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Abstract.

Satellite remote sensing of the Earth’s atmospheric composition usually samples irregularly in space and time, and many

applications require spatially and temporally averaging the satellite observations (Level 2) to a regular grid (Level 3). When

averaging Level 2 data over a long time period to a target Level 3 grid
:::
that

::
is significantly finer than

:::
the

::::
sizes

:::
of

:
Level 2

pixels, this process is referred to as “oversampling”. An agile, physics-based oversampling approach is developed to represent

each satellite observation as a sensitivity distribution on the ground, instead of a point or a polygon as assumed in previous

approaches
:::::::
methods. This sensitivity distribution can be determined by the spatial response function of each satellite sensor.

A generalized 2-D super Gaussian function is proposed to characterize the spatial response functions of both imaging grating

spectrometers (e.g., OMI, OMPS, and TROPOMI) and scanning Fourier transform spectrometers (e.g., GOSAT, IASI,
:
and

CrIS). Synthetic OMI and IASI observations were generated to compare the errors due to simplifying satellite fields of view

(FOV) as polygons (tessellation error) and the errors due to discretizing the smooth spatial response function on a finite grid

(discretization error). The balance between these two error sources depends on the target grid resolution
:::
size, the ground size

of FOV, and the smoothness of spatial response functions. Explicit consideration of the spatial response function is favorable

for high resolution
:::::::
fine-grid oversampling and smoother spatial response. For OMI, it is beneficial to oversample using the

spatial response functions for grid resolutions
::::
grids

:
finer than ∼16 km. The generalized 2-D super Gaussian function also

enables smoothing of the Level 3 results by decreasing the shape-determining exponents, useful for high noise level or sparse

satellite datasets. This physical oversampling is applied to OMI NO2 products and IASI NH3 products, showing
::::::::
approach

:
is
:::::::::

especially
::::::::::::
advantageous

::::::
during

::::::
smaller

::::::::
temporal

::::::::
windows

::::
and

::::::
shows

:
substantially improved visualization of trace gas
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distribution and local gradients
::::
when

:::::::
applied

::
to

::::
OMI

::::
NO2::::::::

products
:::
and

::::
IASI

::::
NH3::::::::

products.
:::::
There

::
is
:::
no

:::::::::
appreciable

:::::::::
difference

::
in

:::
the

::::::::::::
computational

::::
time

:::::
when

:::::
using

:::
the

:::::::
physical

::::::::::::
oversampling

:::::
versus

:::::
other

:::::::::::
oversampling

:::::::
methods.

Copyright statement. TEXT

1 Introduction

Since the launch of the ESA Global Ozone Monitoring Experiment (GOME) in 1995, satellite observations have tremendously

advanced our understanding of the processes governing the atmospheric composition, greenhouse gas emissions, and air qual-

ity (Martin, 2008; Streets et al., 2013; Jacob et al., 2016). Global distributions of atmospheric species that play critical roles

in atmospheric chemistry and air pollution, such as ozone (e.g., Bak et al., 2017), NO2 (e.g., Krotkov et al., 2017), SO2 (e.g.,

Li et al., 2017a), formaldehyde (HCHO, e.g., González Abad et al., 2015), glyoxal (CHOCHO, e.g., Chan Miller et al., 2014),

and BrO (e.g., Suleiman et al., 2018), have been retrieved from the backscattered solar UV-visible spectra observed by gener-

ations of polar-orbiting satellite sensors, including GOME (Burrows et al., 1999), SCIAMACHY (Bovensmann et al., 1999),

OMI (Levelt et al., 2018), GOME-2 (Munro et al., 2016), OMPS (Rodriguez et al., 2003), and TROPOMI (Veefkind et al.,

2012). A constellation of geostationary satellites will provide hourly measurements of these species over North America, Eu-

rope, and Asia in the near future (Zoogman et al., 2017). Observations of the backscattered shortwave infrared solar spectra

also enable the retrieval of CO2, CH4, and/or CO from SCIAMACHY (Buchwitz et al., 2005), GOSAT (Yoshida et al., 2011),

OCO-2 (Eldering et al., 2017), and TROPOMI (Borsdorff et al., 2018; Hu et al., 2018). Moreover, many atmospheric species

have strong spectroscopic signatures in the mid-infrared and can be retrieved from the Earth’s thermal emission spectra col-

lected by satellite sensors such as MOPITT (Drummond et al., 2010), AIRS (Aumann et al., 2003), TES (Bowman et al., 2006),

IASI (Clerbaux et al., 2009), and CrIS (Han et al., 2013). One species of particular significance to tropospheric chemistry and

air quality is NH3 (Baek et al., 2004; Paulot and Jacob, 2014), which has been successfully retrieved from TES (Shephard

et al., 2011; Sun et al., 2015a), AIRS (Warner et al., 2016), IASI (Clarisse et al., 2010; Whitburn et al., 2016a; Van Damme

et al., 2017), and CrIS (Shephard and Cady-Pereira, 2015; Dammers et al., 2017).

The retrieval results from satellite sensors are usually total or partial (e.g., tropospheric or planetary boundary layer, PBL)

column density at individual satellite pixels, i.e., the Level 2 product. However, the pixel geometry may vary significantly even

for the same sensor (see Fig. 1 for example), and data quality screening (by cloud coverage, solar zenith angle, surface albedo,

thermal contrast, etc.) often leaves only small and patchy fractions of useful Level 2 pixels for any given orbit. As such, the

Level 2 data over many orbits are often projected to a regular spatial grid to better represent the spatiotemporal variations of the

target species through a gridding algorithm. These “Level 3” products help to beat down
::::::
average

::::
out the observational noise

that can be significant for individual Level 2 retrieval ,
:::
and

:
make satellite data more accessible for scientific studies and the

general public, and
:
.
:::::
These

:::::::
products

::::
may

::::
also

:
lead to additional discoveries, such as emission and lifetime estimates (Beirle

et al., 2011; Valin et al., 2013; Zhu et al., 2014; de Foy et al., 2015; Fioletov et al., 2015; Whitburn et al., 2015; Liu et al.,
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2016; Whitburn et al., 2016b; Fioletov et al., 2017), source identification (McLinden et al., 2012; Kort et al., 2014; McLinden

et al., 2016), trend analyses (Russell et al., 2012; Lamsal et al., 2015; Duncan et al., 2016; Warner et al., 2017; Zhu et al.,

2017b), assessment of environmental exposure for public health (Geddes et al., 2016; Zhu et al., 2017a), and satellite data

validation (Zhu et al., 2016).

The operational Level 3 products are typically at
:::::::
provided

::
at
::::
grid

:::::
sizes

::
of 0.25◦×0.25◦ or even 1◦×1◦resolution, which are

too coarse for regional heterogeneous emission sources (e.g., urban areas), especially for species with short lifetimes. These

Level 3 products are provided at fixed temporal intervals (e.g., daily, monthly, and annually). To customize the temporal interval

and spatial resolution
:::
and

::::::
spatial

::::::::
sampling

:::::::
intervals, one often needs to regrid the Level 2 data.

Various gridding algorithms have been developed to generate Level 3 maps at regional scale with much higher resolution
::::
finer

::::
grids (0.05◦–0.01◦) than the

:::
sizes

:::
of Level 2 pixels, and this process is generally referred to as “oversampling” (Zhu et al., 2017a, and references therein)

:::::::::::::::::::::::::::::::::
(de Foy et al., 2009; Russell et al., 2010) .

In this work, we present an agile, physics-based oversampling approach that represents each Level 2 satellite pixel as a sen-

sitivity distribution on the Earth’s surface (e.g., the spatial response function), instead of a point or a polygon as assumed in

previous methods. A generalized 2-D super Gaussian function is used to characterize the spatial response functions of both

imaging grating spectrometers (e.g., OMI, OMPS, and TROPOMI) and scanning Fourier transform spectrometers (FTS, e.g.,

GOSAT, IASI and CrIS). Applications to multiple existing satellite datasets are also highlighted.

2 Satellite observations

2.1 OMI

The OMI instrument aboard the Aura satellite launched in 2004 is a push broom UV-visible imaging grating spectrometer. It

has a daytime equatorial crossing at ∼1:42 PM local time. During normal global observation mode, the backscattered sunlight

from the Earth is imaged by a telescope onto a rectangular entrance slit perpendicular to the flight direction. The light coming

through the slit, which corresponds to an across-track angle of 115◦, or 2600 km on the ground, is dispersed by optical gratings

and mapped on two 2-D CCD detectors. Each detector image is aggregated across-track (along the length of the slit) into 60

spectra, corresponding to 60 across-track spatial pixels for the UV2 (307–383 nm) and visible (349–504 nm) bands, as shown

by Fig. 1. Although the spatial response functions of OMI pixels are nonuniform (de Graaf et al., 2016; Sihler et al., 2017),

the OMI pixels are widely characterized as quadrilateral polygons defined by 75% of the energy in the along-track field of

view (FOV) and the half-way points of across-track FOV (the 75 FOV pixel edges from the OMPIXCOR product, Kurosu

and Celarier, 2010). These OMI pixel polygons are close to rectangles, ranging from 14×26 km2 at nadir
:::
(or

::::::
13×24

::::
km2

::
if

::::::::
assuming

:::::::::::::
non-overlapping

::::::
pixels)

:
to 28×160 km2 at the swath edges. An alternative representation of OMI pixels is the tiled

pixel edges, which
:::::::::::
Alternatively,

::::
OMI

::::::
pixels

:::
can

:::
be

:::::::::
represented

:::
as

::::
tiled

::::::::
polygons

::::
with

:::
no

::::::
overlap

::::::::
between

:::::::
adjacent

::::::
pixels.

:::::
These

::::
tiled

:::::
pixels produce a seamless swath image,

:::
but

:::
are

::::
less

:::::::
accurate,

:::::::::
especially

::
in

::
the

::::::::::
along-track

:::::::
direction. OMI is a highly

successful mission with long data records, and most of the successor missions follow a similar design (Levelt et al., 2018). The

oversampling technique demonstrated here can be readily adopted for a range of OMI products and OMI’s successor missions,

such as OMPS, TROPOMI, and TEMPO.
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Figure 1. Across-track ground pixel geometry for IASI, CrIS, and the UV2/VIS (visible) bands of OMI.

