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Abstract. Low cost sensors for measuring atmospheric pollutants are experiencing an increase in popularity worldwide among
practitioners, academia and environmental agencies, and a large amount of data by these devices is being delivered to the public
notwithstanding their behaviour, performance and reliability are not yet fully investigated and understood. In the present study
we investigate the medium term performance of a set of NO and NOj, electrochemical sensors in Switzerland using 3 different
regression algorithms within a field calibration approach. In order to mimic a realistic application of these devices, the sensors
were initially co-located at a rural regulatory monitoring site for a 4 —month calibration period, and subsequently deployed
for 4 months at two distant regulatory urban sites in traffic and urban background conditions, where the performance of the
calibration algorithms was explored. The applied algorithms were Multivariate Linear Regression, Support Vector Regression
and Random Forest; these were tested, along with the sensors, in terms of generalisability, selectivity, drift, uncertainty, bias,
noise and suitability for spatial mapping intra-urban pollution gradients with hourly resolution. Results from the deployment
at the urban sites show a better performance of the non-linear algorithms (Support Vector Regression and Random Forest)
achieving RMSE < 5 ppb, R? between 0.74—0.95 and MAE between 2—4 ppb. The combined use of both NO and NO,
sensor output in the estimate of each pollutant showed some contribution by NO sensor to NOg estimate and vice-versa. All
algorithms exhibited a drift ranging between 5 — 10 ppb for Random Forest and 15 ppb for Multivariate Linear regression at the
end of the deployment. The lowest concentration correctly estimated, with a 25% relative expanded uncertainty, resulted in ca.
15-20ppb and it was provided by the non-linear algorithms. As an assessment for the suitability of the tested sensors for a
targeted application, the probability of resolving hourly concentration difference in cities was investigated. It was found that
NO concentration differences of 5—10 ppb (8 — 10 for NO3) can reliably be detected (90% confidence), depending on the air
pollution level. The findings of this study, although derived from a specific sensor type and sensor model, base on a flexible
methodology and have a large potential to explore the performance of other low cost sensors, different in target pollutant and

sensing technology.
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1 Introduction

Air quality assessment for regulatory purposes is addressed by means of monitoring stations following a strict QA/QC protocol
in order to deliver measurements having an uncertainty within a specific range that is appropriate for the purpose (2008/50/EC,
Council of Europe, 2008). The costs associated to these monitoring sites lead to a reconfiguration of regulatory air quality net-
works across Europe over the last decade, resulting in improved but still spatially sparse regulatory air quality networks over
the continent. Although this trend towards optimization is coherent with main regulatory needs, it is not consistent with the
increasing demand for spatio-temporal air quality information in urban areas, where largest part of worldwide population live
(United Nations, 2015). Up to now two of the most promising approaches to estimate air quality conditions in complex envi-
ronments as urban areas are simulation models and small low cost sensors. The former approach include dispersion modelling
(e.g. Ghermandi et al., 2015), while the latter approach consists in sensor deployment for time-resolved air quality mapping
(e.g. Mueller et al., 2016), plume tracking or other tasks. Besides some devices based on the absorption in the infrared region
by the target gas, most common low cost sensors for gas phase compounds are based on either metal oxide or electrochemical
technology. The high expectations from these two latter types of low cost sensors were seldom met, since they often face
problems of calibration (Spinelle et al., 2013), stability (Fonollosa et al., 2016), cross-sensitivity (Mead et al., 2013) and low
repeatability and reproducibility (Rai et al., 2017), urging for more research and tests for their mindful use (Lewis and Edwards,
2016). Among these problems, calibration is one of the major unsolved issues, preventing a broad use of these devices: ideally
a calibration should include a full description of the sensors physical/chemical working principles along with its response to
all environmental conditions and with ageing. Calibration approaches should be consistent with the intended application and
the resulting measuring device, made up of a sensing unit and its calibration model, should meet the performance required
by the application. Indications about possible minimum requirements for air quality studies can be taken by the EU directive
2008/50/EC, requiring an expanded uncertainty of 25% for indicative measurement devices.

Main current calibration solutions involve either sensor testing in the laboratory under controlled conditions or field co-
location of sensors next to a calibrated reference instrument, with the former being an approach based on first principles and
the latter an approach based on co-location data. Up today the former approach provided unsatisfactory results during the
model validation in the field (e.g. Spinelle et al., 2017; Fonollosa et al., 2016), making a field calibration approach more
commonly and successfully applied. This latter approach however introduced issues about the generalisability of a calibration
model, because of the limited and site-specific range of environmental conditions occurring during the calibration period. This
holds even more true in case the calibration and the following measurements are performed at two different sites, i.e. in case
of relocation, with the additional possible influence of sensor handling and transport. Nonetheless, in the common case of field
calibration, the subsequent relocation is extremely likely in a realistic application of these devices, because of the sparsity of
the regulatory monitoring networks and given the most straightforward applications of these sensors, i.e. the collection of time-
resolved air quality data where no data is available. In the literature the effect of relocation is scarcely described, while several
studies show results from a field calibration and further deployment at the same site. For this latter case several algorithms have

been tested: since field calibration consists in a data driven approach, the algorithm used has a large impact on the final results.
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Some studies used models from classical statistics, e.g. Multivariate Linear Regression (Mijling et al., 2017; Mueller et al.,
2017), or more sophisticated methods as high-dimensional model representation (Cross et al., 2017). In other studies several
machine learning algorithms have been tested, for both metal oxide and electrochemical sensors, including also laboratory
calibration: different types of Artificial Neural Networks (ANN, e.g. De Vito et al., 2009; Esposito et al., 2016; Spinelle et al.,
2015), Reservoir Computing (Fonollosa et al., 2015), Random Forest (Zimmerman et al., 2018) and a recent comparison of 3
algorithms fed by dynamic and static input showing promising results by Support Vector Regression (De Vito et al., 2018).

