spatial and temporal variation

is lost.

Figure 7c shows the effect of using the WRF-Chem a priori profiles instead of the GEOS-Chem profiles to extend the

SENEX profiles. The WRF-Chem profiles do include spatial and temporal variation of the UT, but using them reinforces the25

AMF errors, moving all points away from the 1:1 line. Without either in situ measurements of the UT in the southeast US

or Pandora total column observations we cannot separate the errors in AMF caused by the overestimated UT NO2 in the a

priori profiles from the error caused by the lack of spatiotemporal variation in the extended aircraft profiles. For example, the

error in the cluster of points below the 1:1 line in Fig. 7c could be corrected if either the UT NO2 in the a priori profile was

reduced, decreasing the AMFs and so increasing the BEHR VCDs, or if the aircraft profile had less NO2, thus moving the30

points left onto the 1:1 line. (In the case, there would still be a discrepancy between the BEHR VCD and the VCD derived

from combining aircraft and WRF-Chem profiles, suggesting that the WRF-Chem UT NO2 is still too great.)

Other campaigns do have better sampling of the UT, e.g. SEAC4RS (Fig. 7b,d,f), but do not have as many profiles in the

southeast US (Fig. 7e,f). Therefore, we must currently assign an uncertainty of ±100% to VCDs retrieved with daily profiles in
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Figure 7. (a,b) The profiles used to calculate the aircraft VCDs extended using WRF-Chem or GEOS-Chem profiles; the solid line is the

median of all profiles, the shading represents the 10th and 90th percentiles for each binned level. Circles indicate levels that were derived

from the models in at least 50% of the profiles. (c,d) Comparison of BEHR v3.0 (D) VCDs vs. aircraft-derived VCDs using GEOS-Chem

and WRF-Chem profiles to extend the profile to the surface and tropopause. The black lines connect corresponding comparisons between the

two methods and the red dashed line represents the 1:1 agreement. (e,f) Difference between aircraft VCDs extended with WRF-Chem and

GEOS-Chem profiles. (a,c,e) are for the SENEX campaign, (b,d,f) are for SEAC4RS.

the southeast US (east of 95◦ W and south of 37.5◦ N). This is almost certainly overly conservative, as Laughner et al. (2018f)

showed that the frequency distribution of UT NO2 in the southeast apriori profiles was skewed to lower values in the daily

profiles, and a three month average using daily a priori profiles resulted in greater VCDs than using monthly a priori profiles,

which would not be the case if the daily profiles always overestimated the UT. This suggests that days with little or no lightning

in both the real world and WRF-Chem simulations are more numerous than days with significant lightning contribution, and5

so a multi-month average using daily profiles would in fact accurately capture this. However, without long term independent

column measurements in the southeast, we cannot confirm this hypothesis. Future work will focus on improving the simulation

of lightning in the southeast US. If successful, improved WRF-Chem profiles for the southeast can be implemented.
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4.4 Comparison of BEHR v3.0 (M) vs BEHR v3.0 (D) in urban areas

In the DISCOVER campaigns, BEHR v3.0 (D) using daily profiles has regression slopes similar to or closer to 1 than

BEHR v3.0 (M) using monthly profiles except in the DISCOVER-CA aircraft comparisons. There is a clear improvement

in DISCOVER-TX using daily profiles. This suggests that the daily profiles are capturing small, concentrated plumes in the

urban area (Fig. 3b), which is improving the retrieval overall in an urban area with many highly concentration industrial NOx5

sources. Therefore, we argue that daily profiles improve the retrieval in many ways, not only for applications that select for

upwind/downwind pixels as shown in Laughner et al. (2016), but also for multi-month averages in dense urban areas.

5 Discussion: future efforts to validate daily profiles

Using space-based SCDs to evaluate the spatial distribution of NO2 in a CTM is powerful (Sect. 3.2), because both provide

a spatially continuous field of NO2 columns. As we have shown here, this makes a qualitative evaluation straightforward10

and illustrative. However, a quantitative metric is more challenging to devise, as the direct correlation of model and satellite

columns is less important than the more abstract agreement between the overall plume direction and extent. As we have shown

here, daily, high-resolution profiles provide important benefits to an NO2 retrieval; therefore, development of more quantitative

methods to evaluate model performance in this manner should be a priority.

There are several possibilities. First, an algorithm that identifies the plume and computes the direction and length of its major15

axis could be used. This would allow a comparison of the direction and extent of the plumes more directly. Such an algorithm

would not be trivial to develop; comparisons such as the one shown in Fig. 5a,c would likely be difficult for the algorithm to

distinguish the plume direction accurately.

Second, this problem could be treated as an image recognition problem. A neural network could be trained on modeled

VCDs and SCDs. A training set of good and bad days could be constructed from the WRF-Chem simulations used in BEHR20

v3.0D. Development of this approach is beyond the scope of this paper.