2.2 IASI

The IASI instrument is a FTS with an across-track scanning range of 2200 km (Fig. 1). It has a local daytime equatorial

crossing time of ∼9:30 AM. The first IASI instrument (IASI-A) was launched aboard the MetOp-A satellite in 2006, with

the launch of IASI-B following in 2012 and the planned launch of IASI-C in near future. IASI scans across the track with 30

mirror positions, or fields of regard (FOR), and each FOR is composed of a 2×2 array of pixels, or FOV. Each FOV projected

on ground is a 12 km diameter circular footprint at nadir and elongates to ellipses towards the swath edges (Clerbaux et al.,

2009). To simplify the ground pixel calculation, we represent each pixel as an ellipse with the major and minor axises
:::
axes

:
and

rotation angle interpolated from a look-up table based on latitude and FOR/FOV number.

We use the most recent neural network (NN) IASI NH3 retrieval based on calculation of a hyperspectral range index (HRI)

and subsequent conversion to NH3 columns via a neural network (Whitburn et al., 2016a; Van Damme et al., 2017). The

IASI-NH3 datasets are publicly available for both IASI-A and IASI-B, with the version 2 (Van Damme et al., 2017) presenting

significant improvements over version 1 (Whitburn et al., 2016a), including the negative values that are crucial for observational

error averaging near the detection limit.

2.3 CrIS

The CrIS instrument, which is aboard the Suomi-NPP satellite and the series of JPSS satellites, is a step-scan FTS with 2200

km across-track width (Fig. 1). It has a daytime equatorial crossing time of ∼1:30 PM local time. It has the same number

of FOR as IASI, but each FOR contains 9 FOV (3×3 array), providing a better spatial coverage. Each CrIS FOV is 14 km at

nadir, slightly larger than IASI. Due to the mounting angle of the scanning mirror, the FOR rotates differently at each scanning

angle. Similar to IASI, each CrIS pixel is represented as rotated ellipse.

The CrIS Fast Full Physics (CFFP) NH3 retrieval product is based on the TES optimal estimation approach that minimizes

the differences between spectral radiances and a simulated fast forward line-by-line model (Shephard and Cady-Pereira, 2015).
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3 Existing gridding methods

This section reviews existing gridding methods that map Level 2 data
:::::
pixels

:
to Level 3 data

::::
grids. Oversampling conventionally

refers to the cases where Level 3 grid resolution is much smaller
:
is
:::::
much

::::
finer

:
than the Level 2 pixel size.

3.1 Spatial interpolation

The spatial interpolation methods generate continuous data fields from observations made at discrete locations. The main

difference between interpolation and the point- and polygon-based oversampling approaches discussed in Sect. 3.2 and Sect. 3.3

is that the values at grid cells that are not covered by satellite observations can be estimated. Therefore, the spatial interpolation

methods are more commonly used for satellite datasets with significant spatial gaps or requiring additional smoothing. Common

spatial interpolation methods include nearest neighbors, piecewise 2-D linear interpolation, spline interpolation, and various

kriging methods. The moving window block kriging method has been proposed to generate global Level 3 products for satellite

observations of long-lived species, such as CH4 and CO2 (Tadić et al., 2015, 2017). A comprehensive review of available spatial

interpolation methods for environmental variables is provided by Li and Heap (2014). There are relatively few applications of

spatial interpolation methods to regional high-resolution
:::::::
find-grid

:
oversampling, where each target grid cell usually receives

a large number of overlapping satellite observations. Kuhlmann et al. (2014) proposed an interpolative gridding algorithm

that reconstructs the trace gas distribution by a continuous parabolic spline surface, defined on the lattice of tiled satellite

pixels. This approach produces smooth regional Level 3 maps for the OMI NO2 products with specifically tuned smoothing

parameters, but has not been tested in non-tiled observations with significant numbers of missing values (e.g., IASI and CrIS).

3.2 Satellite observations as points

The simple “drop-in-the-box” gridding method can be classified into this category, as each satellite observation is assumed

to be a point on the surface. The value for each target grid cell is the average of all screened satellite observations with the

center of FOV falling inside the grid cell boundaries. A conventional oversampling approach has been developed based on

the drop-in-the-box method; instead of only averaging “in the box”, it includes satellite observations within a certain radius

(much larger than the grid size) from the center of each grid cell. This averaging radius is chosen to balance the smoothing

and noise, but is also somewhat arbitrary. For example, McLinden et al. (2012) used a radius of 8 km to oversample the OMI

NO2 tropospheric columns and a larger radius of 24 km to oversample the OMI SO2 total columns near the Canadian oil

sands region; Fioletov et al. (2011) used 12 km to oversample the OMI SO2 total columns over the U.S.; and Zhu et al. (2014)

used 24 km to oversample the HCHO total columns near Houston, TX. This oversampling approach is referred to as “point

oversampling” hereafter, as the pixel geometry is not considered. The pixel-specific observational errors are also not taken into

account.

Figure 2 reconstructs a point oversampling process for an arbitrary target grid point (red star) located near Denver, CO.

OMI NO2 data (Krotkov et al., 2017) over the year 2005 are used in this demonstration. Pixels with cloud fraction ≥ 30% or

solar zenith angle ≥ 75◦ are screened out. Only across-track positions with relatively small pixel areas (6–55 out of 1–60) are
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included, a common practice to oversample OMI data. Adding pixels at the swath edges would induce more “false negative”

cases, as shown below. The screened satellite pixel centers that fall within a 12-km radius (dashed circle) are plotted as black

points and red triangles. The red triangles are “false positive” observations because the corresponding pixel quadrilaterals,

provided by the OMPIXCOR product, do not cover the target grid point. The pixel geometry of an extreme “false positive”

case is illustrated by the pixel quadrilateral, featuring the largest separation between its boundary and the target grid point.

Likewise, the “false negative” observations are plotted as purple squares, whose pixel centers fall outside the averaging circle

(and hence not averaged), but these pixels cover the target grid point. An extreme case of “false negative” is also illustrated.

For this example, there are 243 pixels within the 12-km radius, of which 54 are false positives (22%). There are 92 false

positives
:::::::
negatives

:::
(38%

:
) not included in the point oversampling. Typically, false positives are pixels closer to nadir, whereas

false negatives are pixels away from nadir. In combination, the oversampled value at this grid location has contributions from

a much different set of satellite observations than what should be represented. A larger averaging radius will decrease the

occurrence of “false negative” cases but increase that of “false positive” cases. Because OMI pixel dimension is larger at the

across-track direction, these sampling biases differ in direction; observations in the across-track direction of the target grid

point are more likely to become false negatives, and observations in the along-track direction are more likely to become false

positives.

In reality, the OMI ground pixel footprints are not as sharp as quadrilateral boundaries (de Graaf et al., 2016), so the false

positive/negative cases are not as well-defined as in Fig. 2. This will be discussed in Sect. 4.1.

3.3 Satellite observations as polygons
::::
(i.e.,

:::::::::::
tessellation)

This approach assumes that each satellite observation footprint is a polygon on the surface, and calculates the areal propor-

tions of grid cells inside each polygon. Because calculating these overlapping areas requires filling irregular satellite footprint

polygons with rectangular grid cells, it is also known as the “tessellation” approach. The contribution of each satellite obser-

vation to a given grid cell is weighted by the overlapping area and inversely weighted by the total pixel polygon area and the

observational uncertainty, as shown by the following equations (modified from Zhu et al., 2017a):

C(j) =A(j)/B(j), (1)

where

A(j) =
∑
i

Ω(i)S(i, j)

σ(i)p
∑

j S(i, j)
, (2)

B(j) =
∑
i

S(i, j)

σ(i)p
∑

j S(i, j)
. (3)

In the equations above, C(j) is the oversampled result for destination grid cell j; Ω(i) is the variable to be oversampled

(e.g., total column) associated with the satellite pixel i; S(i, j) is the overlapping area between pixel i and grid cell j, and

hence
∑

j S(i, j) is the total area of pixel i, assuming that the grid extends beyond all pixel boundaries. It
:::::
When

::
the

::::::::::
destination
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Figure 2. Centers of screened OMI pixels in 2005 over a target grid point (red star) near Denver, CO. OMI pixels are simplified as

quadrilaterals provided by the 75FOV pixel edges from the OMPIXCOR product. Pixels that overlap with the target grid point with pixel

center falling within the averaging radius (dashed circle) are plotted as black points (correct oversampling
:
,
::
40 %). Pixels that overlap with the

target grid point with pixel center falling outside the averaging radius are plotted as purple squares (false negative,
:::
38 %). Pixels that do not

overlap with the target grid point with pixel center falling in the averaging radius are plotted as red triangles (false positive,
:::
22%). Extreme

cases of false positive/negative are illustrated by OMI pixel quadrilaterals.
:::
The

::::::::
percentages

::
of
::::::
correct

:::::::::::
oversampling,

:::
false

:::::::
positive,

:::
and

::::
false

::::::
negative

:::::
pixels

::
are

::::::
labeled

::
in

:::
the

:::::
legend.

:::
grid

::
is
::::::
regular

:::::
with

:::::::
constant

::::
grid

:::
cell

:::::
area,

:
it
:

is convenient to normalize S(i, j) by the grid cell area, leading to overlapping

fractions.
:::
We

:::
will

::::::
follow

:::
this

::::::::::
convention

::::::::
hereafter,

:::
and

:::::
hence

::::::
S(i, j)

::
is

::::::
always

::
a

:::::::::::
dimensionless

:::::::
number.

:
These equations take

into account the extent of a pixel and give more weight to a nadir observation than to an observation at the edges of the satellite

swath, where the information is more smeared out. σ(i)p is the uncertainty term, and the power p has been assumed to be

1 (Zhu et al., 2017a) or 2 (Spurr, 2003; Van Damme et al., 2014) by different studies. If we assume each observation Ω(i) is a

measurement of a constant true value with Gaussian random error σ(i), p= 2 yields the maximum likelihood estimate of the

true value. However, the true measurement and sampling errors often show heavier tails than a Gaussian distribution. In this

study we adopt p= 1, following Zhu et al. (2017a). The oversampled results are generally similar for both cases. Unlike the

point oversampling discussed in Sect. 3.2 where C(j) is simply the average of Ω(i) within a circle, the tessellation approach

fully utilizes the geometry and error information for each satellite observation. It has been adopted by many operational Level

3 products and oversampling studies (Xiong et al., 2006; Wenig et al., 2008; Krotkov, 2013; Van Damme et al., 2014; de Foy

et al., 2015; Duncan et al., 2016; Kim et al., 2016; Zhu et al., 2017a; Li et al., 2017b).
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It is sometimes convenient to define

D(j) =
∑
i

S(i, j) (4)

to quantify the total number of overlapping pixel polygons used in averaging for grid cell j. Unlike the point oversampling,

this number does not have to be an integer due to the consideration of partial overlaps. Because the location and size of these

pixels vary day by day, averaging a large number of pixels reveals spatial patterns at scales finer than the satellite pixel scales,

if these patterns are consistent through the averaging time period.

