

1 **Supplementary material of Formenti et al., Aerosol optical properties derived from**
2 **POLDER-3/PARASOL (2005-2013) over the western Mediterranean sea: I. Quality**
3 **assessment with AERONET and in situ airborne observations**

4
5 **Table S1.** Modal diameter (D_0), geometric standard deviation (σ_0) and effective diameter (D_{eff}) of the
6 log-normal distribution as well as real part of the refractive index (m_r) of the aerosol models over ocean
7 of the POLDER-3 Look-Up Table (LUT).

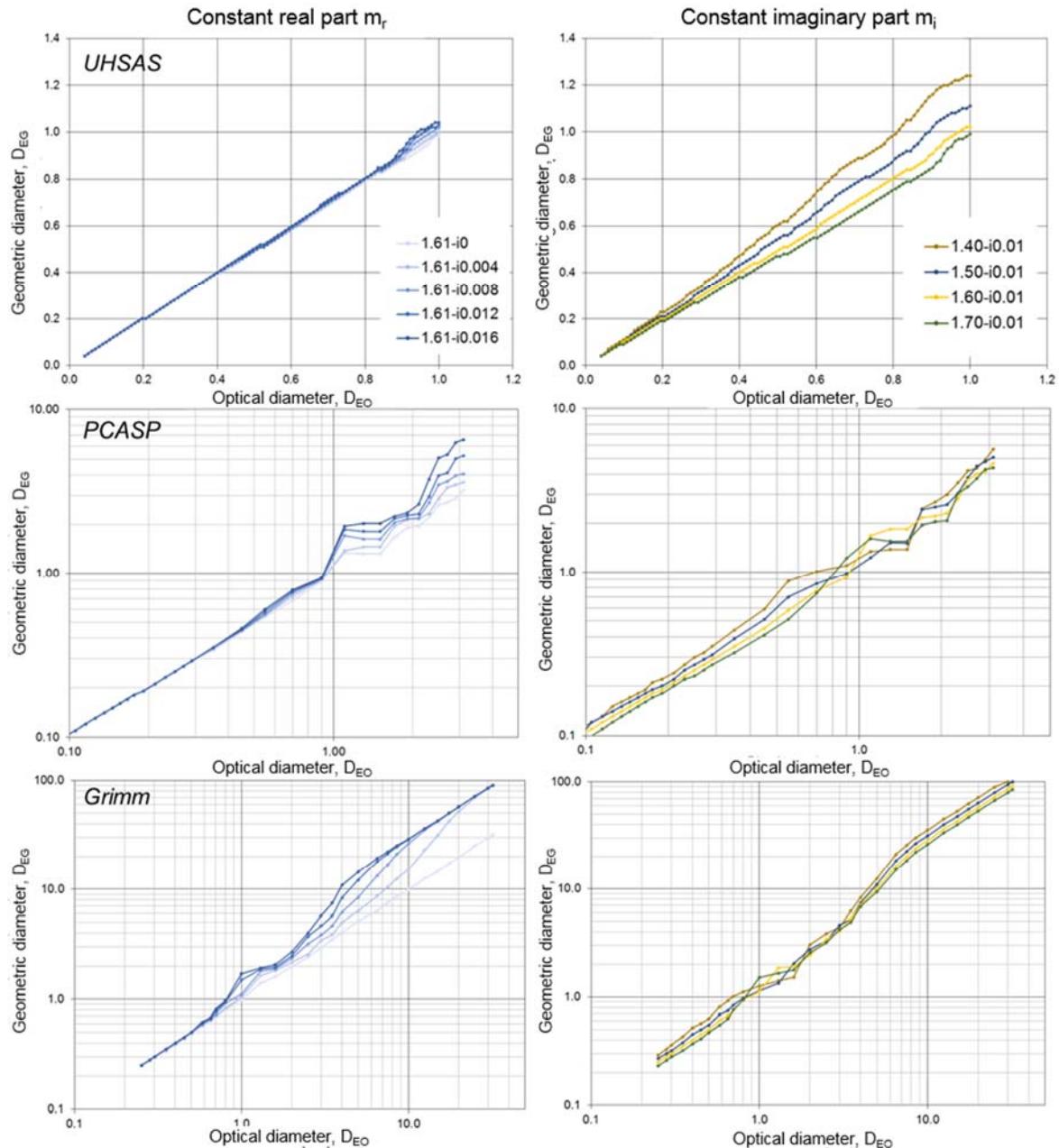
Parameters	Fine mode	Spherical coarse mode	Non spherical coarse mode
D_0 (μm)	0.08, 0.16, 0.20, 0.26	1.56	0.90, 1.50
σ_0	0.46	0.69	0.69
D_{eff} (μm)	0.136, 0.272, 0.34, 0.442	5.10	2.96, 4.92
m_r	1.35, 1.45, 1.60	1.33, 1.35, 1.37	1.53