Third, dense sensor networks (e.g. Shusterman et al., 2016; Kim et al., 2018) may also be useful to evalulate daily profiles by

permitting a simpler correlation test between modeled and observed surface concentrations than is possible between modeled

VCDs and observed SCDs. Development of these networks is a topic of active research. This method may be necessary for

future retrievals, especially over the US and European domains, where decreasing NOx emissions mean that the contrast25

between plumes and background in SCDs is much weaker now than in 2007.

6 Conclusions

We have evaluated version 3.0B of the BEHR OMI NO2 product against multiple datasets. We find that the WRF simulation

used to generate the a priori NO2 profiles generally agrees well with the available aircraft data; however, the number of

lightning flashes is significantly overestimated in the southeast US leading to an overestimate of the UT NO2 in that region,30

although broadly consistent with ENTLN observations elsewhere. When compared against aircraft-derived and Pandora VCDs,
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BEHR v3.0B performs better than SP v3.0, with regionally varying low biases of 0–51% compared to in situ and Pandora

measurements. Using daily profiles yields better results than monthly profiles, except in the southeast US.

The lessons learned here are applicable to geostationary satellites scheduled to launch in the near future. Because the BEHR

retrieval focuses on the continental United States, it serves as a useful prototype for future NO2 retrievals from geostationary

satellites such as GEMS (Bak et al., 2013; Choi and Ho, 2015), Sentinel-5
::::::::
Sentinel-4

:
(Ingmann et al., 2012), and TEMPO5

(Chance et al., 2013), which also will be inherently restricted to regional areas. This offers the opportunity to use higher-

resolution a priori data than global retrievals.

Here, the results from the SENEX and SEAC4RS campaign here demonstrate that verifying the chemical transport model’s

reproduction of the day-to-day variability in lightning flashes is vital to obtain reliable results in such regions. With the sub-

daily temporal resolution available to geostationary satellites, this will only become more important. Therefore, geostationary10

retrievals should evaluate the diurnal variation in lightning flashes in their a priori models using ground- and space- based

lightning detectors (e.g. NLDN, ENTLN, or the GOES-R lightning mapper), and plans should be made to validate retrieved

VCDs in multiple regions that have strong, but different, lightning influence. Such validations must include measurement of

the UT NO2 profile and/or total column observations in order to reliably separate errors in the a priori profiles from errors in

the observations used for evaluation.15

Evaluating the day-to-day performance of the a priori profiles in future geostationary retrievals is crucial. Daily profiles have

been shown to significantly affect retrieved NO2, especially in applications that systematically focus on NO2 VCDs downwind

of a source (Laughner et al., 2016), and we have shown here that daily profiles also improve performance in urban areas. With

the WRF-Chem model configuration used here, urban NO2 plumes are simulated with the correct spatial pattern ∼ 70% of the

time. Planned campaigns to evaluate geostationary satellite retrievals should be designed with an eye towards also evaluating20

the day-to-day accuracy of the a priori profiles.

Code and data availability. The analysis code for this paper is available at https://github.com/behr-github/BEHR-v3-evaluation/ (Laughner,

2018). Supporting datasets generated or used by this code is hosted by UC Dash (Laughner et al., 2018e). The BEHR v3.0B product is hosted

as four subproducts by UC Dash (Laughner et al., 2018a, b, c, d) as well as on behr.cchem.berkeley.edu. The BEHR algorithm is available at

https://github.com/CohenBerkeleyLab/BEHR-core/tree/master (Laughner and Zhu, 2018).25
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Supplement to “Evaluation of version 3.0B of the BEHR
OMI NO2 product”

