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Abstract. This paper presents the simultaneous retrieval of Aerosol Optical Thickness and surface
properties from the CISAR algorithm applied both to geostationary and polar orbiting satellite ob-
servations. The theoretical concepts of the CISAR algorithm have been described in Govaerts and
Luffarelli (2017). CISAR has been applied to SEVIRI and PROBA-V observations acquired over
20 AERONET stations during year 2015. The CISAR retrieval from the two sets of observations is
evaluated against independent datasets such as MODIS land product and AERONET data. The per-
formance differences resulting from the two types of orbit are discussed, analysing and comparing
the information content of SEVIRI and PROBA-V observations.

1 Introduction

Aerosol property retrieval over land surfaces from space observation is a challenging problem due
to the strong radiative coupling between atmospheric and surface radiative processes. Different
approaches are usually exploited to retrieve different Earth system components (e.g., Hsu et al.
(2013), Mei et al. (2017)), leading to inconsistent and less accurate datasets. The joint retrieval of
surface reflectance and aerosol properties, as originally proposed by Pinty et al. (2000), presents
many advantages, such as the possibility to perform the retrieval over any type of surface and assure
the radiative consistency among the retrieved variables.

Govaerts and Luffarelli (2017) (hereafter referred to as Part I) describes the theoretical aspects
of the Combined Inversion of Surface and AeRosols (CISAR) algorithm, designed for the joint
retrieval of surface reflectance and aerosol properties. This new generic retrieval method specifically

addresses issues related to the continuous variation of the state variables in the solution space within



25

30

35

40

45

50

an Optimal Estimation (OE) framework. Through a set of experiments, the capability of CISAR
of retrieving surface reflectance and aerosol properties within the solution space was illustrated.
Nonetheless, these experiments only represent ideal simulated observation conditions, i.e., noise
free data acquired in narrow spectral bands placed in the principal plane assuming unbiased surface
prior information. This second part aims to demonstrate CISAR’s applicability to actual satellite
observations, with less favourable geometrical conditions than the principal plane and accounting
for the radiometric noise. For this purpose, the algorithm has been applied to two radiometers with
similar spectral properties but different orbits (geostationary and polar ). Radiometers on board of
geostationary platforms deliver observations with a revisit time of tens of minutes but with a limited
field of view so that many instruments are needed to cover the entire Earth. The poles cannot be
observed. Conversely, a polar orbit, combined with an adequate swath, could offer a daily revisit time
of the entire globe. The selected radiometers are the Spinning Enhanced Visible and Infrared Imager
(SEVIRI), flying on board of the Meteosat Second Generation (MSG) geostationary platform, and
the PRoject for On-Board Autonomy - Vegetation (PROBA-V). These two instruments have similar
radiometric performances and both have acquired more than 15 years of observations thanks to the
launch of a succession of radiometers with very similar characteristics. Applying the same algorithm
on similar instruments flying in different orbits represents a meaningful way to analyse the CISAR
generic algorithm performance.

This paper is organised as follows. Section 2 describes the observation system considered in the
OE framework: the satellite observation, the ancillary information, the prior information and the
forward model. The uncertainty characterisation of the observation system is also described in Sect.
2. The algorithm implementation is described in Sect. 3. Section 4 analyses the information content
of the satellite observations, comparing the differences between the geostationary and polar orbit-
ing instruments, and discusses the challenges encountered when little or no information about the
retrieved variables is carried by the observation. Given these difficulties in the retrieval, a Quality
Indicator (QI) is implemented and presented in Sect. 5, characterising the reliability of the solu-
tion. Finally, the performance of CISAR is discussed in detail in Sect. 6. The CISAR retrieved
Aerosol Optical Thickness (AOT) and Bidirectional Hemispherical Reflectance (BHR) will be com-
pared against those derived from the Aerosol Robotic Network (AERONET) (Giles et al., 2017) and
the Moderate Resolution Imaging Spectroradiometer (MODIS) Land product data (DAAC, 2017),
respectively. The performance differences between the retrieved datasets obtained from SEVIRI and
PROBA-V observations will be further investigated through statistics on the quality of the retrieval

and through the information content of the satellite observations.
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Fig. 1: Selected AERONET stations location. All stations are located within the SEVIRI field of
view.