9 **Figure S1.** Ratio of the coarse to the total AOD (AOD_c/AOD) by AERONET as a function of
10 the cut-off diameter ($D_{cut-off}$) between the fine and coarse aerosol particle modes.

11

12

13 **Supplementary A. Assessment of the size distribution**


14 Here we provide details of the procedure to estimate the aerosol particle size distribution from
15 the measurements of the PCASP, UHSAS and Grimm optical counters operated on board the
16 ATR42 during TRAQA and ADRIMED. This also requires to assess the particles complex
17 refractive index.

18 **S.1. Correction for complex refractive index**

19 The operating principle of the particle optical counters is based on the angular dependence of
20 the light scattering intensity to the particle size through optical Mie theory (Mie, 1908; Wendisch
21 and Brenguier, 2013). The optical particle counters provide the number size distribution at an
22 optical equivalent diameter (D_{EO}) corresponding to the measured intensity of the scattered
23 radiation at the value of the complex refractive index m used for calibration. This is generally
24 done with latex spheres (or equivalent standard material) for which m is equal to 1.59 – i0.
25 Henceforth, to represent the actual aerosol, the value of D_{EO} needs to be converted into a
26 particle equivalent geometrical diameter (D_{EG}), corresponding to the real value of the complex
27 refractive index. This correction depends on aerosol composition and the geometrical and
28 spectral characteristics of the particle counter (Reid et al., 2003; Denjean et al., 2016).

29 The equivalence between D_{EO} and D_{EG} was established by calculation using the Mie theory for
30 homogeneous spherical particles (Bohren and Huffman, 1998). Examples of this equivalence
31 for a range of m values is shown in Figure S2 for the particle optical counters used in this study
32 (UHSAS, PCASP and Grimm).

33

34

35 **Figure S2.** Scatterplot of the geometric-equivalent diameter (D_{EG}) with respect to the optical-equivalent
 36 diameter (D_{EO}) for various refractive indices with real part fixed at 1.61 (left) and imaginary part fixed at
 37 0.01 (right), for UHSAS (top), PCASP (middle), and Grimm (bottom).

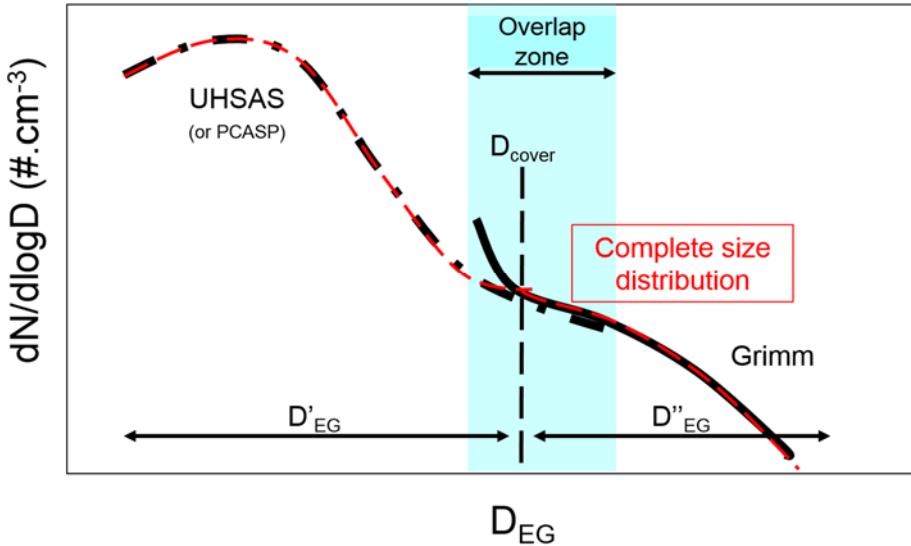
38

39 The relation between D_{EO} and D_{EG} is not linear with size. The real and imaginary parts of the
 40 refractive index modify significantly the particle diameter, notably above 0.6 μm . The imaginary
 41 part of the refractive index has a greater influence at diameters larger than 1 μm , whereas the
 42 real part affects more the submicron aerosols. Figure A1 also shows the equivalence between
 43 D_{EO} and D_{EG} is not unique, especially for D_{EO} around 1 μm .

