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Abstract. Since September 2014, NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements

of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2

retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 (XCO2 )

for the roughly 100,000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric
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Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases

Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25%,

is required in order to accurately infer carbon sources and sinks from XCO2 , significant errors and regional-scale biases in the

measurements must be minimized. We discuss efforts to filter out poor quality measurements, and correct the remaining good-

quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in5

version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-

scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect

to TCCON was reduced by 20% over land and 40% over ocean between versions 7 and 8, and nadir and glint observations

over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will

continue to evolve and improve as the CO2 data record continues to expand.10

1 Introduction

Bias-free measurement of atmospheric CO2 concentrations from space is a long-pursued goal in the carbon cycle community.

Such measurements are critical for inferring sources and sinks of carbon, and how these sources and sinks change over time

due to both anthropogenic and natural causes (e.g. Rayner and O’Brien, 2001; Chevallier et al., 2007; Baker et al., 2010). The

first instrument capable of CO2 measurements from space using the near- and short-wavelength infrared was SCIAMACHY,15

the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (Buchwitz et al., 2005; Reuter et al., 2011),

which operated from 2002 to 2012. This was followed by the first dedicated greenhouse gas satellite, the Japanese Greenhouse

gases Observing SATellite (GOSAT), which launched in January 2009 (Yokota et al., 2009). The Orbiting Carbon Observatory-

2 (OCO-2) followed on July 2, 2014, with the goal of measuring the column-averaged dry air mole fraction of carbon dioxide

(XCO2
) with sufficient precision and accuracy to enable greatly enhanced understanding of the surface-atmosphere exchange20

of CO2 on regional scales (Crisp et al., 2008; Crisp, 2015). OCO-2 was preceded by the original OCO mission, which failed

due to a launch vehicle malfunction in 2009. Retrieval algorithms originally developed for OCO (Connor et al., 2008) have

been continuously refined since 2009 (O’Dell et al., 2012), by application to data from GOSAT.

XCO2
measurements from the OCO-2 version 7 data product (Eldering et al., 2017) have recently been used to estimate25

CO2 fluxes from both natural (Liu et al., 2017; Chatterjee et al., 2017; Crowell et al., 2018a) and anthropogenic (Hakkarainen

et al., 2016; Schwandner et al., 2017; Nassar et al., 2017) sources; see Eldering et al. (2017) for a complete review of these

findings. However, XCO2
measurements must be both extremely accurate and precise in order to accurately determine fluxes

(Miller et al., 2007), since fluxes are determined from small (<2.5%) spatial and temporal gradients in the XCO2 field. Spatially

coherent biases in XCO2 on regional scales as small as a few tenths of a part-per-million (ppm) in XCO2can lead to spurious30

values of inferred fluxes (Chevallier et al., 2014).
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Table 1. Prescreening filter criteria.

Category Land Criterion Ocean Criterion

Successful Measurement Sounding_Qual_Flag = 0 Same as land

A-Band Preprocessor Cloud_Flag = 0 Same as land

Solar Geometry SZA < 85◦(nadir), < 80◦(glint) Same as land

IMAP Preprocessor 0.985< co2_ratio < 1.045 Same as land

Band 1 SNR SNR1 ≥ 100 Same as land

Band 3 SNR SNR3 ≥ 75 Same as land

Land Fraction fland ≥ 80% fland ≤ 20%

The ACOS algorithm was originally developed for OCO. It was first applied to GOSAT data in 2009 and has continuously

evolved and improved in the intervening years. Generally, good error statistics were shown for GOSAT observations over both

land and water, with typical biases below 1 ppm based on comparisons to both ground-based (Lindqvist et al., 2015; Kulawik

et al., 2016) and aircraft (Frankenberg et al., 2016) validation data. After the successful launch of OCO-2, the ACOS algorithm

was further modified and tuned for application to the OCO-2 spectra. XCO2 error statistics are similar to those from GOSAT,5

with RMS errors less than 1.5 ppm when compared against most ground-based Total Carbon Column Observing Network (TC-

CON, Wunch et al. (2010)) stations (Wunch et al., 2017). However, Wunch et al. (2017) noted that important biases remain,

in particular related to latitude, surface properties, and atmospheric scattering by clouds and aerosols. A particularly troubling

bias evident in the southern hemisphere mid-latitude ocean in austral winter had amplitudes as large as several ppm. This bias

was not seen in ACOS retrievals using GOSAT data, though GOSAT’s ocean glint viewing geometry was restricted and could10

not typically see this far south, potentially masking the problem.

The primary purpose of this paper is to describe the details of the ACOS XCO2 retrieval algorithm as applied to OCO-2

data, in particular the latest version 8 (also referred to as build 8 or B8). Because science results have already been published

with version 7 (also referred to as build 7 or B7) as discussed above, we also discuss the differences between versions 7 and15

8. This paper is organized as follows: Section 2 discusses prescreening of the data to remove cloudy and difficult-to-retrieve

soundings. Section 3 lists the details of the retrieval algorithm and its evolution since O’Dell et al. (2012). Section 4 discusses

the methodology and results of the post-retrieval filtering and bias correction. Section 5 provides a brief evaluation of XCO2

from both versions 7 and 8, and the discussion in Section 6 concludes the paper.
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2 Data and Prescreening

Because only scenes with sufficient signal and nearly devoid of cloud and aerosol contamination can yield successful XCO2

retrievals, a prescreener is used for OCO-2 soundings before processing by the Level-2 “Full-Physics” (L2FP) XCO2
retrieval

algorithm. Our prescreening module requires outputs from two fast algorithms, described in detail in Taylor et al. (2016). First,

the “A-band Preprocessor” (ABP) performs a fast retrieval of surface pressure using the O2A band only, assuming that no5

clouds or aerosols are present. Poor spectral fits and differences between the retrieved and a priori surface pressure greater

than 25 hPa are used to identify the presence of cloud or aerosol contamination. Scenes without sufficient signal-to-noise in the

O2A band are skipped altogether. Second, the “IMAP-DOAS” preprocessor performs fast, clear-sky fits to the weak and strong

CO2 bands at 1.61 and 2.06 µm, respectively. While this preprocessor solves for a number of variables, the CO2 and H2O

columns, which are fit independently from each of these two bands, are most relevant for cloud screening. From these spectral10

fits, the strong-to-weak ratios of the column-integrated CO2 and H2O are derived. The CO2 ratio must be within a certain

range (near unity) for the scene to be deemed sufficiently clear to warrant a Full-Physics retrieval. Other screens are used to

remove soundings unlikely to yield successful XCO2 , such as those at high solar zenith angle or for which the continuum SNR

levels are too low. Unlike in version 7 of the OCO-2 algorithm, there is no explicit screen for snow and ice-covered surfaces.

However, the surface albedo in the strong CO2 band is low over snow and ice, and therefore the strong CO2 band SNR filter15

will remove many of those scenes. The full prescreening criteria for OCO-2 B8 are given in Table 1.

In total, roughly 26% of land soundings pass our pre-screener (28% land nadir, 25% land glint) and 27% of ocean glint

soundings pass it as well. Generally these fractions are strong functions of both location and time of year. To illustrate this, the

fraction of soundings passing the prescreening criteria for December 2015 and June 2016 are shown in Figure 1. A number of20

features are observed. A higher fraction of soundings are passed in the tropics than at higher latitudes relative to the sub-solar

latitude ( ∼-23◦ in December and +23◦ in June), and the passing rates tend to be higher over bright vs. dark surfaces. Also,

few soundings survive over the tropical rainforests in South America and Africa, which are often cloudy. A significant number

of soundings survive prescreening over the Greenland and Antarctic ice sheets during their summer season (this was not the

case in version 7), though it is shown later that most of these fail the post-retrieval quality screening (Section 4.2). About 10%25

of nadir soundings over ocean pass the prescreening criteria; this occurs in regions where the nadir view is relatively close to

the glint geometry, typically near the sub-solar latitude. These nadir ocean soundings are currently removed by post-retrieval

filtering, as their quality relative to the glint ocean observations has not yet been evaluated. A final obvious feature is that fewer

soundings are available in nadir mode than in glint - this is because many orbits over the Atlantic and Pacific oceans became

“full-time” glint-mode orbits beginning in November 2015 (Crisp et al., 2017). Prior to that, there were equal numbers of nadir30

and glint orbits, but after that change, approximately one third of all orbits are nadir and two thirds are glint.
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Figure 1. Fraction of Soundings passing OCO-2 B8 prescreening filter in December 2015 (left) and June 2016 (right), for both nadir mode

(top) and glint mode (bottom). Starting in November 2015, about one third of all orbits are performed in nadir mode, and two thirds are

performed in glint mode.

3 The NASA ACOS XCO2 retrieval algorithm as applied to OCO-2

The original ACOS XCO2 retrieval algorithm over land (version 2.9) was described in O’Dell et al. (2012), with details spe-

cific to GOSAT given in Crisp et al. (2012). Details of the spectroscopy used at that time were published in Thompson et al.

(2012). In this section, we give an overview of the evolution from ACOS version 2.9 to OCO-2 versions 7 and 8, including

spectroscopy, aerosol treatment, and a number of other changes.5

Briefly, the NASA ACOS algorithm uses optimal estimation to solve for parameters of a state vector to obtain the best match

to spectra from the three GOSAT or OCO-2 near- infrared bands and consistent with a prior constraint. These bands are the

O2A band at 0.76 µm (band 1), the weak CO2 band at 1.61 µm (band 2), and the strong CO2 band at 2.06 µm (band 3). The

state vector parameters, listed in Table 2, include the profile of CO2 at twenty atmospheric levels along with a number of an-10

cillary parameters to which the GOSAT and OCO-2 near-infrared spectra are sensitive. These include surface pressure, surface

albedo parameters (over land only), a temperature profile offset and water vapor profile multiplier, and parameters related to the

wavelength scale of the spectra (dispersion shift and stretch). The latter are relative to the preflight values of these parameters,

described in Lee et al. (2017). Because telluric line positions are known with high accuracy, the retrieval solves for them with
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Table 2. General setup of the ACOS state vector.

Element No. Elements Prior Value Prior Uncertainty (1σ) Notes

CO2 Values 20 Same as TCCON Same as ACOS B2.9 Defined on sigma pressure levels

Temperature Offset 1 0 K 5 K Rel. to Prior profile

Surface Pressure 1 from prior meteorology 4 hPa Prior Unc. 1 hPa for B3.5

H2O Scale Factor 1 1.0 0.5 Multiplier on prior profile

Aerosol Type 1,2 OD755 2 from MERRA ± factor of 7.39

Water, Ice Cloud OD755 2 0.0125 ± factor of 6.05

Aerosol Type 1,2 x0 2 0.9 0.2

Water Cloud x0 1 0.75 0.4

Ice Cloud x0 1 just below tropopause 0.2

Aerosol Type 1,2 σa 2 0.05 0.01

Water Cloud σa 1 0.1 0.01

Ice Cloud σa 1 0.04 0.01

UTLS Aerosol OD755 1 0.006 ± factor of 6.05 introduced in B8

Albedo Mean Land 1 per band Prior Calc. 1.0 Land

Albedo Slope Land 1 per band 0.0 0.0005 Land; units of 1/cm−1

Albedo Mean Ocean 1 per band 0.02 {0.2,0.2,1e-3} Ocean

Albedo Slope Ocean 1 per band 0.0 1.0 Ocean; units of 1/cm−1

SIF Mean 1 Prior Calc. 0.008 Land

SIF Slope 1 0.0018 0.0007 Land; units of 1/cm−1

Wind Speed 1 from prior meteorology 5 m/s Ocean

Dispersion Shift 1 per band 0.0 0.4 of channel FWHM

Dispersion Stretch 1 per band 0.0 1 pm/channel OCO-2 only

EOF Amplitudes 3 per band 0.0 10.0 1 per band for B3.5 & earlier

virtually no dependence on the prior. To account for scattering effects of thin cloud or aerosol, the retrieval also solves simulta-

neously for amounts and Gaussian vertical profiles (as described in Section 3.1) of five different kinds of scatterers with fixed

optical properties: a water cloud type, an ice cloud type, two fixed aerosol types, and beginning in version 8, an Upper Tropo-

spheric/Lower Stratospheric (UTLS) sulfate aerosol layer. In addition, the retrieval also fits scaling factors for three spectral

patterns per band, to account for imperfections in the spectroscopy, solar model, and instrument model, and determined using5

singular value decomposition of our fit residuals run on clear-sky soundings (Section 3.3). For solar-induced fluorescence (SIF)

emission from plants on land, we fit for two SIF parameters which are needed to account for this fluorescence in the L2 spectra

(Section 3.5). These SIF parameters are not the official SIF data product; that product is derived from the IMAP prescreener
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Table 3. Significant ACOS retrieval algorithm changes.