2 Observation system characterisation
2.1 Observation system definition

The fundamental principle of the OE is to maximise the probability P = P(X|y,5,Xs,b) with re-
spect to the values of the state vector X, conditional to the value of the measurements and any prior
information (Rodgers, 2000). The ensemble of measurements, prior information, ancillary data and
the forward model constitutes the observation system. This section describes each component of this
system for the two satellite datasets processed in the framework of this study.

In order to evaluate the CISAR algorithm performance when applied to observations acquired
from different orbits, 20 AERONET stations located within the SEVIRI field of view have been
selected (Fig. 1, Table 1). These targets span different geometries and land cover types (vegetation,
urban, bare areas, water, mixed). The observations pertain year 2015.

For each of these stations, satellite data have been acquired, together with ancillary information,
such as the cloud mask and the model parameters, which are all the parameters that are not re-
trieved by the algorithm but that influence the observation. Satellite data and ancillary information
are accumulated in time to form a multi-angular observation vector y,, in order to correctly char-
acterise the surface reflectance anisotropy. Nevertheless, retrieving surface and aerosol properties
from satellite observations is an ill posed problem (Wang, 2012). Consequently, assumptions on the
magnitude and on the temporal/spectral variability of the state variables are made. The ensemble of

these assumptions and their associated uncertainties constitutes the prior information.
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Table 1: AERONET targets

Name Latitude Longitude Land Cover Type
Athens_NOA 37.99 23.77 Urban
Barcelona 41.39 2.12 Urban
Bucharest_Inoe 44.35 26.03 Mixed
Bure_OPE 48.56 5.50 Vegetation
Burjassot 39.51 -0.42 Urban
Carpentras 44.08 5.06 Vegetation
Dakar 14.39 -16.96 Costal
Gloria 44.60 29.36 Water
Granada 37.16 -3.60 Urban
IMS-METU-ERDERMLI 36.56 34.25 Costal
Kyiv 50.36 30.50 Vegetation
Mainz 49.50 8.30 Mixed
Murcia 38.01 -1.17 Vegetation
Paris 48.87 2.33 Urban
Petrolina_ SONDA -9.38 -40.50 Urban
Pretoria_CSIR-DPSS -25.76 28.28 Mixed
Sede_Boker 30.85 34.78 Bare Areas
Toulouse_MF 43.57 1.37 Urban
Venise 45.31 12.51 Water
Zinder_Airport 13.78 8.99 Bare Areas

The observation uncertainty o, characterisation is one of the most critical aspect of the CISAR al-
gorithm as it directly determines the likelihood of the solution. In fact, o, determines the observation
term of the cost function (Eq. 17 of Part I). The observation uncertainty is composed of the radio-
metric uncertainty, directly related to the radiometer characteristics, the forward model uncertainty

and the uncertainty related to the model parameters.
2.2 Satellite data

MSG nominal position is 0° over the equator in a geostationary orbit. SEVIRI is the main instrument
of the MSG mission, which has as primary objective the observation in the near real-time of the
Earth’s full disk, shown in Fig. 1. SEVIRI achieves this with 12 channels, ranging from 0.6 ym to
13 pm, three of which are located in the solar spectrum and centred at 0.64 pm, 0.81 ym and 1.64
pm and are used within this study. SEVIRI observes the Earth’s full disk with a 15 minute repeat
cycle. The sampling distance between two adjacent pixels at the sub-satellite point is 3 km for the
visible bands. As there is no on-board device for the calibration of the solar channels, the calibration
within this study has been performed with the method proposed by Govaerts et al. (2013).
PROBA-V satellite mission is intended to ensure the continuation of Satellite Pour I’Observation

de la Terre 5 (SPOT5) VEGETATION products since May 2014 (Sterckx et al., 2014). The mi-
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Fig. 2: SEVIRI (in blue), PROBA-V (in red) and MODIS (in green) spectral responses.