44 **S.2. Combination of optical counter measurements**

45 The combination of the size spectra measured by the PCASP, UHSAS, and Grimm was
46 performed by examining their overlap over their common measurement size ranges. The
47 combination was performed as follows. First, the measured size distributions were visually
48 inspected to establish whether, at the calibration refractive index ($m_{\text{latex}} = 1.59 - 0i$), the
49 observations by the counters coincided on their common size range. This analysis was
50 repeated after applying the geometric equivalence correction according to the refractive index
51 (that is, on the size distributions expressed as a function of D_{EG}). When the difference between
52 the particle number concentration measured by the two counters (at pairs) was lower than the
53 sum of the absolute counting errors (\sqrt{dN} according to the Poisson statistics), the agreement
54 was considered as satisfactory. A boundary diameter (D_{cover}) was then defined in the overlap
55 zone to generate a new combined size distribution from the PCASP or UHSAS in the particle
56 diameter range $D'_{EG} \leq D_{\text{COVER}}$ and the Grimm counter in the range $D''_{EG} \geq D_{\text{COVER}}$ (with D''_{EG} up
57 to the AVIRAD inlet cut-off diameter), so that

58


59
$$\frac{dN_{\text{tot}}(D_{EG})}{d\log D_{EG}} = \frac{dN_{\text{PCASP}}(D'_{EG})}{d\log D'_{EG}} + \frac{dN_{\text{Grimm}}(D''_{EG})}{d\log D''_{EG}} \quad (\text{S1.a})$$

60

61
$$\frac{dN_{\text{tot}}(D_{EG})}{d\log D_{EG}} = \frac{dN_{\text{UHSAS}}(D'_{EG})}{d\log D'_{EG}} + \frac{dN_{\text{Grimm}}(D''_{EG})}{d\log D''_{EG}} \quad (\text{S1.b})$$

62

63 **Figure S3** shows a schematic representation of the combination between both size
64 distributions.

65

66 **Figure S3.** Schematics of the combination of the number size distributions between UHSAS (or PCASP)
67 and Grimm around D_{cover} . The overlap zone is indicated in blue. The black curves represent the
68 distributions measured by the two counters in pairs, corrected by the refractive index (e.g., expressed
69 as D_{EG}). The red curves represent the combined size distributions of the two optical counters over the
70 combination of the domain of D_{EG}' (for UHSAS or PCASP) and D_{EG}'' for the Grimm. In each diameter
71 range below and over D_{cover} , $d\log D_{EG}$ values and counting errors remain those of the respective
72 counter.

73

74 The overlapping zone change whether we work with PCASP (TRAQA campaign) or UHSAS
75 (ADRIMED campaign). D_{cover} ranged between 0.23 and 0.7 μm for the TRAQA campaign when
76 the PCASP and the Grimm were operated, and between 0.23 and 0.9 μm during ADRIMED
77 when the UHSAS and the Grimm were operated.

78 To make sure that the total number of particles was conserved after the recombination and the
79 modification of the size classes by the refractive index, we applied the conservation equation
80 of the total number of particles

81

$$82 \quad N_{EG} = N_{EO} \quad (\text{S2.a})$$

83

$$84 \quad N_{EO} = \int_{D_{EO,min}}^{D_{EO,max}} \frac{dN_{EO}(D_{EO})}{d\log D_{EO}} d\log D_{EO} \quad (\text{S2.b})$$