Figure 3 illustrates the tessellation process for OMI (a) and IASI (b) pixels, where the elliptical IASI pixel is represented

by a 100-vertex polygon calculated from its minor/major axises and rotational angle look-up tables. The destination grid has a

resolution of
:::
size

::
is 5×5 km, and the overlapping areas are normalized by the grid cell area (25 km2), as labeled in each grid

cell.

(a) OMI xtrack #30, resolution = 5 km, pixel area = 339 km
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Figure 3. Tessellation process for OMI (a) and IASI (b) pixels. The IASI pixel is approximated by a 100-vertex polygon. Overlapping area

(S(i, j)) between satellite pixel i and grid cell j is labeled at grid cell center, normalized by grid cell area (25 km2).

4 Proposed method

4.1 Satellite observations as sensitivity distributions

The tessellation approach discussed in Section 3.3 inherently assumes that the satellite observation is uniformly sensitive to

the scene inside the pixel polygon and has no sensitivity outside it. However, depending on target grid resolution
:::
size

:
and the

spatial response function of specific satellite observations, this may be too strong of an assumption. For example, Schreier et al.

(2010) characterized the complex spatial response function of the AIRS instrument and used it to improve the comparison of

radiances measured by AIRS and MODIS. de Graaf et al. (2016) and Sihler et al. (2017) derived in-flight spatial response

function of OMI using collocated MODIS radiance. The operational Sentinel-5 Precursor, Sentinel-5, and Sentinel-4 cloud

processors also rely on the spatial response functions of the imaging grating spectrometers to accurately calculate the cloud

coverage within each FOV using collocated high-resolution cloud imagers (Siddans, 2017).

For imaging grating spectrometers like OMI, the spatial response function depends on the diffraction of the fore optics, the

instantaneous field of view (i.e., the instantaneous projection of the slit on the ground from the point of view of a native detector
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pixel), the numbers of across- and along-track bins, and the along-track movement of subsatellite point during the integration

time. The satellite movement only affects the along-track direction, generally making the spatial response in the along-track

direction smoother than that in the across-track direction. de Graaf et al. (2016) and Sihler et al. (2017) fitted the OMI spatial

response function using a 2-D super Gaussian function to parameterize the different smoothness in the along- and across-track

directions. To standardize the representation of spatial response functions for diverse satellite sensors, we generalize the 2-D

super Gaussian function as

S(x,y) = exp

−(∣∣∣∣ xwx

∣∣∣∣k1

+

∣∣∣∣ ywy

∣∣∣∣k2
)k3

 , (5)

where

wx =
FWHMx

ln(2)1/(k1k3)
, (6)

wy =
FWHMy

ln(2)1/(k2k3)
. (7)

In these equations, x and y are distances to the center of ground FOV in orthogonal directions, usually transformed by geometric

projections of the across- and along-track directions. FWHMx and FWHMy are full widths at half maximum of the spatial

response function, S(x,y), in the directions of x and y. The three exponential terms, k1, k2, and k3, control the distribution of

spatial response, as illustrated by Fig. 4. When k3 = 1 (Fig. 4a and c), Eq. 5 becomes the 2-D super Gaussian function used by

de Graaf et al. (2016) and Sihler et al. (2017) to characterize the OMI spatial response:

S(x,y) = exp

(
−
∣∣∣∣ xwx

∣∣∣∣k1

−
∣∣∣∣ ywy

∣∣∣∣k2
)
. (8)

For OMI, k1 ∼ 4 and k2 ∼ 2 (de Graaf et al., 2016).

For FTS systems with stop-and-stare sampling, like IASI and CrIS, the spatial response function (also known as point spread

function by the community) is more simply defined by the circular aperture and some diffraction around the edge. The nadir

FOV is circular with no difference between across- and along-track directions, and hence the spatial response function can

be characterized by a 1-D super Gaussian function rotating around the nadir point. This rotating super Gaussian function is

another special case of the generalized 2-D super Gaussian (Eq. 5) with k1 = k2 = 2 and wx = wy:

S(x,y) = exp

(
−
∣∣∣∣Rw
∣∣∣∣2k3

)
, where

R=
√
x2 + y2 and w = wx = wy. (9)

The smoothness of the rotating super Gaussian is controlled by only one exponent, which equals to 2× k3. The elongated

spatial response functions for off-nadir angles can be readily characterized by different values for wx and wy (Fig. 4a-b). The

spatial response function of IASI is rather sharp at the edge with little variation at the top, close to a super Gaussian with an
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exponent of ∼18 (CNES, 2015). The spatial response function of CrIS is relatively smoother at the edge, best fit by a super

Gaussian with an exponent of ∼8 (Wang et al., 2013). Details on the spatial response functions of IASI and CrIS can be found

in Appendix A.

In the generalized 2-D super Gaussian function (Eq. 5), k1× k3 and k2× k3 are the exponents in the x and y directions,

respectively, and determine the sharpness of the spatial response in the corresponding direction. An exponent of 2 leads to a

standard Gaussian function; the larger exponents produce a top-hat shape, converging to a boxcar shape when the exponent

approaches infinity (Beirle et al., 2017). Redistributing the contributions from k1/k2 and k3 makes hybrid spatial response

functions that may have sharp edges in sensitivity but rounded corners in space, as for the case of OMPS (Glen Jaross, personal

communication). The difference between this hybrid case and conventional 2-D super Gaussian is illustrated by Fig. 4c-d.

Figure 4. (a) Standard 2-D Gaussian function. It is both a rotating super Gaussian with an exponent of 2 and a 2-D super Gaussian function

with the x and y direction exponents equal to 2. (b) Rotating super Gaussian with an exponent (2×k3) of 18. (c) 2-D super Gaussian function

with an exponential of 18 in the x direction and an exponential of 6 in the y direction. (d) A hybrid case between a rotating super Gaussian

and a 2-D super Gaussian, featuring rounded corners. In all cases, FWHMx = 1.618×FWHMy .
:::
The

:::
grid

::::
size

:
is
::
5

::
%

:
of
::::::::

FWHMy .

The projection of rectangular FOV for imaging grating spectrometers like OMI on the surface at large viewing angles

leads to distorted quadrilateral footprints, as shown by the polygon ABCD in Fig. 5a. To account for this effect, a geometric

transformation function is determined by the OMI pixel corner points (ABCD in Fig. 5a) and the corresponding rectangle
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(A′B′C ′D′ in Fig. 5b) defined by the distances between the middle points of opposing edges of the OMI pixel quadrilateral.

The spatial response function is first calculated according to Eq. 5 with FWHMx =|A′D′|, FWHMy =|A′B′| as shown in

Fig. 5b and then projected to match the OMI pixel corners ABCD (Fig. 5a) using the geometric transformation function. This

algorithm is implemented using both the OpenCV library in Python and the Image Processing Toolbox in MATLAB.

Figure 5. (a) OMI pixel corners (ABCD) for across-track position 60 out of 1–60 and spatial response function with k1=4, k2=2, and

k3=1. (b) The same OMI pixel transformed to a rectangle (A′B′C′D′) and the corresponding transformed spatial response function. The

horizontal/vertical axises are in different scales to demonstrate that the OMI pixel is not exactly a parallelogram. As a result, the geometric

transformation function is projective (not exactly affine).

The proposed oversampling approach represents each satellite observation as a sensitive distribution, instead of a point or

a polygon. If the true satellite spatial response function is used as the sensitive distribution, this approach is the theoretically

optimal solution to the oversampling problem, and hence referred to as “physical oversampling” hereafter. It follows the same

equations as the tessellation approach as in Eq. 1-4, except that the
:::::::
fractional

:
overlapping area S(i, j) is generalized to the

integration of the spatial response function of satellite observation i, S(x,y|i), over the grid cell j:

S(i, j) =

∫∫
grid j

S(x,y|i)dxdy∫∫
grid j

dxdy
, (10)

where the denominator is the grid cell area.
:::::::
Similarly

:::
to

:::
the

:::::::::
tessellation

:::::::::
approach,

::::::
S(i, j)

:
is
:::::::

always
:
a
::::::::::::
dimensionless

:::::::
number

:::::::
between

:
0
::::
and

::
1.

:
By normalizing the grid cell area, this accurate form of S(i, j) can be directly replaced by approximating

values such as S(x,y|i) evaluated at the grid center. S(i, j)/
∑

j S(i, j) is just the normalized spatial response function for

observation i so that its spatial integration is unity. If the spatial response is uniform inside the pixel polygon and zero outside

the polygon, this integration of spatial response function within the grid cell is equivalent to the fractional overlapping area

used in the tessellation approach. As such, the tessellation is just the extreme case where the spatial response function is a

perfect 2-D boxcar. This corresponds to k1× k3→∞ and k2× k3→∞ in Eq. 5.

This physical oversampling approach can also be considered as a spatial interpolation method as discussed in Sect. 3.1,

because the spatial response function can be defined beyond the satellite pixel boundaries and theoretically on the entire 2-

D space. Moreover, instead of the exact form of spatial response function, the satellite observations can be represented by
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similar (with the same FWHM) but smoother sensitivity distributions to enhance the quality of the oversampling results. This

possibility will be demonstrated in Sect. 5.2.

4.2 Balancing the errors from tessellation and discretization of spatial response

The tessellation approach is perfect if the spatial response of satellite observation is a boxcar, but otherwise it will introduce

some error in the oversampled results (referred to as “tessellation error” hereafter). When the satellite spatial response func-

tion is smooth (instead of a boxcar), the exact solution is to calculate S(i, j) as the integration of the spatial response of

satellite observation i over the area covered by the target grid cell j (Eq. 10). Numerical integration over all grid cells may be

computationally demanding and is effectively an oversampling process at a much finer grid . For a fixed grid resolution, instead

of approximating
::
It

:
is
::::::::::::::
computationally

:::::::::
demanding

::
to

::::::::::
numerically

::::::::
integrate

:::
the

:::::
spatial

::::::::
response

::
of

:::
all

::::::
satellite

::::::
pixels

::::
over

::::
each

:::
grid

::::
cell.

:::
To

:::::::
simplify

::
it,
::::

one
::::
may

::::::::
discretize

:::
the

::::::
spatial

::::::::
response

:::::::
function

::
to
::::

the
:::::
target

:::::::::::
oversampling

::::
grid

:::
and

::::
use

:::
the

::::::
spatial

:::::::
response

:::::
value

::
at

:::
the

::::
grid

:::::
center

::
to
:::::::::::

approximate
:::
the

::::::::::
integration.

:::
As

::::
such,

:
the spatial response function discretely only at the

grid center
:::
only

:::::
needs

::
to
:::
be

::::::::
evaluated

::::
once

:::
per

:::::
pixel

:::
per

::::
grid

::::
cell.