crosatellite offers global coverage of land surface with daily revisit for latitude from 75°N to 56°S
in four spectral bands, centred at 0.46 pm, 0.66 pm, 0.83 pm and 1.61 pm. PROBA-V products are
provided at a spatial resolution of 1/3 km and 1 km, the latter being used in the framework of this
study. To cover the wide angular field of view (101°) in a small-sized platform, the optical design of
PROBA-V is made up of three cameras (identical three-mirror anastigmatic telescopes). The three
cameras have an equal field of view. The down-pointing central camera covers a swath 500 km
wide, while the swath of the right and left cameras is 875 km wide. Although the three cameras
have different responses, a mean Spectral Response Functions (SRF) is considered within this study,
accounting for the radiometric uncertainty associated with this approximation. Each camera has two
focal planes, one for the short wave infrared (SWIR) band and one for the visible and near-infrared
(VNIR) bands. Despite the different viewing angles in the SWIR band, CISAR assumes the obser-
vations are acquired with the same geometry in all bands. This assumption leads to an additional
term in the observation uncertainty. Because of the omission of on-board calibration devices, the
PROBA-V in-flight calibration relies only on vicarious methods (Sterckx et al., 2013).

The similarities between the three SEVIRI solar bands and the red, NIR and SWIR PROBA-V
bands permit the evaluation and comparison of the CISAR performances when applied to the two
instruments, whose spectral responses are shown in Fig. 2. The satellite observations have been ac-
quired from the European Organisation for the Exploitation of Meteorological Satellites (EUMET-
SAT) Earth Observation Portal and from the Flemish Institute for Technological Research (VITO)
for SEVIRI and PROBA-V respectively. The Top Of Atmosphere (TOA) Bidirectional Reflectance
Factor (BRF) is computed directly from the digital count value in case of SEVIRI, whereas for
PROBA-V the Level 2-A TOA BRF is provided by VITO (Wolters et al., 2018). The satellite obser-

vation uncertainty is derived from the radiometric noise o; and the geolocation uncertainty o,.. For
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Table 2: PROBA-V instrument noise [%]

Band Left camera Center Camera Right Camera

BLUE 4 4 4
RED 3 3 3
NIR 3 3 3
SWIR 5 4 5

PROBA-V two additional terms are calculated: the uncertainty o, associated to the approximation
of a mean SRF of the cameras and the one deriving from considering the same viewing geometry in
the SWIR and in the VNIR bands, oq.

PROBA-V radiometric noise has been delivered by VITO (Sindy Sterckx, personal communi-
cation, September 2017) per camera and per band (Table 2). For SEVIRI, this term is computed
considering (i) the instrument noise due to the dark current, (i) the difference between the detectors
gain and (i) the number of digitalization levels (Govaerts and Lattanzio, 2007). The geolocation un-
certainty o, arising from the assumption of the satellite data being correctly mapped to the surface

of the Earth, is estimated for each pixel p as follows (Govaerts et al., 2010):

- 2 - 2
< Yo (t, N\, pz,py) N Yo (t,\,pz,py) 3
2 _ 0 y 0 y
O (tv)‘ap) = ( 8171» O'a:(taA) + apy Uy(t)\) (1)

where o , is the geolocation/coregistration standard deviation and yo(t,j\, Dz,Dy) is the TOA BRF
in the channel \ acquired at the time t.

The uncertainty o, originating from the usage of a mean SRF for the three PROBA-V cameras,
has been estimated simulating the TOA BRF considering both the mean and actual SRF for a wide
range of observation conditions. The assessed o is lower than 0.2% in all bands and for all cameras.
Finally, the assumption of having the same viewing geometry for the three PROBA-V bands is

associated to the uncertainty oq, computed as follows:

o (tA.2.p) = (Waé(t,ﬂ)) @

The total relative radiometric uncertainty median values are shown in Table 3.

Table 3: Total radiometric uncertainty median values [%]

04pym 06pm 08um 1.6um

SEVIRI 3 2 3
PROBA-V 4 3 3 4




2.3 Ancillary data

In addition to satellite observations, a cloud mask and the model parameters information are re-
125 quired. For SEVIRI observations, the nowcasting Satellite Application Facility (SAF) cloud mask
(Meteo France, 2013), provided at the radiometer’s native temporal and spatial resolution, is used;
for PROBA-V the cloud mask is provided by VITO (Wolters et al., 2018). The model parameters,
i.e., Total Column Water Vapour (TCWYV), Total Column Ozone (TCO3) and surface pressure are
taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Dee

130 etal., 2011).
The uncertainties of the model parameters b are converted into an equivalent noise o 3, calculated

as follow (Govaerts et al., 2010):

~ 2 ~ 2 ~ 2
- Ay(x,U,.: A Oy (X, Usp: LA Oy (X, Uep: A
UzB(bv/\agoan)< y( oU. )UUDZ> +( y( oU. )O-Uu)v,v) +< y( 8Up )UUsp>
0z wv sp
(3

where U, Uy, are the ozone and water vapour total column concentration and Uy, is the surface

pressure and oy, , oy, and oy, are their associated uncertainties. The surface pressure contribu-

tion to the signal is about 10 times smaller than the contribution of the water vapour concentration.

