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Abstract. Since September 2014, NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements
of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2
retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 (Xco,)

for the roughly 100,000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric
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Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases
Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25%,
is required in order to accurately infer carbon sources and sinks from Xco,, significant errors and regional-scale biases in the
measurements must be minimized. We discuss efforts to filter out poor quality measurements, and correct the remaining good-
quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in
version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-
scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect
to TCCON was reduced by 20% over land and 40% over ocean between versions 7 and 8, and nadir and glint observations
over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will

continue to evolve and improve as the CO4 data record continues to expand.

1 Introduction

Bias-free measurement of atmospheric CO5 concentrations from space is a long-pursued goal in the carbon cycle community.
Such measurements are critical for inferring sources and sinks of carbon, and how these sources and sinks change over time
due to both anthropogenic and natural causes (e.g. Rayner and O’Brien, 2001; Chevallier et al., 2007; Baker et al., 2010). The
first instrument capable of CO, measurements from space using the near- and short-wavelength infrared was SCTAMACHY,
the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (Buchwitz et al., 2005; Reuter et al., 2011),
which operated from 2002 to 2012. This was followed by the first dedicated greenhouse gas satellite, the Japanese Greenhouse
gases Observing SATellite (GOSAT), which launched in January 2009 (Yokota et al., 2009). The Orbiting Carbon Observatory-
2 (0OCO-2) followed on July 2, 2014, with the goal of measuring the column-averaged dry air mole fraction of carbon dioxide
(Xco,) with sufficient precision and accuracy to enable greatly enhanced understanding of the surface-atmosphere exchange
of CO4 on regional scales (Crisp et al., 2008; Crisp, 2015). OCO-2 was preceded by the original OCO mission, which failed
due to a launch vehicle malfunction in 2009. Retrieval algorithms originally developed for OCO (Connor et al., 2008) have
been continuously refined since 2009 (O’Dell et al., 2012), by application to data from GOSAT.

Xco,measurements from the OCO-2 version 7 data product (Eldering et al., 2017) have recently been used to estimate
COx, fluxes from both natural (Liu et al., 2017; Chatterjee et al., 2017; Crowell et al., 2018a) and anthropogenic (Hakkarainen
et al., 2016; Schwandner et al., 2017; Nassar et al., 2017) sources; see Eldering et al. (2017) for a complete review of these
findings. However, Xco, measurements must be both extremely accurate and precise in order to accurately determine fluxes
(Miller et al., 2007), since fluxes are determined from small (<2.5%) spatial and temporal gradients in the X0, field. Spatially
coherent biases in X, on regional scales as small as a few tenths of a part-per-million (ppm) in X, can lead to spurious

values of inferred fluxes (Chevallier et al., 2014).
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Table 1. Prescreening filter criteria.

Category Land Criterion Ocean Criterion
Successful Measurement Sounding_Qual_Flag =0 Same as land
A-Band Preprocessor Cloud_Flag =0 Same as land
Solar Geometry SZA < 85°(nadir), < 80°(glint) Same as land
IMAP Preprocessor 0.985 < co2_ratio < 1.045 Same as land
Band 1 SNR SNR; > 100 Same as land
Band 3 SNR SNR3 > 75 Same as land

Land Fraction frana > 80% frana < 20%

The ACOS algorithm was originally developed for OCO. It was first applied to GOSAT data in 2009 and has continuously
evolved and improved in the intervening years. Generally, good error statistics were shown for GOSAT observations over both
land and water, with typical biases below 1 ppm based on comparisons to both ground-based (Lindqvist et al., 2015; Kulawik
et al., 2016) and aircraft (Frankenberg et al., 2016) validation data. After the successful launch of OCO-2, the ACOS algorithm
was further modified and tuned for application to the OCO-2 spectra. Xco, error statistics are similar to those from GOSAT,
with RMS errors less than 1.5 ppm when compared against most ground-based Total Carbon Column Observing Network (TC-
CON, Wunch et al. (2010)) stations (Wunch et al., 2017). However, Wunch et al. (2017) noted that important biases remain,
in particular related to latitude, surface properties, and atmospheric scattering by clouds and aerosols. A particularly troubling
bias evident in the southern hemisphere mid-latitude ocean in austral winter had amplitudes as large as several ppm. This bias
was not seen in ACOS retrievals using GOSAT data, though GOSAT’s ocean glint viewing geometry was restricted and could

not typically see this far south, potentially masking the problem.

The primary purpose of this paper is to describe the details of the ACOS X¢o, retrieval algorithm as applied to OCO-2
data, in particular the latest version 8 (also referred to as build 8 or B8). Because science results have already been published
with version 7 (also referred to as build 7 or B7) as discussed above, we also discuss the differences between versions 7 and
8. This paper is organized as follows: Section 2 discusses prescreening of the data to remove cloudy and difficult-to-retrieve
soundings. Section 3 lists the details of the retrieval algorithm and its evolution since O’Dell et al. (2012). Section 4 discusses
the methodology and results of the post-retrieval filtering and bias correction. Section 5 provides a brief evaluation of Xco,

from both versions 7 and 8, and the discussion in Section 6 concludes the paper.
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2 Data and Prescreening

Because only scenes with sufficient signal and nearly devoid of cloud and aerosol contamination can yield successful Xco,
retrievals, a prescreener is used for OCO-2 soundings before processing by the Level-2 “Full-Physics” (L2FP) X0, retrieval
algorithm. Our prescreening module requires outputs from two fast algorithms, described in detail in Taylor et al. (2016). First,
the “A-band Preprocessor” (ABP) performs a fast retrieval of surface pressure using the O2A band only, assuming that no
clouds or aerosols are present. Poor spectral fits and differences between the retrieved and a priori surface pressure greater
than 25 hPa are used to identify the presence of cloud or aerosol contamination. Scenes without sufficient signal-to-noise in the
O A band are skipped altogether. Second, the “IMAP-DOAS” preprocessor performs fast, clear-sky fits to the weak and strong
COg bands at 1.61 and 2.06 pm, respectively. While this preprocessor solves for a number of variables, the CO4 and HoO
columns, which are fit independently from each of these two bands, are most relevant for cloud screening. From these spectral
fits, the strong-to-weak ratios of the column-integrated CO5 and HO are derived. The CO5 ratio must be within a certain
range (near unity) for the scene to be deemed sufficiently clear to warrant a Full-Physics retrieval. Other screens are used to
remove soundings unlikely to yield successful Xco,, such as those at high solar zenith angle or for which the continuum SNR
levels are too low. Unlike in version 7 of the OCO-2 algorithm, there is no explicit screen for snow and ice-covered surfaces.
However, the surface albedo in the strong CO5 band is low over snow and ice, and therefore the strong CO5 band SNR filter

will remove many of those scenes. The full prescreening criteria for OCO-2 B§ are given in Table 1.

In total, roughly 26% of land soundings pass our pre-screener (28% land nadir, 25% land glint) and 27% of ocean glint
soundings pass it as well. Generally these fractions are strong functions of both location and time of year. To illustrate this, the
fraction of soundings passing the prescreening criteria for December 2015 and June 2016 are shown in Figure 1. A number of
features are observed. A higher fraction of soundings are passed in the tropics than at higher latitudes relative to the sub-solar
latitude ( ~-23° in December and +23° in June), and the passing rates tend to be higher over bright vs. dark surfaces. Also,
few soundings survive over the tropical rainforests in South America and Africa, which are often cloudy. A significant number
of soundings survive prescreening over the Greenland and Antarctic ice sheets during their summer season (this was not the
case in version 7), though it is shown later that most of these fail the post-retrieval quality screening (Section 4.2). About 10%
of nadir soundings over ocean pass the prescreening criteria; this occurs in regions where the nadir view is relatively close to
the glint geometry, typically near the sub-solar latitude. These nadir ocean soundings are currently removed by post-retrieval
filtering, as their quality relative to the glint ocean observations has not yet been evaluated. A final obvious feature is that fewer
soundings are available in nadir mode than in glint - this is because many orbits over the Atlantic and Pacific oceans became
“full-time” glint-mode orbits beginning in November 2015 (Crisp et al., 2017). Prior to that, there were equal numbers of nadir

and glint orbits, but after that change, approximately one third of all orbits are nadir and two thirds are glint.
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Figure 1. Fraction of Soundings passing OCO-2 B8 prescreening filter in December 2015 (left) and June 2016 (right), for both nadir mode
(top) and glint mode (bottom). Starting in November 2015, about one third of all orbits are performed in nadir mode, and two thirds are

performed in glint mode.

3 The NASA ACOS X0, retrieval algorithm as applied to OCO-2

The original ACOS X0, retrieval algorithm over land (version 2.9) was described in O’Dell et al. (2012), with details spe-
cific to GOSAT given in Crisp et al. (2012). Details of the spectroscopy used at that time were published in Thompson et al.
(2012). In this section, we give an overview of the evolution from ACOS version 2.9 to OCO-2 versions 7 and 8, including

spectroscopy, aerosol treatment, and a number of other changes.

Briefly, the NASA ACOS algorithm uses optimal estimation to solve for parameters of a state vector to obtain the best match
to spectra from the three GOSAT or OCO-2 near- infrared bands and consistent with a prior constraint. These bands are the
O2A band at 0.76 pm (band 1), the weak CO5 band at 1.61 ym (band 2), and the strong CO5 band at 2.06 um (band 3). The
state vector parameters, listed in Table 2, include the profile of CO5 at twenty atmospheric levels along with a number of an-
cillary parameters to which the GOSAT and OCO-2 near-infrared spectra are sensitive. These include surface pressure, surface
albedo parameters (over land only), a temperature profile offset and water vapor profile multiplier, and parameters related to the
wavelength scale of the spectra (dispersion shift and stretch). The latter are relative to the preflight values of these parameters,

described in Lee et al. (2017). Because telluric line positions are known with high accuracy, the retrieval solves for them with



Table 2. General setup of the ACOS state vector.

Element No. Elements Prior Value Prior Uncertainty (1o) Notes
CO Values 20 Same as TCCON Same as ACOS B2.9  Defined on sigma pressure levels
Temperature Offset 1 0K 5K Rel. to Prior profile
Surface Pressure 1 from prior meteorology 4 hPa Prior Unc. 1 hPa for B3.5
H>O Scale Factor 1 1.0 0.5 Multiplier on prior profile
Aerosol Type 1,2 OD7ss 2 from MERRA =+ factor of 7.39
Water, Ice Cloud OD7s5 2 0.0125 =+ factor of 6.05
Aerosol Type 1,2 zq 2 0.9 0.2
Water Cloud xg 1 0.75 04
Ice Cloud xg 1 just below tropopause 0.2
Aerosol Type 1,2 o, 2 0.05 0.01
Water Cloud o, 1 0.1 0.01
Ice Cloud o, 1 0.04 0.01
UTLS Aerosol OD7s5 1 0.006 = factor of 6.05 introduced in B8
Albedo Mean Land 1 per band Prior Calc. 1.0 Land
Albedo Slope Land 1 per band 0.0 0.0005 Land; units of 1/cm™*
Albedo Mean Ocean 1 per band 0.02 {0.2,0.2,1e-3} Ocean
Albedo Slope Ocean 1 per band 0.0 1.0 Ocean; units of 1/cm™*
SIF Mean 1 Prior Calc. 0.008 Land
SIF Slope 1 0.0018 0.0007 Land; units of 1/cm™*
Wind Speed 1 from prior meteorology 5 m/s Ocean
Dispersion Shift 1 per band 0.0 0.4 of channel FWHM
Dispersion Stretch 1 per band 0.0 1 pm/channel OCO-2 only
EOF Amplitudes 3 per band 0.0 10.0 1 per band for B3.5 & earlier

virtually no dependence on the prior. To account for scattering effects of thin cloud or aerosol, the retrieval also solves simulta-
neously for amounts and Gaussian vertical profiles (as described in Section 3.1) of five different kinds of scatterers with fixed
optical properties: a water cloud type, an ice cloud type, two fixed aerosol types, and beginning in version 8, an Upper Tropo-
spheric/Lower Stratospheric (UTLS) sulfate aerosol layer. In addition, the retrieval also fits scaling factors for three spectral
patterns per band, to account for imperfections in the spectroscopy, solar model, and instrument model, and determined using
singular value decomposition of our fit residuals run on clear-sky soundings (Section 3.3). For solar-induced fluorescence (SIF)
emission from plants on land, we fit for two SIF parameters which are needed to account for this fluorescence in the L2 spectra

(Section 3.5). These SIF parameters are not the official SIF data product; that product is derived from the IMAP prescreener



Table 3. Significant ACOS retrieval algorithm changes.