This latter literature showed how generally calibration procedures involving non-linear methods outperform those using
classical statistics, and better capture the effects of environmental factors on sensor response. However the performance shown
by several of the methods cited above is not taking into account the effects of relocation, which has to be expected in a realistic
use of similar devices. Main notable exception is a study on SOs electrochemical sensors by Hagan et al. (2018), who achieved
RMSE values of ~ 8 ppb and R> ~ 0.88 during a 4 months relocation, using a hybrid regression model, combining a linear with
a non-linear solution. Other studies involving relocation include Esposito et al. (2018), who showed a significant degradation
of NOs estimate by electrochemical sensors after their relocation within the urban area of Oslo (Norway), along with the one
by Zimmerman et al. (2018) who showed a good performance from a Random Forest regression model on a 4-weeks relocation
in the vicinity of the calibration site.

In the present study we installed a set of electrochemical sensors at a rural site exposed to highway traffic emission for
calibration and subsequently deployed these same sensors in two distant urban sites in traffic and background conditions. The
first aim of the study is to compare state-of-the-art calibration algorithms, using a data-driven approach, within this realistic
framework. The second is to investigate the change in performance over time and after a relocation of these measuring devices,
i.e. of the sensor units (the hardware) and of their individual calibration (data processing algorithm). The final aim is the
quantitative assessment of the measurement uncertainty of sensor units deployed in a network and investigate whether they
are suitable for mapping intra-urban pollution gradients of NO and NOs. The results strictly apply to the type and model of
sensors involved (actually extremely popular among sensor systems) and to the environmental conditions during sampling,
nonetheless the flexibility of the methodology here used has a large potential for other low cost sensing instruments.

In section 2 the sensor units and the calibration methods are described. Results from the calibration and the deployment
periods are found in section 3. Finally the results are discussed and main conclusions are drawn. All data processing has been
performed with the software R 3.4.2 (R Core Team, 2017).

2 Materials and methods

2.1 Sensor Units

Four identical sensor units have been jointly developed with Decentlab GmbH (Diibendorf, Switzerland) and used for this
study. The sensor units used are labelled SU009, SU010, SUO11 and SUO012. Each unit consists of one box that includes two
NOs sensors (Alphasense NO2-B43F), two NO sensors (Alphasense NO-B4), a relative humidity (RH) and temperature (T)

sensor (Sensirion STH21) and a data transmission module using GSM/GPRS connection. The system is battery powered. Two
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identical NO sensors and two identical NO4 sensors are used for a better control of the data quality. NO and NOs sensors are
housed inside the box to better protect their gas permeable membrane, and a small blower is used to draw ambient air through
a teflon (PTFE) manifold to which the sensors are connected. The electrochemical (EC) sensors used employ 4 electrodes:
working, reference and counter electrodes account for target gas concentration, while a fourth auxiliary electrode compensate
for zero current. The former three electrodes represent an electrochemical cell where a redox reaction of the target gas occurs,
generating a electric current directly proportional to the gas concentration, while the auxiliary electrode accounts for changes

in baseline signal (further details in Baron and Saffell, 2017; Alphasense Ltd, 2014). The blower is operated for 7s every 20s

as a compromise between battery consumption and sample collection, and its main benefit is threefold: the air is not reaching
the EC by diffusion only, therefore the dependence on ambient conditions, especially on wind speed, is decreased; it reduces
the overall response time, since shielding the sensor inside the box results in a certain dead volume; it limits water vapour
condensation on the EC membrane, and/or enhances its evaporation. The 1 min averaging time is longer than the fluctuations
in_the flow, therefore changes in the performance characteristics due to the intermittence of the blower are expected to be
negligible.

The signal of each sensor is sampled every 20 seconds. Three such values are aggregated by the SU to a 1 minute mean value.
These 1 minute values are transmitted to a central database every 180 minutes. Data transmission implied both an increase in
energy requirement by the transmission module, causing a drop in battery level, and spikes in electrode output. A despiking
procedure based upon battery level data was applied: this consisted in selecting the data associated to single drops in battery
level and removing them. In case few occasional spikes remained after this first procedure, these were selectively identified
and removed by the following procedure: a running median of k original readings (r,y,) was calculated, the standard deviation
of the difference between the original readings and r,,, was computed (ogif), then each original reading having a difference to
rmm larger than s times og;r was removed. This latter procedure used the command despike in the oce package, where k and
s parameters were individually set for each electrochemical sensor. One minute despiked data were subsequently averaged to

10-minutes readings and used for all following analyses, except where stated otherwise.