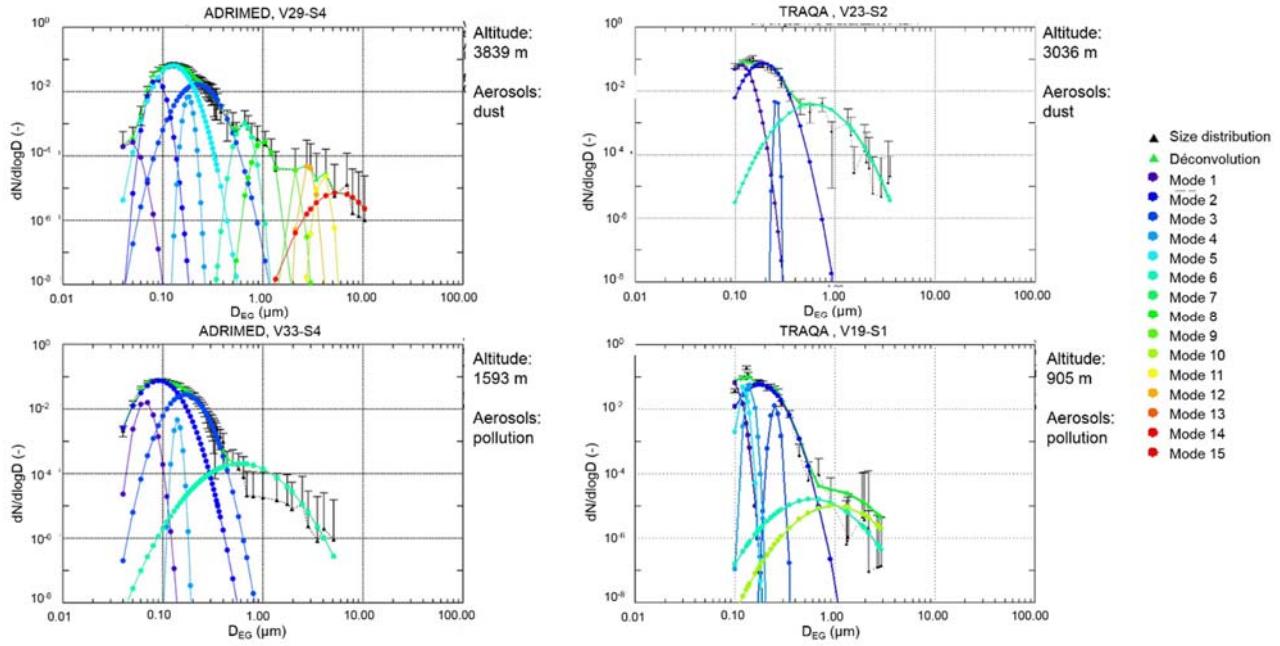
85

86
$$N_{EG} = \int_{D_{EG,min}}^{D_{EG,max}} \frac{dN_{EG}(D_{EG})}{d\log D_{EG}} d\log D_{EG} \quad (\text{S2.c})$$

87

88 where N_{EO} is the total number of particles corresponding to the measurement (for the refractive
89 index m_{latex}) and N_{EG} is the total number of particles after correction of the refractive index.

90 Finally, the extended size distributions $\frac{dN_{EG}(D_{EG})}{d\log D_{EG}}$ obtained by the recombination of the optical
91 particle counters were fitted by a multi modal normalized log-normal distributions as


92

93
$$\frac{1}{N_{EG}} \frac{dN_{EG}(D_{EG})}{d\log D_{EG}} = \sum_i \frac{n_i}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\log D - \log D_{0,i})^2}{2\sigma_i^2}\right) \quad (\text{S3})$$

94

95 where n_i is the total number of particles, σ_i the geometric standard deviation and $D_{0,i}$ the modal
96 (geometric mean) diameter of the mode i .

97 The log-normal fit of the reconstructed size distribution was done with the MPFIT routine
98 available under IDL (Markwardt, 2009; <http://purl.com/net/mpfit>). The calculation routine
99 considers the result as correct if the difference ε_{FIT} between the sum of the squares of the input
100 size distribution and its deconvolution is less than 10^{-10} after 100 iterations. To limit error due
101 to an over- or underestimation of the total number of particle N_{EG} , not constrained in this
102 routine, the calculation was repeated several times, on normalized size distributions, by
103 modifying the initial parameters until the calculated size distribution is within the limits of the
104 counting uncertainties of the experimental size distributions. Examples of deconvolutions are
105 shown in **Figure S4**.

106

107 **Figure S4.** Examples of reconstructed normalized number size distributions and their decomposition in
108 log-normal modes for case studies of desert dust (upper panels) and pollution aerosols (lower panels)
109 during ADRIMED and TRAQA. The deconvolution was performed with the IDL MPFIT routine for up to
110 15 different log-normal distribution modes. The uncertainties correspond to the Poisson statistical error.