GOSAT B2.10 GOSAT B3.3 GOSAT B3.4 GOSAT B3.5

Gaussian Aerosol Profiles Residual Fitting Updated ocean surface MERRA Aerosol Types

Sigma Pressure Levels 1 hPa Psurf Prior Uncertainty Band 2 Spectral Range

Prior CO2 Profile Change Prior OD755 = 0.05 Spectroscopy Update

Spectroscopy Update Spectroscopy Update

Corrected XCO2 AK Fluorescence Fit Land Gain H

GOSAT B7.3 OCO-2 B7 OCO-2 B8

3 EOFs per band Restricted Band Ranges Spectroscopy Update BRDF over land

2 hPa Psurf Prior Uncertainty 4 hPa Psurf Prior Uncertainty UTLS Aerosol GEOS5-FP-IT Meteorology

Updated cloud ice properties L1B improvements numerous small changes

Table 4. ACOS retrieval differences between GOSAT and OCO-2.

Category GOSAT OCO-2

Radiance used Estimated total intensity OCO-2 single polarization

EOFs, Band ranges wavenumber space channel space

Fit O2A band offset ? Yes No

SIF Prior 0 From IMAP retrieval

Per-band dispersion parameters Offset only Offset, Slope

Band 1 Fitted Range 758.1–772.2 nm 759.2–771.5 nm

Band 2 Fitted Range 1597.4–1618.1 nm 1598.1–1617.9 nm

Band 3 Fitted Range 2042.1–2079.0 nm 2047.8–2079.9 nm

Channel Mask None Bad samples, spikes

through a dedicated fit (Sun et al., 2018). In total, there are typically 55 fitted parameters for land retrievals and 53 for ocean1.

With the exception of CO2, the a priori covariance matrix is diagonal, with the 1σ uncertainties as given in Table 2.

The first documented algorithm version, B2.9 as described in O’Dell et al. (2012), had several deficiencies which occasion-

ally produced large biases in the retrieved XCO2
(Wunch et al., 2011a). This early version of the algorithm also contained some5

1This excludes parameters in our state vector with prior uncertainties close to zero, such as cloud and aerosol layer widths.
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cumbersome traits, such as a variable number of vertical levels from sounding to sounding, which made the output difficult to

use. The observed XCO2
biases were partially related to the aerosol parameterization, demonstrated by the fact that clear-sky

retrievals of clear-sky simulations did not exhibit substantial biases (O’Dell et al., 2012). Furthermore, errors in the O2 and

CO2 spectroscopy were suspected to be an additional source of bias. Over the course of several years, a number of changes to

the algorithm were therefore implemented to yield the present version B8. The changes are too numerous to fully describe here,5

but the most important ones are listed in Table 3. The changes fall into several major categories, with spectroscopy, aerosol

treatment, treatment of the ocean surface, and chlorophyll fluorescence being the most important. In B8, the meteorology used

to prescribe the a priori temperature profile, water vapor profile, and surface pressure was also changed (Section 3.5).

Further, as listed in Table 4, some minor retrieval differences exist between the GOSAT and OCO-2 versions of the algorithm.10

Besides using instrument models specific to each instrument (such as wavelengths of the various channels, noise model, and

instrument line shape functions), slightly different spectral ranges are fit for each instrument. Generally, this is because the

trusted calibrated range of OCO-2 spectra is slightly smaller than that of GOSAT, due to the differences in design of the

OCO-2 grating spectrometer versus the GOSAT Fourier transform spectrometers. Additionally, while all channels in each

band in the given spectral ranges are used for GOSAT, some band channels are masked out for OCO-2. This is due to either15

underlying bad pixels in the detector arrays, or to transient cosmic rays that induce temporary spurious readings in random

channels. Both of these processes are described in detail in Crisp et al. (2017).

3.1 Aerosol-related changes

Starting with version B2.10, the 20-layer optical depth retrieval used for clouds and aerosols was replaced with a Gaussian-

shaped vertical profile for each of the retrieved scattering particle types. As of version 8, two cloud types, two lower-atmosphere20

aerosol types, and one stratospheric aerosol are used. The new cloud and aerosol profile treatment is similar to that of Butz et al.

(2009) but specifies the aerosol concentration ρaer as a function of x, the pressure relative to the surface pressure. Therefore,

x ranges from zero at the top of the atmosphere to one at the surface. The functional form is simply

ρaer(x) = C exp

(
− (x−x0)2

2σ2
a

)
(1)

where for each aerosol type x0 is the vertical location at peak aerosol density and σa is the Gaussian 1σ profile width. Both of25

the latter variables are specified in units of relative pressure x. The prefactor C is defined such that the aerosol or cloud optical

depth at 755 nm, hereafter OD755, equals the desired value. In the retrieval algorithm, the fitted quantities are lnOD755 and

peak height pr,0 for each aerosol type, with the exception of the stratospheric aerosol (described in Section 3.1.1) for which

only the optical depth is retrieved. Because it has been shown that GOSAT and OCO-2 -like spectra have little sensitivity to

the Gaussian profile width (Butz et al., 2009), this parameter is fixed in both the GOSAT and OCO-2 retrievals for all particle30

types. The prior profiles for each fitted type are shown in Figure 2.
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Figure 2. Prior Gaussian profiles of the lower tropospheric aerosol types (red), water cloud (blue), ice cloud (purple), and stratospheric

aerosol (green). The local aerosol optical depth (AOD) per unit pressure at 755 nm is plotted as a function of the relative pressure. The lower

tropospheric aerosol prior optical depth is not fixed as for the other types, but rather is taken from a climatology described in the text.

The change to a sigma-level pressure system was incorporated at about the same time as the shift to Gaussian aerosol profiles.

Instead of fixed pressure levels, the pressure levels scale with the surface pressure:

pi = ai psurf (2)

where the ai are chosen such that the total number of pressure boundaries is 20, and the layers have roughly equal pressure

widths. The top-most model level is set to 0.01 hPa.5

The optical properties of the four scattering types remained unchanged from version B2.9 to B3.4 and are described in

O’Dell et al. (2012). However, the use of two fixed aerosol types, type “2b” and “3b” from the Kahn et al. (2001) climatology,

did not accurately represent the true global variability of aerosol on the length and time scales probed by GOSAT and OCO-2.

Beginning with build 3.5, the aerosol types were changed to be location and time dependent, with the prior type informa-10

tion coming from the aerosol climatology of the Modern-Era Retrospective analysis for Research and Applications (MERRA,
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Figure 3. Optical properties of aerosols and clouds used in the L2FP code as a function of wavelength. Left: Extinction efficiency relative

to that at 755 nm. Middle: Single scattering albedo. Right: Asymmetry parameter. DU: Dust, SS: Sea Salt, BC: Black Carbon, OC: Organic

Carbon, SO: Sulfate, WC: Water Cloud, IC: Ice Cloud. The spectral ranges of the three OCO-2 bands are demarcated by the dashed vertical

lines.

Rienecker et al. (2011)). The MERRA aerosol field is driven by the Georgia Tech/Goddard Global Ozone Chemistry Aerosol

Radiation and Transport (GOCART) model (Chin et al., 2002), and modified by assimilating aerosol optical depth from the

MODIS instruments onboard the Terra and Aqua satellites (Colarco et al., 2010). MERRA contains five broad aerosol types:

dust (DU), sea salt (SS), sulfate (SO), and black and organic carbon (BC and OC, respectively). Dust and sea salt are each

tracked in five separate size bins. Organic and black carbon are tracked in both hydrophobic and hydrophilic categories. In5

addition to the carbonaceous types, sulfate aerosol and sea salt are also hydrophilic and hence have optical properties that

depend on the local relative humidity (RH).

For the aerosol prior in the ACOS retrieval, we primarily sought to specify the typical dominant aerosol types present (in

terms of their contribution to the optical depth in the OCO-2 bands) in a given location at a given time of year. Monthly aerosol10

fields were derived from the MERRA model for the year 2010, and are used for all years in the ACOS retrieval. We aggregated

the 15 MERRA types, eight of which have RH-dependent optical properties, into the five aggregated types listed above. We

used typical density weightings and relative humidity values to create the optical properties for these aggregated types, as de-

scribed in Crisp et al. (2010). Their optical properties, including extinction efficiency, single scattering albedo, and asymmetry

parameter, are shown in Figure 3. The organic carbon and sulfate aerosol are generally similar in their optical properties, though15

their single scattering albedos diverge somewhat in the CO2 bands. The sea salt, water cloud, and dust optical properties are

relatively similar across the OCO-2 spectral range.
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Figure 4. Comparison of XCO2 time series for OCO-2 version 7 and TCCON, over several years at the station in Wollongong, Australia

(Griffith et al., 2014b). Each OCO-2 symbol represents an overpass average. A simple geometric colocation strategy was used in which

OCO-2 soundings within ± 7.5◦ latitude and ± 30◦ longitude of the TCCON station were retained. Large positive biases occur in the ocean

glint soundings in the southern hemisphere winter (blue arrows). As seen in Figure 19, these large biases primarily occur in the southern

oceans.

At each sounding location, the two aggregated aerosol types with the highest mean monthly values of the OD755 are se-

lected to be retrieved by the L2FP algorithm. In previous algorithm versions, the total prior OD755 was set to 0.15, apportioned

equally among four scattering types (water cloud, ice cloud, and two tropospheric aerosol types). However, it was found this

was generally too high to allow a fit near OD755=0 for scenes that were almost entirely free of aerosol. This “clear-sky bias”

was seen in early simulation tests (O’Dell et al., 2012). The prior OD755 is now set to 0.0125 for each cloud type, and set from5

the MERRA aerosol climatology for each tropospheric aerosol type as the average OD755 of that type (at a particular location

and month). There is some evidence that the tropospheric aerosol priors are occasionally still too high; methods for specifying

the aerosol prior are a continuing topic of investigation.

The cloud ice optical properties were updated in version 7. Before that, they were based on the band-averaged model10

developed by Baum et al. (2005) primarily for the MODIS instrument and known as the MODIS Collection 5 model. This

cloud ice model considered an ensemble of size-dependent non-spherical ice crystal habits in random orientation. As ice

crystal surface roughness was later shown to significantly affect scattering by ice crystals, and simulations with roughened

model particles were more consistent with satellite observations of ice cloud polarized reflectances (Yang et al., 2013), we

updated the cloud ice optical properties to correspond to the MODIS Collection 6 model, which describes scattering by severely15

roughened hexagonal column ice crystal aggregates (Baum et al., 2014). This update also fixed several minor issues in the
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previous cloud ice model, such as those resulting from linear interpolation of the optical properties from MODIS wavelength

bands to OCO-2, and those relating to truncation of the phase function.

3.1.1 The need for a stratospheric aerosol

When validating version 7 XCO2
retrievals, it was discovered via comparisons to both TCCON and models that most ocean

soundings in the most southerly ∼10 degrees of latitude exhibited a high bias of 1-3 ppm during the austral winter (Wunch5

et al., 2017). Figure 4 shows the bias appear in the southern hemisphere winter over the Wollongong TCCON station. The

bias is seen in soundings over ocean but not land. The bias is also apparent relative to the Lauder TCCON station (Figures

11 and A1 from Wunch et al., 2017). Comparisons of OCO-2 soundings to models (Figure 19) show the bias as a quasi-zonal

band over the southern hemisphere oceans, again with the larger bias occurring in the southern hemisphere winter. There is

also evidence of a similar but weaker band of high bias in the northern hemisphere. For 2015, it was hypothesized that small10

aerosol particles may have been injected into the UTLS by the explosive eruptions of the Calbuco (22-30 April 2015) and Wolf

(late May 2015) volcanos in south-central Chile and the Galapagos Islands, respectively. The presence of an aerosol layer with

visible optical depths around 0.01 was later confirmed with observations from the Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observatory (CALIPSO) and the Ozone Mapping Profile Suite (OMPS) satellites (Bègue et al., 2017). These optical

depths are small, but have a large impact on the radiances, especially in the O2A band, due to their high altitude.15

It was recognized that our version 7 retrieval algorithm had no way to accommodate the spectral signature of small strato-

spheric aerosol particles, which have a significantly larger effect on the O2A band than either of the CO2 bands due to the

small size parameter, i.e, the ratio of the size of the scattering particle to the spectral wavelength. The spectral signature would

essentially appear as a radiance offset in the O2A band. As a first test, we ran hundreds of retrievals on a single sounding that20

had a large positive bias in the operational retrieval, using slightly different first-guess values for each retrieval. Essentially, a

continuum of solutions was found (Figure 5). On one end of retrieval space, an approximately correct value of surface pressure

was found by inserting a thicker ice cloud, which contains larger particles starting in the stratosphere, and therefore has a strong

effect on all three bands (see Figure 3). This type of solution produced a poor χ2 in the strong CO2 band, typically > 2. On the

other end of the continuum were solutions where the sulfate layer, which was placed near the surface in the prior, was moved25

high up into the atmosphere. This solution regime had a much lower reduced χ2 (around 1.5) in the strong CO2 band and an

XCO2 that was typically 3–4 ppm lower, and much more in line with TCCON and model estimates. In these cases, the amount

of upper atmosphere cloud ice retrieved was also reduced, as its role was taken over by the sulfate.

