
Response to Referee #2: 

We appreciate the very helpful feedback from the referee. The referee’s comments are listed in 

italics, followed by our response in blue. New/modified text in the manuscript is in bold.  

1. The definition of total number of overlapping pixel polygons used in averaging for grid cell j 

(formula (4)) is somewhat confusing. To my understanding, S(i, j) is the overlapping area, thus 

 is just sum of overlapping area and the unit of  is km2. If so, is 

the unit of D(j) for tessellation in figure 8 and 9 also km2? Is D(j) actually defined as 

 or  in figure 8 and 9? 

The scaling of S(i,j) does not matter as it appears both in A and B and will be normalized out 

when calculating C (Eq. 1-3). To clarify S(i,j), we always define it as the fractional overlapping 

area (a dimensionless number). As such, D(j) is always dimensionless (sum of fractional 

overlapping area), and can be understood as the number of overlapping pixels for grid cell j. This 

is what was presented in Fig. 8 and 9. We clarified the sentences at page 7, lines 13-14 as: 

“When the destination grid is regular with constant grid cell area, it is convenient to 

normalize S(i,j) by the grid cell area, leading to overlapping fractions. We will follow this 

convention hereafter, and hence S(i,j) is always a dimensionless number.” 

2. In formula (10), why  is normalized by grid cell area? If S(i, j) is just 

defined as is the normalized spatial response function 

for observation i and its spatial integration  is unity. Considering discretization of 

spatial response function in computation, both definitions of S(i, j) are fine. Physically, should 

be normalized by grid cell area or not? 

As indicated by the referee, whether normalizing S(i,j) by the grid cell area or not does not 

change the oversampling results. We choose to normalize the spatial integral of the spatial 

response function S(x,y) by the grid cell area, because (1) the resultant S(i,j) is compatible with 

the definition in tessellation (see the response to the previous comment) and (2) the spatial 

integration of S(x,y) over grid j can be directly approximated by S(x,y) evaluated at the center of 

grid j.  In this way, S(i,j) is always a dimensionless number between 0 and 1. To clarify, one 

sentence is added to page 11, line 7: 

“Similarly to the tessellation approach, S(i,j) is always a dimensionless number between 0 

and 1.” 

3. Levi Golston has a good point of what is the extent of the enhanced resolution result physical 

real (Short comment 1 for this discussion paper, https://www.atmosmeas-tech-discuss.net/amt-

2018-253/amt-2018-253-SC1-supplement.pdf). Levi Golston shows an example that “true” value 

is unity while oversampling result is 1/63. The result is, however, based on using 2-D boxcar 

spatial response function on observation generation and oversampling. If 2-D super Gaussian 



function is used, will it show better oversampling result? For 2-D super Gaussian function, will 

small k1 and k2 give better result than larger ones for Levi Golston’s example? I suggest adding 

discussion of it. 

Strictly speaking, the spatial resolution is only determined by the satellite (e.g., we say 

TROPOMI has a higher resolution than OMI). We may choose a very fine target grid (i.e., 

oversample the spatial distribution) but that does not help reproducing the true concentration 

distribution once the satellite spatial response is adequately resolved. To avoid confusion, we 

replaced the term “grid resolution” in the manuscript by “grid size”. 

If the true spatial response function of the sensor is used in the physical oversampling, and the 

spatial response is accurately integrated over each grid (Eq. 10 of the manuscript), the result is 

always physically real as it represents the “exact” observation of the sensor. However, the exact 

observation does not equal to the true concentration distribution due to the limitation of satellite 

pixel sizes. One subsection (section 4.3) and one figure (Fig. 8 of the revised manuscript) is 

added to clarify the definition of spatial resolution vs. spatial sampling:  

“The difference between resolution and sampling density for 1-D spectral data has been 

thoroughly discussed in the literature (e.g., Chance et al., 2005). However, for 2-D, spatially 

resolved data, it is common to refer to both the sizes of the Level 2 pixels and the size of the 

Level 3 grid as the spatial “resolution” of the data. To avoid confusion, it is emphasized 

here that the true spatial resolution is limited by the sizes of Level 2 pixels. The size of 

Level 3 grid only determines the density of spatial sampling, which does little to enhance 

the true resolving power of the data after reaching a certain point. For example, the 

oversampling results using synthetic OMI data at 1 km vs. 0.05 km grids are very similar 

(Fig. 6). Nonetheless, it is still beneficial to oversample, i.e., make Level 3 grid size 

significantly smaller than Level 2 pixel sizes, as demonstrated by Fig. 8. As the ground 

truth, an array of 2-D Gaussian functions are generated with FWHM ranging from 1 km to 

16 km (the second column of Fig. 8) and peak height of unity, and this true field of 

concentration is measured by an imaginary sensor whose spatial response function is a 2-D 

super Gaussian (Eq. 8) with FWHM = 10 km and k1 = k2 = 8 (the first column and the 

white boxes inserted in the third column). The third column shows the oversampling 

results using 10000 randomly located observations. The fine structures in the ground truth 

are clearly smoothed, limited by the spatial resolution that is inherent to the Level 2 pixel 

sizes (10 km). However, by oversampling at a fine grid (0.2 km for the first row vs. 5 km for 

the second row), the spatial gradients are better recovered, and spatial features finer than 

individual Level 2 pixels can be identified. Additionally, the details in the spatial response 

function is better resolved with a finer target grid, which is particularly beneficial when 

collocating with higher resolution measurements (e.g., a cloud imager). As such, although 

the spatial resolving power is ultimately determined by the spatial extent of satellite pixels, 

the physical oversampling approach helps enhancing the visualization of spatial gradient 

and the identification of emission sources.” 

Figure 8 of the revised manuscript: 



 

Figure 8. First column: spatial response function of an imaginary sensor discretized at 0.2 km (top) and 5 km 

(bottom) grid. Second column: ground truth spatial distribution generated as an array of 2-D Gaussian 

functions of same height (the top and bottom panels are the same). The FWHM of each Gaussian is labeled. 

Third column: physical oversampling results using 10000 randomly generated observations and discretized at 

0.2 km (top) and 5 km (bottom) grid. The pixel size, which determines the spatial resolution, is labeled as the 

inserted white boxes. 

 