Joshua L. Laughner, Qindan Zhu, and Ronald C. Cohen

S1 VCD comparison detail

BEHR v3.0 intercepts and R2 values are generally similar to or better than NASA SP
v3.0, though the discrepancy in intercepts is greater when comparing against Pandora data
alone. In theory, comparing against aircraft data, the intercepts would indicate a bias in
the stratospheric separation or total column (for Pandora comparisons, it can only be in
the total column). In practice, it is not fully orthogonal to errors in the AMF. However,
the stratospheric separation and total column will still be a significant component to the
intercept, so it is reasonable that the BEHR and NASA intercepts are similar, as both use
the same stratospheric separation and total columns.
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Figure S1: Scatter plots comparing (a,c,e) NASA Standard Product and (b,d,f) the BEHR
product VCDs to (a,b) aircraft profiles extended with GEOS-Chem, (c,d) aircraft profiles
extended by extrapolation, (e,f) Pandora columns measured during the DISCOVER-AQ
Maryland campaign. An asterisk (*) after the R2 value in the legend indicates the slope is
statistically different from 0 at the 95% confidence level.
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Figure S2: Scatter plots comparing (a,c,e) NASA Standard Product and (b,d,f) the BEHR
product VCDs to (a,b) aircraft profiles extended with GEOS-Chem, (c,d) aircraft profiles
extended by extrapolation, (e,f) Pandora columns measured during the DISCOVER-AQ
California campaign. An asterisk (*) after the R2 value in the legend indicates the slope is
statistically different from 0 at the 95% confidence level.
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Figure S3: Scatter plots comparing (a,c,e) NASA Standard Product and (b,d,f) the BEHR
product VCDs to (a,b) aircraft profiles extended with GEOS-Chem, (c,d) aircraft profiles
extended by extrapolation, (e,f) Pandora columns measured during the DISCOVER-AQ
Texas campaign. An asterisk (*) after the R2 value in the legend indicates the slope is
statistically different from 0 at the 95% confidence level.
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Figure S4: Scatter plots comparing (a,c,e) NASA Standard Product and (b,d,f) the BEHR
product VCDs to (a,b) aircraft profiles extended with GEOS-Chem, (c,d) aircraft profiles
extended by extrapolation, (e,f) Pandora columns measured during the DISCOVER-AQ
Colorado campaign. Negative VCDs are not removed, in contrast to Table S3. An asterisk
(*) after the R2 value in the legend indicates the slope is statistically different from 0 at the
95% confidence level.
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Figure S5: Scatter plots comparing (a,c) NASA Standard Product and (b,d) the BEHR
product VCDs to (a,b) aircraft profiles extended with GEOS-Chem and (c,d) aircraft pro-
files extended by extrapolation measured during the SENEX campaign. An asterisk (*)
after the R2 value in the legend indicates the slope is statistically different from 0 at the
95% confidence level.

7



Figure S6: Scatter plots comparing (a,c) NASA Standard Product and (b,d) the BEHR
product VCDs to (a,b) aircraft profiles extended with GEOS-Chem and (c,d) aircraft pro-
files extended by extrapolation measured during the SEAC4RS campaign. An asterisk (*)
after the R2 value in the legend indicates the slope is statistically different from 0 at the
95% confidence level.
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Campaign Product Slope Intercept R2

DISCOVER-MD
BEHR v3.0B (D) N/A N/A N/A
BEHR v3.0B (M) 0.443 2.55 × 1015 0.139
BEHR v2.1C 0.766 3.2 × 1015 0.128
SP v3.0 0.355 3.02 × 1015 0.125

DISCOVER-CA

BEHR v3.0B (D) 0.813 −9.99 × 1014 0.175
BEHR v3.0B (M) 0.781 −8.66 × 1014 0.16
BEHR v2.1C 0.774 −1.22 × 1014 0.178
SP v3.0 0.599 −1.01 × 1014 0.169

DISCOVER-TX

BEHR v3.0B (D) 1.08 −7.57 × 1014 0.152
BEHR v3.0B (M) 0.868 2.05 × 1014 0.173
BEHR v2.1C 1.43 6.54 × 1014 0.102
SP v3.0 0.688 9.54 × 1014 0.136

DISCOVER-CO (V > 0)

BEHR v3.0B (D) 0.655 7.71 × 1014 0.211
BEHR v3.0B (M) 0.628 8.26 × 1014 0.243
BEHR v2.1C 0.658 1.5 × 1015 0.224
SP v3.0 0.468 1.38 × 1015 0.213

Table S2: Slopes, intercepts, and R2 values for RMA regression of satellite VCDs against
Pandora VCDs. Outliers are removed before calculating these parameters.
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S2
::::::::::::
Impact

::::
of

::::::::::::::::::::::
hypsometric

::::::::::::::
surface

:::::::::::::::
pressure

::::::::::::::::::
correction

::::::
While

::::
we

::::
did

:::::
not

::::::
carry

::::
out

::::
an

::::::::
explicit

:::::
test

:::
of

:::::
how

::::::
each

::::::::
change

:::
to

::::
the

::::::::
BEHR

:::::::::::
algorithm

::::::::
between

:::::::
v2.1C

:::::
and

:::::::
v3.0B

:::::::::
affected

::::
the

:::::::::::::
comparison

:::
vs.

:::::::::
aircraft

:::::
and

::::::::::
Pandora

::::::
data,

::::
we

::::
did

:::::::::::
investigate

::::
the

:::::::
effect

:::
of

:::::::::
different

::::::::::
methods

:::
of

::::::::::::
computing

::::
the

::::::::
surface

::::::::::
pressure

:::
of

::::
the

::::::
OMI

::::::
pixels.

::::::
The

::::::
AMF

::::::::::::
calculation

:::::::::
requires

::
a

::::::
priori

::::::::::::
knowledge

::
of

:::::
the

::::::::
average

::::::::
surface

:::::::::
pressure

:::
of

:::
the

:::::
each

::::::
OMI

::::::
pixel,

:::
as

::::
the

:::::::::
location

:::
of

::::
the

::::::::
surface

:::::::
affects

::::
the

::::::
shape

:::
of

::::
the

:::::::::::
scattering

::::::::
weights

::::
(e.g.