These tests indicated that a more realistic solution would often be found if the retrieval could push the prior sulfate into the30

upper atmosphere, though this seldom occurred. The amount of sulfate needed in the upper atmosphere in these cases is small,

approximately 0.01 optical depth at 755 nm. That value is consistent with other observations (Bègue et al., 2017). In addition to

actual small particles in the UTLS, the OCO-2 instrument has a documented problem which produces a similar impact on the

O2A and spectrum. As described in Crisp et al. (2017, Section 6.5), a very thin layer of ice appears to build up on the OCO-2
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Figure 5. Results of several hundred retrievals of a single ocean glint sounding (28.5◦S, 52.3◦W) measured on June 26, 2015. Each retrieval

is identical except that each has a different first guess state, consistent with the prior uncertainty distribution. The retrieved relative sulfate

height (0=top-of-atmosphere; 1=surface) is shown on the ordinate, the reduced χ2 from the strong (2.06 µm) CO2 band retrieval is shown

on the abscissa, and the retrieved XCO2 is indicated by color. For reference, the result from the operational retrieval (version 7) is shown as

the large filled circle. When the retrieval places the sulfate near the surface, as in the version 7 case, both the strong CO2 band χ2 value and

XCO2 tend to be higher. Conversely, when the retrieval pushes the sulfate closer to the top-of-atmosphere, the strong CO2 band χ2 values

and XCO2 tend toward lower values, a result that is more physically plausible.

Focal Plane Arrays (FPAs) over time. As this ice layer grows to a thickness similar to the anti-reflective coating thickness (tens

of nanometers), it enhances the surface reflectance on the O2A band FPA, producing a scattered light contribution of 0.1 to

0.2%. Much smaller effects are seen on the CO2 detectors. The ice layer is sublimed off every 3-6 months when the instrument

goes through a decontamination cycle. While attempts have been made to remove this scattered light contribution in the version

8 calibrated radiance (L1B) product, it is likely that some residual signal remains. Because this is primarily a radiance offset5

in the O2A band alone, it produces a signal similar to a small UTLS aerosol, and hence would also be mitigated by including

a stratospheric aerosol in the retrieval. During algorithm testing of the stratospheric aerosol using version 7 L1B radiances

(which contained the scattered light signature), we found that the amount of UTLS aerosol retrieved indeed correlated with the

decontamination cycles, lending credence to this hypothesis.

10

Thus, in version 8 an additional sulfate aerosol was included in the retrieval state vector. For simplicity, a sulfate type

identical to the lower-atmosphere type in terms of optical properties was used. Only the total optical depth of the stratospheric

sulfate is retrieved, while its Gaussian height and width are kept fixed. This solutions treats both actual small particles in the

UTLS as well as the radiometric offsets that accompany the real O2A band scattered light signal. Our testing of the version

13



8 algorithm showed that including this state vector element not only reduced the southern ocean bias, but also reduced the

negative tropical ocean bias and positive bias over higher northern latitude lands that were also apparent in Figure 19. A more

complete comparison of version 7 and version 8 validation statistics is given in Section 5.

3.2 Spectroscopy-related changes

There have been substantial changes between the molecular cross sections used in the earliest ACOS versions and those used in5

B8. We continue to use in-house lookup tables of absorption coefficients (ABSCO) parameterized as a function of temperature,

pressure, wavelength, and water vapor mixing ratio for each of the main absorbing gases in the OCO-2 bands: O2, CO2, and

water vapor (H2O). Successive versions of these tables have been refined by incorporating new laboratory results and theoret-

ical models for increasingly accurate absorption coefficients. The ABSCO version used in the B8 algorithm is ABSCO v5.0

(Drouin et al., 2017; Oyafuso et al., 2017); B7 used the previous ABSCO version, v4.2.10

The ABSCO v5.0 O2A band tables represent a major step forward from previous ABSCO versions. Earlier ABSCO ver-

sions integrated the highest quality spectroscopic input from a range of studies that had focused on fitting different parameters

independently. (See, for example, Thompson et al. (2012) and references therein). The ABSCO v5.0 tables are based on self-

consistent multispectral fits to laboratory spectra that include line mixing, speed-dependent Voigt line shape parameters, and15

collision-induced absorption (CIA). This self-consistency, and the use of laboratory spectra covering a range of pressures,

temperatures and measurement techniques, are key features of the approach. The O2 spectral line parameters, line mixing and

CIA used in ABSCO v5.0 are described in Drouin et al. (2017). Parameters for broadening of O2 by H2O are from the study

by Drouin et al. (2014).

20

The impact of the latest multi-spectrum fitting update in the O2A band is shown in terms of the accuracy of the retrieved

surface pressure in Figure 6. Panel (a) shows the retrieved surface pressure minus the prior for ABSCO version 4.2, which was

used in version 7 of the algorithm, while panel (b) shows the same for ABSCO v5.0, used in version 8. The main improvements

seen are that the retrieved surface pressures in version 8 are essentially unbiased with respect to the meteorological prior over

land, and that the land and ocean differences are reduced and centered closer to zero. We also note that for OCO-2, no addi-25

tional line strength scaling was required in the O2A band, as has been necessary for all previous ACOS/GOSAT versions (see

e.g. Crisp et al., 2012). For ACOS-GOSAT B3.5 retrievals, an O2 scaling factor of 1.0125 was found to be beneficial, perhaps

because of slight instrumental differences between OCO-2 and GOSAT.

The ABSCO v5.0 tables for the 1.61 and 2.06 µm CO2 bands use line parameters and line mixing models derived from30

self-consistent, multispectral fits by Devi et al. (2016) and Benner et al. (2016), respectively. The parameters are derived from

fits to laboratory spectra at multiple pressures and temperatures and the computation incorporates a speed-dependent Voigt line

profile with nearest-neighbor line mixing. Earlier versions of the ABSCO tables (Benner et al., 1995; Devi et al., 2007) were

based entirely on room temperature multi-spectrum fitting, with theoretical temperature dependences of the line shape and

14



Figure 6. Retrieved minus prior surface pressure for a large selection of OCO-2 soundings, using both the oxygen-A band spectroscopy

model from (a) ABSCO v4.2 and (b) ABSCO v5.0, as described in the text. ABSCO v5.0 spectroscopy leads to a more consistent retrieval

of surface pressure over both land and ocean surfaces.

line mixing parameters. The updated spectroscopy includes analyses of spectra recorded at temperatures from 170K to 296K,

representing a significant advance. Parameters for broadening of CO2 by H2O are from Sung et al. (2009) for the 4.3 µm

CO2 band and extrapolated to OCO-2’s CO2 bands. Validation of the ABSCO v5.0 tables using up-looking TCCON spectra is

described in Drouin et al. (2017) and Oyafuso et al. (2017). We note one important difference between the reference databases

and our CO2 absorption coefficients. We found it necessary to incorporate additional absorption in the center of the 2.06 µm5

band. This additional absorption was parameterized in order to reduce errors in retrievals with TCCON up-looking spectra.

Further details can be found in Thompson et al. (2012) and Oyafuso et al. (2017).

Because the laboratory spectra underlying ABSCO currently are only good to roughly 1% absolute accuracy of line intensi-

ties, the algorithm allows for overall scaling factors for each of the two CO2 bands. For the 1.61 µm band, the ABSCO v5.010

tables include a uniform scaling to bring the intensities from the Devi et al. (2016) multispectrum fit into line with reference
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intensity measurements (estimated accuracy ∼0.2 %) from Polyansky et al. (2015). Oyafuso et al. (2017) show that this pre-

scaling of the ABSCO using reference laboratory measurements results in good consistency between single-band up-looking

XCO2 retrievals from ground-based FTS spectra and the XCO2 values reported by TCCON (which are themselves calibrated to

agree with reference airborne profiles). Reference intensity measurements are not available for the 2.06 µm band at the current

time. In tests within the OCO-2 Level 2 algorithm, using OCO-2 radiances, a scaling of 1.004 for the 2.06 µm ABSCO table5

was found to yield the best agreement between single-band retrievals performed using this band compared with single-band

retrievals performed using the 1.61 µm ABSCO table as described above.

Finally, ABSCO v5.0 tables incorporate H2O line parameters from the HITRAN 2012 compilation (Rothman et al., 2013).

We use an unofficial, modified version of the MT_CKD continuum, supplied by Eli Mlawer (Mlawer et al., 2012). This10

continuum version offers a compromise between previous versions of MT_CKD and measurements by Ptashnik et al. (2011),

and falls relatively close to measurements by Mondelain et al. (2013). The subsequently-released MT-CKD 3.2 has been tested

and shown to be a modest improvement over the unofficial version incorporated into ABSCO v5.0, with negligible changes

to XCO2
, but noteworthy improvements to the water column determination. Methane is not currently included in the B8 (or

previous versions) of the forward model, as the impact of methane absorption was found to be negligible for XCO2
retrievals15

performed using the OCO-2 spectral ranges.

3.3 Residual Fitting using EOFs

ACOS B3.3 introduced a new way to deal with large spectral residuals caused by imperfect spectroscopy, solar model and

instrument characterization, which were previously treated using a simple “empirical noise” parameterization (Crisp et al.,

2012). In contrast, the new approach fits scaling factors to fixed spectral residual patterns for each band.20

These patterns are the empirical orthogonal functions (EOFs) that result from a singular value decomposition of spectral

residuals from training retrievals. Training scenes were selected to be largely devoid of cloud and aerosol effects, such that

residual patterns due to unfitted clouds and aerosols are not a large contributor to the resulting EOF patterns. The EOFs are

constructed such that the residuals rs,b of each sounding s and band b can be approximately represented as a linear combination25

of the EOF patterns:

rs,b =

Neof∑
j=1

cj,s,b ej,b (3)

where the vectors ej,b are the EOFs for each band. For a diverse set of training retrievals, a matrix M is created for each

spectral band and populated by the residuals of the spectral fits within that band. Training sets typically included more than

10,000 soundings.30
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Each matrix M is then decomposed into its eigenvectors using traditional singular value decomposition:

M = UWVT (4)

with the columns of U spanning an orthonormal basis of the most persistent spectral residual vectors observed in the training

dataset. By convention, the first eigenvector explains the largest fraction of the total variance, as indicated by descending order

of singular values (the diagonal elements of W).5

Application of this EOF technique substantially reduces the spectral residuals, yielding values of the relative RMS of the

residuals of ∼0.1% for each band, and reduced χ2 values near unity. For GOSAT, only the first EOF was found to be necessary.

For OCO-2 B7 (and B8) target mode observations, better agreement with TCCON XCO2 was found when the largest three

EOFs were employed. The first two EOFs for GOSAT, as well as the first three EOFs for OCO-2, are shown in Figure 7 for10

each spectral band. The EOFs for each of the eight spatial footprints sampled by OCO-2 are extremely similar, though they are

solved for independently due to the slightly different spectroscopic response of each. The first EOFs for OCO-2 and GOSAT

are very similar for each band, indicating that common forward model errors such as spectroscopy and top-of-atmosphere solar

flux, rather than instrument-specific effects, are driving the EOF patterns. The first EOF is also very similar to the mean residual

pattern, and typically accounts for 50-60% of the variance in the residuals.The second and third EOF typically account for only15

1-3% of the variance in the residuals, with higher order EOFs accounting for even less. For the O2A band, the second EOF

appears as a Doppler shift of the first. In the weak CO2 band, the second EOF appears to be due to water vapor lines, while

the third EOF appears to be a Doppler shift of the first. Higher order EOFs often exhibit additional instrument artifacts (such

as unidentified bad spectral samples) and forward model errors related to water vapor, as well as other effects that are difficult

to interpret.20

The EOF formulation was modified in B8 in several ways. First, the EOFs were defined in terms of radiance per unit noise

rather than pure radiance, in order to be consistent with the cost function metric that is minimized during the retrieval itself.