GOSAT B2.10 GOSAT B3.3 GOSAT B3.4 GOSAT B3.5

Gaussian Aerosol Profiles Residual Fitting Updated ocean surface MERRA Aerosol Types

Sigma Pressure Levels 1 hPa Py, Prior Uncertainty =~ Band 2 Spectral Range
Prior CO2 Profile Change Prior OD755 = 0.05 Spectroscopy Update
Spectroscopy Update Spectroscopy Update
Corrected Xco, AK Fluorescence Fit Land Gain H
GOSAT B7.3 OCO-2 B7 OCO-2 B8
3 EOFs per band Restricted Band Ranges Spectroscopy Update BRDF over land
2 hPa P,y Prior Uncertainty 4 hPa P,y Prior Uncertainty UTLS Aerosol GEOSS5-FP-IT Meteorology

Updated cloud ice properties

L1B improvements

numerous small changes

Table 4. ACOS retrieval differences between GOSAT and OCO-2.

Category

GOSAT

0CO-2

Radiance used
EOFs, Band ranges
Fit O2A band offset ?
SIF Prior
Per-band dispersion parameters
Band 1 Fitted Range
Band 2 Fitted Range
Band 3 Fitted Range
Channel Mask

Estimated total intensity
wavenumber space
Yes
0
Offset only
758.1-772.2 nm
1597.4-1618.1 nm
2042.1-2079.0 nm

None

0OCO-2 single polarization
channel space
No
From IMAP retrieval
Offset, Slope
759.2-771.5 nm
1598.1-1617.9 nm
2047.8-2079.9 nm

Bad samples, spikes

through a dedicated fit (Sun et al., 2018). In total, there are typically 55 fitted parameters for land retrievals and 53 for ocean'.

With the exception of COq, the a priori covariance matrix is diagonal, with the 1o uncertainties as given in Table 2.

The first documented algorithm version, B2.9 as described in O’Dell et al. (2012), had several deficiencies which occasion-

ally produced large biases in the retrieved Xco, (Wunch et al., 2011a). This early version of the algorithm also contained some

!'This excludes parameters in our state vector with prior uncertainties close to zero, such as cloud and aerosol layer widths.
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cumbersome traits, such as a variable number of vertical levels from sounding to sounding, which made the output difficult to
use. The observed X o, biases were partially related to the aerosol parameterization, demonstrated by the fact that clear-sky
retrievals of clear-sky simulations did not exhibit substantial biases (O’Dell et al., 2012). Furthermore, errors in the Oy and
COq spectroscopy were suspected to be an additional source of bias. Over the course of several years, a number of changes to
the algorithm were therefore implemented to yield the present version B8. The changes are too numerous to fully describe here,
but the most important ones are listed in Table 3. The changes fall into several major categories, with spectroscopy, aerosol
treatment, treatment of the ocean surface, and chlorophyll fluorescence being the most important. In B8, the meteorology used

to prescribe the a priori temperature profile, water vapor profile, and surface pressure was also changed (Section 3.5).

Further, as listed in Table 4, some minor retrieval differences exist between the GOSAT and OCO-2 versions of the algorithm.
Besides using instrument models specific to each instrument (such as wavelengths of the various channels, noise model, and
instrument line shape functions), slightly different spectral ranges are fit for each instrument. Generally, this is because the
trusted calibrated range of OCO-2 spectra is slightly smaller than that of GOSAT, due to the differences in design of the
OCO-2 grating spectrometer versus the GOSAT Fourier transform spectrometers. Additionally, while all channels in each
band in the given spectral ranges are used for GOSAT, some band channels are masked out for OCO-2. This is due to either
underlying bad pixels in the detector arrays, or to transient cosmic rays that induce temporary spurious readings in random

channels. Both of these processes are described in detail in Crisp et al. (2017).
3.1 Aerosol-related changes

Starting with version B2.10, the 20-layer optical depth retrieval used for clouds and aerosols was replaced with a Gaussian-
shaped vertical profile for each of the retrieved scattering particle types. As of version 8, two cloud types, two lower-atmosphere
aerosol types, and one stratospheric aerosol are used. The new cloud and aerosol profile treatment is similar to that of Butz et al.
(2009) but specifies the aerosol concentration p,e, as a function of x, the pressure relative to the surface pressure. Therefore,
x ranges from zero at the top of the atmosphere to one at the surface. The functional form is simply

W)

2
202

Paer(z) = Cexp (— (D

where for each aerosol type x is the vertical location at peak aerosol density and o, is the Gaussian 1o profile width. Both of
the latter variables are specified in units of relative pressure x. The prefactor C' is defined such that the aerosol or cloud optical
depth at 755 nm, hereafter OD7ss, equals the desired value. In the retrieval algorithm, the fitted quantities are In OD7s5 and
peak height p, o for each aerosol type, with the exception of the stratospheric aerosol (described in Section 3.1.1) for which
only the optical depth is retrieved. Because it has been shown that GOSAT and OCO-2 -like spectra have little sensitivity to
the Gaussian profile width (Butz et al., 2009), this parameter is fixed in both the GOSAT and OCO-2 retrievals for all particle
types. The prior profiles for each fitted type are shown in Figure 2.



10

0.0\\\\‘\\\\\\\\\\\

Cloud Ice —
Cloud Water —
Aerosol —

0.2

0.4

Pressure/Psurf

0.6

0.8

1.0\\ R B AR

0.00 0.05 0.10 0.15 0.20
AOD per 1000 hPa

Figure 2. Prior Gaussian profiles of the lower tropospheric aerosol types (red), water cloud (blue), ice cloud (purple), and stratospheric
aerosol (green). The local aerosol optical depth (AOD) per unit pressure at 755 nm is plotted as a function of the relative pressure. The lower

tropospheric aerosol prior optical depth is not fixed as for the other types, but rather is taken from a climatology described in the text.

The change to a sigma-level pressure system was incorporated at about the same time as the shift to Gaussian aerosol profiles.

Instead of fixed pressure levels, the pressure levels scale with the surface pressure:
Di = Qi Psurf ()

where the a; are chosen such that the total number of pressure boundaries is 20, and the layers have roughly equal pressure

widths. The top-most model level is set to 0.01 hPa.

The optical properties of the four scattering types remained unchanged from version B2.9 to B3.4 and are described in
O’Dell et al. (2012). However, the use of two fixed aerosol types, type “2b” and “3b” from the Kahn et al. (2001) climatology,
did not accurately represent the true global variability of aerosol on the length and time scales probed by GOSAT and OCO-2.
Beginning with build 3.5, the aerosol types were changed to be location and time dependent, with the prior type informa-

tion coming from the aerosol climatology of the Modern-Era Retrospective analysis for Research and Applications (MERRA,
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Figure 3. Optical properties of aerosols and clouds used in the L2FP code as a function of wavelength. Left: Extinction efficiency relative
to that at 755 nm. Middle: Single scattering albedo. Right: Asymmetry parameter. DU: Dust, SS: Sea Salt, BC: Black Carbon, OC: Organic
Carbon, SO: Sulfate, WC: Water Cloud, IC: Ice Cloud. The spectral ranges of the three OCO-2 bands are demarcated by the dashed vertical

lines.

Rienecker et al. (2011)). The MERRA aerosol field is driven by the Georgia Tech/Goddard Global Ozone Chemistry Aerosol
Radiation and Transport (GOCART) model (Chin et al., 2002), and modified by assimilating aerosol optical depth from the
MODIS instruments onboard the Terra and Aqua satellites (Colarco et al., 2010). MERRA contains five broad aerosol types:
dust (DU), sea salt (SS), sulfate (SO), and black and organic carbon (BC and OC, respectively). Dust and sea salt are each
tracked in five separate size bins. Organic and black carbon are tracked in both hydrophobic and hydrophilic categories. In
addition to the carbonaceous types, sulfate aerosol and sea salt are also hydrophilic and hence have optical properties that

depend on the local relative humidity (RH).

For the aerosol prior in the ACOS retrieval, we primarily sought to specify the typical dominant aerosol types present (in
terms of their contribution to the optical depth in the OCO-2 bands) in a given location at a given time of year. Monthly aerosol
fields were derived from the MERRA model for the year 2010, and are used for all years in the ACOS retrieval. We aggregated
the 15 MERRA types, eight of which have RH-dependent optical properties, into the five aggregated types listed above. We
used typical density weightings and relative humidity values to create the optical properties for these aggregated types, as de-
scribed in Crisp et al. (2010). Their optical properties, including extinction efficiency, single scattering albedo, and asymmetry
parameter, are shown in Figure 3. The organic carbon and sulfate aerosol are generally similar in their optical properties, though
their single scattering albedos diverge somewhat in the CO2 bands. The sea salt, water cloud, and dust optical properties are

relatively similar across the OCO-2 spectral range.

10
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Figure 4. Comparison of Xco, time series for OCO-2 version 7 and TCCON, over several years at the station in Wollongong, Australia
(Griffith et al., 2014b). Each OCO-2 symbol represents an overpass average. A simple geometric colocation strategy was used in which
OCO-2 soundings within 4= 7.5° latitude and 4 30° longitude of the TCCON station were retained. Large positive biases occur in the ocean
glint soundings in the southern hemisphere winter (blue arrows). As seen in Figure 19, these large biases primarily occur in the southern

oceans.

At each sounding location, the two aggregated aerosol types with the highest mean monthly values of the OD7ss are se-
lected to be retrieved by the L2FP algorithm. In previous algorithm versions, the total prior OD7s5 was set to 0.15, apportioned
equally among four scattering types (water cloud, ice cloud, and two tropospheric aerosol types). However, it was found this
was generally too high to allow a fit near OD755=0 for scenes that were almost entirely free of aerosol. This “clear-sky bias”
was seen in early simulation tests (O’Dell et al., 2012). The prior OD7ss is now set to 0.0125 for each cloud type, and set from
the MERRA aerosol climatology for each tropospheric aerosol type as the average OD7s5 of that type (at a particular location
and month). There is some evidence that the tropospheric aerosol priors are occasionally still too high; methods for specifying

the aerosol prior are a continuing topic of investigation.

The cloud ice optical properties were updated in version 7. Before that, they were based on the band-averaged model
developed by Baum et al. (2005) primarily for the MODIS instrument and known as the MODIS Collection 5 model. This
cloud ice model considered an ensemble of size-dependent non-spherical ice crystal habits in random orientation. As ice
crystal surface roughness was later shown to significantly affect scattering by ice crystals, and simulations with roughened
model particles were more consistent with satellite observations of ice cloud polarized reflectances (Yang et al., 2013), we
updated the cloud ice optical properties to correspond to the MODIS Collection 6 model, which describes scattering by severely

roughened hexagonal column ice crystal aggregates (Baum et al., 2014). This update also fixed several minor issues in the

11
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previous cloud ice model, such as those resulting from linear interpolation of the optical properties from MODIS wavelength

bands to OCO-2, and those relating to truncation of the phase function.
3.1.1 The need for a stratospheric aerosol

When validating version 7 X0, retrievals, it was discovered via comparisons to both TCCON and models that most ocean
soundings in the most southerly ~10 degrees of latitude exhibited a high bias of 1-3 ppm during the austral winter (Wunch
et al., 2017). Figure 4 shows the bias appear in the southern hemisphere winter over the Wollongong TCCON station. The
bias is seen in soundings over ocean but not land. The bias is also apparent relative to the Lauder TCCON station (Figures
11 and A1 from Wunch et al., 2017). Comparisons of OCO-2 soundings to models (Figure 19) show the bias as a quasi-zonal
band over the southern hemisphere oceans, again with the larger bias occurring in the southern hemisphere winter. There is
also evidence of a similar but weaker band of high bias in the northern hemisphere. For 2015, it was hypothesized that small
aerosol particles may have been injected into the UTLS by the explosive eruptions of the Calbuco (22-30 April 2015) and Wolf
(late May 2015) volcanos in south-central Chile and the Galapagos Islands, respectively. The presence of an aerosol layer with
visible optical depths around 0.01 was later confirmed with observations from the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observatory (CALIPSO) and the Ozone Mapping Profile Suite (OMPS) satellites (Begue et al., 2017). These optical

depths are small, but have a large impact on the radiances, especially in the O2A band, due to their high altitude.