::
To

:::::::
improve

::::
this

::::::
simple

:::::::::::
discretization

:::::::
scheme, we calculate

a weighted average of the spatial response values at the grid center and grid corners (as proposed for MODIS by Yang and

Wolfe, 2001). Because the grid corners are shared by neighboring grid cells, this approach only doubles the spatial response

calculation but significantly reduces the error induced by discretization (“discretization error” hereafter). Appendix B gives a

detailed comparison of tessellation and different discretization schemes.

The satellite sensors have very different spatial responses. The target grid resolution
:::
size for Level 3 data ranges from 0.25◦

(∼25 km) for many global operational products to 0.01◦ (∼1 km) for regional oversampling. The discretization error decreases

as the resolution
:::
size

:
of the target grid

::::
cells

:
becomes finer and the spatial response of satellite observations becomes better

resolved. At any fixed target grid resolution
:::
size, spatial response functions with smoother edges are better approximated by the

discretization scheme. As such, it is essential to balance the tessellation/discretization errors based on the target grid resolution

:::
cell

:::
size

:
and the smoothness of the satellite spatial response, so that the most accurate and efficient approximating method can

be chosen.

Figure 6 compares the tessellation and discretization errors when oversampling synthetic OMI observations to a grid of 1

km (∼0.01◦)resolution. A checkerboard pattern is used as the “true” concentration distribution (alternating values of zeros and

ones with spatial period of 20×20 km, as shown in Fig. 6a; it also shows OMI pixel polygons at across-track position #1 in

red and across-track position #30 in cyan). Synthetic OMI observations are generated by sampling the checkerboard pattern

using the OMI spatial response function, simplified using Eq. 8 with k1 = 4, k2 = 2 and discretized at very high resolution
:
a

::::
very

:::
fine

::::
grid (0.05 km, or ∼0.0005◦) so that the spatial response distribution is always fully resolved. The locations of OMI

observations are from the real OMI NO2 products (Krotkov et al., 2017), filtered by cloud fraction < 25% and solar zenith

angle < 75◦ for 2005–2006. Instead of NO2 columns, the synthetic OMI observations at these locations are oversampled. The

oversampled area is in the north mid-latitude (∼40◦N). In Fig. 6b, the oversampling is conducted at native resolution
:::
grid

::::
size

(0.05 km), and then the result is block-averaged to the 1-km target resolution
::::
grid

:::
size

:
to represent ideal OMI observations,

as in Eq. 10.
:::
One

::::::
should

::::
note

::::
that

:::
this

:::::::::::
discretization

:::
at

::::
0.05

:::
km

::
is

::::
used

::
to

:::
get

:::
the

::::::
“true”

::::
map

::
of

::::
OMI

::::::::::
observation

::::::
where

:::
the
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:::::::::::
discretization

::::
error

::
is

:::::::::
negligible.

::
It

::
is

::::::::::
unnecessary

::
to

::::::::::
oversample

::
at

:::
this

::::
fine

:::
grid

:::
in

::::::
general.

:
Figures 6c and e show the results

for tessellation and discretization of the spatial response at 1-km resolution
:::
grid, where S(i, j) is approximated by fractional

overlapping area and the discretization scheme, respectively. They both reproduce the checkerboard pattern in general, but the

tessellation method generates errors up to 40% (Fig. 6d) relative to the peak-to-trough value of the ideal observation, because

the OMI spatial response is smooth (Fig. 5) instead of boxcar. In contrast, the discretization error is much smaller (Fig. 6f)

because of the high resolution
:::::
small

:::
size

:
of the target grid

:::
cells

:
(1 km).

Figure 6. Oversampling a synthetic checkerboard pattern, shown in (a), at a spatial scale smaller than the OMI pixels to a grid resolution

:::
size of 1 km. The

:::::
pattern

::
in

::
(a)

::
is

:::
the

:::::
ground

::::
truth

::
of
:::

the
:::::::::::
concentration

:::::::::
distribution.

:::
The

:
ideal OMI observation in (b) is generated using

spatial response function defined in Fig. 5 at very high resolution (0.05 km)
:::
fine

::::
grids

:
and then coadded back to 1 km.

:::
The

:::::
pattern

::
in

:::
(b)

:::::::
represents

:::
the

::::
ideal

:::::::::
observation

::
by

::::
OMI

::::::
because

:::
no

::::
errors

:::
are

::::::::
introduced

:::::
during

:::
the

::::::::::
oversampling

:::::::
process. (c) show

:::::
shows the result from

the tessellation method (assuming S(i, j) equals to the overlapping area between satellite pixel i and grid cell j). (d) shows the difference

between tessellation and the ideal observation. The values in (d) are equal to (c)−(b). (e-f) show the oversampling result by discretizing the

spatial response function and its difference from the ideal observation. The values in (f) are equal to (e)−(b).

The analysis for Fig. 6 is repeated for a range of target grid resolutions
::::
sizes

:
(1–50 km, or about 0.01–0.5◦) and different

smoothness of the spatial response functions using the same OMI observation locations. The spatial response function is as-

sumed to be 2-D super Gaussian (Eq. 8). The exponent in the along-track direction (k2) is tuned from 2 to 64, whereas the

exponent in the across-track direction (k1) is set to be 2×k2. Figure 7a shows, for satellite observations with quadrilateral FOV,

the contour of the ratio between the discretization error and the tessellation error, calculated as the root-mean-squares of the

differences between the ideal observation and the simplifications using tessellation and spatial response discretization, respec-

tively. The contour line of unity divides the regimes where tessellation and discretization errors are dominant: discretization of

the spatial response is more accurate for high resolution
:::::::
fine-grid

:
oversampling of satellite observations with smooth spatial

responses (small k1 and k2); tessellation is more accurate for coarser target resolutions
::::
grids and sharper spatial responses.
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Tessellation is perfect if k1 and k2 both approach infinity. The case of OMI (k1 = 4, k2 = 2) lies at the left edge (red vertical

dashed line in Fig 7a), and its intersect with the unity contour line locates at the target resolution
::::
grid

:::
size

:
of ∼16 km. In other

words, it is beneficial to explicitly consider the spatial response of OMI observation for target oversampling resolutions
::::
grids

finer than ∼16 km (about 0.15◦).

Similarly, Fig. 7b shows the ratios between discretization and tessellation errors for satellite observations with circular FOVs.

The pixel dimensions and locations of IASI observations for 2015–2016 are used with standard data screening, and the spatial

response function is assumed to be a rotating super Gaussian (Eq. 9). The exponential term (equal to 2× k3) varies from 2 to

64. When characterizing the IASI spatial response as rotating super Gaussian function, the exponent is about 18, intersecting

the unity contour line at the target oversampling resolution
:::
grid

::::
size of ∼2 km. If the IASI instrument had the same spatial

response as CrIS (the exponent is about 8), the intersect would be at the resolution
::::
target

::::
grid

:::
size

:
of∼4 km. The results would

be very similar if using the CrIS observation locations instead of IASI, because the exact locations of any observations are

averaged out, and the IASI and CrIS pixel sizes are similar.

(b) Circular FOV (e.g., IASI and CrIS)
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(a) Quadrilateral FOV (e.g., OMI)
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Figure 7. (a) The ratio between discretization/tessellation errors for different combinations of spatial response function shapes and target

grid resolution
::

size. The unity contour line delineates the regime where tessellation error is larger than discretization error (blueish contours)

and the regime where the discretization error is larger than tessellation error (reddish contours). The red vertical dashed line indicates the

approximate spatial response for OMI. The red star marks the threshold resolution
::::
target

::::
grid

:::
size

:
where the tessellation and discretization

errors are equal for OMI. (b) Similar to (a) but the IASI pixel shapes and locations are used instead of OMI. The spatial response function

exponents for CrIS and IASI and their intersects with the unity contour line are marked.

As shown by Fig. 7, the balance between tessellation and discretization errors depends on both the target grid resolution
:::
size

and the deviation of satellite spatial response function from an ideal 2-D boxcar shape. The uncertainty in the knowledge of the

spatial response functions is not considered here, but the spatial response function can be characterized prelaunch and validated

on-orbit (Schreier et al., 2010; de Graaf et al., 2016; Sihler et al., 2017). For all three cases, the tessellation error significantly

outweighs the discretization error at 1 km oversampling resolution
:::
grid

::::
size, by a factor of 4 for IASI and over 200 for OMI.

Therefore, we recommend discretization of the spatial response function at 1 km (or 0.01◦) resolution grid for regional scale
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oversampling of OMI, IASI, and CrIS data and then coadding to coarser spatial resolution
::::
grids

:
if necessary. The threshold

resolution
:::
grid

:::
size

:
where tessellation and discretization errors balance also depends on the ground size of satellite FOV. For

the OMI successor missions with significantly smaller pixels (e.g., TROPOMI, TEMPO), the threshold resolution
:::
grid

::::
size is

expected to be finer.

4.3
::::::

Spatial
:::::::::
resolution

:::
and

::::::
spatial

:::::::::
sampling

:::
The

:::::::::
difference

:::::::
between

::::::::
resolution

:::
and

::::::::
sampling

::::::
density

:::
for

:::
1-D

:::::::
spectral

::::
data

:::
has

::::
been

:::::::::
thoroughly

::::::::
discussed

::
in

:::
the

:::::::
literature

::::::::::::::::::::::
(e.g., Chance et al., 2005) .

::::::::
However,

::
for

:::::
2-D,

:::::::
spatially

:::::::
resolved

::::
data,

::
it
::
is

:::::::
common

::
to

:::::
refer

::
to

::::
both

:::
the

::::
sizes

::
of

:::
the

:::::
Level

::
2

:::::
pixels

:::
and

:::
the

::::
size

::
of

:::
the

:::::
Level

:
3
::::
grid

::
as

:::
the

:::::
spatial

:::::::::::
“resolution”

::
of

:::
the

::::
data.

:::
To

::::
avoid

:::::::::
confusion,

::
it
::
is

::::::::::
emphasized

::::
here

:::
that

:::
the

::::
true

:::::
spatial

:::::::::
resolution

::
is

::::::
limited

::
by

:::
the

:::::
sizes

::
of

:::::
Level

::
2
::::::
pixels.

::::
The

::::
size

::
of

:::::
Level

::
3
::::
grid

::::
only

::::::::::
determines

:::
the

::::::
density

:::
of

::::::
spatial

::::::::
sampling,

::::::
which

::::
does

:::::
little

::
to

:::::::
enhance

:::
the

::::
true

::::::::
resolving

:::::
power

:::
of

:::
the

::::
data

::::
after

::::::::
reaching

:
a
:::::::

certain
:::::
point.