However, the structure of the EOFs in B8 was much the same as in B7. Second, improved filtering of spectral samples that are

contaminated by noisy or dead detector pixels greatly reduced their impact on the EOF patterns. Finally, a manual re-ordering25

of the EOFs was performed for each of OCO-2’s eight spatial footprints, because the standard ranking by variance would

occasionally flip the EOF patterns in different footprints. This mattered because sometimes the third and fourth EOFs would

change places (and the current algorithm only fits the first three EOFs). This ensured that, to the extent that the EOFs of each

footprint roughly matched, the same three EOF patterns for each footprint are fit within the L2FP retrieval.

3.4 Surface Model30

The forward model for ACOS L2FP retrievals uses one of two surface models, depending on the location of the footprint.

Water surfaces are simulated as a linear combination of a Cox-Munk ocean surface (Cox and Munk, 1954) and Lambertian

reflector. This surface has seven parameters: wind speed, and a Lambertian albedo at a reference wavenumber with a linear

17



  

 

 

OCO-2
GOSAT

-0.5

0.0

0.5

760 762 764 766 768 770

 

 

  

 

 

-0.5

0.0

0.5

 

 

  

 

 

-0.5

0.0

0.5

760 762 764 766 768 770
Wavelength [nm]

 

 

  

 

 

-0.5

0.0

0.5

1600 1605 1610 1615

 

 

  

 

 

-0.5

0.0

0.5

 

 

  

 

 

-0.5

0.0

0.5

1600 1605 1610 1615
Wavelength [nm]

 

 

  

 

 

-0.5

0.0

0.5

2050 2055 2060 2065 2070 2075

 

 

  

 

 

-0.5

0.0

0.5

 

 

  

 

 

-0.5

0.0

0.5

2050 2055 2060 2065 2070 2075
Wavelength [nm]

 

 

Figure 7. Spectral patterns of the EOFs for the O2A band (top set of panels), weak CO2 band (middle set of panels), and strong CO2 band

(lower set of panels) for GOSAT B3.5 (green) and OCO-2 B7 (footprint 4 only) (black). For reference, the light grey trace in each panel

shows the modeled spectrum (not to scale). Some stronger water vapor absorption lines (blue vertical lines) in the weak and strong CO2

bands correlate with features in the 2nd and 3rd EOFs. 18



spectral slope term in each of the three spectral bands. The prior wind speed is taken from the resampled meteorology (either

ECMWF or GEOS5 FP-IT, as discussed in the next section), as for the other meteorological parameters. The strong CO2 band

Lambertian albedo is fixed to 0.02; the other six terms are fit in an essentially unconstrained fashion. This approach leads to

the fitted Lambertian albedos generally staying small and positive, the latter of which is currently required by our radiative

transfer module.5

Through ACOS B7, land surfaces were assumed to be purely Lambertian, with an albedo and albedo spectral slope retrieved

for each band. The Lambertian surface assumes that the bidirectional reflectance distribution function (BRDF; the ratio of the

radiance in the reflected direction to the irradiance from the incident direction; Schaepman-Strub et al. (2006)) is a constant

that is often specified as a scalar albedo. Since independent fits are done within each of the three OCO-2 spectral bands, this10

yields six state variables for land footprints.

Analysis of B7 OCO-2 target mode observations showed that the retrieved Lambertian albedo and aerosol optical depth

sometimes exhibited dependence on the sensor zenith angle for observations of the same surface location. This indicated that

the true surface BRDF has dependence on the observation angles. A more physically justified approach would use a non-15

Lambertian model for the surface BRDF. For trace gas retrievals, a Lambertian surface assumption introduces no errors in

the absence of multiple scattering between the surface and atmosphere; in this case, the retrieved albedo is interpreted as

the surface reflectance at the primary scattering geometry (sun-surface-satellite). However, over brighter surfaces with some

atmospheric scattering, the assumed BRDF could in principle affect the retrieval via the interaction of the retrieved aerosol,

surface pressure, and gas concentrations. Therefore, in B8 it was decided to change the surface model for land footprints to a20

non-Lambertian surface model. This model assumes a fixed BRDF shape and is assumes the surface is azimuthally symmetric,

but allows for spectral dependence of the amplitude between and within each of our three bands; full details of the BRDF

model are given in Appendix B. While this model does often show reduced correlation between view zenith and the retrieved

BRDF amplitude, the retrieved XCO2
(as well as most other state vector parameters) shows very little change versus a version

of the B8 retrieval run with a Lambertian surface. Therefore, while B8 does use a non-Lambertian BRDF parameterization,25

a Lambertian surface appears to work equally well. This fact may be a consequence of the strong filtering used in B8, which

tends to remove soundings with multiple scattering. Future applications of the ACOS L2FP algorithm to cases with higher

AOD may be more strongly impacted by the non-Lambertian BRDF.

3.5 Additional Retrieval Algorithm Changes

In addition to these changes, a number of additional (mostly minor) changes have also been made to the ACOS L2FP al-30

gorithm since B2.9. In B2.10, the prior CO2 profile was changed to match that used by TCCON, which was more realistic

than our previous prior formulation; as of B8, this corresponds to the GGG2014 version (Toon and Wunch, 2014). Generally

speaking the TCCON CO2 prior profile is relatively simple: it is a function of latitude, altitude, and date only. It includes a

simple formulation of the seasonal cycle and currently assumes a fixed secular increase of 0.52%/yr (or 2.08 ppm/yr at 400

19



Table 5. Median ± 1σ of GEOS5 FP-IT - ECMWF differences for GOSAT soundings passing the ABP cloud filter.

Variable Land Ocean

Surface Pressure (hPa) 0.07 ± 0.73 0.05 ± 0.43

T2m (K) 0.4 ± 2.7 0.3 ± 0.6

T@700 hPa (K) 0.0 ± 0.8 -0.2 ± 0.8

TCWV (kg/m2) 0.1 ± 1.8 0.4 ± 2.4

Surface Wind Speed (m/s) 0.4 ± 1.3 -0.4 ± 0.9

ppm). There is no land/ocean or other meridional dependence. It requires specifying the tropopause height, and has simple

formulations for the profile in the boundary layer, free troposphere, and stratosphere. A small mistake in the XCO2
averaging

kernel was also fixed in B2.10; this was caused by inconsistent assumptions regarding the pressure-dependent gas absorption

cross sections throughout our retrieval code, which led to an obvious “kink” in the averaging kernel that had long been visually

evident (see e.g. Figure 2 of Connor et al., 2008). We use the 2016 version of the Toon solar transmittance spectrum2 (Toon,5

2014). Changes in the prior covariance matrix for CO2 (O’Dell et al., 2012) were also considered, but rejected, as tests using

alternate covariance matrices showed insignificant performance improvements.

In B3.3, solar-induced chlorophyll fluorescence (SIF) fitting over land surfaces was introduced. This change was introduced

to combat a bias in XCO2 that results from not fitting for fluorescence when it is present, due to its impact on the O2A band.10

This problem and our fluorescence fitting scheme are described in detail in Frankenberg et al. (2012). Briefly, we fit for the

mean and slope of the fluorescence at the top-of-canopy as a function of wavelength; the mean is expressed as a fraction of the

continuum radiance level at a wavelength of 755 nm. The spectral dependence of the fluorescence is taken to be linear. Addi-

tional minor algorithm changes to B3.3 included reducing the prior surface pressure uncertainty from 4 to 1 hPa for GOSAT,

which is likely to be a more accurate representation of the true prior surface pressure uncertainty for the majority of scenes (see15

e.g. Salstein et al., 2008). This has the added benefit of reducing the interference error between SIF, aerosols, zero-level offset

and surface pressure.

In B3.4, fitting for SIF was turned off for GOSAT medium gain observations over land, as these regions are nearly all desert

with very little biological activity. For OCO-2, the SIF prior is taken from the official SIF retrieval, as described in Sun et al.20

(2018), because SIF retrievals from individual soundings are meaningful for OCO-2 due to its relatively high SNR.

In B8, the prior height of the cirrus cloud layer relative to the surface pressure was moved slightly, from the fixed value of

x= 0.3, to just below the tropopause height (which is a relatively strong function of latitude). The calculation of the tropopause

2Available at https://mark4sun.jpl.nasa.gov/toon/solar/solar_spectrum.html.
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height itself was also refined in B8, which also improved the calculation of the prior CO2 profile. Finally, the prior meteorology

was changed in B8 from ECMWF to GEOS5-FP-IT (Suarez et al., 2008; Lucchesi, 2013). Some statistics regarding differences

in surface pressure, temperature, water vapor, and surface wind speed between the two models for retrieved GOSAT soundings

are given in Table 5; the corresponding difference statistics for OCO-2 soundings are nearly identical. Only soundings passing

the O2A band prescreener are included. In general, the two models are very similar, with for instance 95% of all soundings5

having a surface pressure difference of less than 1.5 hPa. Surface pressure probably affects our retrieved XCO2
the most, as it

is used not only in the retrieval, but also in the bias correction, where differences in the prior surface pressure will lead to a

first order change in the bias-corrected XCO2
. Currently then, the “noise” from the surface pressure difference between these

two models would amount to roughly 0.6 hPa, or about 0.25 ppm in XCO2
, which is quite a bit less than our noise-driven error

(∼ 1.4 hPa on average) and regional biases (∼ 2.4 hPa on average). Retrieved surface pressure errors are discussed in more10

detail in Section 4.3.4.

4 Retrieval Filtering and Bias Correction

All soundings passing the prescreening criteria (Table 1) are processed with the L2FP retrieval algorithm. Of these, some 10-

20% fail to converge to a solution, typically because of unscreened clouds or other factors that cannot properly be modeled in

the retrieval. Some fail simply because of the nonlinear nature of the problem - in general, there is no perfect way to minimize15

the cost function. Of the 80-90% of soundings that do converge to a minimum in the cost function, typically 3-6 iterations are

required.

Despite our best efforts to prefilter problematic soundings, there are inevitably some retrievals with XCO2
errors that exceed

those predicted by theory. Ideally, the XCO2
errors would be normally distributed, with errors consistent with the 1σ a posteriori20

uncertainty on XCO2
from the retrieval (see e.g. Rodgers, 2000), but often there are retrievals with systematically biased XCO2

and/or larger-than-expected scatter. This problem is partially mitigated by applying a bias correction, which can reduce both

scatter on smaller spatial scales and biases on larger spatial scales. However, problematic soundings still remain. A quality

filtering procedure then attempts to remove these soundings with larger-than-expected differences from our truth metrics. For

GOSAT, this process was described in O’Dell et al. (2012) and Crisp et al. (2012). The problem of biases is dealt with via25

a linear bias correction (Wunch et al., 2011a). In this section, we describe both filtering and bias correction procedures for

XCO2
for B8 retrievals only, unless otherwise noted. A similar procedure was used for GOSAT data as well as OCO-2 B7, but

the procedures were more mature and robust for B8.

4.1 Truth Proxy Training Data Sets

Both filtering and bias correction require a training data set, which consists of soundings for which we have both the OCO-230

retrieved XCO2
as well as a reliable, independent estimate of XCO2

. The latter we call a “truth proxy”. We used four such

datasets: TCCON, models, models in the southern hemisphere only, and a new validation method for OCO-2 called the “small-
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Table 6. XCO2 Truth proxies for retrieval evaluation.

Name Ns Land Ns Ocean Glint Details

TCCON 228k 88k Geometric colocation requirement, GGG2014

Multi-Model Median 1132k 861k Median of 6 models (see text)

Models_SHA 260k 251k same as above for lat<20S

Small Area Approximation (SAA) 795k 505k areas < 100km along-track

area approximation”. Table 6 lists the truth proxies used in version 8, while Figure 8 shows the spatial distribution of the truth

proxy datasets matched to actual OCO-2 soundings.

4.1.1 TCCON-based Truth Proxy

The most direct truth proxy is the comparison to TCCON, which currently has 25 operational stations globally, but with heavy

representation in North America, Europe, Asia, and Oceania. For the OCO-2 B8 evaluation, the latest version of TCCON5

retrievals was employed (GGG2014, Wunch et al., 2015). Many schemes have been used to match air masses observed by

satellites to those viewed from TCCON stations. Examples include a geographic-centric scheme (Cogan et al., 2012; Inoue

et al., 2013; Oshchepkov et al., 2013; Kulawik et al., 2016), a scheme based on the potential temperature at 700 hPa (Keppel-

Aleks et al., 2011; Wunch et al., 2011b), model-based selection (Guerlet et al., 2013), and geostatistical selection (Nguyen

et al., 2014). These more sophisticated techniques were primarily used because GOSAT had fairly sparse data and required10

relatively loose matching criteria to yield sufficient numbers of matched observations. This is less of a problem with OCO-2 at

lower and mid-latitudes, with its higher spatial sampling density. High latitude validation with TCCON remains challenging,

where OCO-2 data are still sparse.