It was recognized that our version 7 retrieval algorithm had no way to accommodate the spectral signature of small strato-
spheric aerosol particles, which have a significantly larger effect on the O2A band than either of the CO45 bands due to the
small size parameter, i.e, the ratio of the size of the scattering particle to the spectral wavelength. The spectral signature would
essentially appear as a radiance offset in the O3A band. As a first test, we ran hundreds of retrievals on a single sounding that
had a large positive bias in the operational retrieval, using slightly different first-guess values for each retrieval. Essentially, a
continuum of solutions was found (Figure 5). On one end of retrieval space, an approximately correct value of surface pressure
was found by inserting a thicker ice cloud, which contains larger particles starting in the stratosphere, and therefore has a strong
effect on all three bands (see Figure 3). This type of solution produced a poor x? in the strong CO5 band, typically > 2. On the
other end of the continuum were solutions where the sulfate layer, which was placed near the surface in the prior, was moved
high up into the atmosphere. This solution regime had a much lower reduced x? (around 1.5) in the strong CO5 band and an
Xco, that was typically 3—4 ppm lower, and much more in line with TCCON and model estimates. In these cases, the amount

of upper atmosphere cloud ice retrieved was also reduced, as its role was taken over by the sulfate.

These tests indicated that a more realistic solution would often be found if the retrieval could push the prior sulfate into the
upper atmosphere, though this seldom occurred. The amount of sulfate needed in the upper atmosphere in these cases is small,
approximately 0.01 optical depth at 755 nm. That value is consistent with other observations (Begue et al., 2017). In addition to
actual small particles in the UTLS, the OCO-2 instrument has a documented problem which produces a similar impact on the

O2A and spectrum. As described in Crisp et al. (2017, Section 6.5), a very thin layer of ice appears to build up on the OCO-2
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Figure 5. Results of several hundred retrievals of a single ocean glint sounding (28.5°S, 52.3°W) measured on June 26, 2015. Each retrieval
is identical except that each has a different first guess state, consistent with the prior uncertainty distribution. The retrieved relative sulfate
height (O=top-of-atmosphere; 1=surface) is shown on the ordinate, the reduced x? from the strong (2.06 pzm) CO2 band retrieval is shown
on the abscissa, and the retrieved Xco, is indicated by color. For reference, the result from the operational retrieval (version 7) is shown as
the large filled circle. When the retrieval places the sulfate near the surface, as in the version 7 case, both the strong CO5 band x? value and
Xco, tend to be higher. Conversely, when the retrieval pushes the sulfate closer to the top-of-atmosphere, the strong CO2 band x? values

and Xco, tend toward lower values, a result that is more physically plausible.

Focal Plane Arrays (FPAs) over time. As this ice layer grows to a thickness similar to the anti-reflective coating thickness (tens
of nanometers), it enhances the surface reflectance on the O2A band FPA, producing a scattered light contribution of 0.1 to
0.2%. Much smaller effects are seen on the CO4 detectors. The ice layer is sublimed off every 3-6 months when the instrument
goes through a decontamination cycle. While attempts have been made to remove this scattered light contribution in the version
8 calibrated radiance (L1B) product, it is likely that some residual signal remains. Because this is primarily a radiance offset
in the O5A band alone, it produces a signal similar to a small UTLS aerosol, and hence would also be mitigated by including
a stratospheric aerosol in the retrieval. During algorithm testing of the stratospheric aerosol using version 7 L1B radiances
(which contained the scattered light signature), we found that the amount of UTLS aerosol retrieved indeed correlated with the

decontamination cycles, lending credence to this hypothesis.

Thus, in version 8 an additional sulfate aerosol was included in the retrieval state vector. For simplicity, a sulfate type
identical to the lower-atmosphere type in terms of optical properties was used. Only the total optical depth of the stratospheric
sulfate is retrieved, while its Gaussian height and width are kept fixed. This solutions treats both actual small particles in the

UTLS as well as the radiometric offsets that accompany the real O2A band scattered light signal. Our testing of the version
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8 algorithm showed that including this state vector element not only reduced the southern ocean bias, but also reduced the
negative tropical ocean bias and positive bias over higher northern latitude lands that were also apparent in Figure 19. A more

complete comparison of version 7 and version § validation statistics is given in Section 5.
3.2 Spectroscopy-related changes

There have been substantial changes between the molecular cross sections used in the earliest ACOS versions and those used in
B8. We continue to use in-house lookup tables of absorption coefficients (ABSCO) parameterized as a function of temperature,
pressure, wavelength, and water vapor mixing ratio for each of the main absorbing gases in the OCO-2 bands: Os, CO5, and
water vapor (H20). Successive versions of these tables have been refined by incorporating new laboratory results and theoret-
ical models for increasingly accurate absorption coefficients. The ABSCO version used in the B8 algorithm is ABSCO v5.0
(Drouin et al., 2017; Oyafuso et al., 2017); B7 used the previous ABSCO version, v4.2.

The ABSCO v5.0 O3A band tables represent a major step forward from previous ABSCO versions. Earlier ABSCO ver-
sions integrated the highest quality spectroscopic input from a range of studies that had focused on fitting different parameters
independently. (See, for example, Thompson et al. (2012) and references therein). The ABSCO v5.0 tables are based on self-
consistent multispectral fits to laboratory spectra that include line mixing, speed-dependent Voigt line shape parameters, and
collision-induced absorption (CIA). This self-consistency, and the use of laboratory spectra covering a range of pressures,
temperatures and measurement techniques, are key features of the approach. The O4 spectral line parameters, line mixing and
CIA used in ABSCO v5.0 are described in Drouin et al. (2017). Parameters for broadening of O5 by H2O are from the study
by Drouin et al. (2014).

The impact of the latest multi-spectrum fitting update in the OA band is shown in terms of the accuracy of the retrieved
surface pressure in Figure 6. Panel (a) shows the retrieved surface pressure minus the prior for ABSCO version 4.2, which was
used in version 7 of the algorithm, while panel (b) shows the same for ABSCO v5.0, used in version 8. The main improvements
seen are that the retrieved surface pressures in version 8§ are essentially unbiased with respect to the meteorological prior over
land, and that the land and ocean differences are reduced and centered closer to zero. We also note that for OCO-2, no addi-
tional line strength scaling was required in the O2A band, as has been necessary for all previous ACOS/GOSAT versions (see
e.g. Crisp et al., 2012). For ACOS-GOSAT B3.5 retrievals, an O scaling factor of 1.0125 was found to be beneficial, perhaps
because of slight instrumental differences between OCO-2 and GOSAT.

The ABSCO v5.0 tables for the 1.61 and 2.06 um COg bands use line parameters and line mixing models derived from
self-consistent, multispectral fits by Devi et al. (2016) and Benner et al. (2016), respectively. The parameters are derived from
fits to laboratory spectra at multiple pressures and temperatures and the computation incorporates a speed-dependent Voigt line
profile with nearest-neighbor line mixing. Earlier versions of the ABSCO tables (Benner et al., 1995; Devi et al., 2007) were

based entirely on room temperature multi-spectrum fitting, with theoretical temperature dependences of the line shape and

14



10

1.0 Land Water j
L (a) 5 A ]
i Mean -2.0 0.7

0.8 Stddev 4.1 35 +

°

2 s ]

£ i i

3 0.6 ,

E i ,

2 04 ]

=]

z [ ,
0.2 i
0.0L

-15 -10 5 0 5 10 15
T T
1.0 b Land Water J
L (b) 0. 1
[ Mean 0.1 1.1 |
08l Stddev 4.0 27 -

°

2

£ i i

3 0.6

3

c 04

=]

z
0.2 ]
0.0

-15 -10 5 0 5 10 15

P(retrieved) - P(a priori) [hPa]

Figure 6. Retrieved minus prior surface pressure for a large selection of OCO-2 soundings, using both the oxygen-A band spectroscopy
model from (a) ABSCO v4.2 and (b) ABSCO v5.0, as described in the text. ABSCO v5.0 spectroscopy leads to a more consistent retrieval

of surface pressure over both land and ocean surfaces.

line mixing parameters. The updated spectroscopy includes analyses of spectra recorded at temperatures from 170K to 296K,
representing a significant advance. Parameters for broadening of CO5 by HoO are from Sung et al. (2009) for the 4.3 pum
COg band and extrapolated to OCO-2’s CO4 bands. Validation of the ABSCO v5.0 tables using up-looking TCCON spectra is
described in Drouin et al. (2017) and Oyafuso et al. (2017). We note one important difference between the reference databases
and our CO5 absorption coefficients. We found it necessary to incorporate additional absorption in the center of the 2.06 um
band. This additional absorption was parameterized in order to reduce errors in retrievals with TCCON up-looking spectra.

Further details can be found in Thompson et al. (2012) and Oyafuso et al. (2017).
Because the laboratory spectra underlying ABSCO currently are only good to roughly 1% absolute accuracy of line intensi-

ties, the algorithm allows for overall scaling factors for each of the two CO5 bands. For the 1.61 um band, the ABSCO v5.0

tables include a uniform scaling to bring the intensities from the Devi et al. (2016) multispectrum fit into line with reference
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intensity measurements (estimated accuracy ~0.2 %) from Polyansky et al. (2015). Oyafuso et al. (2017) show that this pre-
scaling of the ABSCO using reference laboratory measurements results in good consistency between single-band up-looking
Xco, retrievals from ground-based FTS spectra and the Xco, values reported by TCCON (which are themselves calibrated to
agree with reference airborne profiles). Reference intensity measurements are not available for the 2.06 um band at the current
time. In tests within the OCO-2 Level 2 algorithm, using OCO-2 radiances, a scaling of 1.004 for the 2.06 um ABSCO table
was found to yield the best agreement between single-band retrievals performed using this band compared with single-band

retrievals performed using the 1.61 ym ABSCO table as described above.

Finally, ABSCO v5.0 tables incorporate HoO line parameters from the HITRAN 2012 compilation (Rothman et al., 2013).
We use an unofficial, modified version of the MT_CKD continuum, supplied by Eli Mlawer (Mlawer et al., 2012). This
continuum version offers a compromise between previous versions of MT_CKD and measurements by Ptashnik et al. (2011),
and falls relatively close to measurements by Mondelain et al. (2013). The subsequently-released MT-CKD 3.2 has been tested
and shown to be a modest improvement over the unofficial version incorporated into ABSCO v5.0, with negligible changes
to Xco,, but noteworthy improvements to the water column determination. Methane is not currently included in the B8 (or
previous versions) of the forward model, as the impact of methane absorption was found to be negligible for X, retrievals

performed using the OCO-2 spectral ranges.
3.3 Residual Fitting using EOFs

ACOS B3.3 introduced a new way to deal with large spectral residuals caused by imperfect spectroscopy, solar model and
instrument characterization, which were previously treated using a simple “empirical noise” parameterization (Crisp et al.,

2012). In contrast, the new approach fits scaling factors to fixed spectral residual patterns for each band.

These patterns are the empirical orthogonal functions (EOFs) that result from a singular value decomposition of spectral
residuals from training retrievals. Training scenes were selected to be largely devoid of cloud and aerosol effects, such that
residual patterns due to unfitted clouds and aerosols are not a large contributor to the resulting EOF patterns. The EOFs are

constructed such that the residuals r, ; of each sounding s and band b can be approximately represented as a linear combination

of the EOF patterns:
Neoy

rp = Z Cj.s,b €5b 3)
j=1

where the vectors e;; are the EOFs for each band. For a diverse set of training retrievals, a matrix M is created for each
spectral band and populated by the residuals of the spectral fits within that band. Training sets typically included more than
10,000 soundings.
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Each matrix M is then decomposed into its eigenvectors using traditional singular value decomposition:
M=UWVT 4)

with the columns of U spanning an orthonormal basis of the most persistent spectral residual vectors observed in the training
dataset. By convention, the first eigenvector explains the largest fraction of the total variance, as indicated by descending order

of singular values (the diagonal elements of W).

Application of this EOF technique substantially reduces the spectral residuals, yielding values of the relative RMS of the
residuals of ~0.1% for each band, and reduced x? values near unity. For GOSAT, only the first EOF was found to be necessary.
For OCO-2 B7 (and B8) target mode observations, better agreement with TCCON X, was found when the largest three
EOFs were employed. The first two EOFs for GOSAT, as well as the first three EOFs for OCO-2, are shown in Figure 7 for
each spectral band. The EOFs for each of the eight spatial footprints sampled by OCO-2 are extremely similar, though they are
solved for independently due to the slightly different spectroscopic response of each. The first EOFs for OCO-2 and GOSAT
are very similar for each band, indicating that common forward model errors such as spectroscopy and top-of-atmosphere solar
flux, rather than instrument-specific effects, are driving the EOF patterns. The first EOF is also very similar to the mean residual
pattern, and typically accounts for 50-60% of the variance in the residuals.The second and third EOF typically account for only
1-3% of the variance in the residuals, with higher order EOFs accounting for even less. For the OA band, the second EOF
appears as a Doppler shift of the first. In the weak CO4 band, the second EOF appears to be due to water vapor lines, while
the third EOF appears to be a Doppler shift of the first. Higher order EOFs often exhibit additional instrument artifacts (such
as unidentified bad spectral samples) and forward model errors related to water vapor, as well as other effects that are difficult

to interpret.