:::
For

::::::::
example,

:::
the

::::::::::::
oversampling

::::::
results

:::::
using

:::::::
synthetic

:::::
OMI

::::
data

::
at

:
1
::::

km
::
vs.

:::::
0.05

:::
km

::::
grids

:::
are

:::::
very

::::::
similar

::::
(Fig.

:::
6).

:::::::::::
Nonetheless,

::
it

::
is

:::
still

:::::::::
beneficial

::
to

::::::::::
oversample,

::::
i.e.,

::::
make

:::::
Level

::
3
::::
grid

:::
size

:::::::::::
significantly

::::::
smaller

::::
than

:::::
Level

::
2

::::
pixel

:::::
sizes,

::
as

::::::::::::
demonstrated

::
by

::::
Fig.

::
8.

:::
As

:::
the

::::::
ground

:::::
truth,

::
an

:::::
array

::
of

:::
2-D

::::::::
Gaussian

::::::::
functions

:::
are

:::::::::
generated

::::
with

:::::::
FWHM

:::::::
ranging

::::
from

::
1

:::
km

::
to

:::
16

:::
km

::::
(the

::::::
second

::::::
column

:::
of

::::
Fig.

::
8)

:::
and

:::::
peak

:::::
height

::
of

:::::
unity,

::::
and

:::
this

::::
true

::::
field

:::
of

:::::::::::
concentration

::
is

::::::::
measured

:::
by

::
an

:::::::::
imaginary

::::::
sensor

::::::
whose

:::::
spatial

::::::::
response

:::::::
function

::
is
::
a

:::
2-D

:::::
super

::::::::
Gaussian

::::
(Eq.

::
8)

::::
with

:::::::
FWHM

::
=

::
10

:::
km

::::
and

::::::::::
k1 = k2 = 8

::::
(the

:::
first

:::::::
column

:::
and

:::
the

:::::
white

:::::
boxes

:::::::
inserted

::
in
:::
the

:::::
third

:::::::
column).

::::
The

::::
third

:::::::
column

::::::
shows

:::
the

:::::::::::
oversampling

::::::
results

:::::
using

::::::
10000

::::::::
randomly

:::::::
located

:::::::::::
observations.

::::
The

:::
fine

:::::::::
structures

::
in

:::
the

::::::
ground

::::
truth

:::
are

::::::
clearly

:::::::::
smoothed,

::::::
limited

:::
by

:::
the

::::::
spatial

:::::::::
resolution

:::
that

::
is

:::::::
inherent

::
to
:::
the

:::::
Level

::
2
:::::
pixel

::::
sizes

:::
(10

:::::
km).

::::::::
However,

::
by

::::::::::::
oversampling

:
at
::

a
:::
fine

::::
grid

::::
(0.2

:::
km

:::
for

:::
the

:::
first

::::
row

:::
vs.

:
5
:::
km

:::
for

:::
the

::::::
second

:::::
row),

:::
the

::::::
spatial

::::::::
gradients

:::
are

:::::
better

::::::::
recovered,

::::
and

::::::
spatial

:::::::
features

::::
finer

::::
than

:::::::::
individual

:::::
Level

::
2
:::::
pixels

::::
can

::
be

:::::::::
identified.

:::::::::::
Additionally,

::::
the

:::::
details

:::
in

:::
the

::::::
spatial

:::::::
response

:::::::
function

:::
is

:::::
better

:::::::
resolved

:::::
with

:
a
:::::

finer
:::::
target

:::::
grid,

:::::
which

::
is
::::::::::

particularly
:::::::::

beneficial
:::::
when

::::::::::
collocating

::::
with

::::::
higher

::::::::
resolution

::::::::::::
measurements

:::::
(e.g.,

:
a
:::::
cloud

:::::::
imager).

:::
As

:::::
such,

:::::::
although

:::
the

::::::
spatial

::::::::
resolving

:::::
power

::
is

:::::::::
ultimately

:::::::::
determined

:::
by

:::
the

:::::
spatial

::::::
extent

::
of

:::::::
satellite

:::::
pixels,

:::
the

::::::::
physical

:::::::::::
oversampling

::::::::
approach

:::::
helps

::::::::
enhancing

:::
the

:::::::::::
visualization

::
of

::::::
spatial

:::::::
gradient

::::
and

::
the

:::::::::::
identification

:::
of

:::::::
emission

:::::::
sources.

:

5 Applications to satellite datasets

5.1 Physical oversampling using OMI data

Figure 9 compares the drop-in-the-box method, point oversampling, tessellation, and physical oversampling using OMI NO2

tropospheric vertical column density (TVCD) within a 200×200 km square centered around a power plant in Arizona. The first

column shows the simple drop-in-the-box method on a 10-km resolution grid. The second column averages OMI observations

within a 12-km radius of each grid center. These two approaches assume OMI observations as points without consideration

of pixel geometry and retrieval uncertainties. The third column shows results using the tessellation approach, and the fourth

column shows the physical oversampling using the OMI spatial response functions as 2-D super Gaussian function with k1 = 4
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Figure 8.
::::
First

::::::
column:

:::::
spatial

:::::::
response

::::::
function

::
of

::
an

::::::::
imaginary

:::::
sensor

::::::::
discretized

::
at

:::
0.2

::
km

::::
(top)

:::
and

:
5
:::
km

:::::::
(bottom)

::::
grid.

:::::
Second

:::::::
column:

:::::
ground

::::
truth

:::::
spatial

:::::::::
distribution

::::::::
generated

::
as

::
an

::::
array

::
of

:::
2-D

:::::::
Gaussian

::::::::
functions

::
of

::::
same

:::::
height

:::
(the

:::
top

:::
and

::::::
bottom

:::::
panels

:::
are

::
the

::::::
same).

:::
The

::::::
FWHM

::
of

::::
each

:::::::
Gaussian

::
is

::::::
labeled.

:::::
Third

::::::
column:

:::::::
physical

::::::::::
oversampling

:::::
results

:::::
using

:::::
10000

:::::::
randomly

::::::::
generated

::::::::::
observations

:::
and

::::::::
discretized

::
at

::
0.2

:::
km

::::
(top)

:::
and

::
5

::
km

:::::::
(bottom)

:::::
grids.

:::
The

::::
pixel

::::
size,

:::::
which

::::::::
determines

:::
the

:::::
spatial

::::::::
resolution,

::
is

:::::
labeled

::
as
:::
the

::::::
inserted

:::::
white

:::::
boxes.

and k2 = 2. The target resolution
:::
grid

::::
size is 1 km for the last three approaches. The first and third rows show the oversampled

results (C(j) in Eq. 1) using 5 days (1–5 July 2005) and 5 months (May–September 2005) of data, respectively. The second

and fourth rows show the corresponding numbers of pixels included in the averaging for each grid cell (D(j) in Eq. 4). For

the drop-in-the-box approach, the total number of satellite observations included for each grid cell is much smaller and shown

with a different color scale for the 5-month averaging.

The drop-in-the-box approach shows significant data gaps (5-day averaging) and high level of noise (5-month averaging),

even when its target resolution
:::
grid

:
is 10 times higher

::::::
coarser than the other oversampling approaches. There are two gaps

where no observation is available for point oversampling over the 5 days (column 2, rows 1–2 in Fig. 9), which is an example

of “false negatives” as these gaps are actually covered by OMI pixels (column 3, rows 1–2 in Fig. 9). The physical oversampling

in the fourth column consistently shows the smoothest results with clear identification of the point source at the center of the

domain, because the spatial response function of OMI is properly incorporated. The oversampled NO2 TVCD is biased high

for the point oversampling approach because all observations within the averaging radius are averaged equally, but larger

observation values generally are associated with larger uncertainties. The results from tessellation become increasingly similar

to those from physical oversampling for longer averaging time, because the tessellation error is randomly distributed and

will eventually be averaged out.
:::
The

:::::::
physical

::::::::::::
oversampling

::::
also

::::
does

:::
not

:::::::
require

::::
more

:::::::::::::
computational

::::::::
resources

::::
than

:::::
point

:::::::::::
oversampling

:::
and

::::::::::
tessellation,

:::::::
making

:
it
:::::::
suitable

:::
for

:
a
:::::
wide

:::::
range

::
of

:::::
spatial

::::::
scales

:::
and

:::::
target

:::::
grids.

:
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Figure 9. Level 3 results using drop-in-the-box method (10-km resolution
:::
grid, first column), point oversampling (averaging radius = 12

km, 1-km resolution
::
grid, second column), tessellation (pixel corners from the OMPIXCOR product, 1-km resolution

:::
grid, third column), and

physical oversampling (2-D super Gaussian with k1 = 4 and k2 = 2, 1-km resolution
:::
grid, fourth column). The domain size is 200×200 km.

The first and third rows show the oversampled NO2 TVCD for 5 days and 5 months, and the second and fourth rows show the corresponding

numbers of OMI observations used in the averaging for each grid cell. Note the first panel in the fourth row is on a different color scale than

the other panels in the same row.

5.2 Physical oversampling using IASI data with smoother spatial sensitivity distributions

Although the physical oversampling using the true satellite spatial response functions produces the optimal estimation, the

result is sometimes noisy and even unphysical, especially when the observations are noisy and sparse. In these cases, some

spatial interpolation or smoothing methods are often needed. In addition to the specialized interpolation and smoothing methods

discussed in Sect. 3.1, some smoothing can be applied within the oversampling framework. For example, the level of smoothing

can be adjusted by the averaging radius in the point oversampling approach. Barkley et al. (2017) used Gaussian filter to post-

smooth tessellation results for OMI HCHO and CHOCHO products. When using the generalized 2-D super Gaussian function

to characterize the satellite spatial response function (Eq. 5), it is also simple to tune the exponents (k3 in the cases of circular

FOV such as IASI/CrIS and k1/k2 in the cases of quadrilateral FOV such as OMI) so that the assumed satellite spatial sensitivity

distribution is smoother than the true spatial response function. This often leads to better visualization and identification of local

hot spots, especially for products with high noise level or sparse spatial sampling. The advantage of this approach is that the
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smoothing is applied at the satellite pixel level (Level 2) instead of grid level (Level 3), so the geometry and error information

for each satellite observation is preserved.