2.2 Calibration and deployment sites

All 4 units were initially installed at the Harkingen (Switzerland) monitoring site within the Swiss Federal Air Quality Mon-
itoring Network (HAE: 47.311 N, 7.820 E, 430 m a.s.1.). SU009, SUO11 and SUO12 were installed on April 13, 2017, while
SUO010 on May 5, 2017. All boxes were removed from HAE on July 20, 2017. The HAE monitoring site encounters clean/rural
air masses when northern winds blow and polluted/highway air masses when southern winds blow. This allows an exposure of
sensors to a wide range of pollutant concentration (Hueglin et al., 2006). The data collected at HAE represents the calibration
dataset (or training dataset) and were used to develop, train and validate the three regression algorithms tested in this study. In
order to estimate the performance of the sensor units within a realistic application framework, the regression models calibrated

upon this latter dataset were subsequently used to estimate concentrations after deploying the units to different sites, experienc-
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ing different pollution levels and different environmental conditions. On July 28th, 2017 the units were moved to two different
air quality monitoring sites: SU009, SU010 were deployed at Zurich-Kaserne, an urban background site in Switzerland (ZUE:
47.378 N, 8.530 E, 408 m a.s.l.). SUO11, SUO12 were deployed at an urban traffic site in Lausanne, Switzerland (LAU: 46.522
N, 6.640 E, 495 m a.s.l.). At these monitoring sites NO, NO,, Ogs, temperature (1), relative humidity (RH) were available
and were used to verify the concentration estimate by the sensor units: the data collected at ZUE and LAU represents the
deployment dataset (or testing dataset), which includes data until December 5th 2017. Table S1 of the Supplementary shows
the descriptive statistics of the meteorological and pollution conditions by the regulatory network instruments at the three sites,
during their respective study period. The time series of the complete dataset is shown in Figure S1, linear correlation matrix
for these same data is shown in Figure S2 and the NO3/NOy ratio is in Figure S3. The range in NO and NO, levels at the
calibration site is similar to the deployment sites, benefiting the data driven calibration approach used, with the calibration site

showing pollution conditions more similar to ZUE than to LAU.
2.3 Regression models and explanatory variables

Three different calibration algorithms have been tested: a multivariate linear regression model (MLR), a support vector re-
gression model (SVR) and a random forest regression model (RF). These methods were used to estimate the atmospheric
concentration of NO and NO; using only information available by each SU, i.e. voltage output by the EC sensors, 7" and
RH. Two identical NO and NO3 sensors in each sensor unit allows the use of tens of different combinations of explanatory
variables in the regression models, for example a set based on the mean of the net voltages of the replicate EC sensors or on
the individual net signals of both.

Firstly the best set of explanatory variables was selected by comparing the performance of the algorithms in using 10 different
model equations. For each tested model SVR was tuned for each pollutant and each SUs, while the same hyperparameters
set was used for RF. In this task, for tuning and performance estimate, only the calibration dataset was used, consistently
with the realistic framework of this study. Finally, the best performing model was selected and the regression models, tuned
and calibrated upon the calibration dataset, were applied to the deployment dataset to estimate pollutant concentration. The
equations of the 4 main covariate combinations that were tested are listed in Appendix A: these models are labelled minimal
when using 1 EC sensor only (equations Al, A2), basic when using one NO and one NOy EC sensor (equations A3, A4),
single replicate when using 2 EC sensors of the same gas (equations AS, A6) and double replicate when using the 4 EC
sensors (equations A7, A8). All equations include ambient RH and 7" readings by their respective sensor within each SU.

All plots and results in the remainder of the text proceed from the model including all 4 EC sensors, i.e. the one achieving
the best performance on the calibration dataset. However, since the redundancy in EC sensors is a feature specific to the SUs
used in this study, for the sake of comparability with the literature and to verify the benefit of a redundant design, the final
performance of the SUs at the deployment sites using the 4 main regression models listed in Appendix A is shown in Figures

S4, S5 and in Table S2.
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2.3.1 Multivariate linear regression

The MLR model used in this study partly included MLR requirements of independent covariates. In a previous study Mueller
et al. (2017) employed Alphasense NOy B42F sensors and among the explanatory variables both the weighted cumulative
index of past RH changes and the change in sensor sensitivity with temperature (as observed in lab tests, Alphasense Ltd,
2017). The latter covariate was included in the 4 tested models (see Appendix A). In the present study the final regression
model for NO and NO,, followed equation 1, where Vio indicates the mean net voltage produced by the replicate EC sensors
for NO, Vxo, indicates the net voltage produced by the replicate EC sensor for NOo, with net voltage being the difference

between the working and auxiliary electrodes. Note that this model is also listed in the Appendix in equation A7.

NO = Sy + 81Vxo + B2Vno, + 83T + BaRH + Bs Vo x T + €
NO; = By + B1Vao + B2Vao, + 85T + BaRH + B5Vao, x T+ €
(D

2.3.2 Support Vector Regression

SVR modelling consists in a machine composed by three main steps: in the former the input data are mapped into a (high
dimensional) feature space by means of a function, generally a kernel. In the second step the flattest function fitting the images
of the input is found in the feature space by solving the corresponding constrained optimization equation: Support Vectors are
the points corresponding to the non-null Lagrangian multipliers of this latter function. In the latter step the results are mapped
back into the input space. More details on SVR modelling can be found in Smola and Scholkopf (2004). In the present study
we used e-SVR featured by a Gaussian radial basis kernel: the three main hyperparameters of this model are ¢, the parameter
of the insensitive-loss function, o, the inverse kernel width, and C, the cost of constraints violation. These hyperparameters
were tuned upon the calibration dataset by a 5 —fold cross-validation approach and the best performing set was selected using
three different goodness-of-fit metrics, i.e. the mean of squared errors, the root-mean of squared errors and the coefficient of
determination. The hyperparameters were individually tuned for each sensor unit and each pollutant.