The EOF formulation was modified in B§ in several ways. First, the EOFs were defined in terms of radiance per unit noise
rather than pure radiance, in order to be consistent with the cost function metric that is minimized during the retrieval itself.
However, the structure of the EOFs in B8 was much the same as in B7. Second, improved filtering of spectral samples that are
contaminated by noisy or dead detector pixels greatly reduced their impact on the EOF patterns. Finally, a manual re-ordering
of the EOFs was performed for each of OCO-2’s eight spatial footprints, because the standard ranking by variance would
occasionally flip the EOF patterns in different footprints. This mattered because sometimes the third and fourth EOFs would
change places (and the current algorithm only fits the first three EOFs). This ensured that, to the extent that the EOFs of each

footprint roughly matched, the same three EOF patterns for each footprint are fit within the L2FP retrieval.
3.4 Surface Model

The forward model for ACOS L2FP retrievals uses one of two surface models, depending on the location of the footprint.
Water surfaces are simulated as a linear combination of a Cox-Munk ocean surface (Cox and Munk, 1954) and Lambertian

reflector. This surface has seven parameters: wind speed, and a Lambertian albedo at a reference wavenumber with a linear

17



760 762 764 766 768 770
05
0.0F
05E A — 0CO-2

0.5

0.0

-0.5

0.5

0.0

-0.5

760 762 764 766 ' 768 770
Wavelength [nm]

1600 1605 1610 1615

0.5

0.0

-0.5

0.5

0.0

-0.5 %»

0.5
0.0

0.5

LI Il
1600 1605 1610 1615 |
‘Wavelength [nm]

2050 2055 2060 2065 2070 2075

2050 2055 2060 2065 2070 2075
Wavelength [nm]
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spectral slope term in each of the three spectral bands. The prior wind speed is taken from the resampled meteorology (either
ECMWEF or GEOSS5 FP-IT, as discussed in the next section), as for the other meteorological parameters. The strong CO5 band
Lambertian albedo is fixed to 0.02; the other six terms are fit in an essentially unconstrained fashion. This approach leads to
the fitted Lambertian albedos generally staying small and positive, the latter of which is currently required by our radiative

transfer module.

Through ACOS B7, land surfaces were assumed to be purely Lambertian, with an albedo and albedo spectral slope retrieved
for each band. The Lambertian surface assumes that the bidirectional reflectance distribution function (BRDF; the ratio of the
radiance in the reflected direction to the irradiance from the incident direction; Schaepman-Strub et al. (2006)) is a constant
that is often specified as a scalar albedo. Since independent fits are done within each of the three OCO-2 spectral bands, this

yields six state variables for land footprints.

Analysis of B7 OCO-2 target mode observations showed that the retrieved Lambertian albedo and aerosol optical depth
sometimes exhibited dependence on the sensor zenith angle for observations of the same surface location. This indicated that
the true surface BRDF has dependence on the observation angles. A more physically justified approach would use a non-
Lambertian model for the surface BRDF. For trace gas retrievals, a Lambertian surface assumption introduces no errors in
the absence of multiple scattering between the surface and atmosphere; in this case, the retrieved albedo is interpreted as
the surface reflectance at the primary scattering geometry (sun-surface-satellite). However, over brighter surfaces with some
atmospheric scattering, the assumed BRDF could in principle affect the retrieval via the interaction of the retrieved aerosol,
surface pressure, and gas concentrations. Therefore, in B8 it was decided to change the surface model for land footprints to a
non-Lambertian surface model. This model assumes a fixed BRDF shape and is assumes the surface is azimuthally symmetric,
but allows for spectral dependence of the amplitude between and within each of our three bands; full details of the BRDF
model are given in Appendix B. While this model does often show reduced correlation between view zenith and the retrieved
BRDF amplitude, the retrieved Xco, (as well as most other state vector parameters) shows very little change versus a version
of the B8 retrieval run with a Lambertian surface. Therefore, while B8 does use a non-Lambertian BRDF parameterization,
a Lambertian surface appears to work equally well. This fact may be a consequence of the strong filtering used in B8, which
tends to remove soundings with multiple scattering. Future applications of the ACOS L2FP algorithm to cases with higher

AOD may be more strongly impacted by the non-Lambertian BRDF.
3.5 Additional Retrieval Algorithm Changes

In addition to these changes, a number of additional (mostly minor) changes have also been made to the ACOS L2FP al-
gorithm since B2.9. In B2.10, the prior CO4 profile was changed to match that used by TCCON, which was more realistic
than our previous prior formulation; as of B8, this corresponds to the GGG2014 version (Toon and Wunch, 2014). Generally
speaking the TCCON COs prior profile is relatively simple: it is a function of latitude, altitude, and date only. It includes a

simple formulation of the seasonal cycle and currently assumes a fixed secular increase of 0.52%/yr (or 2.08 ppm/yr at 400
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Table 5. Median & 10 of GEOSS FP-IT - ECMWEF differences for GOSAT soundings passing the ABP cloud filter.

Variable Land Ocean

Surface Pressure (hPa) 0.07 £0.73 0.05 +0.43

T2m (K) 04+27 03406
T@700 hPa (K) 00+08  -02+08
TCWV (kg/m?) 01418 0.4 +24

Surface Wind Speed (m/s) 04+1.3 -04+09

ppm). There is no land/ocean or other meridional dependence. It requires specifying the tropopause height, and has simple
formulations for the profile in the boundary layer, free troposphere, and stratosphere. A small mistake in the Xco, averaging
kernel was also fixed in B2.10; this was caused by inconsistent assumptions regarding the pressure-dependent gas absorption
cross sections throughout our retrieval code, which led to an obvious “kink™ in the averaging kernel that had long been visually
evident (see e.g. Figure 2 of Connor et al., 2008). We use the 2016 version of the Toon solar transmittance spectrum? (Toon,
2014). Changes in the prior covariance matrix for CO5 (O’Dell et al., 2012) were also considered, but rejected, as tests using

alternate covariance matrices showed insignificant performance improvements.

In B3.3, solar-induced chlorophyll fluorescence (SIF) fitting over land surfaces was introduced. This change was introduced
to combat a bias in X, that results from not fitting for fluorescence when it is present, due to its impact on the O3A band.
This problem and our fluorescence fitting scheme are described in detail in Frankenberg et al. (2012). Briefly, we fit for the
mean and slope of the fluorescence at the top-of-canopy as a function of wavelength; the mean is expressed as a fraction of the
continuum radiance level at a wavelength of 755 nm. The spectral dependence of the fluorescence is taken to be linear. Addi-
tional minor algorithm changes to B3.3 included reducing the prior surface pressure uncertainty from 4 to 1 hPa for GOSAT,
which is likely to be a more accurate representation of the true prior surface pressure uncertainty for the majority of scenes (see
e.g. Salstein et al., 2008). This has the added benefit of reducing the interference error between SIF, aerosols, zero-level offset

and surface pressure.

In B3.4, fitting for SIF was turned off for GOSAT medium gain observations over land, as these regions are nearly all desert
with very little biological activity. For OCO-2, the SIF prior is taken from the official SIF retrieval, as described in Sun et al.
(2018), because SIF retrievals from individual soundings are meaningful for OCO-2 due to its relatively high SNR.

In B8, the prior height of the cirrus cloud layer relative to the surface pressure was moved slightly, from the fixed value of

x = 0.3, to just below the tropopause height (which is a relatively strong function of latitude). The calculation of the tropopause

2 Available at https://mark4sun.jpl.nasa.gov/toon/solar/solar_spectrum.html.
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height itself was also refined in B8, which also improved the calculation of the prior CO4 profile. Finally, the prior meteorology
was changed in B8 from ECMWF to GEOSS-FP-IT (Suarez et al., 2008; Lucchesi, 2013). Some statistics regarding differences
in surface pressure, temperature, water vapor, and surface wind speed between the two models for retrieved GOSAT soundings
are given in Table 5; the corresponding difference statistics for OCO-2 soundings are nearly identical. Only soundings passing
the O2A band prescreener are included. In general, the two models are very similar, with for instance 95% of all soundings
having a surface pressure difference of less than 1.5 hPa. Surface pressure probably affects our retrieved Xco, the most, as it
is used not only in the retrieval, but also in the bias correction, where differences in the prior surface pressure will lead to a
first order change in the bias-corrected Xco,. Currently then, the “noise” from the surface pressure difference between these
two models would amount to roughly 0.6 hPa, or about 0.25 ppm in X¢(,, which is quite a bit less than our noise-driven error
(~ 1.4 hPa on average) and regional biases (~ 2.4 hPa on average). Retrieved surface pressure errors are discussed in more

detail in Section 4.3.4.

4 Retrieval Filtering and Bias Correction

All soundings passing the prescreening criteria (Table 1) are processed with the L2FP retrieval algorithm. Of these, some 10-
20% fail to converge to a solution, typically because of unscreened clouds or other factors that cannot properly be modeled in
the retrieval. Some fail simply because of the nonlinear nature of the problem - in general, there is no perfect way to minimize
the cost function. Of the 80-90% of soundings that do converge to a minimum in the cost function, typically 3-6 iterations are

required.

Despite our best efforts to prefilter problematic soundings, there are inevitably some retrievals with X0, errors that exceed
those predicted by theory. Ideally, the X0, errors would be normally distributed, with errors consistent with the 1o a posteriori
uncertainty on Xco, from the retrieval (see e.g. Rodgers, 2000), but often there are retrievals with systematically biased X0,
and/or larger-than-expected scatter. This problem is partially mitigated by applying a bias correction, which can reduce both
scatter on smaller spatial scales and biases on larger spatial scales. However, problematic soundings still remain. A quality
filtering procedure then attempts to remove these soundings with larger-than-expected differences from our truth metrics. For
GOSAT, this process was described in O’Dell et al. (2012) and Crisp et al. (2012). The problem of biases is dealt with via
a linear bias correction (Wunch et al., 2011a). In this section, we describe both filtering and bias correction procedures for
Xco,for B8 retrievals only, unless otherwise noted. A similar procedure was used for GOSAT data as well as OCO-2 B7, but

the procedures were more mature and robust for B8.
4.1 Truth Proxy Training Data Sets

Both filtering and bias correction require a training data set, which consists of soundings for which we have both the OCO-2
retrieved Xco, as well as a reliable, independent estimate of Xco,. The latter we call a “truth proxy”. We used four such

datasets: TCCON, models, models in the southern hemisphere only, and a new validation method for OCO-2 called the “small-
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Table 6. Xco, Truth proxies for retrieval evaluation.

Name Ng;Land N, Ocean Glint Details
TCCON 228k 88k Geometric colocation requirement, GGG2014
Multi-Model Median 1132k 861k Median of 6 models (see text)
Models_SHA 260k 251k same as above for lat<20S
Small Area Approximation (SAA) 795k 505k areas < 100km along-track

area approximation”. Table 6 lists the truth proxies used in version 8, while Figure 8 shows the spatial distribution of the truth

proxy datasets matched to actual OCO-2 soundings.
4.1.1 TCCON-based Truth Proxy

The most direct truth proxy is the comparison to TCCON, which currently has 25 operational stations globally, but with heavy
representation in North America, Europe, Asia, and Oceania. For the OCO-2 B8 evaluation, the latest version of TCCON
retrievals was employed (GGG2014, Wunch et al., 2015). Many schemes have been used to match air masses observed by
satellites to those viewed from TCCON stations. Examples include a geographic-centric scheme (Cogan et al., 2012; Inoue
et al., 2013; Oshchepkov et al., 2013; Kulawik et al., 2016), a scheme based on the potential temperature at 700 hPa (Keppel-
Aleks et al., 2011; Wunch et al., 2011b), model-based selection (Guerlet et al., 2013), and geostatistical selection (Nguyen
et al., 2014). These more sophisticated techniques were primarily used because GOSAT had fairly sparse data and required
relatively loose matching criteria to yield sufficient numbers of matched observations. This is less of a problem with OCO-2 at
lower and mid-latitudes, with its higher spatial sampling density. High latitude validation with TCCON remains challenging,
where OCO-2 data are still sparse.