111

112 Up to 11 modes were needed to fit the size distributions, of which up to 6 modes for $D_{EG} < 1$
113 μm . These do not necessarily have a physical meaning but are regarded as a way of
114 reproducing the volume distribution at the highest possible size resolution.

115 **S.3. Assessment of the complex refractive index**

116 The complex refractive index necessary to estimate D_{EG} , and therefore correct the measured
117 size distributions according to the optical equivalent diameter D_{EO} , are based on published
118 values in the literature, some of them especially for our region of study (Ackermann, 1998;
119 Petzold et al., 2009; Ryder et al., 2013; Di Biagio et al., 2015; Denjean et al., 2016; Sicard et
120 al., 2016). The different values are presented in **Table S2**.

121

122

123

Aerosol	Campaign	Wavelength (nm)	Refractive index	References
Pollution (fine mode)	TRAQA, SAFMED	632.8	(1.50 – 1.72) – i 0.01	Di Biagio et al., 2015
Pollution (soot)	---	355	1.75 – i 4.64 10 ⁻¹	Ackermann, 1998
		532	1.75 – i 4.46 10 ⁻¹	
		1064	1.76 – i 1.43 10 ⁻¹	
Marine	---	355	1.51 – i 3.22 10 ⁻⁸	Ackermann, 1998
		532	1.50 – i 1.12 10 ⁻⁸	
		1064	1.47 – i 1.92 10 ⁻⁴	
Desert dust	---	355	1.53 – i 1.66 10 ⁻²	Ackermann, 1998
		532	1.53 – i 6.33 10 ⁻³	
		1064	1.53 – i 4.30 10 ⁻³	
Desert dust	ADRIMED	530	(1.51 – 1.57) – i (1.0 – 4.6) 10 ⁻³	Denjean et al., 2016
	SAMUM	450	(1.55 – 1.57) – i (3.1 – 5.2) 10 ⁻³	Petzold et al., 2009
		550	(1.55 – 1.56) – i (1.6 – 4.2) 10 ⁻³	
Desert dust	FENNEC	700	(1.55 – 1.56) – i (0.3 – 2.5) 10 ⁻³	Ryder et al., 2013
		550	1.53 – i (1.0 – 3.0) 10 ⁻³	
Mixed aerosols	AERONET	440	(1.42 – 1.48) – i (2.8 – 4.7) 10 ⁻³	Sicard et al., 2016

125 **Table S2.** Compilation of published values of refractive index and their wavelengths, for different aerosol
126 type with some of them especially for our region of study (Mediterranean Sea).

127

128 In the absence of complementary information on the variability of the chemical composition
129 with size, the refractive index was considered as independent on particle size. The refractive
130 index for mixed aerosols (AE_{scatt} between 0.5 and 1.0) was calculated as volume-weighted
131 averages of pollution aerosols and desert dust as