Table 7 lists the TCCON sites used as truth proxies in this work. Training data ranges correspond to the quality filtering15

and bias correction procedures described in Sections 4.2 and 4.3, respectively. Validation data ranges correspond to the basic

validation described in Section 5. Our colocation requirements for B8 were similar to those used for Wunch et al. (2017), in

which we required that OCO-2 footprints were within 2.5◦ latitude and 5.0◦ longitude of the TCCON station, and that the

observations occurred within 2 hours of each other. These requirements were modified slightly for the Caltech, Armstrong, and

Tsukuba stations in order to discriminate satellite observations taken over the nearby megacities of Los Angeles and Tokyo.20

Because of additional station data and a longer training period, there were roughly twice as many station-months of valid

colocations for B8 as compared to our B7 training (roughly 400 vs. 190 station-months).

We estimate TCCON colocation errors to be on the order of 0.5 ppm, due to both colocation errors and TCCON station-level

biases (Hedelius et al., 2017). Even with these small errors, TCCON is an incomplete validation source due to its limited spatial25
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Figure 8. Sounding density of the truth proxy data in 4◦x 4◦ bins used in the OCO-2 version 8 XCO2 filtering and bias correction. The middle

panel shows both the full global model-based truth proxy, and the southern hemisphere truth proxy as the portion below the dashed black

line.
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Table 7. TCCON stations used in this work.

TCCON station Training Date Range Validation Date Range Reference

Anmyeondo, South Korea May 2015–Sep 2015 May 2015–Aug 2016 Goo et al. (2014)

Ascension Island Sep 2014–Dec 2016 Dec 2014–Feb 2017 Feist et al. (2014)

Bialystok, Poland Sep 2014–Jun 2016 Sep 2014–Apr 2017 Deutscher et al. (2015)

Burgos, Phillipines Jan 2017 Mar 2017–Apr 2017 Velazco et al. (2017)

Bremen, Germany Sep 2014–Jul 2016 Sep 2014–Mar 2017 Notholt et al. (2014)

Caltech, Pasadena, CA, USA Sep 2014–Nov 2016 Sep 2014–Feb 2017 Wennberg et al. (2015)

Darwin, Australia Sep 2014–Sep 2016 Sep 2014–Oct 2016 Griffith et al. (2014a)

Edwards (Armstrong), CA, USA Sep 2014–Jun 2016 Sep 2014–Aug 2016 Iraci et al. (2016)

East Trout Lake, Canada Jan 2017 Oct 2016–May 2017 Wunch et al. (2016)

Eureka, Canada Jun 2015 Aug 2015 Strong et al. (2016)

Garmisch, Germany Sep 2014–Aug 2016 Sep 2014–May 2017 Sussmann and Rettinger (2014)

Izaña, Tenerife, Spain Dec 2015–Mar 2016 Dec 2015–Jul 2016 Blumenstock et al. (2014)

Karlsruhe, Germany Sep 2014–Jun 2016 Sep 2014–May 2017 Hase et al. (2015)

Lamont, OK, USA Sep 2014–Feb 2017 Sep 2014–May 2017 Wennberg et al. (2016)

Lauder, New Zealand Sep 2014–Mar 2017 Sep 2014–May 2017 Sherlock et al. (2014)

Manaus, Brazil April 2015–May 2015 Nov 2014–Jun 2015 Dubey et al. (2014)

Ny Ålesund, Spitzbergen, Norway not used May 2015–May 2017 Notholt et al. (2017)

Orléans, France Sep 2014–Oct 2016 Sep 2014–May 2017 Warneke et al. (2014)

Paris, France Apr 2015–Mar 2016 Oct 2014–Oct 2016 Te et al. (2014)

Park Falls, WI, USA Sep 2014–Dec 2016 Sep 2014–May 2017 Wennberg et al. (2014)

Réunion Island Sep 2014–Nov 2016 Sep 2014–May 2017 De Mazière et al. (2014)

Rikubetsu, Japan Oct 2014–Oct 2016 Oct 2014–Feb 2017 Morino et al. (2016b)

Saga, Japan Sep 2014–Mar 2016 Sep 2014–May 2017 Kawakami et al. (2014)

Sodankylä, Finland Oct 2014–Jul 2016 May 2015–May 2017 Kivi and Heikkinen (2016)

Tsukuba, Japan Sep 2014–Feb 2017 Sep 2014–May 2017 Morino et al. (2016a)

Wollongong, Australia Sep 2014–Nov 2016 Sep 2014–May 2017 Griffith et al. (2014b)

coverage. For example, there are few stations in the tropics, none in the central Pacific or Central Asia, and, with the exception

of Armstrong, in bright desert regions. Except when specifically stated, we employed the OCO-2 averaging kernel correction.

A general treatment of averaging kernel corrections was first given in Wunch et al. (2011a). The specific correction we employ

is taken from Nguyen et al. (2014), in which the TCCON retrieved profile is convolved with the OCO-2 column averaging

kernel before it is compared to OCO-2. This effect is generally smaller than 0.3 ppm in the column.5
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Table 8. Models used in this work.

Name Version Land

Biosphere

Inverse

Method

Transport Reference

CAMS 15r2 ORCHIDEE 4D-Var LMDZ Chevallier et al. (2010)

Univ. Edinburgh v2.1 CASA EnKF GEOS-Chem Feng et al. (2009)

Jena CarboScope s04_v3.8 Special 4D-Var TM3 Rödenbeck (2005)

CarbonTracker CT2015, CASA EnKF TM5 Peters et al. (2007), with updates

CT-NRT.v2016-1 documented at http://carbontracker.noaa.gov

TM5-4DVar 2016 CASA 4D-Var TM5 Basu et al. (2013)

OU 2016 CASA 4D-Var TM5 Crowell et al. (2018b)

4.1.2 Small Area Approximation Truth Proxy

To supplement TCCON, we used a method new for OCO-2 called the “Small Area Approximation”, or SAA3. The SAA

relies on the high spatial resolution of OCO-2 footprints (1.3x2.3 km2), and the relatively long decorrelation length of CO2

concentration in the atmosphere (500-1000 km, see e.g. Chevallier et al., 2017, Fig 1). Specifically, this approximation assumes

that for a given overpass of an area not larger than 100 km in spatial extent, XCO2 can be considered uniform over the area.5

True XCO2
variability was evaluated by Worden et al. (2017) by examining output from the GEOS-5 7x7 km2 “nature run”. It

was found to be typically less than 0.1 ppm per 100 km areas away from strong known sources, thus justifying our small area

assumption. In fact, this error is considerably lower than can be obtained by any of the other truth metrics. The major drawback

of this method is that it is insensitive to biases due to variables that vary slowly on these small scales, such as those related to

viewing geometry and some surface and aerosol parameters.10

4.1.3 Model-based Truth Proxies

The third validation dataset is based on results from global carbon flux inverse models, and is referred to as the “Multi-Model

Median”. In order to evaluate OCO-2 retrievals against a posteriori results from an array of models, and to avoid the biases in

one particular model, a suite of 6 models sampled at the OCO-2 sounding locations and times was used. Table 8 provides a

summary of the models that were used. The models generally differed in their prior flux assumptions, prior flux uncertainty,15

transport model, initial conditions, spatial resolution, and inverse method, but had one commonality in that all assimilated

in-situ CO2 concentration data. Because of these differences, the models often yielded a posteriori XCO2
fields that disagreed

to some extent, with differences ranging from a few tenths of a ppm to several ppm as discussed below. We used model output

that covered a minimum period from September 2014 through December 2015, though a few models (CarbonTracker, TM5-

3Not to be confused with the South Atlantic Anomaly.
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Figure 9. Maximum difference between each model and the model median in ppm, averaged over 4◦ × 4◦ grid boxes. Two seasons are

shown: DJF (left) and JJA (right). Soundings for which all models are within 1.5 ppm of the model median are retained in the model-based

truth proxy.

4DVar) extended into March 2016. To compare against the models, for simplicity we computed only true XCO2
values from the

a posteriori CO2 concentrations, rather than averaging-kernel-corrected values. Previous authors have shown that this effect is

typically small, on the order of a few tenths of a ppm (Wunch et al., 2011a; Inoue et al., 2013; Lindqvist et al., 2015).

For each matched OCO-2 sounding, the model median was computed from all available models for that sounding. If the5

any model XCO2
value differed by more than 1.5 ppm from the model median, that sounding was excluded from our training

dataset. This requirement helped ensure that at the very least, all the models were generally consistent with each other for a

given sounding in our training set. Generally the root-mean-squared difference of the model XCO2
values was less than 0.7

ppm for any given sounding satisfying this requirement. The median of the model-predicted XCO2 for soundings satisfying

this criterion was then taken as the truth estimate.10

Figure 9 shows maximum difference from the model median for both the northern hemisphere winter (December, January,

February; DJF) and summer (June, July, August; JJA). Most soundings passed our “model-agreement” requirement over ocean

at all times and over land in DJF, where the bulk of the land biosphere is quiet and hence XCO2
is more robustly modeled.

In JJA, however, a substantial fraction of land soundings fail this test, in particular over northern hemisphere regions such as15

Asia. Tests showed that our results were not strongly sensitive to the agreement threshold chosen.

Finally, Wunch et al. (2011a) used a truth proxy called the “Southern Hemisphere Approximation” (SHA) in which it was

assumed that the southern hemisphere (25◦S-55◦S) could be taken to be meridionally uniform in XCO2
at any given time, with

a latitudinal gradient of -1 ppm from 25S to 55S, and the change in mean XCO2
over time could be prescribed with a linear20

secular trend (taken to be 1.9 ppm/yr). This served reasonably well for the GOSAT retrievals at that time, which exhibited rather

large errors. However, the SHA has the primary shortcoming that meridional anomalies can sometimes exceed 0.5-1.0 ppm,
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and are typically larger over land versus ocean. We find that substituting the model median instead of the zonally-corrected

mean used in Wunch et al. (2011a) results in error variances of the approximation 3-4 times lower, when comparing against

any particular model as truth. Therefore, in order to maintain a connection to the truth metric of Wunch et al. (2011a), in this

work we adopt the modified SHA called “Model_SHA”. This is simply the model median, discussed above, but only used in

the southern hemisphere below a latitude 20◦S.5

4.2 Quality Filtering

The construction of the operational OCO-2 filtering and bias correction for B7 is described in detail in Mandrake et al. (2015),

with updates for B8 described in an online user’s guide (Eldering et al., 2017). The training procedure for both filtering and

bias correction for these two versions followed a similar approach. Below, we discuss the filtering and bias correction for

version 8 only, and make notes where version 7 differed significantly. The filtering procedure yields two quantities. The first10

is a binary flag denoted the XCO2
quality flag, which requires that a series of parameter-based tests are all passed. The second

is a graded set of “warn levels”, which assigns each retrieval an integer value from 0 (most likely to yield accurate XCO2
) to

5 (least likely to yield accurate XCO2
). A genetic algorithm (Mandrake et al., 2013) finds combinations of variables that are

best at predicting variance reduction in XCO2 over both small areas (. 10x80 km2) and in the Southern Hemisphere (south of

25S). In this document, we focus only on the quality flag filtering.15

Filtering is accomplished by first identifying variables that cause the largest δXCO2
, where δXCO2

is defined as the retrieved

- true XCO2
, the latter of which is evaluated for a given truth proxy. This was done sequentially, by identifying the single

variable responsible for the largest fraction of the variance in δXCO2
. We then created a simple threshold-based filter for this

variable. After application of the filter, this process was repeated multiple times until it appeared that the majority of problem-20

atic data were removed. Because bias correction affected this procedure, a preliminary filter set was first created, after which a

preliminary bias correction was developed. The preliminary bias correction was then applied, δXCO2
was updated accordingly,

and the filters were re-derived using this bias-corrected δXCO2
. Generally this had only a minor effect on the filters, and often

served to increase the fraction of data passed through filtering.

25

Selection of thresholds for particular filters was somewhat subjective: generally bias was regarded as more problematic than

scatter, but both were considered. Variables were typically selected as filters if they were correlated with bias greater than about

0.5 ppm, or significant scatter (greater than about 2 ppm). The filtering variables and thresholds were derived separately for

land (combined nadir and glint) and ocean soundings. The final values of the filtering thresholds for the XCO2
quality flag are

given in Appendix A. Filtering variables selected and their thresholds were the same or similar, regardless of the particular30

truth proxy used.