SVR modelling and tuning were achieved using the kernlab and m1r packages for R (Karatzoglou et al., 2004; Bischl
et al., 2016). Fast and optimal SVR hyperparameter tuning is an active research area within the scientific community, motivated
by the hyperparameters reciprocal interaction leading to large hyperparameter spaces to be explored for an optimal result. The
computing time and computing resources needed to tune the calibration dataset were significantly larger than for the other
models (70-300 core-hours per sensor per pollutant on one Intel i7-6700 CPU at 3.40 GHz), moreover SVR showed a tendency
to overfit the data and it often lead to similar fitting performance with different hyperparameter sets: for final optimal results, a

minor manual tuning on € was occasionally applied on a model bias-variance trade-off basis (Cawley and Talbot, 2010).
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2.3.3 Random Forest regression

RF modelling consists in growing M randomized trees, representing the forest, where each tree is built on a random subset of
the p-dimensional initial sample XP. A tree is grown by performing optimal cuts of each tree node (starting from the root), until
the cardinality of each final cell is lower than nodesize. Cut optimality is estimated using the Classification And Regression
Trees split criterion (CART) (Breiman et al., 1993): this algorithm compares the variance of the uncut node, with the variance
of all possible cuts along mtry directions, where mtry is a random subset of sample coordinates p. The prediction is produced
by averaging all tree estimates into a (pointwise) forest estimate. More details on RF regression modelling can be found in
Breiman (2001).

Two main approaches exist to overcome the RF standard pointwise estimate and build an interval for model prediction, i.e. to
include modelling uncertainty in the final estimate: forest-based quantile regression (QRF) and inference on RF estimates (RF-
CI). Predictions by quantile regression forest results from keeping all observations in every node in every tree and estimating
a weighted mean for each observation (Meinshausen, 2006). Confidence interval for RF estimates is an open research topic
being tackled in different ways (e.g. Wager et al., 2014; Sexton and Laake, 2009; Mentch and Hooker, 2016). In this study,
the uncertainty of point predictions was tentatively assessed by using both approaches, although still experimental. For the
assessment of confidence intervals we used the approach by Athey et al. (2016), who rely the inference on asymptotically
gaussian RF predictions and use the bootstrap of little bags algorithm (Sexton and Laake, 2009) to compute asymptotically
valid confidence intervals. In this study standard RF modelling was performed using the RandomForest SRC package in R,
while quantile regression and confidence interval estimate were both performed using the gr £ package in R.

Main RF hyperparameters (mtry, nodesize, M) were tuned upon the calibration dataset by a 5 —fold cross validation by in-
vestigating several goodness-of-fit metrics. The possible range of RF hyperparameters is narrower than SVR and RF model
showed a minor sensitivity to changes in mtry and nodesize, because of the small number of covariates. Finally nodesize and
mtry were set to 7 and 5 respectively, slightly larger than their recommended values, to further avoid overfitting, an unlikely
event for RF models (Breiman, 2001). The number of trees was set to 1000 for standard forest and to 4000 for QRF and RF-CI
forests. These hyperparameter values were used for all SUs and all pollutants. It is worth noting that small differences exists
between RandomForest SRC and gr £, which are mainly due to the splitting algorithm, i.e. the use of fair and unfair forests

(Athey et al., 2016), besides that QRF central estimate is the forest median, while the other two RF flavours use the forest mean.

2.3.4 Features of machine learning regression models

SVR and RF modelling share the ability to build a non-linear regression model using several time series as explanatory vari-
ables and are superior to MLR in handling both autocorrelation and multicollinearity. This ability allowed to freely test any

combination of the possible covariates and finally, for both SVR and RF, lead to the regression model in equation 2, where
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VNos indicates the net voltage by the NO sensor A, Vyos indicates the net voltage by the NO, sensor A, and consistently Vyor

and VNog for the respective replicate sensor B. The model in equation 2 is also listed in the Appendix as equation AS8.

NO = funCtiOn(VNoA 5 VNO% s VNOB 5 VNOg ,T, RH)
N02 = funCtiOn(VNoA, VNOS s VNOB s VNO% ,T, RH) (2)

Using a similar model structure for MLR would strongly violate the requirements for a reliable estimate of MLR errors. It
is worth noting that the residuals from the SVR and RF application of equation 2 are independent, contrarily to MLR residuals
from equation 1: this latter model shows autocorrelated residuals, to be expected from an ordinary linear regression on a time
series, and inflated variance for its coefficients, because of the multicollinearity of the regressors. Nonetheless MLR has been
included among the regression methods in this study for its wide use, also in low cost sensor calibration. A further difference
among algorithms is that MLR and SVR allow to extrapolate outside the range of their input dataset, while the estimates
provided by RF can only be within the bounds of the calibration space, being RF a tree-based algorithm. This worth noting
feature of RF on one side implies a constraint on its application to relocated SUs, on the other side it will guarantee only
positive estimates.

The role of each predictor in MLR, SVR and RF models was assessed by estimating its partial dependence, which consists
in evaluating the average prediction when the covariate of interest is held constant, repeating this prediction for a set of
values across the distribution of this covariate. Partial dependence plots allow to investigate the effect of each covariate on
the prediction. For RF models only, it is also possible to estimate the importance of each variable by computing the increase
in prediction error by randomly permuting each covariate in every tree and averaging this prediction error over the forest
(Breiman, 2001): the larger the increase in prediction error, the larger is the importance of the variable for that RF model. This
importance metric of a variable is the error occurring if a RF model, calibrated including that variable, is used in prediction

without that same variable.