:::
a

::::
low

:::::::::::
reflectivity

::::::::
surface

:::::
high

::::
up

::
in

::::
the

:::::::::::::
atmosphere

::::
will

::::::
cause

::::
the

:::::::::::
scattering

::::::::
weights

:::
to

::::::::
decrease

::::::
more

::::::::
rapidly

:::::
with

:::::::::::
decreasing

:::::::::
altitude

:::::
than

::
a

::::::::
surface

::::::
lower

::::::
down

::
in

::::
the

::::::::::::::
atmosphere).

::
In

:::::::
BEHR

:::::::
v3.0A

::::
and

:::::::
earlier

::::::::::
versions,

::::
this

::::::::
surface

:::::::::
pressure

::::
was

:::::::::::
computed

:::
by

::::::::::
averaging

::::::::
surface

:::::::::
elevation

::::::
data

::::::
from

::::
the

::::::::::
GLOBE

::::::::::
database

::::::::::::::::::::::::::::::::
(Hastings and Dunbar, 1999)

::::::
within

:::::
the

::::::
OMI

::::::
pixel,

:::::::
which

::
is

::::::
then

:::::::::::
converted

:::
to

::::::
from

::::::::::
elevation

:::
to

:::::::::
pressure

:::::::
using

::
a

::::
7.4

::::
km

::::::
scale

::::::::
height.

::
In

::::::::
v3.0B,

::::::::
surface

:::::::::
pressure

::::::
taken

::::::
from

::::
the

::::::
same

::::::::::::::
WRF-Chem

:::::::
model

:::::
that

:::::::::
supplied

:::::
the

:::::
NO2

:::::::
profiles

:::
is

:::::::::
adjusted

::::::
using

::::
the

:::::
same

:::::::::
average

:::::::::
GLOBE

:::::::
surface

::::::::::
elevation

:::
in

:::
the

:::::::::
method

::::::::::
described

::
by

::::::::::::::::::::
Zhou et al. (2009).

::::::
The

::::::::::::::::::::
Zhou et al. (2009)

:::::::
method

:::::
was

::::::::::
originally

::::::::::
intended

:::
to

:::::::::::
downscale

::::
very

:::::::
coarse

::::::::::::
(∼ 3° × 2°)

:::::::::
modeled

::::::::
surface

:::::::::
pressure

::
to

::::::
OMI

::::::
pixels

::::::
using

::
a

:::::
high

::::::::::
resolution

::::::::
terrain

::::::::::
database,

:::::::::
therefore

::::
the

::::::
effect

:::
of

:::::
using

:::
it

:::::
with

::::::::
already

:::::
high

::::::::::
resolution

:::::::::
modeled

::::::::
surface

:::::::::
pressure

:::
has

:::::
not

:::::
been

::::::::
tested.

:

::::::::::::::::::::::::
Laughner et al. (2018)

:::::::
showed

:::::
that

:::::::::::
switching

:::
to

:::::
the

:::::::::::::::::::::
(Zhou et al., 2009)

:::::::
method

:::::::::::
increased

:::::::
BEHR

:::::
NO2:::::::

VCDs
::::
by

::::
∼ 5

:::
to

::::::
10%

:::::
over

::::
the

:::::::
Rocky

::::::::::::
Mountains

::::::::
during

::::
the

:::::::::
summer

:::::::::
months.

:::::
This

::
is

:
a
::::::
small

::::
but

::::::::::::
systematic

::::::::
change,

::::
and

:::
so

::::
was

:::::::::::::
investigated

:::
as

::
a

::::
way

:::
to

:::::::
correct

::::
the

::::
low

:::::
bias

::
in

::::::::
BEHR

:::::
NO2:::::::

VCDs
::::
vs.

:::::::::
aircraft

:::::
and

:::::::::
Pandora

:::::::::::::::
measurements

::::::::
during

::::
the

::::::::::::::::::
DISCOVER-AQ

:::::::::
Colorado

:::::::::::
campaign.

::

:::::::
Figure

:::
S7

:::::::
shows

::::::::::::
regressions

:::
of

:::::::
BEHR

:::::::
VCDs

::::::::
against

:::::::::
aircraft

:::
+

:::::::::
Pandora

:::::::
VCDs

::::::
using

::::::
both

:::
the

::::::
scale

::::::::
height

::::
and

::::::::::::::
hypsometric

::::::::::
equation

::::::::::
methods

:::
of

::::::::::::
computing

::::::::
surface

::::::::::
pressure.

::::::
The

::::::
latter

::::::::
method

:::::::::::
improves

::::
the

::::::
slope

::::
by

::::::::
∼ 18%,

:::::
and

::::::
while

:::::::
there

::
is

::
a
:::::::

small
:::::::::
increase

:::
in

::::::
most

:::::::
BEHR

:::::::
VCDs,

::::
the

:::::::::::
reduction

:::
of

::::
the

::
4

:::::::
largest

:::::::::
aircraft

:::::::
VCDs

::::
has

::
a

:::::::
larger

::::::
effect

:::
on

::::
the

:::::::
slope.