Figure 10 shows similar oversampling results as Fig. 9, but using IASI NH3 total column density data (Van Damme et al.,

2017) for 2015 in eastern Colorado, centered around a large cattle feedlot. The drop-in-the-box approach is not shown for

IASI. The results from point oversampling, tessellation, and physical oversampling to a 1-km grid are presented in the first

three columns. The true IASI spatial response functions have rather sharp edges (see Appendix A), so the physical oversampling

shown in the third column of Fig. 10 is very similar to tessellation shown in the second column. Although this is the optimal

estimation based on the physics of IASI observation, the spatial gradients are hard to identify for 5 days averaging and noisy

for 5 month averaging. Instead of applying smoothing after the oversampling process, the fourth column uses a smooth spatial

sensitivity distribution of a 2-D standard Gaussian function (2k3 = 2, rather than the true IASI spatial response function with

2k3 ∼ 18). As illustrated by the first row in Fig. 10, the physical oversampling using smoother spatial sensitivity distributions

provides the best result by clearly identifying the central point source using only sparse (5 day) data. The third row in Fig. 10

demonstrates that with 5 months of averaging, the local NH3 gradients are well resolved. The point oversampling using a 12-

km radius overly smoothens the results, making the central hot spot artificially larger, whereas the general spatial gradients are

still noisy (column 1, row 3). The overall number of IASI observations used in point oversampling is also significantly higher

than tessellation and physical oversampling, as shown by the the fourth row. This is because the 12-km averaging circle is much

larger than most IASI footprints, and hence many IASI observations are double-counted as false positives. The smoothing based

on physical oversampling is much more effective in suppressing the noise, and the spatial gradients are adequately preserved

(column 4, row 3). This is because each satellite FOV keeps the same FWHM and overall weight, and only the distribution of

sensitivity becomes more spread out.

Oversampling based on Eq. 1-3 also provides a flexible way to categorize the results according to environmental and temporal

variables. The conventional way is to save the averaging weights for each Level 2 observation (i.e., the Level 2G product, where

Level 2 pixels are assigned to points of latitude/longitude grid), but the averaging weights can only be defined for a specific

gridresolution. When representing each Level 2 observation as a spatial sensitivity distribution (the actual instrument spatial

response function or a smoother version of it),A(j) andB(j) can be calculated at high
:::
fine spatial and temporal resolution

::::
grids

and then aggregated spatially and/or temporally. The Level 3 map C(j) is just the grid-by-grid ratio of the aggregated A(j)

and B(j). Similarly, A(j) and B(j) can be calculated according to environmental variables such as wind and temperature

at high resolution
:::
fine

:
intervals and binned to coarser categories as needed. Figure 11 shows the physical oversampling of

NH3 total column under southerly wind (
::::::::
meridional

:::::
wind

::::::::::
component

::
>

::
0,

:
a and c) and northerly wind (

:::::::::
meridional

:::::
wind

:::::::::
component

::
<

::
0,

:
b and d) and high PBL temperature (> 15◦C, a and b) and low PBL temperature (< 15◦C, c and d).

::::
Here

::
the

:::::
PBL

::::::::::
temperature

::
is

:::
the

:::::::
average

:::
air

::::::::::
temperature

::::
from

:::::::
surface

::
to

:::
the

:::
top

:::
of

:::
the

:::::
PBL,

::::::::
weighted

::
by

::::::::
pressure.

:
The average

wind speed and wind direction under each category are labeled in the corresponding panels. IASI-A daytime data from 2008

to 2017 over northeastern Colorado are included in the oversampling, and a 2-D standard Gaussian is used as the spatial

sensitivity distribution to smooth the results. The 3-D wind field, atmospheric temperature, surface pressure, and PBL height

are interpolated from the North American regional reanalysis (NARR; Mesinger et al., 2006)
::::
from

::::
their

:::::
native

::::::::::
resolutions

::
of
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Figure 10. Similar to Fig. 9 using IASI NH3 total column product for 2015. The drop-in-the-box approach is not included. Instead, the

physical oversampling results using a smoother version of the IASI spatial response function are shown in the fourth column. The true IASI

spatial response function has much sharper edges than OMI, such that the physical oversampling results (third column) are very similar to

tessellation results (second column).

::
32

:::
km

::::
and

:
3
:::::
hours

:
to the IASI pixel locations and overpass time. Using the concentrated animal feeding operation (CAFO)

locations (colored dots; data courtesy of Daniel Bon, Colorado Department of Public Health and Environment) as a spatial

reference, the downwind dispersion of total NH3 column under different wind directions is clearly seen. The close match

between large cattle CAFOs and the NH3 hot spots seen from space confirms that they are the dominant source of atmospheric

NH3 in this region. The overall abundance of NH3 is significantly higher at warmer temperatures, in agreement with the

previous in-situ quantification of CAFO NH3 emissions in the same region (Sun et al., 2015b).

6 Conclusions

A conceptually simple
:::::::::::
physics-based

:
approach is developed to oversample diverse satellite observational products to high-

resolution destination grids. It represents each FOV as a sensitivity distribution on the ground, which is physically a more

realistic representation of satellite observations. This sensitivity distribution can be determined by the spatial response func-

tion of each satellite sensor. We propose a generalized 2-D super Gaussian function that can standardize the spatial response
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Figure 11. Physical oversampling results using IASI-A NH3 total columns under southerly wind (a and c) and northerly wind (b and d) and

high planetary boundary layer (PBL) temperature (> 15◦C, a and b) and low PBL temperature (< 15◦C, c and d). The text arrows show the

average wind speed and wind direction at the locations/times of all IASI observations in each category. The size and location of large CAFOs

are overlaid.

functions of many satellite sensors with distinct observation mechanisms and viewing geometries. This generalized 2-D super

Gaussian function can be reduced to a rotating super Gaussian to characterize the circular FOV of IASI and CrIS, or a 2-D

super Gaussian to characterize the quadrilateral FOV of OMI and its successors. It can also represent hybrid cases where the

FOV is quadrilateral but with rounded corners. When the shape-determining exponents in the generalized 2-D super Gaussian

function approaches infinity, the FOV is equivalent to a polygon, as assumed in the tessellation approach.

Synthetic OMI and IASI observations were generated assuming the spatial response functions are perfectly known to com-

pare the tessellation error and the discretization error. The balance between these two error sources depends on the target grid

resolution
:::
size, the ground size of FOV, and the smoothness of spatial response functions. The proposed oversampling approach

is generally more accurate for high-resolution
::::::
fine-grid

:
oversampling of satellite observations with smooth spatial responses,
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whereas tessellation is more accurate for coarse grid resolutions
::::
grids

:
and sharper spatial responses. For OMI, CrIS, and IASI,

the threshold resolution
::::
target

::::
grid

::::
size where both errors equal are at ∼16 km, ∼4 km, and ∼2 km, respectively. Therefore,

it is recommended to oversample to 1 km (0.01◦) resolution and then coadd to coarser resolution
::::
grids

:
if necessary for re-

gional studies. The tessellation may be more desirable for generating global Level 3 products with coarse resolution
::::
grids. The

generalized 2-D super Gaussian function also enables smoothing of the Level 3 results by decreasing the shape-determining

exponents, useful for high noise levels or sparse satellite datasets. This smoothing performed at each observation is more phys-

ically realistic than arbitrarily tuning the averaging radius and the spatial filtering of the Level 3 map as the weightings of Level

2 pixels are unchanged.

The new physical oversampling approach is applied to OMI NO2 products and IASI NH3 products, showing substantially

improved visualization of trace gas distribution and local gradients. With proper consideration of the spatial response functions,

this approach can be applied to multiple previous, current, and future satellite datasets, which will help to create long-term

consistent data records for atmospheric composition.

Code availability. A MATLAB implementation of the physical oversampling is available at https://github.com/Kang-Sun-CfA/Oversampling_

matlab/.

Appendix A: Spatial response functions of IASI and CrIS as rotating super Gaussian functions

The spatial response functions of IASI are tabulated at https://iasi.cnes.fr/en/IASI/A_caract_instr.htm for each of its four de-

tector pixels. They are very close to ideal circular FOV with some smoothing at the edge and weak non-homogeneity at the top

response, as shown by Fig. A1.

Figure A2 shows a rotating super Gaussian function (Eq. 9) fitted to the tabulated spatial response function at detector pixel

#2 and the fitting residual. With only two parameters (the width and exponent of the super Gaussian), the spatial response

function can be well reconstructed by the rotating super Gaussian function.

Figure A3a shows the fitting of the across-track cross section of the spatial response function of IASI detector pixel #2 using

a 1-D super Gaussian function. The FWHM is 11.6 km on the ground and the exponent is ∼18. The detailed information on

the spatial response of CrIS detectors is proprietary, but Wang et al. (2013) provides the spatial response values at a few angles,

i.e., the angles of 1.2380◦, 1.1000◦, 0.9420◦, and 0.8735◦ correspond to 3%, 10%, 50%, and 70% of the peak response. Based

on this information, a 1-D super Gaussian can be fitted with FWHM = 13.6 km on the ground and an exponent of 7.93, as

shown by Fig. A3b. The CrIS orbit height is assumed to be 824 km above the ground.

Appendix B: Comparison of discretization schemes

To compare different discretization schemes, we first construct an ideal spatial response function using OMI pixel boundaries

but sharper edges (k1 = 12, k2 = 6, see Fig. B2a) and zoom in to a single grid cell at
::
of 5×5 km resolution (Fig. B1a). The
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Figure A1. IASI spatial response functions (also known as point spread functions) defined at the viewing angular space. The corresponding

ground distance at nadir is shown in the axis on the right. The IASI orbit height is assumed to be 817 km above the ground.

Figure A2. Fitting a tabulated IASI spatial response function for pixel #2 using rotating super Gaussian. The fitted exponent is 18.5.
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Figure A3. Slices of spatial response functions for IASI (a) and CrIS (b). Super Gaussian functions are fitted with the exponent ∼ 18 for

IASI and ∼ 8 for CrIS. The spatial response functions are projected on ground to reflect actual nadir pixel sizes.
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true value of S(i, j) should be the integration of the spatial response function over the grid cell area as in Eq. 10. A simple

discretization scheme is to use the spatial response value at the grid center, C (Fig. B1b):

S(i, j) = S(C), (B1)

where S(C) denotes the evaluation of continuous spatial response function S(x,y) at the coordinates of the grid center C. A

more advanced discretization scheme is to calculate the spatial response values at both the grid center and the grid corners

ABDE (Fig. B1c), and approximate the integration as the sum of the volumes of four triangular prisms (i.e., ABC, BDC,

DEC, and EAC):

S(i, j) =
S(A) +S(B) +S(C)

12
+
S(B) +S(D) +S(C)

12
+
S(D) +S(E) +S(C)

12
+
S(E) +S(A) +S(C)

12

=
S(A) +S(B) +S(D) +S(E) + 2S(C)

6
. (B2)

Hence it is a weighted average with the weight for grid center twice of the weight for grid corners. For completeness, the

assumption of tessellation is also shown in Fig. B1d, where spatial response is assumed to be unity inside the pixel boundary

and zero outside. S(i, j) is calculated as the fractional area covered by the portion of pixel polygon within the grid cell.