3 Results

Several goodness-of-fit indexes were used to assess the overall performance of the 4 SUs when individually calibrated using
the different described calibration approaches: these include root mean square error (RMSE), centred root mean square error
(CRMSE), mean bias error (MBE), mean absolute error (MAE) and the coefficient of determination (R?). Temporal variability

of these indexes was investigated, along with an overall performance of the sensing devices.
3.1 Results for the calibration dataset

Partial plots applied to the calibration dataset of SUO09 are shown in Figures 1 and 2 and of SU010, SUOI11 and SUO12
in Figures S6 through S11. These provide insights in the role of each predictor within the model, a remedy for the widely

perceived black box nature of machine learning algorithms. The most prominent result by these plots is the difference existing
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among the three algorithms: MLR implies a linear response from each covariate, while SVR and RF allows non-linearity. The
partial plots for EC net voltage vs its target gas show a similar pattern across all SUs and all algorithms, indicating that the
final model structure generalises well across the hardware for this covariate, and that the differences existing among SUs are
minor in this case. Both SVR and RF exploit the replicate EC sensors: the former algorithm shows significant response by
replicate gas sensors in the estimate of their target gas (i.e. by both NOy EC sensors in predicting atmospheric NO3), while
RF shows large response by both replicate sensors only in case of NO by SU009 and by SUO11. It is notable the similarity in
the response of atmospheric variables according to SVR and RF, supporting the result also by these specific partial plots. RF
correctly identifies the most informative variable (as supported by the variable importance plots in Figure 3 and S12) and it
appears to be the most efficient algorithm among the three: - it shows a quasi-linear response of the EC net voltage towards its
target gas, contrarily to the often non-monotonic behaviour shown by SVR - this linear behaviour is held across large part of
the full range of the EC net voltage output - for RF estimating a gas, the net voltage of the EC sensor targeting that same gas
has the broadest response among all covariates. The non-monotonicity in the partial response from SVR suggests that a minor
overfit is still present, although this is not affecting significantly the performance during deployment.

Variable importance plots (Figures 3 and S12), possible for RF only, show how the main regression variable is the net voltage
by the EC sensor of the corresponding target gas. Its importance is generally ~ 4 times larger than the second important variable,
however for NO prediction by SU009 and SUO11, the second most important variable is the replicate NO sensor and in this
case its importance is closer to the first most important variable.

The effect of RH on sensor response is extremely low for all algorithms, consistently with results from laboratory studies
(e.g. Spinelle et al., 2017). Nonetheless humidity transients are known for being responsible of spurious responses by the EC
sensors (Mueller et al., 2017; Alphasense Ltd, 2017; Pang et al., 2017), but this effect was not parameterized in this study,
possibly leading to a slightly degraded model estimate. However no anomalous peak was evident in the 10— minute data,
although rapid variations in atmospheric RH occurred.

Independently of the calibration algorithm, partial plots indicate a contribution by NO2 and NO EC sensors to NO and NOg
respectively: this might be due to the inability of the algorithms to untangle the large correlation of these pollutants in the
atmosphere, and/or an existing cross-sensitivity of the EC sensors. The latter cause cannot be excluded completely and was
highlighted in several field deployment of EC sensors: both NOy sensors Alphasense NO2-B4 and Alphasense NO2-B43F
exhibited a significant cross-sensitivity to COs at atmospheric levels (Lewis and Edwards, 2016; Kim et al., 2018), while NO2
sensor Alphasense NO2-B42F was shown to have large cross-sensitivity to NO by Kim et al. (2018). Nonetheless literature
studies available do not provide a clear and consistent picture about sensor selectivity and further laboratory tests are required
to shed light on this topic. During this study no concurrent suitable data of atmospheric CO4 was available, preventing an
investigation of possible bias in sensor estimates of NOg induced by the cross-sensitivity to COs in the field.

The cross-sensitivity, along with a site — and time — specific NO — NOs, correlation, may prevent the application of a calibrated
regression model over a wide spatial and temporal scale, because of a different NO/NOs ratio at the calibration and the

deployment site. The SU performance at LAU and ZUE (paragraph 3.2) allows the evaluation of the effect of relocation of the
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sensors on the data quality, since the two sites are representing urban air pollution situations that are different from the site
where the collocated measurements have been performed (HAE), see Table S1 and Figures S1, S2 and S3).

In order to further test the generalisability of the response by each covariate and hence of the proposed models, the 3
algorithms were calibrated also using the deployment dataset, in order to build partial plots at ZUE and LAU (Figures S13
through S20): note that SVR and RF were not tuned in this case, i.e. the same hyperparameter sets as for HAE were used.
These latter partial plots are largely similar with those derived from the HAE dataset, particularly for MLR and RF, while
SVR still exhibits some overfit. Each SU shows similar patterns between its partial plots for the calibration and the deployment
dataset, including for the response of the EC sensor to their non-target gas. A minor exceptions to this latter point is the response
by NO sensor B in SU010 (Figures S7 and S16), suggesting that the NO/NOs ratio partly influences the response of non-target
gas sensors. Overall these latter partial plots also show how the main behaviour of each SU was not significantly affected by

7-months outdoor installation, notwithstanding the relocation and the change in environmental conditions.
3.2 Results for the deployment dataset

Time series of estimate from SU009, deployed at the urban background site ZUE, and from SUO11, deployed at the urban
traffic site LAU, are summarised in Figures 4 and 5. Summary plots for SU010 and SU012, deployed at the background and
traffic site respectively, are in Figures S21 and S22. SVR and RF performed similarly and generally better than MLR, with a
RMSE ranging between 2—5 ppb for both NO and NO,. Notwithstanding their similar goodness of fit indexes, RF showed a
more regular performance than SVR across the SUs and the pollutants, and its time series predictions are more stable than the
ones by SVR, which occasionally show negative spikes (e.g NOo by SU012 in Figure S22).