The TCWYV is distributed among the two atmospheric layers in the forward radiative transfer model
135 assuming a US76 water vapour vertical profile (Sissenwine et al., 1976). The fraction of TCWV in

the scattering layer interacts with the aerosol particles and thus strongly affects the CISAR retrieval.

Unlike the ozone which is mainly present in the stratosphere, the water vapour is dominant in the

lower part of the atmosphere, severely impacting the aerosol retrieval in SEVIRI and PROBA-V

band 0.8 pm (Table 4). Hence, only the uncertainty related to the TCWYV is considered and Eq. 3 is
140 approximated to:

~ 2
Oy (X, U3 2, A
y<>> @

U%(b,x,Q(),Qv)% < 8U ]

The median values of the Equivalent Model Parameter Noise (EQMPN), computed as in Eq. 4,

are shown in Table 5.

Table 4: Water Vapour transmittance in the SEVIRI, PROBA-V and MODIS bands

04pm 06pum 08pum 1.6um

SEVIRI 0.993 0.915 0.988
PROBA-V  1.000 0.990 0.926 0.995
MODIS 1.000 0.990 0.985 0.996




Table 5: Total EQMPN median values [%]

04pm 06pum 08um 1.6um

SEVIRI 0.28 2.02 0.38
PROBA-V 0.01 0.37 1.49 0.14

2.4 Prior information

Within an OE framework, the definition of the prior information and its uncertainty plays a funda-

145 mental role. In CISAR four different sources of prior information are considered:

150

1. Surface parameters magnitude. The surface reflectance, represented by the RPV (Rahman-

Pinty-Verstraete) model (Rahman et al., 1993), is not expected to undergo rapid variations on
a short temporal scale, hence the retrieval in the previous accumulation period can be used
as prior information for the next inversion (Govaerts et al., 2010). The prior information on
the RPV parameters at the time ¢, is built computing a running mean over the [V, previously-

converged accumulation periods.

SZ0R(t:)

N 5)

Xb(td) =

The corresponding prior uncertainty is defined as half of the variability range of the solution
X(t;) retrieved during the considered NN,. accumulation periods.
__ maXgen, X(t;) —minge N, X(2;)

ox, (ta) = 5 6)

When N, is smaller than a certain minimum threshold N,,;, (Table 7), the prior information
on the magnitude of the RPV parameters is taken from the last successful retrieval and its
uncertainty is computed as in Eq. 7, where N is the number of days since the last successful

retrieval (Govaerts et al., 2017).

Ox, (ta) = 0, (tg —1)1.0504 (7

. AOT magnitude. This information is taken from an annual mean climatology dataset (Kinne

et al., 2013). From this dataset, the prior information on the AOT magnitude for the coarse
and fine mode (absorbing and non absorbing distinctly) is taken. The uncertainty is set to a

high arbitrary value oy, for all the wavelengths (Table 7).

. Constraints on the AOT temporal variability. These constraints result from the assumption that

the AOT is not changing rapidly on a very short temporal scale, therefore a maximum temporal
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variation is defined through a sigmoid function. The temporal constraints are described by the

matrix H, in Eq. 13 of Part .

4. Constraints on the AOT spectral variability. The AOT is expected to decrease with the wave-
length, proportionally to the ratio of the extinction coefficient (see Eq. 15 of Part I). The
applied constraints define the matrix H; (Eq. 14 of Part I).