132

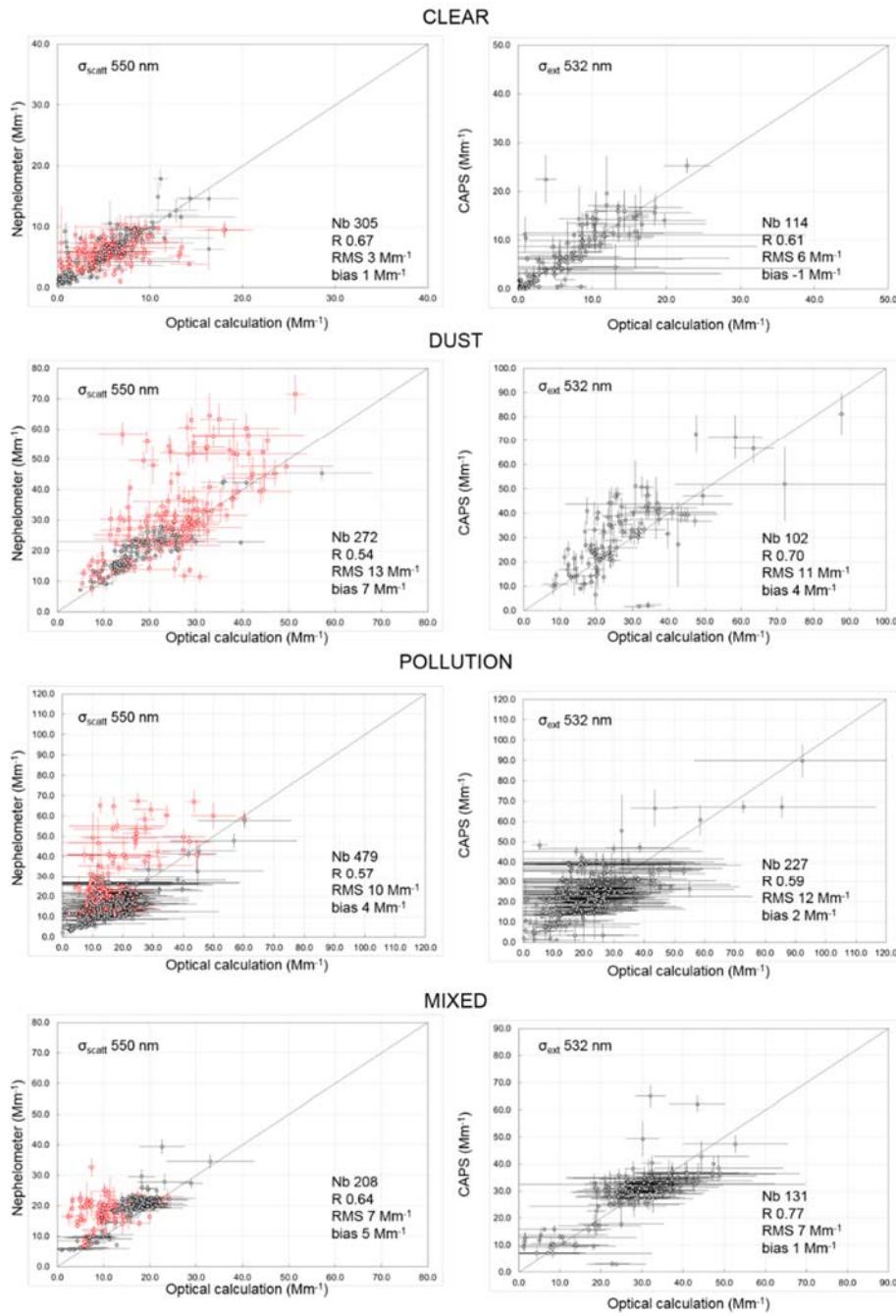
133
$$m = \sum_i f_i \times m_i \quad (\text{S4})$$

134

135 where f_i et m_i are the volume fractions and the complex refractive index of two types of aerosols
136 i , respectively. We assumed arbitrarily that $f_i = 0.8$ for desert dust and $f_i = 0.2$ for pollution
137 aerosols for $AE_{scatt} \leq 0.75$, and $f_i = 0.2$ for desert dust and $f_i = 0.8$ for pollution aerosols for AE_{scat}
138 > 0.75 . The extrapolation to our working wavelengths (450, 532, 550, 700 and 865 nm) was
139 done by assuming the spectral dependences obtained by Ackermann (1998) between 355 and
140 532 nm and between 532 and 1064 nm. The spectral dependence was applied to the
141 refractive index for desert dust and mixed aerosols obtained by Di Biagio et al. (2016) and
142 Denjean et al. (2016) for case studies during TRAQA and ADRIMED.

143 **S.4. Comparison between in situ measurements and calculations of the extinction and**
 144 **scattering coefficient**

145 The validation of the number size distributions reconstructed from airborne measurements,
 146 henceforth their ability in yielding the column-integrated but size-segregated extinction, was
 147 assessed by calculating, on 30-second averages, the extinction coefficient σ_{ext} at 532 nm and
 148 the scattering coefficient σ_{scatt} at 450, 550 and 700 nm, and by comparing them to σ_{ext}
 149 measured by the CAPS-PMex (only operated during ADRIMED) and to σ_{scatt} measured by the
 150 nephelometer, respectively. The comparisons were evaluated by examining the correlation
 151 coefficient R, the root-mean square error (RMS) and the bias (B) of their linear regression. The
 152 complex refractive index at each wavelength was varied until the best agreement between
 153 calculated and measured σ_{scatt} and σ_{ext} was achieved within the estimated error bars. The
 154 retrieved refractive index matching measurements and calculations are summarized in **Table**
 155 **S3.**