Several analyses have been performed to detail the performance of each device during deployment. Timeseries of goodness-
of-fit indexes, computed with a rolling window of 1 week, indicate the change of model performance over time: in target plots
(Spinelle et al., 2015) the change in performance is plotted in terms of CRMSE and MBE, both normalised by the standard
deviation of the reference (of), and the right quadrants are used when the standard deviation of the reference is lower than
the one from model predictions, and vice-versa. In target plots the distance of each target score to the origin equals RMSE
normalised by o¢. Finally, a unit circumference is added to this diagram, containing model predictions having residuals with
a standard deviation smaller o..s. Time-resolved target plots for the deployment dataset highlight significant variability in
performance with time depending on the device, on the gas and on the algorithm. All 3 algorithms provide results within the
unit circumference for most of the deployment period, and confirm how SVR and RF results are generally better than those by
MLR (Figures 6 and S23 through S25).

The timeseries of 1 week rolling RMSE in Figure 7 indicate an overall lower performance in the estimate of NO, most likely
due to its larger variability, and a more steady trend for NOy. The RMSE for MLR is, in most occasions, the largest among the
three algorithms, while SVR and RF performed similarly. The lowest variation in RMSE, ranging in 2 ppb, was observed for
NO estimates by RF on SU010 data, while an increase up to 6 ppb occurred in the case of NOg predictions by MLR on SU010
readings. In some cases the increasing trend in RMSE is evident, e.g. for NOy by SU009, in others the large variability hinder

a clear assessment of the status of the SU, e.g. for NO9 by SUO12.

10
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The sensing devices (i.e. the sensor units and their individual calibration) were investigated also in terms of their drift,
uncertainty, bias, noise and ability of resolving spatial differences in pollution levels: for better comparison with common
regulatory measurements, all these analyses were performed using 1 —hour average input data, instead of 10 —minutes as for
previous ones. Nonetheless the use of 10— minutes data delivered similar and consistent results (not shown). As a proxy for
the overall drift in the estimate by sensor devices, the time series of mean daily residuals was computed: results in Figure
8 confirm the occurrence of a drift in all cases, although only occasionally with a clear trend, and among algorithms RF
generally outperforms both SVR and MLR, achieving an absolute variation in the residuals between 5 — 10 ppb after 4 months
of deployment. As a specific proxy for zero-drift we used the SU estimates coupled to reference instruments measurements
< 0.5 ppb: this analysis, not possible for NOg due its low statistics of quasi-null values, confirms the better performance of
the two machine learning algorithms and hints to zero-drift of ~ — 10 ppb or ~ + 2 ppb in the worst and in the best case
respectively. The values of these proxies for the overall drift and the zero-drift are consistent with the results for these same
EC sensors by Kim et al. (2018), who reported an absolute zero-drift (from laboratory measurements) of 2 ppb and 16 ppb for
NO and NO,, after 2.5 months of field deployment.

The uncertainty of the devices was computed as relative expanded uncertainty according to the guidelines for the data
quality objective required by the directive 2008/50/EC (WG, 2010) and compared either to the expanded uncertainty of the
reference instrument (EMPA, 2016), and to the 25% recommendation for indicative measurements by the same directive, as
a reasonable threshold required for the detection of pollution gradients within urban areas, i.e. for a possible application of
these devices. Results show some variability between the two deployment sites, with highest uncertainty for NO in Lausanne
(traffic site). According to this procedure, the calculated relative expanded measurement uncertainty by SUs are within 25% for
mixing ratios larger than about 15 —20 ppb for both NO and NO,. Calibration models based on RF have generally the lowest
uncertainty among the three algorithms (Figures 9 and S26).

A further assessment of the uncertainty of these devices at the deployment sites was obtained by binning reference concen-
tration in 1 ppb intervals and estimating for each bin the corresponding 5th—95th quantile range of the predictions, along with
the median. The quantile range was calculated only for the RF estimates using 1 —hour input data and if at least 10 values were
available. Results are shown in Figure S27 and include the 1:1 line along with its 25% and 35% uncertainty intervals. In these
figures the bottom shortest rug (red coloured) indicates whether the median is included in the 25% uncertainty bounds. The rug
in green (blue) indicates if the 5—95% percentile range is included in the 35% (25%) uncertainty range. The estimate by the
sensor units is linear over a broad range of NO and NO», with a fairly constant 5—95% percentile range in most cases, besides
for NO in Lausanne (traffic site), hinting to a fairly steady precision for these devices. The bias for the median is in the order
of several ppb over large parts of the concentration range for both pollutants and most of the SUs.