Figure B1. (a) An ideal spatial response function constructed using OMI across-track #30 pixel boundary and relatively sharp edges (k1 =

12, k2 = 6, k3 = 1). Only the overlapping portion with a 5×5 km grid cell (square ABDE) is shown. C is the grid center. (b) Simple

discretization scheme, where the grid cell value is approximated by the spatial response at central position C. (c) The spatial response is

discretized at both grid center and grid corners. See text for details. (d) Tessellation, where the spatial response is assumed to be unity inside

the pixel boundary and zero outside. The polygons are color-coded by the spatial response values.
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In Fig. B2, both discretization schemes and tessellation are applied to calculate S(i, j) for all grid cells near the satellite

FOV. Figures B2b-d show the distribution of errors from these three approximation methods, where the true S(i, j) is the

numerical integration of the high-resolution spatial response function shown in Fig. B2a. The errors in both discretization

schemes (discretization only at grid center, Fig. B2b, and weighted averaging of grid center and grid corners, Fig. B2c) and

the tessellation error are shown as the root-mean-square of the error distribution. The discretization scheme using both grid

center and grid corner values significantly reduces the error, which in this case is also lower than the tessellation error. For a

realistic OMI spatial response function (k1 = 4, k2 = 2), the discretization errors in both cases are significantly lower than the

tessellation error at this grid resolution
::::
size (5 km).

Figure B2. (a) An ideal spatial response function constructed using OMI across-track #30 pixel boundary (red rectangle) and relatively sharp

edges (k1 = 12, k2 = 6, k3 = 1). The destination grid at
:
of

:
5×5 km resolution is also shown.(b) Errors induced by discretization only at grid

centers (discretized values−true values). The true value for each 5×5 km grid is calculated by numerical integration using the high-resolution

spatial response shown in (a). (c) Errors induced by discretization at both grid centers and grid corners. (d) Tessellation errors. RMSE is the

root-mean-square of the error distribution.

Competing interests. The authors declare that no competing interests.

Acknowledgements. We acknowledge supports from NASA’s Atmospheric Composition: Aura Science Team program (sponsor contract

numbers NNX14AF16G and NNX14AF56G), the RENEW Institute and School of Engineering and Applied Science at the University at

24



Buffalo. We thank John Houck at the SAO, Thomas Kurosu at JPL, Holger Sihler at MPI-C, Glen Jaross at NASA, Rui Wang, Xuehui Guo,

and Da Pan at Princeton University, and Likun Wang at University of Maryland for helpful discussions. We thank the OMI science team to

make the OMI NO2 data available at https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/ and the IASI science team to make the IASI NH3

retrieval available at http://iasi.aeris-data.fr/NH3. L. Clarisse is a research associate with the Belgian F.R.S-FNRS and acknowledges the

support.

25

https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/
http://iasi.aeris-data.fr/NH3


References

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L.,

Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and

processing systems, IEEE Transactions on Geoscience and Remote Sensing, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356,

2003.

Baek, B. H., Aneja, V. P., and Tong, Q.: Chemical coupling between ammonia, acid gases, and fine particles, Environmental Pollution, 129,

89–98, 2004.

Bak, J., Liu, X., Kim, J.-H., Haffner, D. P., Chance, K., Yang, K., and Sun, K.: Characterization and correction of OMPS nadir mapper

measurements for ozone profile retrievals, Atmospheric Measurement Techniques, 10, 4373–4388, https://doi.org/10.5194/amt-10-4373-

2017, https://www.atmos-meas-tech.net/10/4373/2017/, 2017.

Barkley, M. P., González Abad, G., Kurosu, T. P., Spurr, R., Torbatian, S., and Lerot, C.: OMI air-quality monitoring over the Middle East,

Atmospheric Chemistry and Physics, 17, 4687–4709, 2017.

Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from

space, Science, 333, 1737–1739, 2011.

Beirle, S., Lampel, J., Lerot, C., Sihler, H., and Wagner, T.: Parameterizing the instrumental spectral response function and its changes

by a super-Gaussian and its derivatives, Atmospheric Measurement Techniques, 10, 581–598, https://doi.org/10.5194/amt-10-581-2017,

http://www.atmos-meas-tech.net/10/581/2017/, 2017.

Borsdorff, T., Aan de Brugh, J., Hu, H., Aben, I., Hasekamp, O., and Landgraf, J.: Measuring Carbon Monoxide With

TROPOMI: First Results and a Comparison With ECMWF-IFS Analysis Data, Geophysical Research Letters, 45, 2826–2832,

https://doi.org/10.1002/2018GL077045, https://doi.org/10.1002/2018GL077045, 2018.

Bovensmann, H., Burrows, J., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V., Chance, K., and Goede, A.: SCIAMACHY: Mission objectives

and measurement modes, Journal of the atmospheric sciences, 56, 127–150, 1999.

Bowman, K. W., Rodgers, C. D., Kulawik, S. S., Worden, J., Sarkissian, E., Osterman, G., Steck, T., Lou, M., Eldering, A., Shep-

hard, M., Worden, H., Lampel, M., Clough, S., Brown, P., Rinsland, C., Gunson, M., and Beer, R.: Tropospheric emission spectrom-

eter: Retrieval method and error analysis, IEEE Transactions on Geoscience and Remote Sensing, 44, 1297–1307, https://doi.org/Doi

10.1109/Tgrs.2006871234, 2006.

Buchwitz, M., de Beek, R., Burrows, J. P., Bovensmann, H., Warneke, T., Notholt, J., Meirink, J. F., Goede, A. P. H., Bergamaschi, P.,

Körner, S., Heimann, M., and Schulz, A.: Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison

with chemistry and transport models, Atmospheric Chemistry and Physics, 5, 941–962, https://doi.org/10.5194/acp-5-941-2005, http:

//www.atmos-chem-phys.net/5/941/2005/, 2005.

Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K.,

Eichmann, K.-U., et al.: The global ozone monitoring experiment (GOME): Mission concept and first scientific results, Journal of the

Atmospheric Sciences, 56, 151–175, 1999.

Chan Miller, C., Gonzalez Abad, G., Wang, H., Liu, X., Kurosu, T., Jacob, D. J., and Chance, K.: Glyoxal retrieval from the Ozone

Monitoring Instrument, Atmospheric Measurement Techniques, 7, 3891–3907, https://doi.org/10.5194/amt-7-3891-2014, http://www.

atmos-meas-tech.net/7/3891/2014/, 2014.

26

https://doi.org/10.1109/TGRS.2002.808356
https://doi.org/10.5194/amt-10-4373-2017
https://doi.org/10.5194/amt-10-4373-2017
https://www.atmos-meas-tech.net/10/4373/2017/
https://doi.org/10.5194/amt-10-581-2017
http://www.atmos-meas-tech.net/10/581/2017/
https://doi.org/10.1002/2018GL077045
https://doi.org/10.1002/2018GL077045
https://doi.org/Doi 10.1109/Tgrs.2006871234
https://doi.org/Doi 10.1109/Tgrs.2006871234
https://doi.org/10.5194/acp-5-941-2005
http://www.atmos-chem-phys.net/5/941/2005/
http://www.atmos-chem-phys.net/5/941/2005/
https://doi.org/10.5194/amt-7-3891-2014
http://www.atmos-meas-tech.net/7/3891/2014/
http://www.atmos-meas-tech.net/7/3891/2014/


Chance, K., Kurosu, T. P., and Sioris, C. E.: Undersampling correction for array detector-based satellite spectrometers, Applied optics, 44,

1296–1304, 2005.

Clarisse, L., Shephard, M. W., Dentener, F., Hurtmans, D., Cady-Pereira, K., Karagulian, F., Van Damme, M., Clerbaux, C., and Coheur,

P.-F.: Satellite monitoring of ammonia: A case study of the San Joaquin Valley, Journal of Geophysical Research: Atmospheres, 115, 2010.

Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S.,

Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmospheric

Chemistry and Physics, 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, https://www.atmos-chem-phys.net/9/6041/2009/, 2009.

CNES: IASI | Instrument Characteristics, https://iasi.cnes.fr/en/IASI/A_caract_instr.htm, 2015.

Dammers, E., Shephard, M. W., Palm, M., Cady-Pereira, K., Capps, S., Lutsch, E., Strong, K., Hannigan, J. W., Ortega, I., and Toon, G. C.:

Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR, Atmospheric Measurement Techniques, 10, 2645–2667, 2017.

de Foy, B., Krotkov, N. A., Bei, N., Herndon, S. C., Huey, L. G., Martínez, A.-P., Ruiz-Suárez, L. G., Wood, E. C., Zavala, M., and Molina,

L. T.: Hit from both sides: tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals

during the MILAGRO field campaign, Atmospheric Chemistry and Physics, 9, 9599–9617, https://doi.org/10.5194/acp-9-9599-2009,

https://www.atmos-chem-phys.net/9/9599/2009/, 2009.

de Foy, B., Lu, Z., Streets, D. G., Lamsal, L. N., and Duncan, B. N.: Estimates of power plant NOx emissions and lifetimes from

OMI NO2 satellite retrievals, Atmospheric Environment, 116, 1–11, https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.05.056, http:

//www.sciencedirect.com/science/article/pii/S1352231015301291, 2015.

de Graaf, M., Sihler, H., Tilstra, L. G., and Stammes, P.: How big is an OMI pixel?, Atmospheric Measurement Techniques, 9, 3607–3618,

https://doi.org/10.5194/amt-9-3607-2016, http://www.atmos-meas-tech.net/9/3607/2016/, 2016.

Drummond, J. R., Zou, J., Nichitiu, F., Kar, J., Deschambaut, R., and Hackett, J.: A review of 9-year performance and operation of the

MOPITT instrument, Advances in Space Research, 45, 760–774, https://doi.org/https://doi.org/10.1016/j.asr.2009.11.019, http://www.

sciencedirect.com/science/article/pii/S0273117709007224, 2010.

Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., Hurwitz, M. M., and Pickering, K. E.: A space-

based, high-resolution view of notable changes in urban NOx pollution around the world (2005-2014), Journal of Geophysical Research:

Atmospheres, 121, 976–996, https://doi.org/10.1002/2015JD024121, http://doi.wiley.com/10.1002/2015JD024121, 2016.