An example of this sequential filtering approach is shown in Figure 10, which shows the XCO2 error vs. filtering parameters

for nadir and glint land soundings, using TCCON as the truth proxy. Overall, the results were found to be robust for all our truth
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Figure 10. δXCO2 vs. select filtering variables for land (nadir+glint) data, using TCCON as a truth proxy. Shown are the mean bias in each

parameter bin for both raw (black circles) and bias-corrected (light blue circles) XCO2 , as well as the standard deviation of the bias-corrected

δXCO2 (dark blue diamonds). The histogram of each parameter is shown in gray. The vertical black dashed lines denote filtering thresholds

for the XCO2 quality flag, while the thin red solid lines show filtering thresholds for the warn levels. The quality flag filters are applied

cumulatively from left to right and top to bottom. The fraction passing at each step, as well as the RMS error of the bias-corrected XCO2 , are

shown in the upper right corner of each panel. Please see Table A1 for a complete definition of all of the filter variables.
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Figure 11. Same as Figure 10, but for ocean glint measurements, where the truth proxy is the multi-model median.
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proxies. Just a few variables do the bulk of the filtering. For both land and ocean, the CO2 and H2O ratios computed by the

IMAP-DOAS preprocessor account for a significant fraction of the total filtering. These variables represent the ratio of the total

column CO2 (H2O) as derived from the weak CO2 band to that from the strong CO2 band. As discussed at length in Taylor

et al. (2016), values of these gas ratios that deviate significantly from unity indicate the presence of significant atmospheric

scattering. As shown in Figure 10, ratios significantly away from the median values can result in both large scatter and large5

biases. Another robust finding is that biases are associated with large absolute values of the retrieved - prior surface pressure

(dP) for both the Level-2 and ABP preprocessor retrievals. All of these variables (CO2 and H2O ratios and surface pressure)

are most likely diagnosing scattering-induced errors due to improperly-modeled clouds and aerosols.

Two variables associated with small-scale variability are also associated with increased scatter: the standard deviation of10

the surface altitude within OCO-2’s field-of-view, and another parameter called “Max_Declocking”, which is determined in-

dependently for each of the three OCO-2 bands. The latter is related to a slope in the observed radiance within an individual

sounding’s field-of-view, and is determined from OCO-2’s color slices as discussed in Crisp et al. (2017). The scatter associ-

ated with surface elevation appears to be related to an instrument-to-spacecraft offset specification error, which results in small

(several hundred meters) pointing errors, which is improved in the next data version (version 9) and allows for relaxation of15

this filter (Kiel et al., 2018).

Another interesting variable that can result in both bias and scatter is the tropospheric lapse rate of the retrieved CO2 profile,

called co2_grad_del. It is determined by the difference in retrieved CO2 between the surface and the retrieval pressure level at

0.7 times the surface pressure, minus this same quantity for the prior:20

co2_grad_del = [c(1)− c(0.7)]− [cap(1)− cap(0.7)] (5)

where c(x) and cap(x) respectively denote the retrieved and a priori CO2 dry air mole fraction at relative pressure x. The

reason why this variable is strongly associated with bias and scatter is still being investigated; it may be due to CO2 spec-

troscopy errors, or some other factor. There is also a filter associated with dark surfaces; scenes with a strong CO2 band albedo

less than 0.05 consistently exhibit a bias in retrieved XCO2
and are thus excluded. Note this will tend to flag most snow- and25

ice-covered surfaces (such as over Greenland and Antarctica), which are highly absorbing at wavelengths longer than about

2 µm. It also tends to exclude dark forests such as in the Amazon. There are also filters associated with the retrieved slope

of the strong CO2 band albedo, the fit quality in the CO2 bands, and a number of retrieved aerosol variables. Of particu-

lar note is the total retrieved optical depth associated with our larger aerosol types: dust, water cloud, and sea salt (DWS).

High values of DWS are associated with negative biases in XCO2
over land, and it is used as both a filter and bias-correction30

variable. Although ice is also a large type, it is confined to the upper atmosphere in our retrieval and has its own dedicated filter.

Similar variables are used for filtering over water surfaces (Figure 11), though note that almost no aerosol-related variables

are used. This may be because water surfaces have relatively uniform optical properties, such that the retrieved variables in-
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Figure 12. Fraction of L2FP processed soundings passing quality filter (upper row) and total number of good-quality soundings per month

per 6◦×6◦ boxes (lower row), for the northern hemisphere winter (DJF) and summer (JJA). The number plots have a logarithmic color scale,

and grid boxes with no data are shown in grey.

directly associated with cloud and aerosol scattering, such as the CO2 and H2O ratios and the slope of the strong CO2 band

albedo, are more effective than over land, obviating the need for additional aerosol-related filtering. It may also be because most

downward-propagating, forward scattered light is absorbed by the ocean surface, so the pathways for aerosol contamination

are significantly less than over land, as noted by Butz et al. (2013).

5

As seen in the upper left panel of Figure 11, the dominant filtering variable for water-glint soundings is the slope of the

strong CO2 band albedo. This is the slope of the retrieved Lambertian albedo in that band, which is generally small and is

added onto the reflectivity coming from the primary Cox and Munk surface, which is a function of wind speed only. Negative

slopes are strongly associated with XCO2bias, which appears indicative of either cloud ice or sea salt aerosol scattering, both

of which yield a negative slope in these units4. Large positive values of this slope are likely associated with contamination by10

sulfate aerosol or other small particle types. The sensitivity of this variable to cloud and aerosol scattering has been confirmed

with simulations. About 10% of water-glint soundings are flagged by this filter.

4The units of the albedo slope are in per unit wavenumber, increasing with wavenumber.
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After filtration, about 31% of land soundings and 55% of water soundings pass the XCO2
quality flag 5. As depicted in Figure

12, the pass rates are not uniformly distributed around the globe. Over land, very bright and dark surfaces are preferentially

filtered out, as well as locations with many low clouds such as the Amazon, which are sometimes missed by our prefilters

(Taylor et al., 2016). Nearly all soundings over ice surfaces are filtered out, because the albedo of ice is very low at 2µm,

hence yielding low signal-to-noise. The higher quality of water soundings is likely due to higher uniformity of water surfaces5

in glint mode, higher and more uniform SNR in all three bands, and fewer surface-atmosphere scattering mechanisms. Over

both land and water, soundings at higher solar zenith angles are also removed at a higher rate by our quality flag. This is most

likely due to the relatively large effects of scattering on our retrievals for these geometries, specifically, when the fraction of

the light received at the detector from atmospheric scattering is a larger fraction of the total. Over water, approximately 70%

of soundings pass at lower viewing angles, while nearly all soundings fail at high viewing angles.10

Table 9. Land bias correction parameters, their coefficients and percentage of the variance explained, for different truth proxies and observing

modes.

Coefficent (%Variance)

Truth Proxy Mode N dP co2_grad_del DWS

TCCON Nadir 92k -0.38 (33%) -0.028 (17%) -8.8 (4%)

Glint 68k -0.38 (38%) -0.026 (14%) -6.4 (2%)

Target 245k -0.29 (22%) -0.023 (24%) -7.8 (6%)

SAA Nadir 242k -0.37 (38%) -0.031 (26%) -9.5 (10%)

Glint 251k -0.36 (41%) -0.030 (24%) -9.6 (9%)

Models Nadir 281k -0.34 (28%) -0.029 (21%) -9.3 (8%)

Glint 300k -0.34 (30%) -0.027 (19%) -9.0 (8%)

Models_SHA Nadir 87k -0.35 (28%) -0.032 (29%) -8.8 (8%)

Glint 87k -0.36 (29%) -0.029 (25%) -10.3 (12%)

B8 Adopted All -0.36 ± 0.028 -0.029 ± 0.0027 -8.5 ± 1.1

Reference Value 0.0 15.0 0.0

B7 Adopted All -0.30 -0.028 -7 to -11*

*B7 used ln(DWS) rather than DWS in its bias correction.

5Note that these passing rates are lower than those in Figures 10 and 11, which were based on a smaller training dataset that included more successful and

clear-sky soundings, with fewer soundings in difficult regions such as over heavy clouds or snow and ice-covered surfaces.
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4.3 Bias Correction

After filtering, systematic biases remain in retrieved XCO2
which must be corrected in order to minimize errors. The OCO-2

bias correction contains three main pieces: parametric, footprint-level, and global biases. Parametric biases are functionally

related to a given parameter associated with a given sounding. Examples of this could be surface pressure, albedo quantities,

retrieved aerosol quantities, etc. Footprint-level biases are corrected to ensure that each of OCO-2’s eight sensors, or “foot-5

prints”, yield the same XCO2 value when observing similar scenes. This is not always the case due to small calibration errors in

the eight individual footprints. The final step of the bias correction removes any global mean bias that may remain. The overall

bias correction equation is then written as:

XCO2 ,bc =
XCO2 ,raw −CP (mode)−CF (j)

C0(mode)
(6)

where CP is the mode-dependent parametric bias, CF is the footprint-dependent bias for footprints j = 1 . . .8, and C0 repre-10

sents a mode-dependent global scaling factor. The following subsections discuss each of these corrections in detail.

Figure 13. Multi-linear bias correction fit to the three variables used for land soundings. Here, land nadir and glint observations are shown,

with the multi-model median truth proxy. The circles show mean values in each parameter (x-axis) bin, and the error bars are the 1-sigma

standard deviations within each bin. The histogram shows the distribution of the parameter. The legend in each panel shows the starting and

ending standard deviation after application of each variable, and the coefficient for that variable of the multiple regression using all three

variables.

4.3.1 Bias Correction: Parametric Biases

The most complex but important of the three aspects of the bias correction is inferring biases dependent upon different retrieval

parameters. Most near-infrared XCO2 retrievals have required this, for both GOSAT (Wunch et al., 2011a; Cogan et al., 2012;
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Guerlet et al., 2013) and OCO-2 (Reuter et al., 2017; Wu et al., 2018) measurements. A nontrivial fraction of the bias comes

from the retrieval algorithm itself, as shown in the simulation-based study of O’Dell et al. (2012), in which the instrument

model and spectroscopy were perfect, yet biases still emerged in the retrievals. Previous versions of the ACOS algorithm

applied to GOSAT have shown dependencies on the surface albedo in the CO2 bands, dP (retrieved minus prior surface

pressure), co2_grad_del, the retrieved ice cloud height, and other variables. The parametric bias correction has the form of a5

multiple linear regression, following Wunch et al. (2011a):

CP =
∑
i

ci(pi − pi,ref ) (7)

where ci are the regression coefficients, pi are the selected parameters, and pi,ref are convenient reference values. We note

that the reference values are nontrivial in that they interact with the last term in the bias correction, the global scaling factor.

Ideally, the reference value will be the value of the parameter at which that parameter does not bias the retrieved XCO2
, but this10

is impossible to disentangle from the global scaling factor. Wunch et al. (2011a) took the parameter reference values to be the

estimated global mean value of each parameter. Here we do not require this, though for some variables, the estimated global

mean is used.

In order to identify the variables of interest, we used all four truth proxies and identified combinations of one, two, three, and15

four variables that removed the most variance, for each observing mode and over both land and water. Variables that remove

less than 5% of the variance are not included, as overfitting is a potential danger here. Typically the different truth proxies

agree on the most important variables, but disagree on the variables that explain just a few percent of the variance or less. As

shown in Table 9, it was found that three fit parameters were required over land, and that their values did not strongly depend

on observing mode. These variables were dP (retrieved minus prior surface pressure), co2_grad_del, and finally DWS, which20

as stated previously is the combined retrieved optical depth of dust, water cloud, and sea salt aerosol. DWS represents the

retrieved optical depth of large particles in the lower-to-middle troposphere in the retrieval. While ice cloud particles are large,

they are placed in the upper troposphere in the retrieval, and all other aerosol types in the retrieval are much smaller.

In Table 9, the coefficients of each parameter inferred from each truth proxy and observing mode typically agree to within25

10-20%. The final result represents a combination of the average of these individual values, but was also driven by consensus

amongst the scientists involved. Table 9 also gives the approximate uncertainty on each parameter, which is estimated as the

standard deviation of the estimates from the different truth proxies and viewing modes. Also shown is the B7 bias correction,

which was very similar, though it used ln(DWS) instead of DWS. Figure 13 shows the result of the multiple regression for

these three variables against the model-based truth proxy, for all nadir and glint soundings over land. In general, dP explains30

about 30% of the variance over land, co2_grad_del about 20%, and DWS roughly 5-10%.

A similar procedure was followed for glint soundings over water. For this observing mode, only dP and co2_grad_del were

needed; all other variables explained only a very small fraction of the variance, and were not consistent among truth proxies.
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Table 10. Ocean glint bias correction parameters for different truth proxies.