The lowest concentration correctly estimated on 90% of occurrences with a specified uncertainty is again dependent on the
SU, on the site and on the pollutant: at the urban background site (Zurich) this lowest concentration is provided by SU010
and results in ~ 15 ppb (~ 20 ppb) for NO (NO-) and this is also the best result across all 4 devices. At the urban traffic site

(Lausanne) the lowest concentration correctly estimated (on 90% of occurrences and with a 25% uncertainty) is ~ 50 ppb (by
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SU012) and ~ 30 ppb (by SUO11) for NO and NO4, respectively; these latter thresholds reduce to ~ 15 ppb for both pollutants
if a 35% uncertainty is considered.

The potential benefit of using 8 EC sensors in the same RF model was tested by combining the data of the two SUs deployed
at the same site into the same RF model. Results for Zurich (combining SU009 with SU010) and Lausanne (combining SUO11
with SUO12) lead to figures similar to the best performing SU at the respective site, i.e. did not lead to a decrease in uncer-
tainty, suggesting that this latter has a more fundamental constraint, either from the calibration approach or by the EC and the
measurement system themselves. Nonetheless the combined use of the two SUs lead to a slight improvement in the overall
goodness-of-fit indexes, with a decrease of the RMSE of ~ 0.5 ppb (see Table S3).

The overall sensor noise for each bin was computed as the 20 of the RF estimate, if at least 10 estimates were available for
the bin. The median of this 2¢ noise ranged in £4—7 ppb and in £5—8 ppb for NO and NOs,, i.e. only 1 -2 ppb larger than
the noise observed by Kim et al. (2018) under laboratory conditions on 10 s data, and half of the 2¢ noise reported by the EC
sensor manufacturer.

Finally, we were interested whether the tested sensor units would be appropriate for a targeted application, i.e. for resolv-
ing the intra-urban concentration gradient with hourly resolution. Assume that sensor units are deployed in the same urban
environment at two distant sites A and B, where A is typically less polluted (urban background site) compared to site B (site
impacted by nearby sources such as road traffic). For this assessment, the data from all four SUs have been pooled in order to
account for different performance of individual sensor units, and similarly to the previous uncertainty assessments, only RF
estimates using 1 —hour input data were used. Next, the concentrations measured by the reference instruments were binned in
1 ppb intervals and denoted reference bins. The corresponding sensors measurements were then linked to the reference bins.
Any concentration difference between sites B and A can now been simulated by the reference bins, and the probability distri-
bution of the concentration difference as measured by the tested sensors can be expressed by the concentration differences of
the sensor measurements assigned to the corresponding reference bins. Integrating the sample probability distribution of the
concentration difference over values larger than zero provided the probability that the concentration gradient between site B
and A is resolved by two different SUs. This probability was computed if at least 10 estimates were available for either site A
and site B. Figure 10 shows the probability that, for a given reference concentration at site A and its difference in concentration
with site B, the measurements by a SU at site B are larger than measurements by a SU at site A. In Figure 10 red dots indicate
the concentration difference between site B and A that can be detected with a probability of 90%. Figure 10 highlights how
the possibility of resolving the gradient depends both on the gradient amount and on the concentration at site A, besides some
influence by the sample size, as evident by the lower chance of resolving differences at higher (and less frequent) levels. Gener-
ally gradients in NO above ~ 5 ppb to ~ 10 ppb are likely to be captured by these devices, while for NO, a gradient of almost
10 ppb is needed. These results were compared to the hourly gradient in a pool of European cities, including several sites in
the Po valley, a NO, hotspot for Europe. The data used proceed from 2 years of regulatory measurements at reference moni-
toring sites: data for years 2016 and 2017 were used for Italy and delivered directly by the local Environmental Agencies, data
for years 2015 and 2016 were used for the other cities and provided by the Air Quality e-Reporting (European Environment
Agency, 2017) (boxplots summarising this dataset are found in Figure S28 and S29). For each city, the intra-urban gradient
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was computed as the maximum hourly difference between traffic and background urban sites within the same urban area; when
more than two reference sites were available, the pair of sites showing the largest concentration difference was selected. In 10
the ordinates of each city indicate its intra-urban gradient, while the abscissa expresses its median over the analysed period. As
a final step, the uncertainty in RF estimates was tentatively estimated by using experimental Quantile Random Forest regression
(QRF) and Confidence Interval estimates (RF-CI). Results for QRF (band including 5 th to 95 th quantiles) shows that ca. 80%
of reference values are within the QRF band for both NO and NOs,. On the contrary confidence bands by RF-CI, containing
ca. 20% of the predictions, appear excessively narrow, although the mean prediction still indicates a good performance for this

model (Figures 11, S30, S31 and S32).

4 Conclusions

Four sensor units (SU) using low cost electrochemical sensors (EC) were tested with three calibration approaches. The study
simulates a possible realistic application of these devices and consisted in field-calibrating the units at a single air quality
monitoring site and subsequently deploy the units at two distant air quality monitoring sites. This procedure added relocation to
the other well documented sources of uncertainty by low cost sensors (e.g. stability, cross-sensitivity, reproducibility), involving
further possible errors generated by differences in pollution levels and environmental conditions between the calibration and
deployment site and between the calibration and the deployment period. Within this realistic framework the performance of
three state-of-the-art calibration algorithms were tested: Multivariate Linear Regression (MLR), Support Vector Regression
(SVR) and Random Forest (RF). For each SU and for each algorithm, the overall performance and its change over time was
estimated according to several metrics. Drift, uncertainty, bias and noise were assessed, along with the probability to resolve
spatial concentration differences by using these SUs, still within the same realistic framework.