::::
The

::::::::
aircraft

::::::::
VCDs

:::::::
change

::::::::::
because,

::::::
when

::::::::::::
computing

::
a
::::::
VCD

::::::
from

::::
the

::::::::
aircraft

:::::::::
profiles,

::::
we

:::::::::
integrate

::::::
from

::::
the

::::::
OMI

::::::
pixel

::::::::
surface

:::::::::
pressure

::::
to

:::
its

::::::::::::
tropopause

::::::::::
pressure,

::::
for

:::::::::::::
consistency

::::::::
between

::::
the

:::::::::
aircraft

::::::
VCD

:::::::::::
calculation

:::::
and

::::::::
BEHR

::::::
AMF

::::::::::::
calculation.

:

:::
As

::::
the

::::
two

:::::::::
methods

:::
of

:::::::::::
calculating

::::::::
surface

:::::::::
pressure

:::
do

::::
not

:::::::::::::
significantly

:::::
alter

::::
the

:::::::
BEHR

:::::::
VCDs

::
in

:::::
this

:::::::::::::
comparison,

::::
we

:::::::
cannot

:::::
say

::::::::::
explicitly

:::::
that

:::::
the

::::::::
surface

:::::::::
pressure

:::::::::::
calculated

::::::
with

::::
the

::::::::::::
hypsometric

::::::::::
equation

::::::::::
improves

::::
the

::::::::
BEHR

::::::::::
retrieval.

:::::::::::
However,

::::::
using

::::::
that

::::::::
surface

:::::::::
pressure

:::::
does

::::
lead

:::
to

::::::::
greater

::::::::::::
consistency

:::::::::
between

::::::::
BEHR

::::
and

:::::::::
aircraft

::::::
VCDs

::::::
when

:::::
also

::::::::
applied

:::
as

::::
the

:::::
lower

::::::
limit

::::
for

::::::::::::
integrating

::::
the

::::::::
aircraft

:::::::::
profiles.

:
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Figure S7:
:::::::::::
Regression

:::
of

::::::::
BEHR

::::::
v3.0B

:::::
(D)

:::::::
VCDs

::::
vs.

:::::::::
aircraft

:::
+

:::::::::
matched

::::::::::
Pandora

:::::::
VCDs

:::
for

::::
the

:::::::::::::::::
DISCOVER-CO

::::::::::::
campaign.

:::::
The

:::::
blue

::::::
series

:::::
and

::
fit

::::::
used

::::::::
surface

::::::::::
pressured

:::::::::::
computed

:::::
using

::
a
::::
7.4

::::
km

::::::
scale

:::::::
height

:::
to

::::::::
convert

:::::::::
GLOBE

:::::::::::
elevations

:::::
into

::::::::::
pressures;

::::
the

::::
red

:::::::
series

:::::
used

:::
the

:::::::::::::
hypsometric

::::::::::
equation

:::
as

:::
in

:::::::::::::::::::
Zhou et al. (2009)

:
.
:
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S3 WRF Lightning - Individual Events

The analysis of a individual convective event taking place near the boundary of Alabama
and Georgia on June 14 2012 in shown in Fig. S8. The spatial extent of flashes simulated
by WRF-Chem is much broader than that measured by ENTLN, and outside of a few grid
cells, the ENTLN flash counts are substantially less than the WRF-Chem simulation.

Outside of the southeast US, although the overall agreement in flash density improves, on
smaller scales, we still see that flash density observed by ENTLN is concentrated in the
convective core while the simulated flash density spreads over the convective area and fails
to reproduce the gradient across the convective core (Fig. S9). The simulated flash den-
sity in the convection core is lower than observation despite the total flash counts are still
comparable.

:
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Figure S8: Time-evolved development of storm in the southeast US illustrated by lightning
flashes observed by ENTLN (a, c, e) and simulated by WRF-Chem (b, d, f) on June 14
2012. The number of flashes occurring within the time range is denoted.
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Figure S9: Time-evolved development of storm in the central US illustrated by lightning
flashes observed by ENTLN (a, c, e) and simulated by WRF-Chem (b, d, f) on May 18
2012. The number of flashes occurring within the time range is denoted.
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S4
:::::::::::::
Change

::::
in

::::::::::::::::::::::::::
anthropogenic

:::::::::::::::::
emissions

:::::
in

:::::::
the

:::
a

:::::::::::
priori

:::::::::::::
profiles,

::::::
v2

::::
to

::::::
v3

Figure S10:
:::::::::
Absolute

::::
(a)

:::
and

:::::::::
percent

::::
(b)

:::::::
change

::
in

:::::::::::::
WRF-Chem

:::::
NO

::::::::::
emissions

:::::::::
between

::::
the

:::::
EPA

:::::
NEI

:::::
2005

:::::::::::
inventory,

::::::::::
unscaled,

:::::
and

::::
the

:::::
EPA

:::::
NEI

::::::
2011

:::::::::::
inventory,

:::::::
scaled

:::
to

:::::
2012

:::::::
levels.