Table 7 lists the TCCON sites used as truth proxies in this work. Training data ranges correspond to the quality filtering
and bias correction procedures described in Sections 4.2 and 4.3, respectively. Validation data ranges correspond to the basic
validation described in Section 5. Our colocation requirements for B8 were similar to those used for Wunch et al. (2017), in
which we required that OCO-2 footprints were within 2.5° latitude and 5.0° longitude of the TCCON station, and that the
observations occurred within 2 hours of each other. These requirements were modified slightly for the Caltech, Armstrong, and
Tsukuba stations in order to discriminate satellite observations taken over the nearby megacities of Los Angeles and Tokyo.
Because of additional station data and a longer training period, there were roughly twice as many station-months of valid

colocations for B8 as compared to our B7 training (roughly 400 vs. 190 station-months).

We estimate TCCON colocation errors to be on the order of 0.5 ppm, due to both colocation errors and TCCON station-level

biases (Hedelius et al., 2017). Even with these small errors, TCCON is an incomplete validation source due to its limited spatial
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Figure 8. Sounding density of the truth proxy data in 4°x 4° bins used in the OCO-2 version 8 X¢o, filtering and bias correction. The middle
panel shows both the full global model-based truth proxy, and the southern hemisphere truth proxy as the portion below the dashed black

line.
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Table 7. TCCON stations used in this work.

TCCON station

Training Date Range

Validation Date Range

Reference

Anmyeondo, South Korea
Ascension Island
Bialystok, Poland

Burgos, Phillipines
Bremen, Germany
Caltech, Pasadena, CA, USA
Darwin, Australia
Edwards (Armstrong), CA, USA
East Trout Lake, Canada
Eureka, Canada
Garmisch, Germany
Izafia, Tenerife, Spain
Karlsruhe, Germany
Lamont, OK, USA
Lauder, New Zealand
Manaus, Brazil
Ny Alesund, Spitzbergen, Norway
Orléans, France
Paris, France
Park Falls, WI, USA
Réunion Island
Rikubetsu, Japan
Saga, Japan
Sodankyld, Finland
Tsukuba, Japan
Wollongong, Australia

May 2015-Sep 2015
Sep 2014-Dec 2016
Sep 2014-Jun 2016
Jan 2017
Sep 2014—Jul 2016
Sep 2014-Nov 2016
Sep 2014-Sep 2016
Sep 2014-Jun 2016
Jan 2017
Jun 2015
Sep 2014—-Aug 2016
Dec 2015-Mar 2016
Sep 2014-Jun 2016
Sep 2014-Feb 2017
Sep 2014-Mar 2017
April 2015-May 2015
not used
Sep 2014-Oct 2016
Apr 2015-Mar 2016
Sep 2014-Dec 2016
Sep 2014-Nov 2016
Oct 2014-Oct 2016
Sep 2014-Mar 2016
Oct 2014-Jul 2016
Sep 2014-Feb 2017
Sep 2014—Nov 2016

May 2015-Aug 2016
Dec 2014-Feb 2017
Sep 2014-Apr 2017
Mar 2017-Apr 2017
Sep 2014-Mar 2017
Sep 2014-Feb 2017
Sep 2014-Oct 2016
Sep 2014-Aug 2016
Oct 2016-May 2017

Aug 2015

Sep 2014-May 2017
Dec 2015-Jul 2016
Sep 2014-May 2017
Sep 2014-May 2017
Sep 2014-May 2017
Nov 2014-Jun 2015

May 2015-May 2017
Sep 2014-May 2017
Oct 2014-Oct 2016
Sep 2014-May 2017
Sep 2014-May 2017
Oct 2014-Feb 2017
Sep 2014-May 2017

May 2015-May 2017
Sep 2014-May 2017
Sep 2014-May 2017

Goo et al. (2014)
Feist et al. (2014)
Deutscher et al. (2015)
Velazco et al. (2017)
Notholt et al. (2014)
Wennberg et al. (2015)
Griffith et al. (2014a)
Iraci et al. (2016)
Waunch et al. (2016)
Strong et al. (2016)
Sussmann and Rettinger (2014)
Blumenstock et al. (2014)
Hase et al. (2015)
Wennberg et al. (2016)
Sherlock et al. (2014)
Dubey et al. (2014)
Notholt et al. (2017)
Warneke et al. (2014)
Te et al. (2014)
Wennberg et al. (2014)
De Maziere et al. (2014)
Morino et al. (2016b)
Kawakami et al. (2014)
Kivi and Heikkinen (2016)
Morino et al. (2016a)
Griffith et al. (2014b)

coverage. For example, there are few stations in the tropics, none in the central Pacific or Central Asia, and, with the exception

of Armstrong, in bright desert regions. Except when specifically stated, we employed the OCO-2 averaging kernel correction.

A general treatment of averaging kernel corrections was first given in Wunch et al. (2011a). The specific correction we employ

is taken from Nguyen et al. (2014), in which the TCCON retrieved profile is convolved with the OCO-2 column averaging
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Table 8. Models used in this work.

Name Version Land Inverse Transport Reference

Biosphere Method

CAMS 1512 ORCHIDEE 4D-Var LMDZ Chevallier et al. (2010)

Univ. Edinburgh ~ v2.1 CASA EnKF GEOS-Chem  Feng et al. (2009)

Jena CarboScope  s04_v3.8 Special 4D-Var ™3 Rodenbeck (2005)

CarbonTracker CT2015, CASA EnKF TMS Peters et al. (2007), with updates
CT-NRT.v2016-1 documented at http://carbontracker.noaa.gov

TMS5-4DVar 2016 CASA 4D-Var T™MS Basu et al. (2013)

ou 2016 CASA 4D-Var TM5 Crowell et al. (2018b)

4.1.2 Small Area Approximation Truth Proxy

To supplement TCCON, we used a method new for OCO-2 called the “Small Area Approximation”, or SAA®. The SAA
relies on the high spatial resolution of OCO-2 footprints (1.3x2.3km?), and the relatively long decorrelation length of CO»
concentration in the atmosphere (500-1000 km, see e.g. Chevallier et al., 2017, Fig 1). Specifically, this approximation assumes
that for a given overpass of an area not larger than 100 km in spatial extent, Xco, can be considered uniform over the area.

2 “pature run”. It

True X, variability was evaluated by Worden et al. (2017) by examining output from the GEOS-5 7x7 km
was found to be typically less than 0.1 ppm per 100 km areas away from strong known sources, thus justifying our small area
assumption. In fact, this error is considerably lower than can be obtained by any of the other truth metrics. The major drawback
of this method is that it is insensitive to biases due to variables that vary slowly on these small scales, such as those related to

viewing geometry and some surface and aerosol parameters.
4.1.3 Model-based Truth Proxies

The third validation dataset is based on results from global carbon flux inverse models, and is referred to as the “Multi-Model
Median”. In order to evaluate OCO-2 retrievals against a posteriori results from an array of models, and to avoid the biases in
one particular model, a suite of 6 models sampled at the OCO-2 sounding locations and times was used. Table 8 provides a
summary of the models that were used. The models generally differed in their prior flux assumptions, prior flux uncertainty,
transport model, initial conditions, spatial resolution, and inverse method, but had one commonality in that all assimilated
in-situ CO4 concentration data. Because of these differences, the models often yielded a posteriori Xco, fields that disagreed
to some extent, with differences ranging from a few tenths of a ppm to several ppm as discussed below. We used model output

that covered a minimum period from September 2014 through December 2015, though a few models (CarbonTracker, TM5-

3Not to be confused with the South Atlantic Anomaly.
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Figure 9. Maximum difference between each model and the model median in ppm, averaged over 4° x 4° grid boxes. Two seasons are
shown: DJF (left) and JJA (right). Soundings for which all models are within 1.5 ppm of the model median are retained in the model-based
truth proxy.

4DVar) extended into March 2016. To compare against the models, for simplicity we computed only true Xco, values from the
a posteriori CO4 concentrations, rather than averaging-kernel-corrected values. Previous authors have shown that this effect is

typically small, on the order of a few tenths of a ppm (Wunch et al., 2011a; Inoue et al., 2013; Lindqvist et al., 2015).

For each matched OCO-2 sounding, the model median was computed from all available models for that sounding. If the
any model X¢ o, value differed by more than 1.5 ppm from the model median, that sounding was excluded from our training
dataset. This requirement helped ensure that at the very least, all the models were generally consistent with each other for a
given sounding in our training set. Generally the root-mean-squared difference of the model X, values was less than 0.7
ppm for any given sounding satisfying this requirement. The median of the model-predicted X, for soundings satisfying

this criterion was then taken as the truth estimate.

Figure 9 shows maximum difference from the model median for both the northern hemisphere winter (December, January,
February; DJF) and summer (June, July, August; JJA). Most soundings passed our “model-agreement” requirement over ocean
at all times and over land in DJF, where the bulk of the land biosphere is quiet and hence X¢o, is more robustly modeled.
In JJA, however, a substantial fraction of land soundings fail this test, in particular over northern hemisphere regions such as

Asia. Tests showed that our results were not strongly sensitive to the agreement threshold chosen.

Finally, Wunch et al. (2011a) used a truth proxy called the “Southern Hemisphere Approximation” (SHA) in which it was
assumed that the southern hemisphere (25°S-55°S) could be taken to be meridionally uniform in X0, at any given time, with
a latitudinal gradient of -1 ppm from 258S to 55S, and the change in mean Xco, over time could be prescribed with a linear
secular trend (taken to be 1.9 ppm/yr). This served reasonably well for the GOSAT retrievals at that time, which exhibited rather

large errors. However, the SHA has the primary shortcoming that meridional anomalies can sometimes exceed 0.5-1.0 ppm,
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and are typically larger over land versus ocean. We find that substituting the model median instead of the zonally-corrected
mean used in Wunch et al. (2011a) results in error variances of the approximation 3-4 times lower, when comparing against
any particular model as truth. Therefore, in order to maintain a connection to the truth metric of Wunch et al. (2011a), in this
work we adopt the modified SHA called “Model_SHA”. This is simply the model median, discussed above, but only used in

the southern hemisphere below a latitude 20°S.
4.2 Quality Filtering

The construction of the operational OCO-2 filtering and bias correction for B7 is described in detail in Mandrake et al. (2015),
with updates for B§ described in an online user’s guide (Eldering et al., 2017). The training procedure for both filtering and
bias correction for these two versions followed a similar approach. Below, we discuss the filtering and bias correction for
version 8 only, and make notes where version 7 differed significantly. The filtering procedure yields two quantities. The first
is a binary flag denoted the X0, quality flag, which requires that a series of parameter-based tests are all passed. The second
is a graded set of “warn levels”, which assigns each retrieval an integer value from O (most likely to yield accurate Xco,) to
5 (least likely to yield accurate Xco,). A genetic algorithm (Mandrake et al., 2013) finds combinations of variables that are
best at predicting variance reduction in X¢o, over both small areas (< 10x80 km?) and in the Southern Hemisphere (south of

255). In this document, we focus only on the quality flag filtering.

Filtering is accomplished by first identifying variables that cause the largest X ¢o,, where X o, is defined as the retrieved
- true Xco,, the latter of which is evaluated for a given truth proxy. This was done sequentially, by identifying the single
variable responsible for the largest fraction of the variance in §Xo,. We then created a simple threshold-based filter for this
variable. After application of the filter, this process was repeated multiple times until it appeared that the majority of problem-
atic data were removed. Because bias correction affected this procedure, a preliminary filter set was first created, after which a
preliminary bias correction was developed. The preliminary bias correction was then applied, X o, was updated accordingly,
and the filters were re-derived using this bias-corrected 6 Xco,. Generally this had only a minor effect on the filters, and often

served to increase the fraction of data passed through filtering.

Selection of thresholds for particular filters was somewhat subjective: generally bias was regarded as more problematic than
scatter, but both were considered. Variables were typically selected as filters if they were correlated with bias greater than about
0.5 ppm, or significant scatter (greater than about 2 ppm). The filtering variables and thresholds were derived separately for
land (combined nadir and glint) and ocean soundings. The final values of the filtering thresholds for the X, quality flag are
given in Appendix A. Filtering variables selected and their thresholds were the same or similar, regardless of the particular

truth proxy used.