Eldering, A., O’Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., Braverman, A., Castano, R., Chang, A.,

Chapsky, L., Cheng, C., Connor, B., Dang, L., Doran, G., Fisher, B., Frankenberg, C., Fu, D., Granat, R., Hobbs, J., Lee, R. A. M.,

Mandrake, L., McDuffie, J., Miller, C. E., Myers, V., Natraj, V., O’Brien, D., Osterman, G. B., Oyafuso, F., Payne, V. H., Pollock, H. R.,

Polonsky, I., Roehl, C. M., Rosenberg, R., Schwandner, F., Smyth, M., Tang, V., Taylor, T. E., To, C., Wunch, D., and Yoshimizu,

J.: The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmospheric Measurement Techniques, 10, 549–

563, https://doi.org/10.5194/amt-10-549-2017, https://www.atmos-meas-tech.net/10/549/2017/https://www.atmos-meas-tech.net/10/549/

2017/amt-10-549-2017.pdf, 2017.

Fioletov, V., McLinden, C., Krotkov, N., Moran, M., and Yang, K.: Estimation of SO2 emissions using OMI retrievals, Geophysical Research

Letters, 38, 2011.

Fioletov, V., McLinden, C. A., Kharol, S. K., Krotkov, N. A., Li, C., Joiner, J., Moran, M. D., Vet, R., Visschedijk, A. J. H., and van der

Gon, H. A. C.: Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions,

Atmospheric Chemistry and Physics, 17, 12 597–12 616, https://doi.org/10.5194/acp-17-12597-2017, https://www.atmos-chem-phys.net/

17/12597/2017/, 2017.

27

https://doi.org/10.5194/acp-9-6041-2009
https://www.atmos-chem-phys.net/9/6041/2009/
https://iasi.cnes.fr/en/IASI/A_caract_instr.htm
https://doi.org/10.5194/acp-9-9599-2009
https://www.atmos-chem-phys.net/9/9599/2009/
https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.05.056
http://www.sciencedirect.com/science/article/pii/S1352231015301291
http://www.sciencedirect.com/science/article/pii/S1352231015301291
https://doi.org/10.5194/amt-9-3607-2016
http://www.atmos-meas-tech.net/9/3607/2016/
https://doi.org/https://doi.org/10.1016/j.asr.2009.11.019
http://www.sciencedirect.com/science/article/pii/S0273117709007224
http://www.sciencedirect.com/science/article/pii/S0273117709007224
https://doi.org/10.1002/2015JD024121
http://doi.wiley.com/10.1002/2015JD024121
https://doi.org/10.5194/amt-10-549-2017
https://www.atmos-meas-tech.net/10/549/2017/ https://www.atmos-meas-tech.net/10/549/2017/amt-10-549-2017.pdf
https://www.atmos-meas-tech.net/10/549/2017/ https://www.atmos-meas-tech.net/10/549/2017/amt-10-549-2017.pdf
https://doi.org/10.5194/acp-17-12597-2017
https://www.atmos-chem-phys.net/17/12597/2017/
https://www.atmos-chem-phys.net/17/12597/2017/


Fioletov, V. E., McLinden, C. A., Krotkov, N., and Li, C.: Lifetimes and emissions of SO2 from point sources estimated from OMI, Geo-

physical Research Letters, 42, 1969–1976, 2015.

Geddes, J. A., Martin, R. V., Boys, B. L., and van Donkelaar, A.: Long-term trends worldwide in ambient NO2 concentrations inferred from

satellite observations, Environmental health perspectives, 124, 281, 2016.

González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., and Suleiman, R.: Updated Smithsonian Astrophysical Observatory Ozone

Monitoring Instrument (SAO OMI) formaldehyde retrieval, Atmospheric Measurement Techniques, 8, 19–32, https://doi.org/10.5194/amt-

8-19-2015, http://www.atmos-meas-tech.net/8/19/2015/, 2015.

Han, Y., Revercomb, H., Cromp, M., Gu, D., Johnson, D., Mooney, D., Scott, D., Strow, L., Bingham, G., Borg, L., Chen, Y., DeSlover,

D., Esplin, M., Hagan, D., Jin, X., Knuteson, R., Motteler, H., Predina, J., Suwinski, L., Taylor, J., Tobin, D., Tremblay, D., Wang, C.,

Wang, L., Wang, L., and Zavyalov, V.: Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities,

and record data quality, Journal of Geophysical Research: Atmospheres, 118, 12,712–734,748, https://doi.org/10.1002/2013JD020344,

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JD020344, 2013.

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., Butz, A., and Hasekamp, O.: Toward Global Mapping

of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT, Geophysical Research Letters, 45, 3682–3689,

https://doi.org/10.1002/2018GL077259, https://doi.org/10.1002/2018GL077259, 2018.

Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J., and Frankenberg, C.: Satellite

observations of atmospheric methane and their value for quantifying methane emissions, Atmospheric Chemistry and Physics, 16, 14 371–

14 396, 2016.

Kim, H. C., Lee, P., Judd, L., Pan, L., and Lefer, B.: OMI NO2 column densities over North American urban cities:

the effect of satellite footprint resolution, Geoscientific Model Development, 9, 1111–1123, https://doi.org/10.5194/gmd-9-1111-2016,

https://www.geosci-model-dev.net/9/1111/2016/, 2016.

Kort, E. A., Frankenberg, C., Costigan, K. R., Lindenmaier, R., Dubey, M. K., and Wunch, D.: Four corners: The largest US methane anomaly

viewed from space, Geophysical Research Letters, 41, 6898–6903, 2014.

Krotkov, N. A.: OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 degree x 0.25 degree V3,

https://doi.org/10.5067/Aura/OMI/DATA3007, https://aura.gesdisc.eosdis.nasa.gov/datasets/OMNO2d_V003/, 2013.

Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela, E. J., Chan, K. L., Wenig, M., and Zara, M.: The

version 3 OMI NO2 standard product, Atmospheric Measurement Techniques, 10, 3133–3149, https://doi.org/10.5194/amt-10-3133-2017,

https://www.atmos-meas-tech.net/10/3133/2017/, 2017.

Kuhlmann, G., Hartl, A., Cheung, H. M., Lam, Y. F., and Wenig, M. O.: A novel gridding algorithm to create regional trace gas maps

from satellite observations, Atmospheric Measurement Techniques, 7, 451–467, https://doi.org/10.5194/amt-7-451-2014, https://www.

atmos-meas-tech.net/7/451/2014/, 2014.

Kurosu, T. P. and Celarier, E. A.: OMI/Aura Global Ground Pixel Pixel Corners 1-Orbit L2 Swath 13x24km V003,

https://doi.org/10.5067/Aura/OMI/DATA2020, https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMPIXCOR.003/, 2010.

Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G., and Lu, Z.: US NO2 trends (2005–2013): EPA

Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmospheric Environment,

110, 130–143, 2015.

Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., Stein Zweers, D. C., Duncan, B. N., Streets, D. G., Eskes, H., van der

A, R., McLinden, C., Fioletov, V., Carn, S., de Laat, J., DeLand, M., Marchenko, S., McPeters, R., Ziemke, J., Fu, D., Liu, X., Pickering,

28

https://doi.org/10.5194/amt-8-19-2015
https://doi.org/10.5194/amt-8-19-2015
http://www.atmos-meas-tech.net/8/19/2015/
https://doi.org/10.1002/2013JD020344
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JD020344
https://doi.org/10.1002/2018GL077259
https://doi.org/10.1002/2018GL077259
https://doi.org/10.5194/gmd-9-1111-2016
https://www.geosci-model-dev.net/9/1111/2016/
https://doi.org/10.5067/Aura/OMI/DATA3007
https://aura.gesdisc.eosdis.nasa.gov/datasets/OMNO2d_V003/
https://doi.org/10.5194/amt-10-3133-2017
https://www.atmos-meas-tech.net/10/3133/2017/
https://doi.org/10.5194/amt-7-451-2014
https://www.atmos-meas-tech.net/7/451/2014/
https://www.atmos-meas-tech.net/7/451/2014/
https://doi.org/10.5067/Aura/OMI/DATA2020
https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMPIXCOR.003/


K., Apituley, A., González Abad, G., Arola, A., Boersma, F., Chan Miller, C., Chance, K., de Graaf, M., Hakkarainen, J., Hassinen, S.,

Ialongo, I., Kleipool, Q., Krotkov, N., Li, C., Lamsal, L., Newman, P., Nowlan, C., Suleiman, R., Tilstra, L. G., Torres, O., Wang, H.,

and Wargan, K.: The Ozone Monitoring Instrument: overview of 14 years in space, Atmospheric Chemistry and Physics, 18, 5699–5745,

https://doi.org/10.5194/acp-18-5699-2018, https://www.atmos-chem-phys.net/18/5699/2018/, 2018.

Li, C., Krotkov, N. A., Carn, S., Zhang, Y., Spurr, R. J. D., and Joiner, J.: New-generation NASA Aura Ozone Monitoring Instrument (OMI)

volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite

(OMPS), Atmospheric Measurement Techniques, 10, 445–458, https://doi.org/10.5194/amt-10-445-2017, http://www.atmos-meas-tech.

net/10/445/2017/, 2017a.

Li, J. and Heap, A. D.: Spatial interpolation methods applied in the environmental sciences: A review, Environmental Modelling & Software,

53, 173–189, https://doi.org/https://doi.org/10.1016/j.envsoft.2013.12.008, 2014.

Li, Y., Thompson, T. M., Van Damme, M., Chen, X., Benedict, K. B., Shao, Y., Day, D., Boris, A., Sullivan, A. P., Ham, J., Whitburn,

S., Clarisse, L., Coheur, P.-F., and Collett Jr., J. L.: Temporal and spatial variability of ammonia in urban and agricultural regions of

northern Colorado, United States, Atmospheric Chemistry and Physics, 17, 6197–6213, https://doi.org/10.5194/acp-17-6197-2017, https:

//www.atmos-chem-phys.net/17/6197/2017/, 2017b.

Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., and Wagner, T.: NOx lifetimes and emissions of cities and power plants in polluted

background estimated by satellite observations, Atmospheric Chemistry and Physics, 16, 5283–5298, 2016.

Martin, R. V.: Satellite remote sensing of surface air quality, Atmospheric Environment, 42, 7823–7843, 2008.

McLinden, C. A., Fioletov, V., Boersma, K. F., Krotkov, N., Sioris, C. E., Veefkind, J. P., and Yang, K.: Air quality over the Canadian oil

sands: A first assessment using satellite observations, Geophysical Research Letters, 39, 2012.

McLinden, C. A., Fioletov, V., Shephard, M. W., Krotkov, N., Li, C., Martin, R. V., Moran, M. D., and Joiner, J.: Space-based detection of

missing sulfur dioxide sources of global air pollution, Nature Geoscience, 9, 496–500, 2016.

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B.,
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