:::::::
Figure

::::
S10

:::::::
shows

::::
the

:::::::::
absolute

::::
and

:::::::::
percent

::::::::::
difference

:::::::::
between

::::
the

:::::
NO

::::::::::
emissions

:::
in

::::
the

:::::
2005

::::
and

:::::
2011

::::::::
(scaled

:::
to

:::::
2012

::::::
levels

:::
by

:::::::::::::
multiplying

:::
by

:::::
0.94)

::::::
EPA

:::::
NEI

::::::::::::
inventories.

::::::
This

::::::::::
difference

::::::::::::::
approximates

::::
the

::::::::::
difference

:::::::::
between

::::
the

::::::::::
emissions

:::::
used

:::
in

::::
the

::
a

::::::
priori

:::::::
profile

::::::::::::
simulations

::::
for

:::::::
BEHR

::::::
v2.1C

:::::
and

:::::::
v3.0B.

::::::
(The

::::::::::
emissions

::::
for

:::::::
v3.0B

::::
are

::::::::
exactly

::::::
those

::::::
used;

::::
the

::::::::::
emissions

::::
for

::::::
v2.1C

:::::
were

:::::::::::::
reproduced

::::::
based

:::
on

::::
the

::::::::::::
description

:::
in

::::::::::::::::::::
Russell et al. 2011

:
).

:

:::
For

::::::::
BEHR

::::::
v3.0B

:::::
with

::::::
daily

:::::::::
profiles,

:::
the

:::::::::::
difference

::::::
varies

::::::
from

::::
year

:::
to

::::::
year,

::::
but

::::
the

::::::::::
difference

::::
will

:::
be

::::::::::
constant

:::::
over

:::::
the

:::::::::
domain,

:::
as

:::::
the

:::::::::::
emissions

::::
are

::::::::
simply

:::::::
scaled

::::
by

::
a

:::::::
scalar

:::::::
factor

::::::::::::::::::::::::
(Laughner et al., 2018).

:::::
The

:::::::::::
difference

:::::::
shown

:::
in

:::::
Fig.

:::::
S10

::::
will

:::
be

:::::::
∼ 5%

::::
and

::::::::
∼ 10%

::::::::
greater

::
in

:::::
2013

:::::
and

::::::
2014,

:::::::::::::
respectively,

:::::
than

:::
in

::::::
2012.

:::::::
Urban

::::::
areas

::::
see

:::::::::::::
consistently

:::::
large

::::::::::
absolute

::::
and

::::::::
percent

:::::::::::
decreases.

:::::::
Rural

::::::
areas

::::
can

::::::
have

::::::
large

::::::::
percent

::::::::::
increases

:::
or

:::::::::::
decreases;

::::::::::
however,

::::
the

::::::::
absolute

:::::::::::
difference

::
is

::::::::
always

:::::
very

::::::
small.
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S5 Surface reflectivity evaluation

In BEHR v3, we use the MODIS combined Band 3 MCD43D BRDF coefficients along with
the Ross-Thick Li-Sparse kernels to compute a surface reflectivity. This is a computation-
ally simpler approach than Vasilkov et al. (2017), who combined MODIS BRDF coefficients
with the VLIDORT radiative transfer model to calculate a modified Lambertian Equivalent
Reflectivity (m-LER) that assumes a uniform Lambertian surface under a scattering atmo-
sphere. Here, we evaluate the difference resulting from using the MODIS BRDF directly.

We do so using the MODIS BRDF values using the SCIATRAN radiative transfer model
(Rozanov et al., 2005). SCIATRAN is run in plane-parallel scattering mode, including po-
larization effect. The incident beam is assumed to be unpolarized (Stokes vector [1 0 0 0]).
The aerosol profile uses the included WMO aerosol scenario, with 4 layers with upper bound-
aries of 2 km, 12 km, 30 km, and 100 km above the ground elevation, and aerosol types of
continental, continental, background, and background, respectively.

We follow Vasilkov et al. (2017) to calculate modified-LERs (mLERs) from:

I(λ, θ, θ0, φ, Ps, RBRDF) = I0(λ, θ, θ0, φ, Ps) +
RLER · T (λ, θ, θ0, Ps)

1 −RLER · Sb(λ, Ps)
(S1)

for RLER, which is the mLER. The other variables are:

• I: the top-of-atmosphere intensity at wavelength λ for the given viewing zenith an-
gle (VZA, θ), solar zenith angle (SZA, θ0), relative azimuth angle (RAA, φ), surface
pressure (Ps), and BRDF function (RBRDF)

• I0: the top-of-atmosphere intensity for the same wavelength, geometry, and surface
pressure as I, but with a 0-reflectivity (i.e. perfectly black) surface

• T : the intensity of light transmitted through the atmosphere; specifically, it represents
the solar irradiance that reaches the surface, divided by π (to account for isotropic
scattering from the assumed Lambertian surface, which reduces the intensity in a
given solid angle), and multiplied by the transmittance of the atmosphere along the
viewing direction.