An example of this sequential filtering approach is shown in Figure 10, which shows the X, error vs. filtering parameters

for nadir and glint land soundings, using TCCON as the truth proxy. Overall, the results were found to be robust for all our truth
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Figure 10. 6Xco, vs. select filtering variables for land (nadir+glint) data, using TCCON as a truth proxy. Shown are the mean bias in each
parameter bin for both raw (black circles) and bias-corrected (light blue circles) Xco,, as well as the standard deviation of the bias-corrected
6Xco, (dark blue diamonds). The histogram of each parameter is shown in gray. The vertical black dashed lines denote filtering thresholds
for the Xco, quality flag, while the thin red solid lines show filtering thresholds for the warn levels. The quality flag filters are applied
cumulatively from left to right and top to bottom. The fraction passing at each step, as well as the RMS error of the bias-corrected Xco,, are

shown in the upper right corner of each panel. Please see Table A1 for a complete definition of all of the filter variables.
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proxies. Just a few variables do the bulk of the filtering. For both land and ocean, the CO2 and H5O ratios computed by the
IMAP-DOAS preprocessor account for a significant fraction of the total filtering. These variables represent the ratio of the total
column CO4 (H20) as derived from the weak CO5 band to that from the strong CO5 band. As discussed at length in Taylor
et al. (2016), values of these gas ratios that deviate significantly from unity indicate the presence of significant atmospheric
scattering. As shown in Figure 10, ratios significantly away from the median values can result in both large scatter and large
biases. Another robust finding is that biases are associated with large absolute values of the retrieved - prior surface pressure
(dP) for both the Level-2 and ABP preprocessor retrievals. All of these variables (CO5 and H5O ratios and surface pressure)

are most likely diagnosing scattering-induced errors due to improperly-modeled clouds and aerosols.

Two variables associated with small-scale variability are also associated with increased scatter: the standard deviation of
the surface altitude within OCO-2’s field-of-view, and another parameter called “Max_Declocking”, which is determined in-
dependently for each of the three OCO-2 bands. The latter is related to a slope in the observed radiance within an individual
sounding’s field-of-view, and is determined from OCO-2’s color slices as discussed in Crisp et al. (2017). The scatter associ-
ated with surface elevation appears to be related to an instrument-to-spacecraft offset specification error, which results in small
(several hundred meters) pointing errors, which is improved in the next data version (version 9) and allows for relaxation of

this filter (Kiel et al., 2018).

Another interesting variable that can result in both bias and scatter is the tropospheric lapse rate of the retrieved CO- profile,
called co2_grad_del. It is determined by the difference in retrieved CO2 between the surface and the retrieval pressure level at

0.7 times the surface pressure, minus this same quantity for the prior:
co2_grad_del = [¢(1) — ¢(0.7)] — [cap(1) — €qp(0.7)] Q)

where ¢(x) and ¢,y () respectively denote the retrieved and a priori CO dry air mole fraction at relative pressure z. The
reason why this variable is strongly associated with bias and scatter is still being investigated; it may be due to COq2 spec-
troscopy errors, or some other factor. There is also a filter associated with dark surfaces; scenes with a strong CO2 band albedo
less than 0.05 consistently exhibit a bias in retrieved Xco, and are thus excluded. Note this will tend to flag most snow- and
ice-covered surfaces (such as over Greenland and Antarctica), which are highly absorbing at wavelengths longer than about
2 pm. It also tends to exclude dark forests such as in the Amazon. There are also filters associated with the retrieved slope
of the strong CO4 band albedo, the fit quality in the CO4 bands, and a number of retrieved aerosol variables. Of particu-
lar note is the total retrieved optical depth associated with our larger aerosol types: dust, water cloud, and sea salt (DWS).
High values of DWS are associated with negative biases in X¢o, over land, and it is used as both a filter and bias-correction

variable. Although ice is also a large type, it is confined to the upper atmosphere in our retrieval and has its own dedicated filter.

Similar variables are used for filtering over water surfaces (Figure 11), though note that almost no aerosol-related variables

are used. This may be because water surfaces have relatively uniform optical properties, such that the retrieved variables in-

30



10

1.0

0.8

0.6

0.4

Fraction

0.2
0.0

- — — 0000

= 2511

630

158

S 39
10

Good Soundings per Month

Figure 12. Fraction of L2FP processed soundings passing quality filter (upper row) and total number of good-quality soundings per month
per 6° x6° boxes (lower row), for the northern hemisphere winter (DJF) and summer (JJA). The number plots have a logarithmic color scale,

and grid boxes with no data are shown in grey.

directly associated with cloud and aerosol scattering, such as the CO5 and H5O ratios and the slope of the strong CO5 band
albedo, are more effective than over land, obviating the need for additional aerosol-related filtering. It may also be because most
downward-propagating, forward scattered light is absorbed by the ocean surface, so the pathways for aerosol contamination

are significantly less than over land, as noted by Butz et al. (2013).

As seen in the upper left panel of Figure 11, the dominant filtering variable for water-glint soundings is the slope of the
strong CO2 band albedo. This is the slope of the retrieved Lambertian albedo in that band, which is generally small and is
added onto the reflectivity coming from the primary Cox and Munk surface, which is a function of wind speed only. Negative
slopes are strongly associated with Xco,bias, which appears indicative of either cloud ice or sea salt aerosol scattering, both
of which yield a negative slope in these units*. Large positive values of this slope are likely associated with contamination by
sulfate aerosol or other small particle types. The sensitivity of this variable to cloud and aerosol scattering has been confirmed

with simulations. About 10% of water-glint soundings are flagged by this filter.

4The units of the albedo slope are in per unit wavenumber, increasing with wavenumber.
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After filtration, about 31% of land soundings and 55% of water soundings pass the X0, quality flag >. As depicted in Figure

12, the pass rates are not uniformly distributed around the globe. Over land, very bright and dark surfaces are preferentially
filtered out, as well as locations with many low clouds such as the Amazon, which are sometimes missed by our prefilters
(Taylor et al., 2016). Nearly all soundings over ice surfaces are filtered out, because the albedo of ice is very low at 2 um,

5 hence yielding low signal-to-noise. The higher quality of water soundings is likely due to higher uniformity of water surfaces
in glint mode, higher and more uniform SNR in all three bands, and fewer surface-atmosphere scattering mechanisms. Over
both land and water, soundings at higher solar zenith angles are also removed at a higher rate by our quality flag. This is most
likely due to the relatively large effects of scattering on our retrievals for these geometries, specifically, when the fraction of
the light received at the detector from atmospheric scattering is a larger fraction of the total. Over water, approximately 70%

10 of soundings pass at lower viewing angles, while nearly all soundings fail at high viewing angles.

Table 9. Land bias correction parameters, their coefficients and percentage of the variance explained, for different truth proxies and observing

modes.

Coefficent (% Variance)

Truth Proxy Mode N dp co2_grad_del DWS
TCCON Nadir 92k -0.38 (33%) -0.028 (17%) -8.8 (4%)
Glint 68k -0.38 (38%) -0.026 (14%) -6.4 (2%)
Target 245k  -0.29 (22%) -0.023 (24%) -7.8 (6%)
SAA Nadir 242k -0.37 (38%) -0.031 (26%) -9.5 (10%)
Glint 251k -0.36 (41%) -0.030 (24%) -9.6 (9%)
Models Nadir 281k  -0.34 (28%) -0.029 (21%) -9.3 (8%)
Glint 300k  -0.34 (30%) -0.027 (19%) -9.0 (8%)
Models_SHA Nadir 87k -0.35 (28%) -0.032 (29%) -8.8 (8%)
Glint 87k -0.36 (29%) -0.029 (25%) -10.3 (12%)
B8 Adopted All -0.36 £0.028 -0.029 +0.0027 -85+£1.1
Reference Value 0.0 15.0 0.0
B7 Adopted All -0.30 -0.028 -7to-11%

*B7 used In(DWS) rather than DWS in its bias correction.

5Note that these passing rates are lower than those in Figures 10 and 11, which were based on a smaller training dataset that included more successful and

clear-sky soundings, with fewer soundings in difficult regions such as over heavy clouds or snow and ice-covered surfaces.
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4.3 Bias Correction

After filtering, systematic biases remain in retrieved Xco, which must be corrected in order to minimize errors. The OCO-2
bias correction contains three main pieces: parametric, footprint-level, and global biases. Parametric biases are functionally
related to a given parameter associated with a given sounding. Examples of this could be surface pressure, albedo quantities,
retrieved aerosol quantities, etc. Footprint-level biases are corrected to ensure that each of OCO-2’s eight sensors, or “foot-
prints”, yield the same X, value when observing similar scenes. This is not always the case due to small calibration errors in
the eight individual footprints. The final step of the bias correction removes any global mean bias that may remain. The overall
bias correction equation is then written as:
XcOs raw — Cp(mode) — Cr(j)

Co(mode) ©

X0z pe =

where Cp is the mode-dependent parametric bias, C'r is the footprint-dependent bias for footprints j =1...8, and Cy repre-

sents a mode-dependent global scaling factor. The following subsections discuss each of these corrections in detail.
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Figure 13. Multi-linear bias correction fit to the three variables used for land soundings. Here, land nadir and glint observations are shown,
with the multi-model median truth proxy. The circles show mean values in each parameter (x-axis) bin, and the error bars are the 1-sigma
standard deviations within each bin. The histogram shows the distribution of the parameter. The legend in each panel shows the starting and
ending standard deviation after application of each variable, and the coefficient for that variable of the multiple regression using all three

variables.

4.3.1 Bias Correction: Parametric Biases

The most complex but important of the three aspects of the bias correction is inferring biases dependent upon different retrieval

parameters. Most near-infrared X0, retrievals have required this, for both GOSAT (Wunch et al., 2011a; Cogan et al., 2012;
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Guerlet et al., 2013) and OCO-2 (Reuter et al., 2017; Wu et al., 2018) measurements. A nontrivial fraction of the bias comes
from the retrieval algorithm itself, as shown in the simulation-based study of O’Dell et al. (2012), in which the instrument
model and spectroscopy were perfect, yet biases still emerged in the retrievals. Previous versions of the ACOS algorithm
applied to GOSAT have shown dependencies on the surface albedo in the COq bands, dP (retrieved minus prior surface
pressure), co2_grad_del, the retrieved ice cloud height, and other variables. The parametric bias correction has the form of a

multiple linear regression, following Wunch et al. (2011a):
Cp =" ci(pi = Pires) (7)

where c¢; are the regression coefficients, p; are the selected parameters, and p; ...y are convenient reference values. We note
that the reference values are nontrivial in that they interact with the last term in the bias correction, the global scaling factor.
Ideally, the reference value will be the value of the parameter at which that parameter does not bias the retrieved Xco,, but this
is impossible to disentangle from the global scaling factor. Wunch et al. (2011a) took the parameter reference values to be the
estimated global mean value of each parameter. Here we do not require this, though for some variables, the estimated global

mean is used.

In order to identify the variables of interest, we used all four truth proxies and identified combinations of one, two, three, and
four variables that removed the most variance, for each observing mode and over both land and water. Variables that remove
less than 5% of the variance are not included, as overfitting is a potential danger here. Typically the different truth proxies
agree on the most important variables, but disagree on the variables that explain just a few percent of the variance or less. As
shown in Table 9, it was found that three fit parameters were required over land, and that their values did not strongly depend
on observing mode. These variables were d P (retrieved minus prior surface pressure), co2_grad_del, and finally DWS, which
as stated previously is the combined retrieved optical depth of dust, water cloud, and sea salt aerosol. DWS represents the
retrieved optical depth of large particles in the lower-to-middle troposphere in the retrieval. While ice cloud particles are large,

they are placed in the upper troposphere in the retrieval, and all other aerosol types in the retrieval are much smaller.

In Table 9, the coefficients of each parameter inferred from each truth proxy and observing mode typically agree to within
10-20%. The final result represents a combination of the average of these individual values, but was also driven by consensus
amongst the scientists involved. Table 9 also gives the approximate uncertainty on each parameter, which is estimated as the
standard deviation of the estimates from the different truth proxies and viewing modes. Also shown is the B7 bias correction,
which was very similar, though it used In(DWS) instead of DWS. Figure 13 shows the result of the multiple regression for
these three variables against the model-based truth proxy, for all nadir and glint soundings over land. In general, d P explains

about 30% of the variance over land, co2_grad_del about 20%, and DWS roughly 5-10%.

A similar procedure was followed for glint soundings over water. For this observing mode, only dP and co2_grad_del were

needed; all other variables explained only a very small fraction of the variance, and were not consistent among truth proxies.
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Table 10. Ocean glint bias correction parameters for different truth proxies.