Each unit hosted two EC sensors for each of the two monitored pollutants (NO and NO,), resulting in several possible
covariate combinations for the regression models. For all three algorithms the model fully exploiting the replicate EC sen-
sors performed best, with RF resulting the most successful algorithm. MLR achieved the worst performance according to
all goodness-of-fit indexes, along with a large drift over time, which is not surprising given the large autocorrelation in its
residuals, indicating that important information from the input data were not included in the regression model. SVR overall
performance is comparable, or occasionally better, than RF throughout the deployment period, however the tuning of its param-
eters is computer-intensive and the algorithm exhibited a tendency to overfit (as shown by the occasional lack of monotonicity
in its partial plots), discouraging its use in a realistic production application, potentially involving several sensor units.

The lowest correctly estimated concentration resulted mainly dependent on the SU, on the pollutant and on the algorithm:
best results for this study indicate 15 —20 ppb for both NO and NOa, if an expanded uncertainty of 25% is considered. RMSE
ranged between 3—7 ppb, drift resulted few ppb larger and the 20 noise showed figures similar to RMSE. When calibrated,
the sensors resulted capable to detect concentration differences of about 5— 10 ppb for NO and 8 — 10 ppb for NOy, depending
on the urban background level. It is worth noting how the performance of the three algorithms is strongly dependent on

the comparability between the calibration and the deployment space: the more similar are these spaces, the better will be the
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performance of the measuring device in case of field calibration. Standard RF is not able to extrapolate out-of-sample, as clearly
shown e.g. by the steady NO prediction corresponding to observations larger than 100 ppb (Figure S19): notwithstanding the
remarkable performance achieved by this algorithm, this feature of RF on one side represents a main limitation, on the other
it allows to confine the estimates within the calibration space and to identify possible misalignments between the calibration
and the deployment spaces. Finally, although the use of a confidence band in the estimates by low cost sensors should be
recommended, in the present study, confidence bands for RF resulted too experimental to be used for application studies.

On a broader view, these results recommend to investigate whether these sensors are fit for the intended purpose and the
intended environment, prior to their use. Given the performance of these devices, they resulted unsuitable for cleaner urban
areas (e.g. in background mountain locations) and unsuitable to reliably map small intra-urban gradients; nonetheless they also
showed a large potential for time-resolved monitoring of NO and NOy in medium-to-high polluted areas and for quantitatively
resolving intra-urban concentration gradients on a hourly basis in higher polluted and larger cities. Targeted QA/QC protocols
for the management of this class of sensors and/or of a network of sensors need to be implemented for achieving the best and

constant data quality during medium to longterm deployment.
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Figure 1. Partial plots for SVR, RF and MLR for the calibration dataset from SU009, NO. Rug on the abscissa indicates the range of the

covariate.
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Figure 2. Partial plots for SVR, RF and MLR for the calibration dataset from SU009, NO,. Rug on the abscissa indicates the range of the

covariate.
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Appendix A

Equation of the minimal model for Multivariate Linear Regression: only EC sensor A for the target pollutant is used.

NO = o + B1Vnor + 82T + B3RH + BaVyor x T'+ €
NO; = o + S1Vnos + 2T + BsRH + B4 Vyos x T'+ €
(AL)
Equation of the minimal model for Support Vector Regression and Random Forest: only EC sensor A for the target pollutant is
used.
NO = function(Vyoa,T,RH)
NO, = function(Vyoy, 7', RH)

(A2)
Equation of the basic model for Multivariate Linear Regression: EC sensors A both for NO and NO,, are used.
NO = o + B1Vnor + P2Vnos + BT + BsRH + S5 Vivor x T+ €
NO2 = By + f1Vaor + B2Vnoy + B3T + BaRH + S5 Vyoy X T'+ €
(A3)

Equation of the basic model for Support Vector Regression and Random Forest: EC sensors A both for NO and NO, are used.

NO = function(Vyos, Vxos. T, RH)
NO, = function(Vxoa, Vios, T RH)
(A4)

Equation of the single replicate model for Multivariate Linear Regression: Vo indicates the mean net voltage produced by the

twin EC sensors for NO, Wxo, indicates the net voltage produced by the two EC sensor for NOs.

NO = 8o+ 1 Vno + B2T + fsRH + B4 Vo x T+ €
NO3 = o + B1 Vo, + 82T + BsRH + B4 Vo, x T + €
(AS5)
Equation of the single replicate model for Support Vector Regression and Random Forest: either EC sensor A for NO and EC
sensor A for NO, are used.
NO = function(Vyos, Vxos. T, RH)
NO, = function(Vyoa, Vios, T RH)
(A6)
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Equation of the double replicate and final model for Multivariate Linear Regression: Vo indicates the mean net voltage

produced by the twin EC sensors for NO, W, indicates the net voltage produced by the two EC sensor for NOs.

NO = By + 51Vxo + B2WVNo, + 83T + BaRH + B5 Vo x T + €
NO2 = B + B1Vxo + B2 Vo, + 83T + BsRH + B5 Vo, x T+ €
(A7)

Equation of the double replicate and final model for Support Vector Regression and Random Forest: either EC sensor A for

NO and EC sensor A for NO, are used.

NO = funCtiOn(VNoA, VNOB s VNO%’ VNOg ,T, RH)
N02 = funCtiOn(VNoA 5 VNOB s VNOQ 5 VNOg ,T, RH)
(A8)
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