• Sb: the spherical albedo of the atmosphere under the condition of illumination from
below. This accounts for additional light incident on the surface due to downward
scattering by the atmosphere of light already reflected from the surface.

As in Vasilkov et al. (2017), look up tables (LUTs) are created for I0, T , and Sb. The I0
LUT is created from the intensity output of SCIATRAN iterated over three wavelengths
(450, 460, and 470 nm) and the same SZAs, VZAs, RAAs, and surface pressures used in the
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scattering weight LUT, with surface reflectivity set to 0. The LUTs for T and Sb are created
by solving a system of linear equations obtained by rearranging Eq. (S1):

[
(I − I0)R=0.05 1
(I − I0)R=0.1 1

] [
Sb

T

]
=

[(
I−I0
R

)
R=0.05(

I−I0
R

)
R=0.1

]
(S2)

where the subscripts R = 0.05 and R = 0.1 indicate that I was calculated with a Lambertian
surface reflectivity of 0.05 and 0.1, respectively. These are computed for the same SZAs,
VZAs, RAAs, surface pressures, and wavelengths as the I0 table, although Sb and T are
theoretically invariant with respect to some of those parameters. This holds in practice,
except for Sb when both the SZA and VZA are very large.

The m-LER is then calculated at 85 sites throughout the continental United States for 189
geometries per site using MCD43D07, MCD43D08, and MCD43D09 coefficients from the
first day of each month in 2005 by inputting those coefficients into SCIATRAN to calculate
I in Eq. (S1) at 466 nm. Using the previously discussed LUTs for I0, T , and Sb, we calculate
the m-LER from Eq. (S1).

Finally, we calculate the BRDF albedo as in Laughner et al. (2018) for each geometry and
month at each site, noting that the RAA definition for SCIATRAN is reversed from that for
the BRDF kernels (i.e. φSCIA = 180−φMODIS). We match each m-LER to the corresponding
BRDF albedo for the comparison below.

We compare surface reflectances calculated directly from the MODIS coefficients and BRDF
kernels with m-LERs calculated with the SCIATRAN radiative transfer model. Figure S11
shows the results for 85 sites (a combination of urban, power plant, and rural sites) with
189 geometry combinations for each site. Figure S11a shows only a 3% variation from a 1:1
line in the regression, and Fig. S11b and c shows a median difference of only 0.005 (8%),
with the 75th percentile difference of 0.007 (14%). We retrieved 1 June 2012 with a 14%
increase in surface reflectance and found, on average, only a 1.5 ± 4% (1σ) decrease in the
NO2 column. Since the overall effect of including the radiative transfer calculations on the
retrieved columns is small, we choose to use the BRDF coefficients directly to account for
the directional dependence of surface reflectance.

We do note that for surface reflectances < 0.3, larger differences in the surface reflectance
obtained with radiative transfer calculations compared to the raw BRDF coefficients are
associated with large solar zenith angles (∼ 70◦). This indicates that the uncertainty in
individual pixels due to the choice of surface reflectance will be greater during the winter
months. However, when individual months are fit, the slope does not change significantly
(range 1.011 ± 0.001 to 1.0395 ± 0.0005), indicating that the average uncertainty does not
vary significantly with season. This is explored in more detail in Sect. S6 of the main paper.
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Figure S11: Comparison of a m-LER calculated with MODIS BRDF coefficients to the
surface reflectance calculated directly from MODIS BRDF coefficients and kernels. (a)
scatter plot of the m-LER on the y-axis and direct BRDF on the x-axis, colored by solar
zenith angle; a reduced major axis regression is used to fit the data. (b) box plot of the
difference between the two quantities. The red line is the median, the blue box the 25th and
75th percentiles, the black lines are the furthest non-outlier values, and the red crosses are
outliers. (c) same as (b), but zoomed in on the interquartile range.

S6 Uncertainty analysis

We determine the uncertainty in the AMF due to surface reflectance, surface pressure,
tropopause pressure, cloud pressure, cloud radiance fraction, and profile shape numerically
by perturbing each parameter in turn and re-retrieving the NO2 VCDs with the perturbed
values (Table S4). For each perturbation, we reretrieved all of 2012 with the varied param-
eter.