Coefficent (% Variance)

Truth Proxy N dp max(co2_grad_del, -6)
TCCON 72k -0.24 (30%) 0.078 (5%)
SAA 385k -0.22 (60%) 0.092 (10%)
Models 610k  -0.25 (35%) 0.105 (8%)
Models_SHA 157k -0.12 (16%) 0.134 21%)
B8 Adopted -0.23 £ 0.06 0.090 £ 0.024
Reference Value 0.0 -6.0
B7 Adopted -0.08 0.077
OF Fome=1.01 g
2F E

-1 E

=

0=0.81 4 0=0.76
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Figure 14. Same as Figure 13, but for ocean glint measurements again using the model mean truth proxy.
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Figure 15. Estimates of the OCO-2 footprint biases, estimated separately for each observing mode and surface type. Because of their

similarity, a single set of biases was used in the end.

The fit to these two variables for the model-based truth proxy is shown in Figure 14. A true linear regression will not work
for co2_grad_del. Instead of fitting a nonlinear form, we instead fit against the variable max(co2_grad_del, -6). This gives
essentially the fit as shown in the figure, where the best-fit line to the bias increases with increasing co2_grad_del until a value
of -6, above which the fitted bias is held constant. As shown in Table 10, the different truth proxies again yielded similar results
5 to within about 20%, with the exception of “Models_SHA”, which was an outlier. The reason for this is unknown, though we
speculate that the actual parameter variability in the southern hemisphere is too small to obtain sensible slopes. Therefore, this
truth proxy was excluded in the calculation of the final coefficients for glint soundings over water. Also, it is worth noting
that the dP coefficient in B7 was roughly three times smaller than the value of -0.23 adopted for B8. This was driven by
inconsistencies in the B7 truth proxy data sets and a very small training data set, which yielded an unrealistically small value.

10 Later analyses showed that B7 probably should have used a higher value, more in line with the B8 result.
4.3.2 Bias Correction: Footprint Biases

After fitting for the parametric biases, the dependence of the Xco, bias on footprint was evaluated. As with the parametric
biases, the footprint biases were evaluated using the suite of truth proxies and for each observing mode separately (land nadir,
land glint, and ocean glint). For all frames that contained all 8 footprints, the difference of each footprint from the mean of
15 its frame was calculated, with the result being the estimated set of footprint biases for each truth proxy. Note that this was
done after application of the parametric bias correction. The resulting biases were quite consistent across truth proxies, thus the
results across truth proxies were averaged. As shown in Figure 15, there was virtually no dependence on viewing mode, and
no obvious land-water differences. It appears that the footprint-level biases are truly instrument related, and thus do not seem
to strongly depend on other factors. Therefore, a single set of footprint-level biases was used. The adopted footprint biases for

20 footprints 1-8 were (-0.36, -0.15, -0.16, -0.14, 0.02, 0.33, 0.13, 0.34) ppm, with an uncertainty of roughly + 0.03 ppm (1o)
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Figure 16. Scatter plot of 130 OCO-2 BS target mode Xco, observations versus colocated TCCON observations, used in the determination

of the global scaling factor Cy from equation (6). OCO-2 values have the parametric and footprint bias corrections applied.

on each. The reason for the general increase in this bias with increasing footprint is not known. Finally, while the fraction of
the variance explained by footprint-level biases (~2%) is small compared to that explained by the parametric biases, they are

straightforward to evaluate and could have an effect on local-scale analyses, and are therefore removed.
4.3.3 Bias Correction: Global Scaling

Despite the corrections described above, there is still an overall X¢o, bias on the order of 1-2 ppm relative to the true at-
mosphere. As shown in equation (6), the denominator term Cj represents a global bias correction, and is parametrized as a
function of viewing mode. As for the quality filtering and parametric bias correction, we found that the land scaling factor is
roughly the same for nadir, glint, and target modes, such that a single scaling can be used for all land soundings. Ocean glint

required a slightly different global scaling factor.

The B8 global scaling was determined primarily from several hundred direct OCO-2 overpasses of TCCON stations. We
followed the geometric colocation method of Wunch et al. (2017), with the exception that sites in the southern hemisphere
required the same latitude and longitude colocation thresholds as sites in the northern hemisphere. The TCCON value for
a given overpass was determined as the mean of the observations within 2 hours of the OCO-2 overpass. At least 3 valid

TCCON and 20 quality-flag “good” OCO-2 soundings were required per overpass. For each viewing mode, the slope m of the
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Figure 17. Annual mean biases and changes from the prior for all quality-flag “good” soundings from September 2014 through September
2017. (a)-(c) Parametric biases for dP, co2_grad_del, and DWS. (d) Sum of the parametric bias terms - note the color scale change. (e)
Departure of the raw retrieved Xco, including the global scaling correction, from the prior, Xco,,raw/Co — Xc04,ap- (f) Departure of the

bias-corrected Xco, from the prior, Xco,,bc — Xc0s,ap-
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Table 11. Global Scaling Factors (Divisors) for OCO-2 version 8.

Data Set Method N Divisor Cj
Land Target TCCON 138 0.9958
Land Nadir TCCON 313 0.9962
Land Glint TCCON 277 0.9960
Ocean Glint TCCON 236 0.9956 *Using a value of 0.9958 for land soundings.
Ocean Glint Coastlines* 536 0.9955

Ocean Glint  Model Bootstrap* 500,000 0.9954

Land (all) Adopted 0.9958
Ocean Glint Adopted 0.9955

best-fit line passing through the origin was calculated with the method of York et al. (2004):

< ~ Xc02,0002
CO2 ,teccon CO

®)

which provides the best-fit value of Cy. The results for each viewing mode are shown in Table 11 under Method “TCCON”. It
can be seen that the three sets of land overpasses yielded a scaling factor C consistent with each other to within their respective
errors. The errors are representative differences of the fitted slope due to both retrieval errors as well as linear fit differences
(for instance, using a least-squares fit vs. a least-absolute-deviation fit), and were typically + 0.0003 (~0.12 ppm). Because

Target mode observations were better colocated, the Target observation value of 0.9958 was adopted for all land observations.

For ocean glint, the global scaling factor was estimated with three methods: direct overpasses of TCCON stations and two
independent “bootstrap”” methods, using coastline-crossings and models. Direct overpasses of TCCON stations yielded a value
of 0.9956, slightly lower than the adopted land value but still consistent to within errors. For the coastline bootstrap method,
a set of several hundred small areas centered on coastlines were identified in which it was possible to ratio the mean value of
Xco, over water to the mean value of Xco, over land. This yielded a mean water/land ratio of 0.999740.0001, meaning that
ocean values were slightly lower than land values. Multiplying this water/land ratio by the land scaling value yielded an ocean
scaling value of 0.9955. Finally, the multi-model median truth proxy was used, wherein the slope of OCO-2 versus models
was calculated, sampled at good quality OCO-2 sounding locations. It was found that land required a scaling of 0.9950 and
ocean a scaling of 0.9946, suggesting a water/land ratio for OCO-2 of roughly 0.9996+0.0001, similar to that of the coastline
crossing value, and thus an ocean scaling value of 0.9954. Note that the absolute comparison of models relative to OCO-2
was not used here, as spin-up issues and averaging kernel corrections (ignored in this analysis) could yield a spurious global
offset between the models and OCO-2. Therefore, only relative land-ocean differences were used to infer Cj in this “Model

Bootstrap” method. As seen in Table 11, the “bootstrap” methods were remarkably consistent with each other and with the
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direct TCCON overpass method, all suggesting an ocean scaling of roughly 0.9955.

All of the methods described above for determining the global scaling of Xco, show remarkable consistency with each
other, giving confidence that the overall scale of OCO-2 data are known to within a few tenths of a ppm, and the land-ocean
difference is known to better than 0.2 ppm. One caveat is that the direct TCCON overpass comparisons did not account for
the averaging kernel correction in this analysis. After the release of OCO-2 X0, B8, subsequent analysis showed that this
correction typically lowered the value of TCCON by ~0.1 ppm on average relative to OCO-2. Therefore, there is additional

possible uncertainty in the overall magnitude of OCO-2 data by this amount.

4.3.4 Bias Correction Evaluation

With all three sources of bias now characterized, the overall role of the bias correction in the retrieval can be evaluated. Figure
17 is an attempt to show this at the mean annual scale. Panels a-c show the biases due to the three different bias terms: dP,
co2_grad_del, and DWS. Of these three, dP is the strongest. This is apparent in panel (d), which shows the sum of the para-
metric biases (note the scale change between columns). Panel (e) shows the mean change from the prior in the raw retrieval,
after correcting for the global bias term only (which is likely due to spectroscopic and instrumental bias). The change from the

prior to the bias-corrected X0, is shown in panel (f), which combines these two terms.

The paramteric bias, while smaller than the difference between the raw retrieved and prior Xco,, is of a comparable order
of magnitude. Ideally, the parametric bias would be much smaller. As noted above, the parametric bias is dominated by the
dP term. This term reflects the fact that the error in X0, is reduced using the prior rather than the retrieved surface pressure.
That is, the ACOS-retrieved slant column of air is dominated by systematic errors that are not reflected in the estimated CO4
slant column. We have identified two easily-correctable sources of such error, both related to how the B8 surface pressure prior
fields were derived. One of these was caused by a slight error in the knowledge of the pointing of the OCO-2 instrument that
induces spurious small-scale error in the estimated prior surface pressure in regions of high topographic variability. The second
was caused by sampling the GEOSS FP-IT surface pressure at the wrong time of day, by up to several hours. Both of these
effects have been corrected for in the version 9 OCO-2 X, data, described in detail in Kiel et al. (2018).

Even after correcting the prior, the OCO-2 surface pressure retrievals still contain significant regional biases. These biases
have a largely zonal structure, with a negative bias of up to ~ -5 hPa at the highest latitudes and a positive bias of several
hPa in the tropics, with an overall mean bias of roughly +2 hPa. The standard deviation of the surface pressure bias (relative
to the GEOSS5 FP-IT prior) for quality-filtered soundings is roughly 2.8 hPa. By binning nearby soundings, it is found that
greater than 2.4 hPa of this variation comes from systematic errors scales greater than 1°. One possible hypothesis is that this
systematic error is due to Oy absorption cross section errors and how they manifest themselves in the retrieval. For instance,

an incorrect parameterization of the temperature dependence of absorption could yield errors similar to those observed. Future
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Figure 18. TCCON validation for OCO-2 Xco, versions B7 (left column) and B8 (right column), for land nadir (top), land glint (middle),
and ocean glint (bottom) observations. Each symbol represents the overpass-mean comparison for one site overpass, with the total number of
overpasses per site given in parentheses. Thus each symbol represents tens to hundreds of OCO-2 observations co-averaged. Quality-filtered
and bias-corrected Xco, is shown for OCO-2, along with the averaging-kernel correction. The solid line denotes the one-to-one line, and the
dashed line is the line of best fit. The colocation strategy is described in the text. Shown in the upper left of each panel are the total number
of overpasses (N), the mean, standard deviation (), and RMS of the OCO-2 minus TCCON differences, the slope of best fit, and the R? of
the two datasets. 41
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updates to our spectroscopy may reduce this bias, and is an active area of research within the ACOS team.

Currently, however, these multi-hPa systematic errors in the retrieved surface pressure are likely larger than errors in the
GEOSS FP-IT prior, which are believed to be on the order of 1-2 hPa. For instance, three reanalysis surface pressure sets were
recently compared and fund that the differences were as small as 0.5 hPa in the tropical oceans, and became larger at higher
latitudes, such as in the southern ocean where RMS differences were on the order of 2 hPa (Jucks et al., 2015, section 4.2.1).
This is the basic reason behind the artificially high (4 hPa) 1o uncertainty on the prior surface pressure currently used in the
OCO-2 retrieval. If future versions of the retrieval (including spectroscopy updates) yield a more unbiased retrieval of surface

pressure, it may reduce the role of dP in the bias correction and lead to a more accurate retrieval of Xco,.

The figure reveals several additional interesting features. The co2_grad_del bias is of a smaller magnitude than the d P bias,
and has the strongest effect in tropical forests, and a more diffuse effect elsewhere, including the tropical and southern oceans.
The DWS bias has the largest effects over northern Africa, temperate Eurasia, and Australia, where large dust particles are
prevalent. The total parametric bias pattern can sometimes cancel the departure from the prior, such as over Australia, indicat-
ing that the original departure was likely spurious. However, the overall large positive departure in the northern middle-to-high
latitudes is not strongly affected by the bias correction, and thus appears to be a feature well-captured by the native retrieval
itself. This latter feature seems to imply that the interhemispheric gradient is too weak in the TCCON prior. The GGG2014
TCCON COy, prior relies exclusively on the age of the air to create the interhemispheric gradient of COs. The next release of
the TCCON software includes an age-independent term in the COq priors representing the source/sink imbalance, which will

roughly double the interhemispheric gradient (G. Toon, personal communication).