Coefficent (%Variance)

Truth Proxy N dP max(co2_grad_del, -6)

TCCON 72k -0.24 (30%) 0.078 (5%)

SAA 385k -0.22 (60%) 0.092 (10%)

Models 610k -0.25 (35%) 0.105 (8%)

Models_SHA 157k -0.12 (16%) 0.134 (21%)

B8 Adopted -0.23 ± 0.06 0.090 ± 0.024

Reference Value 0.0 -6.0

B7 Adopted -0.08 0.077

Figure 14. Same as Figure 13, but for ocean glint measurements again using the model mean truth proxy.
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Figure 15. Estimates of the OCO-2 footprint biases, estimated separately for each observing mode and surface type. Because of their

similarity, a single set of biases was used in the end.

The fit to these two variables for the model-based truth proxy is shown in Figure 14. A true linear regression will not work

for co2_grad_del. Instead of fitting a nonlinear form, we instead fit against the variable max(co2_grad_del, -6). This gives

essentially the fit as shown in the figure, where the best-fit line to the bias increases with increasing co2_grad_del until a value

of -6, above which the fitted bias is held constant. As shown in Table 10, the different truth proxies again yielded similar results

to within about 20%, with the exception of “Models_SHA”, which was an outlier. The reason for this is unknown, though we5

speculate that the actual parameter variability in the southern hemisphere is too small to obtain sensible slopes. Therefore, this

truth proxy was excluded in the calculation of the final coefficients for glint soundings over water. Also, it is worth noting

that the dP coefficient in B7 was roughly three times smaller than the value of -0.23 adopted for B8. This was driven by

inconsistencies in the B7 truth proxy data sets and a very small training data set, which yielded an unrealistically small value.

Later analyses showed that B7 probably should have used a higher value, more in line with the B8 result.10

4.3.2 Bias Correction: Footprint Biases

After fitting for the parametric biases, the dependence of the XCO2 bias on footprint was evaluated. As with the parametric

biases, the footprint biases were evaluated using the suite of truth proxies and for each observing mode separately (land nadir,

land glint, and ocean glint). For all frames that contained all 8 footprints, the difference of each footprint from the mean of

its frame was calculated, with the result being the estimated set of footprint biases for each truth proxy. Note that this was15

done after application of the parametric bias correction. The resulting biases were quite consistent across truth proxies, thus the

results across truth proxies were averaged. As shown in Figure 15, there was virtually no dependence on viewing mode, and

no obvious land-water differences. It appears that the footprint-level biases are truly instrument related, and thus do not seem

to strongly depend on other factors. Therefore, a single set of footprint-level biases was used. The adopted footprint biases for

footprints 1–8 were (-0.36, -0.15, -0.16, -0.14, 0.02, 0.33, 0.13, 0.34) ppm, with an uncertainty of roughly ± 0.03 ppm (1σ)20
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Figure 16. Scatter plot of 130 OCO-2 B8 target mode XCO2 observations versus colocated TCCON observations, used in the determination

of the global scaling factor C0 from equation (6). OCO-2 values have the parametric and footprint bias corrections applied.

on each. The reason for the general increase in this bias with increasing footprint is not known. Finally, while the fraction of

the variance explained by footprint-level biases (∼2%) is small compared to that explained by the parametric biases, they are

straightforward to evaluate and could have an effect on local-scale analyses, and are therefore removed.

4.3.3 Bias Correction: Global Scaling

Despite the corrections described above, there is still an overall XCO2
bias on the order of 1-2 ppm relative to the true at-5

mosphere. As shown in equation (6), the denominator term C0 represents a global bias correction, and is parametrized as a

function of viewing mode. As for the quality filtering and parametric bias correction, we found that the land scaling factor is

roughly the same for nadir, glint, and target modes, such that a single scaling can be used for all land soundings. Ocean glint

required a slightly different global scaling factor.

10

The B8 global scaling was determined primarily from several hundred direct OCO-2 overpasses of TCCON stations. We

followed the geometric colocation method of Wunch et al. (2017), with the exception that sites in the southern hemisphere

required the same latitude and longitude colocation thresholds as sites in the northern hemisphere. The TCCON value for

a given overpass was determined as the mean of the observations within ±2 hours of the OCO-2 overpass. At least 3 valid

TCCON and 20 quality-flag “good” OCO-2 soundings were required per overpass. For each viewing mode, the slope m of the15
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Figure 17. Annual mean biases and changes from the prior for all quality-flag “good” soundings from September 2014 through September

2017. (a)-(c) Parametric biases for dP , co2_grad_del, and DWS. (d) Sum of the parametric bias terms - note the color scale change. (e)

Departure of the raw retrieved XCO2 including the global scaling correction, from the prior, XCO2,raw/C0−XCO2,ap. (f) Departure of the

bias-corrected XCO2 from the prior, XCO2,bc −XCO2,ap.
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Table 11. Global Scaling Factors (Divisors) for OCO-2 version 8.

Data Set Method N Divisor C0

Land Target TCCON 138 0.9958

Land Nadir TCCON 313 0.9962

Land Glint TCCON 277 0.9960

Ocean Glint TCCON 236 0.9956

Ocean Glint Coastlines* 536 0.9955

Ocean Glint Model Bootstrap* 500,000 0.9954

Land (all) Adopted 0.9958

Ocean Glint Adopted 0.9955

*Using a value of 0.9958 for land soundings.

best-fit line passing through the origin was calculated with the method of York et al. (2004):

XCO2 ,tccon =
XCO2 ,OCO2

C0
(8)

which provides the best-fit value of C0. The results for each viewing mode are shown in Table 11 under Method “TCCON”. It

can be seen that the three sets of land overpasses yielded a scaling factorC0 consistent with each other to within their respective

errors. The errors are representative differences of the fitted slope due to both retrieval errors as well as linear fit differences5

(for instance, using a least-squares fit vs. a least-absolute-deviation fit), and were typically ± 0.0003 (∼0.12 ppm). Because

Target mode observations were better colocated, the Target observation value of 0.9958 was adopted for all land observations.

For ocean glint, the global scaling factor was estimated with three methods: direct overpasses of TCCON stations and two

independent “bootstrap” methods, using coastline-crossings and models. Direct overpasses of TCCON stations yielded a value10

of 0.9956, slightly lower than the adopted land value but still consistent to within errors. For the coastline bootstrap method,

a set of several hundred small areas centered on coastlines were identified in which it was possible to ratio the mean value of

XCO2 over water to the mean value of XCO2 over land. This yielded a mean water/land ratio of 0.9997±0.0001, meaning that

ocean values were slightly lower than land values. Multiplying this water/land ratio by the land scaling value yielded an ocean

scaling value of 0.9955. Finally, the multi-model median truth proxy was used, wherein the slope of OCO-2 versus models15

was calculated, sampled at good quality OCO-2 sounding locations. It was found that land required a scaling of 0.9950 and

ocean a scaling of 0.9946, suggesting a water/land ratio for OCO-2 of roughly 0.9996±0.0001, similar to that of the coastline

crossing value, and thus an ocean scaling value of 0.9954. Note that the absolute comparison of models relative to OCO-2

was not used here, as spin-up issues and averaging kernel corrections (ignored in this analysis) could yield a spurious global

offset between the models and OCO-2. Therefore, only relative land-ocean differences were used to infer C0 in this “Model20

Bootstrap” method. As seen in Table 11, the “bootstrap” methods were remarkably consistent with each other and with the
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direct TCCON overpass method, all suggesting an ocean scaling of roughly 0.9955.

All of the methods described above for determining the global scaling of XCO2 show remarkable consistency with each

other, giving confidence that the overall scale of OCO-2 data are known to within a few tenths of a ppm, and the land-ocean

difference is known to better than 0.2 ppm. One caveat is that the direct TCCON overpass comparisons did not account for5

the averaging kernel correction in this analysis. After the release of OCO-2 XCO2
B8, subsequent analysis showed that this

correction typically lowered the value of TCCON by ∼0.1 ppm on average relative to OCO-2. Therefore, there is additional

possible uncertainty in the overall magnitude of OCO-2 data by this amount.

4.3.4 Bias Correction Evaluation10

With all three sources of bias now characterized, the overall role of the bias correction in the retrieval can be evaluated. Figure

17 is an attempt to show this at the mean annual scale. Panels a-c show the biases due to the three different bias terms: dP ,

co2_grad_del, and DWS. Of these three, dP is the strongest. This is apparent in panel (d), which shows the sum of the para-

metric biases (note the scale change between columns). Panel (e) shows the mean change from the prior in the raw retrieval,

after correcting for the global bias term only (which is likely due to spectroscopic and instrumental bias). The change from the15

prior to the bias-corrected XCO2
is shown in panel (f), which combines these two terms.

The paramteric bias, while smaller than the difference between the raw retrieved and prior XCO2
, is of a comparable order

of magnitude. Ideally, the parametric bias would be much smaller. As noted above, the parametric bias is dominated by the

dP term. This term reflects the fact that the error in XCO2 is reduced using the prior rather than the retrieved surface pressure.20

That is, the ACOS-retrieved slant column of air is dominated by systematic errors that are not reflected in the estimated CO2

slant column. We have identified two easily-correctable sources of such error, both related to how the B8 surface pressure prior

fields were derived. One of these was caused by a slight error in the knowledge of the pointing of the OCO-2 instrument that

induces spurious small-scale error in the estimated prior surface pressure in regions of high topographic variability. The second

was caused by sampling the GEOS5 FP-IT surface pressure at the wrong time of day, by up to several hours. Both of these25

effects have been corrected for in the version 9 OCO-2 XCO2 data, described in detail in Kiel et al. (2018).

Even after correcting the prior, the OCO-2 surface pressure retrievals still contain significant regional biases. These biases

have a largely zonal structure, with a negative bias of up to ∼ -5 hPa at the highest latitudes and a positive bias of several

hPa in the tropics, with an overall mean bias of roughly +2 hPa. The standard deviation of the surface pressure bias (relative30

to the GEOS5 FP-IT prior) for quality-filtered soundings is roughly 2.8 hPa. By binning nearby soundings, it is found that

greater than 2.4 hPa of this variation comes from systematic errors scales greater than 1◦. One possible hypothesis is that this

systematic error is due to O2 absorption cross section errors and how they manifest themselves in the retrieval. For instance,

an incorrect parameterization of the temperature dependence of absorption could yield errors similar to those observed. Future
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Figure 18. TCCON validation for OCO-2 XCO2 versions B7 (left column) and B8 (right column), for land nadir (top), land glint (middle),

and ocean glint (bottom) observations. Each symbol represents the overpass-mean comparison for one site overpass, with the total number of

overpasses per site given in parentheses. Thus each symbol represents tens to hundreds of OCO-2 observations co-averaged. Quality-filtered

and bias-corrected XCO2 is shown for OCO-2, along with the averaging-kernel correction. The solid line denotes the one-to-one line, and the

dashed line is the line of best fit. The colocation strategy is described in the text. Shown in the upper left of each panel are the total number

of overpasses (N), the mean, standard deviation (σ), and RMS of the OCO-2 minus TCCON differences, the slope of best fit, and the R2 of

the two datasets. 41



updates to our spectroscopy may reduce this bias, and is an active area of research within the ACOS team.

Currently, however, these multi-hPa systematic errors in the retrieved surface pressure are likely larger than errors in the

GEOS5 FP-IT prior, which are believed to be on the order of 1-2 hPa. For instance, three reanalysis surface pressure sets were

recently compared and fund that the differences were as small as 0.5 hPa in the tropical oceans, and became larger at higher5

latitudes, such as in the southern ocean where RMS differences were on the order of 2 hPa (Jucks et al., 2015, section 4.2.1).

This is the basic reason behind the artificially high (4 hPa) 1σ uncertainty on the prior surface pressure currently used in the

OCO-2 retrieval. If future versions of the retrieval (including spectroscopy updates) yield a more unbiased retrieval of surface

pressure, it may reduce the role of dP in the bias correction and lead to a more accurate retrieval of XCO2
.

10

The figure reveals several additional interesting features. The co2_grad_del bias is of a smaller magnitude than the dP bias,

and has the strongest effect in tropical forests, and a more diffuse effect elsewhere, including the tropical and southern oceans.