Aerosol type	Complex refractive index m at various wavelengths								
	450 nm	532 nm	550 nm	632.5 nm	655 nm	670 nm	700 nm	865 nm	1054 nm
Clear layer / maritime	(1.40-1.50) -i(0 - 0.002)								
Desert dust	(1.50-1.57) -i(0.004-0.007)	(1.50-1.57) -i(0.002-0.004)						(1.50-1.57) -i(0.020-0.003)	(1.50-1.57) -i(0.001-0.003)
Pollution	(1.41-1.77) -i(0.002-0.022)	(1.41-1.77) -i(0.002-0.018)	(1.41-1.77) -i(0.002-0.017)	(1.41-1.77) -i(0.002-0.015)	(1.41-1.77) -i(0.002-0.014)	(1.41-1.77) -i(0.002-0.014)	(1.41-1.77) -i(0.002-0.013)	(1.42-1.78) -i(0.01-0.010)	(1.42-1.79) -i(0.001-0.008)
Mixed aerosol I ($AE \leq 0.75$)	(1.48-1.61) -i(0.004-0.010)	(1.48-1.61) -i(0.002-0.007)	(1.48-1.61) -i(0.002-0.007)	(1.48-1.61) -i(0.002-0.006)	(1.48-1.61) -i(0.002-0.006)	(1.48-1.61) -i(0.002-0.006)	(1.48-1.61) -i(0.002-0.005)	(1.48-1.61) -i(0.02-0.005)	(1.48-1.61) -i(0.002-0.004)
Mixed aerosol I ($AE > 0.75$)	(1.43-1.73) -i(0.002-0.019)	(1.43-1.73) -i(0.002-0.015)	(1.43-1.73) -i(0.002-0.014)	(1.43-1.73) -i(0.002-0.013)	(1.43-1.73) -i(0.002-0.012)	(1.43-1.73) -i(0.002-0.012)	(1.43-1.73) -i(0.002-0.011)	(1.43-1.73) -i(0.01-0.009)	(1.43-1.74) -i(0.001-0.007)

156 **Table S3.** Best-guess of the spectral refractive index obtained for the corrections of the optical particle
 157 counter, and comparison of measurements and calculations for clear layer/maritime aerosol, desert
 158 dust, pollution and mixed aerosol. The values extrapolated to 670 and 870 nm (working wavelengths of
 159 POLDER-3) are also shown.

160

161 The results of the comparison at 550 (σ_{scatt}) and 532 nm (σ_{ext}) are illustrated in **Figure S5**. The
162 uncertainties associated with the evaluation of the size distribution, the measured scattering
163 and extinction, and finally the aerosol optical depth retrieved are estimated as the quadratic
164 sum of the instrumental uncertainties as well as with the variability due to the reduction of the
165 native time-resolution to a common time step of 30 seconds, a standard deviation generically
166 indicated here as Δ_{30sec} . The instrumental uncertainties for the nephelometer and the CAPS-
167 PMex are evaluated as $\pm 10\%$ for submicron aerosols (Anderson et al., 1996), and $\pm 3.2\%$
168 (Massoli et al., 2010), respectively. The error on the number of particle n_i (i = generic bin)
169 follows the Poisson's law as $\Delta_{Poisson} = \sqrt{n_i}$. The comparison between measured and calculated
170 σ_{scatt} at 450 and 700 nm are not shown as they are analogous to those at 550 nm.

171

172

173 **Figure S5.** Comparison of optical calculation and measurements of σ_{scatt} at 550 nm and σ_{ext} at 532 nm
174 for all aerosol layers of all vertical profiles during TRAQA (red) and ADRIMED (black) campaigns. The
175 comparison for σ_{ext} is shown only for ADRIMED since there were no CAPS-PMex measurements during
176 TRAQA. See the text for error bars calculation.

177

178 The comparison is satisfactory for all aerosol types, and in particular concerning σ_{ext} . The
179 systematic underestimation of the larger values of σ_{scatt} during TRAQA is due to the faulty
180 operation of the Grimm OPC above 350 m from sea level. These data points were removed
181 from the dataset for POLDER-3 AOD and AOD_C evaluation while kept for the evaluation of

182 AOD_F which is not affected by errors in sizing the largest particles. The uncertainties for the
183 optical computation of σ_{scatt} are higher for pollution layers than for other types of aerosols. This
184 is due to the wide range of possible values of the refractive index.