S Brief Evaluation of OCO-2 X0,

Thus far, we have completely described the mechanics of the current ACOS retrieval and methodology, but have yet to evaluate
the actual algorithm performance. As B7 X0, was validated in detail in Wunch et al. (2017), in this section we focus primarily
on the differences (mainly improvements) between B7 and B8. Figure 18 shows the relationship between colocated TCCON
and OCO-2 X, observations, for both B7 and B8 OCO-2 retrievals. Operational quality filtering and bias correction has
been applied for each version. We used the same colocation strategy as described in Section 4.1.1, but with the additional
requirement that fossil fuel emissions from the 1 km 2013 ODIAC database (Oda and Maksyutov, 2011), smoothed with a 5
km Gaussian smoother, be less than 300 g/mz/month at the location of the OCO-2 soundings; this eliminated OCO-2 sound-
ings in the vicinity of strong fossil fuel sources. All good-quality OCO-2 soundings within each overpass were averaged (thus,
one symbol on each plot denotes one overpass). Only overpasses with at least 10 such OCO-2 soundings were included. The

TCCON X0, values are averages of all good-quality TCCON soundings at that site within £2 hours of the OCO-2 overpass.
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Figure 19. The difference between OCO-2 bias-corrected Xco, vs. the model median where the models agree for both version 7 (left
column) and version 8 (right column), using the agreement criteria as given in Section 4.1.3. Results are shown for two seasons: DJF

2014-15 (top row) and JJA 2015 (bottom row).

Based on these figures, B8 appears generally superior to B7 in terms of agreement with TCCON. First, there is more good-
quality data in B7, at least for glint observations. This is primarily due to improvements in the prescreeners. In terms of
accuracy, the scatter and outliers of X o, over both land and ocean are reduced in B7, especially over ocean for which the out-
liers were driven by southern hemisphere observations (in particular the high southern latitude sites, Lauder and Wollongong).
The bias over land in B7 was significant, with a 0.3 ppm difference between land nadir and land glint. The overall apparent
bias over land of 0.2-0.3 ppm is partly due to neglecting the averaging kernel effect when solving for the global divisors in
the bias correction, and partly due to methodological differences in how we calculate the global bias in the first place. While
the R? values are significantly higher than those reported in Wunch et al. (2017), this is due to the extended length of the data
record used here. Coupled with the secular increase in COs, this leads to larger dynamic range in X0, and hence more signal
and higher correlations than when using a shorter data record. Finally, we note that in B8 (and to some extent B7) there is
generally a negative slope between TCCON and OCO-2. This appears to be due to a trend in OCO-2 X ¢, relative to TCCON
(not shown), in which OCO-2 appears to be losing Xco, at the rate of 0.1-0.2 ppm/year, though this trend is not statistically
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significant. The apparent trend may be due to an OCO-2 calibration effect, and is currently under study.

The general improvement in B8 over B7 can also be seen in comparisons to models. Figure 19 shows the comparison of
both versions to the 6-model suite as discussed in Section 4.1.3. The large-scale differences between OCO-2 and model Xco,
are generally reduced in the latest version. The positive bias with respect to models over the southern hemisphere mid-latitude
oceans is nearly removed in B8, as are some negative biases over Australia and the Sahara desert. Positive biases in the north-
ern hemisphere mid-to-high latitudes over land are also reduced. We also see that the latitudinal extent of the ocean glint data
is greater in version 8, especially in DJF; again, this is primarily due to updates in the prescreeners. A large-scale negative
difference between OCO-2 relative to the model median persists in the tropical oceans, particularly over the Pacific and Indian

basins, and is currently under study.

There are clear deficiencies remaining in the B§ OCO-2 X0, product. First, note again that Figure 18 showed overpass
average statistics. As each overpass had at least 10 OCO-2 soundings, and each sounding typically had < 1 ppm posterior
uncertainty, if the errors were all independent, the overpass average errors would be less than 0.3 ppm. Even taking into
account TCCON and colocation errors, it is likely that the overpass-level (=small area) errors are still much larger than this
due to correlated errors in the OCO-2 retrievals. A more detailed validation of OCO-2 B8, along with how its errors are
correlated and how they integrate down, is the subject of a forthcoming paper (Kulawik et al., 2018). Other error sources also
are still plainly visible in the OCO-2 data. For instance, the topography-related biases noted by Wunch et al. (2017) still exist
in B8, but have recently been tracked to a misspecification of the satellite-to-ground pointing vector, and will be corrected in a
forthcoming version 9. Also, there are still cloud-related errors in the OCO-2 data, for instance as noted by Massie et al. (2016).

It is believed that these are often related to 3-dimensional cloud effects, for instance as discussed in Merrelli et al. (2015).

6 Summary and Outlook

As described in this paper, the OCO-2 retrieval algorithm for Xco, has been evolving more or less continuously over the last
decade, and is beginning to achieve accuracies that enable ground-breaking carbon cycle science. The latest version (B8) has
the lowest biases and highest throughput of any version yet, though regionally coherent biases still remain at a significant level
(~ 1 ppm). A number of choices and assumptions go into the algorithm, and due to its complexity in terms of the number of
variables it must accommodate, further research is needed to improve it. These assumptions relate to a number of factors, such
as clouds and aerosols, surface pressure, spectroscopy, potential instrument problems (e.g. scattered light, drifting calibration),
to name a few. Advances in these areas will form the basis of future algorithm improvements. These issues affect not only
OCO-2, but potentially all current and future sensors relying on this technology to measure Xco, such as the TanSat (Yang
et al., 2018), OCO-3 (Eldering et al., 2018), GOSAT-2 (Nakajima et al., 2012), MicroCarb (Pascal et al., 2017), and GeoCarb

(Moore et al., 2018) missions.
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To fully exploit space-based short-wave infrared measurements of reflected sunlight at high spectral resolution for studies
of the carbon cycle, improvements must be made in several areas. First, satellite-based Xco, retrieval biases must be further
reduced. Next, in order to make and validate retrieval improvements, we must have validation data that are more accurate than
the satellite retrievals in the first place. Satellite retrievals are currently pushing that limit; for instance, the stated station-level
calibration accuracy for TCCON is currently 0.4 ppm (Wunch et al., 2010). Calculations of OCO-2 station-level differences
with TCCON show the that mean absolute bias at all stations with at least 5 valid overpasses is 0.4 ppm, right at this level.
Finally, we must have inversion and data assimilation systems that can make maximum use of these data. This requires, for

example, minimizing transport model error, currently an active area of research (see e.g. Basu et al., 2018; Schuh et al., 2018).

Significant progress has been made in the past decade in the retrieval of Xco, from SCIAMACHY, GOSAT, and OCO-2
radiances. This paper shows that this progress continues. Given the numerous sensors planned for development and launch in

the near term, the future of passive remote sensing of CO2 remains bright.

Code and data availability. The OCO-2 L2 Full Physics Code is open source and available on Github https://github.com/nasa/RtRetrievalFramework,

and the User’s Guide for it is available at http://nasa.github.io/RtRetrievalFrameworkDoc/. All of the OCO-2 data products are publicly
available through the NASA Goddard Earth Science Data and Information Services Center (GES DISC) for distribution and archiving
(http://disc.sci.gsfc.nasa.gov/OCO-2; OCO-2 Science Team, 2015). TCCON data were obtained from the TCCON data archive hosted by
CaltechDATA, and are available from https://tccondata.org/.

Appendix A: Xco, quality flag definitions

The ACOS X0, quality flags use a number of variables. Each has an upper and lower threshold. These variables and thresholds

are given in Table Al.

Appendix B: Land Surface BRDF parameterization

Since OCO-2 observations outside of target mode contain only single observation geometries, it is unrealistic to attempt to
retrieve the BRDF shape on a per-observation basis. This fact, combined with the similar improvement seen in the different
trial BRDFs, suggested that a single fixed BRDF shape could be used for all land footprints. The selected BRDF shape is a
particular parameter set for the Rahman-Pinty-Verstracte (RPV) kernel (Rahman et al., 1993), that has been used as an initial
guess for spectral multi-angle polarimetric aerosol remote sensing (Dubovik et al., 2011). This fixed BRDF shape is used
within the physical forward model, and a similar set of two state variables is applied independently to each band to allow
for the BRDF amplitude to have a linear spectral variation across the band. Since the RPV kernel assumes the surface is

azimuthally symmetric, the absolute values of the azimuth angles are unimportant and the kernel function can be expressed in
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Table Al. Xco, quality flag definition for version 8.

variable meaning land filter ocean filter
co2_ratio Ratio of Band 2 to Band 3 CO2 column from IDP* algorithm [1,1.025] [0.997,1.018]
h2o0_ratio Ratio of Band 2 to Band 3 H>O column from IDP* algorithm [0.88, 1.01] [0.88, 1.01]
dp Retrieved minus prior surface pressure [hPa] [-6,14] [-4,10]
dPagpp Retrieved minus prior surface pressure from ABP algorithm [hPa] [-10,13] [-50,10]
co2_grad_del Retrieved vertical gradient in CO2 [ppm] (see text for details) [-80,100] [-20,30]
albedo_slope_sco2 Retrieved slope of the Lambertian component of the [-1.8:107%,107%] [5-1075,7-1077]
surface albedo [cm™!]
rms_rel_wco?2 Relative RMS of Band 2 fit residuals [%] <0.22 < 0.30
Max_Declocking_wco2 See text for details < 0.75 <0.2
Max_Declocking_sco2 See text for details <03
eof33rel Retrieved relative amplitude of 3rd EOF of Band 3 [-0.3,0.25]
windspeed Retrieved surface wind speed [m/s] [1.5,25]
Altitude Stddev Standard deviation of the surface elevation in the FOV [m] <60
Band 3 Albedo Retrieved Albedo SCO2 band [0.05,0.6]
S31 Continuum signal band 3 rel. to band 1 [0.03, 0.4]
TIC Retrieved optical depth of ice cloud < 0.04 < 0.035
T Retrieved total aerosol+cloud optical depth < 0.5
TDU +Twa + Tss Retrieved optical depth of three large types < 0.25
(dust, water cloud, and sea salt)
TW A Retrieved optical depth of water cloud [0.0005,0.1]
TSS Retrieved optical depth of sea salt < 0.125
Hic Retrieved relative pressure height of ice cloud [-0.5, 0.45]
TSu + Toc Retrieved sulfate + organic carbon optical depth <03
ToC Retrieved organic carbon optical depth < 0.08
TST Retrieved stratospheric aerosol optical depth < 0.02

*IMAP-DOAS Preprocessor

terms of the azimuth angle difference. Thus, the BRDF model used in the algorithm is a function of three angular variables,

and can be expressed as:

0(0:,0,.,A0) = [w+ s(v — 1) F(0;,0,,A¢; C) (BD)
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Figure A1. The shape of the RPV kernel for all reflection angles, for a 45° solar incidence angle. The incident direction is at 180°. (meaning,

the solar irradiance is directed inwards from the left side).

where 6;, 0, are the zenith angles in the incident and reflected directions, A¢ is the relative zenith angle, w and s are the
BRDF “weight” and “weight slope”, F' is the fixed BRDF shape (the RPV kernel), and C are the fixed BRDF shape parameter
values. The weight w and weight slope s are the retrieved variables, one each per band, with the linear variation computed
in wavenumber space relative to per-band reference values (vp). The RPV kernel function (Rahman et al., 1993) has three
parameters, pg, the hot spot parameter; ©, the asymmetry parameter; and k, the anisotropy parameter. The functional form,
as implemented in the VLIDORT routines used by the OCO-2 forward model, uses the exact form as given in Rahman et al.
(1993). The fixed values used for the parameters are: py = 0.05, © = —0.1, and k£ = 0.75. Figure A1l shows the RPV kernel

shape for these parameters.

While the retrieval works with the weight and slope variables, w and s, due to the normalization of the RPV kernel these
are not the most convenient or intuitive quantities. Therefore, we evaluate the actual BRDF kernel function for the primary
observation geometry (incident direction from the sun, reflected direction toward the sensor), and then scale by the retrieved
weight and weight slope, to obtain the BRDF reflectance and reflectance slope. In the absence of atmospheric scattering, these
values will be equal to the retrieved albedo and albedo slope using a Lambertian assumption. Therefore, in much of the high
quality retrieval output from the Version 8 algorithm, the reported BRDF reflectance and reflectance slope values will be similar
to the albedo and albedo slope values reported in the Version 7 results. Observations with relatively higher amounts of aerosols
or other complicating effects would be expected to have larger differences between the BRDF reflectance and Lambertian
albedo.
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