The DWS bias has the largest effects over northern Africa, temperate Eurasia, and Australia, where large dust particles are

prevalent. The total parametric bias pattern can sometimes cancel the departure from the prior, such as over Australia, indicat-

ing that the original departure was likely spurious. However, the overall large positive departure in the northern middle-to-high15

latitudes is not strongly affected by the bias correction, and thus appears to be a feature well-captured by the native retrieval

itself. This latter feature seems to imply that the interhemispheric gradient is too weak in the TCCON prior. The GGG2014

TCCON CO2 prior relies exclusively on the age of the air to create the interhemispheric gradient of CO2. The next release of

the TCCON software includes an age-independent term in the CO2 priors representing the source/sink imbalance, which will

roughly double the interhemispheric gradient (G. Toon, personal communication).20

5 Brief Evaluation of OCO-2 XCO2

Thus far, we have completely described the mechanics of the current ACOS retrieval and methodology, but have yet to evaluate

the actual algorithm performance. As B7 XCO2 was validated in detail in Wunch et al. (2017), in this section we focus primarily

on the differences (mainly improvements) between B7 and B8. Figure 18 shows the relationship between colocated TCCON25

and OCO-2 XCO2
observations, for both B7 and B8 OCO-2 retrievals. Operational quality filtering and bias correction has

been applied for each version. We used the same colocation strategy as described in Section 4.1.1, but with the additional

requirement that fossil fuel emissions from the 1 km 2013 ODIAC database (Oda and Maksyutov, 2011), smoothed with a 5

km Gaussian smoother, be less than 300 g/m2/month at the location of the OCO-2 soundings; this eliminated OCO-2 sound-

ings in the vicinity of strong fossil fuel sources. All good-quality OCO-2 soundings within each overpass were averaged (thus,30

one symbol on each plot denotes one overpass). Only overpasses with at least 10 such OCO-2 soundings were included. The

TCCON XCO2
values are averages of all good-quality TCCON soundings at that site within ±2 hours of the OCO-2 overpass.
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Figure 19. The difference between OCO-2 bias-corrected XCO2 vs. the model median where the models agree for both version 7 (left

column) and version 8 (right column), using the agreement criteria as given in Section 4.1.3. Results are shown for two seasons: DJF

2014-15 (top row) and JJA 2015 (bottom row).

Based on these figures, B8 appears generally superior to B7 in terms of agreement with TCCON. First, there is more good-

quality data in B7, at least for glint observations. This is primarily due to improvements in the prescreeners. In terms of

accuracy, the scatter and outliers of XCO2
over both land and ocean are reduced in B7, especially over ocean for which the out-

liers were driven by southern hemisphere observations (in particular the high southern latitude sites, Lauder and Wollongong).

The bias over land in B7 was significant, with a 0.3 ppm difference between land nadir and land glint. The overall apparent5

bias over land of 0.2-0.3 ppm is partly due to neglecting the averaging kernel effect when solving for the global divisors in

the bias correction, and partly due to methodological differences in how we calculate the global bias in the first place. While

the R2 values are significantly higher than those reported in Wunch et al. (2017), this is due to the extended length of the data

record used here. Coupled with the secular increase in CO2, this leads to larger dynamic range in XCO2
and hence more signal

and higher correlations than when using a shorter data record. Finally, we note that in B8 (and to some extent B7) there is10

generally a negative slope between TCCON and OCO-2. This appears to be due to a trend in OCO-2 XCO2
relative to TCCON

(not shown), in which OCO-2 appears to be losing XCO2 at the rate of 0.1-0.2 ppm/year, though this trend is not statistically
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significant. The apparent trend may be due to an OCO-2 calibration effect, and is currently under study.

The general improvement in B8 over B7 can also be seen in comparisons to models. Figure 19 shows the comparison of

both versions to the 6-model suite as discussed in Section 4.1.3. The large-scale differences between OCO-2 and model XCO2

are generally reduced in the latest version. The positive bias with respect to models over the southern hemisphere mid-latitude5

oceans is nearly removed in B8, as are some negative biases over Australia and the Sahara desert. Positive biases in the north-

ern hemisphere mid-to-high latitudes over land are also reduced. We also see that the latitudinal extent of the ocean glint data

is greater in version 8, especially in DJF; again, this is primarily due to updates in the prescreeners. A large-scale negative

difference between OCO-2 relative to the model median persists in the tropical oceans, particularly over the Pacific and Indian

basins, and is currently under study.10

There are clear deficiencies remaining in the B8 OCO-2 XCO2
product. First, note again that Figure 18 showed overpass

average statistics. As each overpass had at least 10 OCO-2 soundings, and each sounding typically had < 1 ppm posterior

uncertainty, if the errors were all independent, the overpass average errors would be less than 0.3 ppm. Even taking into

account TCCON and colocation errors, it is likely that the overpass-level (=small area) errors are still much larger than this15

due to correlated errors in the OCO-2 retrievals. A more detailed validation of OCO-2 B8, along with how its errors are

correlated and how they integrate down, is the subject of a forthcoming paper (Kulawik et al., 2018). Other error sources also

are still plainly visible in the OCO-2 data. For instance, the topography-related biases noted by Wunch et al. (2017) still exist

in B8, but have recently been tracked to a misspecification of the satellite-to-ground pointing vector, and will be corrected in a

forthcoming version 9. Also, there are still cloud-related errors in the OCO-2 data, for instance as noted by Massie et al. (2016).20

It is believed that these are often related to 3-dimensional cloud effects, for instance as discussed in Merrelli et al. (2015).

6 Summary and Outlook

As described in this paper, the OCO-2 retrieval algorithm for XCO2 has been evolving more or less continuously over the last

decade, and is beginning to achieve accuracies that enable ground-breaking carbon cycle science. The latest version (B8) has

the lowest biases and highest throughput of any version yet, though regionally coherent biases still remain at a significant level25

(∼ 1 ppm). A number of choices and assumptions go into the algorithm, and due to its complexity in terms of the number of

variables it must accommodate, further research is needed to improve it. These assumptions relate to a number of factors, such

as clouds and aerosols, surface pressure, spectroscopy, potential instrument problems (e.g. scattered light, drifting calibration),

to name a few. Advances in these areas will form the basis of future algorithm improvements. These issues affect not only

OCO-2, but potentially all current and future sensors relying on this technology to measure XCO2 such as the TanSat (Yang30

et al., 2018), OCO-3 (Eldering et al., 2018), GOSAT-2 (Nakajima et al., 2012), MicroCarb (Pascal et al., 2017), and GeoCarb

(Moore et al., 2018) missions.
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To fully exploit space-based short-wave infrared measurements of reflected sunlight at high spectral resolution for studies

of the carbon cycle, improvements must be made in several areas. First, satellite-based XCO2
retrieval biases must be further

reduced. Next, in order to make and validate retrieval improvements, we must have validation data that are more accurate than

the satellite retrievals in the first place. Satellite retrievals are currently pushing that limit; for instance, the stated station-level

calibration accuracy for TCCON is currently 0.4 ppm (Wunch et al., 2010). Calculations of OCO-2 station-level differences5

with TCCON show the that mean absolute bias at all stations with at least 5 valid overpasses is 0.4 ppm, right at this level.

Finally, we must have inversion and data assimilation systems that can make maximum use of these data. This requires, for

example, minimizing transport model error, currently an active area of research (see e.g. Basu et al., 2018; Schuh et al., 2018).

Significant progress has been made in the past decade in the retrieval of XCO2 from SCIAMACHY, GOSAT, and OCO-210

radiances. This paper shows that this progress continues. Given the numerous sensors planned for development and launch in

the near term, the future of passive remote sensing of CO2 remains bright.

Code and data availability. The OCO-2 L2 Full Physics Code is open source and available on Github https://github.com/nasa/RtRetrievalFramework,

and the User’s Guide for it is available at http://nasa.github.io/RtRetrievalFrameworkDoc/. All of the OCO-2 data products are publicly

available through the NASA Goddard Earth Science Data and Information Services Center (GES DISC) for distribution and archiving15

(http://disc.sci.gsfc.nasa.gov/OCO-2; OCO-2 Science Team, 2015). TCCON data were obtained from the TCCON data archive hosted by

CaltechDATA, and are available from https://tccondata.org/.

Appendix A: XCO2 quality flag definitions

The ACOS XCO2 quality flags use a number of variables. Each has an upper and lower threshold. These variables and thresholds

are given in Table A1.20

Appendix B: Land Surface BRDF parameterization

Since OCO-2 observations outside of target mode contain only single observation geometries, it is unrealistic to attempt to

retrieve the BRDF shape on a per-observation basis. This fact, combined with the similar improvement seen in the different

trial BRDFs, suggested that a single fixed BRDF shape could be used for all land footprints. The selected BRDF shape is a

particular parameter set for the Rahman-Pinty-Verstraete (RPV) kernel (Rahman et al., 1993), that has been used as an initial25

guess for spectral multi-angle polarimetric aerosol remote sensing (Dubovik et al., 2011). This fixed BRDF shape is used

within the physical forward model, and a similar set of two state variables is applied independently to each band to allow

for the BRDF amplitude to have a linear spectral variation across the band. Since the RPV kernel assumes the surface is

azimuthally symmetric, the absolute values of the azimuth angles are unimportant and the kernel function can be expressed in
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Table A1. XCO2 quality flag definition for version 8.

variable meaning land filter ocean filter

co2_ratio Ratio of Band 2 to Band 3 CO2 column from IDP* algorithm [1,1.025] [0.997,1.018]

h2o_ratio Ratio of Band 2 to Band 3 H2O column from IDP* algorithm [0.88, 1.01] [0.88, 1.01]

dP Retrieved minus prior surface pressure [hPa] [-6,14] [-4,10]

dPABP Retrieved minus prior surface pressure from ABP algorithm [hPa] [-10,13] [-50,10]

co2_grad_del Retrieved vertical gradient in CO2 [ppm] (see text for details) [-80,100] [-20,30]

albedo_slope_sco2 Retrieved slope of the Lambertian component of the [-1.8·10−4, 10−3] [5 · 10−6,7 · 10−5]

surface albedo [cm−1]

rms_rel_wco2 Relative RMS of Band 2 fit residuals [%] < 0.22 < 0.30

Max_Declocking_wco2 See text for details < 0.75 < 0.2

Max_Declocking_sco2 See text for details < 0.3

eof33rel Retrieved relative amplitude of 3rd EOF of Band 3 [-0.3, 0.25]

windspeed Retrieved surface wind speed [m/s] [1.5,25]

Altitude Stddev Standard deviation of the surface elevation in the FOV [m] < 60

Band 3 Albedo Retrieved Albedo SCO2 band [0.05,0.6]

S31 Continuum signal band 3 rel. to band 1 [0.03, 0.4]

τIC Retrieved optical depth of ice cloud < 0.04 < 0.035

τ Retrieved total aerosol+cloud optical depth < 0.5

τDU + τWA + τSS Retrieved optical depth of three large types < 0.25

(dust, water cloud, and sea salt)

τWA Retrieved optical depth of water cloud [0.0005,0.1]

τSS Retrieved optical depth of sea salt < 0.125

HIC Retrieved relative pressure height of ice cloud [-0.5, 0.45]

τSU + τOC Retrieved sulfate + organic carbon optical depth < 0.3

τOC Retrieved organic carbon optical depth < 0.08

τST Retrieved stratospheric aerosol optical depth < 0.02

*IMAP-DOAS Preprocessor

terms of the azimuth angle difference. Thus, the BRDF model used in the algorithm is a function of three angular variables,

and can be expressed as:

ρ(θi,θr,∆φ) = [w+ s(ν− ν0)]F (θi,θr,∆φ;C) (B1)
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Figure A1. The shape of the RPV kernel for all reflection angles, for a 45◦ solar incidence angle. The incident direction is at 180◦. (meaning,

the solar irradiance is directed inwards from the left side).

where θi, θr are the zenith angles in the incident and reflected directions, ∆φ is the relative zenith angle, w and s are the

BRDF “weight” and “weight slope”, F is the fixed BRDF shape (the RPV kernel), and C are the fixed BRDF shape parameter

values. The weight w and weight slope s are the retrieved variables, one each per band, with the linear variation computed

in wavenumber space relative to per-band reference values (ν0). The RPV kernel function (Rahman et al., 1993) has three

parameters, ρ0, the hot spot parameter; Θ, the asymmetry parameter; and k, the anisotropy parameter. The functional form,5

as implemented in the VLIDORT routines used by the OCO-2 forward model, uses the exact form as given in Rahman et al.

(1993). The fixed values used for the parameters are: ρ0 = 0.05, Θ = −0.1, and k = 0.75. Figure A1 shows the RPV kernel

shape for these parameters.

While the retrieval works with the weight and slope variables, w and s, due to the normalization of the RPV kernel these10

are not the most convenient or intuitive quantities. Therefore, we evaluate the actual BRDF kernel function for the primary

observation geometry (incident direction from the sun, reflected direction toward the sensor), and then scale by the retrieved

weight and weight slope, to obtain the BRDF reflectance and reflectance slope. In the absence of atmospheric scattering, these

values will be equal to the retrieved albedo and albedo slope using a Lambertian assumption. Therefore, in much of the high

quality retrieval output from the Version 8 algorithm, the reported BRDF reflectance and reflectance slope values will be similar15

to the albedo and albedo slope values reported in the Version 7 results. Observations with relatively higher amounts of aerosols

or other complicating effects would be expected to have larger differences between the BRDF reflectance and Lambertian

albedo.
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