Surface reflectivity, surface pressure and tropopause pressure are varied by fixed percentages
(surface and tropopause pressure are explicitly limited to the range 1020 to 60 hPa). The
error in cloud pressure is given as a function of cloud pressure and fraction by Acarreta
et al. (2004); we add and subtract the given error for each pixel. Acarreta et al. (2004) also
indicates that the error in cloud fraction is < 0.05; to transform that to an error in cloud
radiance fraction, we use:

σfr = 0.05 · ∂fr
∂fg

∣∣∣∣
fg,pix

(S3)

where fr is the cloud radiance fraction and fg the cloud fraction. We determine ∂fr/∂fg at
fg,pix (the cloud fraction of a specific pixel) by binning all fr and fg for the current OMI
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Quantity Perturbation Reasoning

Surface reflectivity ±17% Quadrature sum of 14% LER
error and 10% from Schaaf et
al. (2010)

Surface pressure ±1.5% Comparing WRF and BEHR
surface pressure

Tropopause presssure Replace w/NASA tropopause Alternate method
Cloud pressure Variable Fig. 3 of Acarreta et al. (2004)
Cloud radiance fraction Cloud fraction ±0.05 Acarreta et al. (2004) with cor-

relation of cloud frac. and cloud
rad. frac.

Profiles Quasi-Monte Carlo Assume variability of model
profiles is a reasonable metric

Table S4: Perturbation of input parameters to the AMF calculation used in the uncertainty
analysis.

orbit in increments of 0.05 and using that relationship to numerically convert the error in
cloud fraction to an error in cloud radiance fraction.

To determine the error due to profile uncertainty, we take advantage of the high spatial
and temporal resolution of our WRF-Chem profiles, akin to Boersma et al. (2004). We
run two sensitivity retrievals, first allowing the profile to be taken from any day of the
same month as the satellite observation, and second allowing each pixel to shift by −0.2, 0,
or +0.2 degrees in the longitudinal and latitudinal directions for the purpose of matching
it with the corresponding NO2 and temperature profiles. The first is a very conservative
simulation of the possible error due to erroneous meteorological drivers (especially wind
speed and direction); the second effectively simulates errors in emissions location, chemical
kinetics, and transport by moving the pixel so that its profile reflects different aging time
since emission.

Figure S12 shows the summed uncertainty for the four seasons as well as the individual
contributions to the uncertainty. In all seasons, the a priori NO2 profiles dominate the un-
certainty. ProfileTime is the largest component in all seasons; the represents the uncertainty
due primarily to errors in wind direction and speed, since it is calculated by randomly choos-
ing profiles from a different day of the same month as the OMI data. It is unsurprising that
this is the greatest contributor to uncertainty, since errors in meteorology may completely
change the NO2 profile of any given pixel, i.e. is it downwind of a source or not, as well as the
impact of lightning in the SE US. This is a conservative upper bound, as we saw in Sect. 3.2,
WRF captures the plume direction well ∼ 70% of the time, whereas the uncertainty analysis
essentially assumes that the WRF winds are uncorrelated with the real winds. Reducing the
uncertainty by 70% as a rough correction would make it of similar magnitude to the other
contributions and significantly reduce the total uncertainty.
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Figure S12: (a–d) Total percent uncertainty in tropospheric NO2 VCDs for (a) Jan, Feb,
Dec; (b) Mar.–May, (c) June–Aug., and (d) Sept.–Nov., 2012. (e) The domain average
effect of each varied parameter and the domain average total uncertainty for the same four
time periods.
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The tropopause and cloud pressures are the next two largest contributors to uncertainty
in most seasons. Of the non-profile contributors, the retrieval is most sensitive to cloud
pressure. The retrieval sensitivity to the other four non-profile parameters is similar (∼ 5
to −10%) in all seasons. The tropopause pressure is generally the second largest non-profile
contributor to the uncertainty as one of the integration limits in the AMF calculation; the
sensitivity of the NO2 columns to it and the terrain height (%∆VNO2

/%∆ptrop) are generally
similar (∼ 0.25%/%, not shown), but the greater uncertainty in the tropopause pressure
calculation causes it to have the greater impact on the retrieved VCDs.

Overall, the uncertainty due to the AMF calculation is ∼ 70% in the winter, but much
smaller (≤ 30%) during the remainder of the year. The 30% uncertainty is similar to that
calculated for polluted conditions in Boersma et al. (2004). This seems reasonable, as in
winter, longer NOx lifetime means that more pixels will have high levels of surface NO2, and
getting the wind direction wrong (i.e. what is tested with ProfileTime) will have effects over
larger ares. In the summer the error in urban plumes is still important, but over smaller
areas. The highest uncertainties are found in the northeast US, which has a significant
number of urban areas. Our greater average uncertainty compared to Boersma et al. (2004)
likely follows from the greater variability of our 12 km a priori profiles than the 5◦ × 3.75◦

used in Boersma et al. (2004).

Data files containing the seasonal average uncertainties may be downloaded at behr.cchem.
berkeley.edu for users who require spatially varying uncertainty information for their ap-
plications. It is also included in the data repository for this paper.
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