2.5 Forward model

FASTRE, the CISAR forward Radiative Transfer Model (RTM), and its uncertainty o r are described
in Sect. 4.4 of Part I. FASTRE uncertainty in the SEVIRI and PROBA-V processed bands has been
estimated as in Eq. 10 of Part I, comparing the outcome of FASTRE with a more elaborated RTM,
where 50 atmospheric layers are considered. The results of this evaluation are shown in Table 6. The
forward model uncertainty is lower than 3% in all processed bands, presenting its largest value in the
SEVIRI VIS0.8 band, the most affected by water vapour absorption (Table 4). The FASTRE two-
layer approximation of the atmosphere does not allow a correct discretisation of the water vapour
vertical profile and, thus, a correct characterisation of its interaction with the scattering particles.
Moreover, the two-layer approximation assumes that the scattering particles are only present in the
lower layer. Given the spectral behaviour of the AOT, this assumption leads to a higher uncertainty
at wavelengths shorter than 0.4 pm (Seidel et al., 2010). Despite the limitations associated to the
two-layer approximation, FASTRE uncertainty is in the range of 1% - 3% (Table 6), which is smaller

or equal to the instrument radiometric noise.

Table 6: FASTRE relative uncertainty in the SEVIRI and PROBA-V processed bands [%]

04pum 06pum O08pm 1.6pm

SEVIRI 1.88 2.75 0.96
PROBA-V 238 1.31 2.20 0.75

3 Data processing
3.1 General setup

In order to perform the inversion on actual satellite data, the observations are accumulated in time and
the corresponding uncertainty is computed as described in Sect. 2. This temporal accumulation is
performed in order to build a multi-angular observation vector y, 5 to characterise surface reflectance
anisotropy. The surface optical properties are considered invariant during the accumulation period,
and therefore a trade-off between having enough cloud free observations to build the observation

vector and allowing the algorithm to catch surface variations is introduced; the high-repeat tempo-
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(a) SEVIRI (b) PROBA-V

Fig. 3: Polar plot of the angular sampling during a 5 days (2015/05/01-2015/05/05) of SEVIRI
observations (left panel) and during 16 days (2015/05/01-2015/05/16) of PROBA-V observations
(right panel) over Carpentras, France. The blue triangles represent the satellite viewing angles, the
red diamonds the illumination one. Circles represent the zenith angle and polar angles represent
azimuth angles with zero azimuth pointing to the North.

ral coverage of geostationary satellites allows a shorter accumulation periods with respect to polar
orbiting instruments. For SEVIRI acquisitions, although the angular sampling does not vary much
from one day to the next, the length of the accumulation period is set to 5 days in order to maximise
the occurrence of cloud free observations. For polar orbiting satellites, the length of the temporal
accumulation is normally driven by the repeat cycle, as it is the case for MODIS (DAAC, 2018).
In the case of PROBA-V, the satellite orbit is not maintained and there is no repeat cycle. Hence,
the choice of the length of the time window during which the satellite observations are accumulated
results from empirical studies aims at balancing the trade-off previously described. Consequently,
the length of the accumulation is set to 16 days and the successive accumulation periods are shifted
by 8 days. An example of the angular sampling during this accumulation period is shown in Fig.
3 for SEVIRI and PROBA-V. During the accumulation period, observations acquired with a sun or
viewing angle larger than 6,,,, (defined in Table 7) are discarded.

The definition of the first guess is an important aspect of the inversion process and it is defined
in order to minimise the possibility of finding local minima. When a minimum value is found, an
investigation of the cost function in the vicinity of the solution should be made in order to deter-
mine whether or not it is a local minimum. However, this exploration could be computationally
expensive. In order to minimise the possibility of local minima without degrading the computational
performances, the AOT first guess is assigned to successive observations alternating between a low
value 70,y and a larger one 744 (see Table 7). As CISAR retrieves one single set of RPV param-

eters over the entire accumulation period in each processed band, only one set of first guesses Xxg is

10



Table 7: CISAR setup parameters

SEVIRI PROBA-V

Ny Length of the accumulation period 5 16

N Shift between the accumulation period 5 8
Noin Minimum converged retrievals to compute the mean on the RPV parameters 5 5

- Maximum number of iterations 20 20

0 maz Maximum processed sun and viewing zenith angles [°] 70 70
Tlow Minimum AOT first guess value 0.001 0.001
Thigh Maximum AOQOT first guess value 0.100 0.100
Oy 1 Fine mode prior uncertainty for the AOT 1.0 1.0
Oy ro Coarse mode prior uncertainty for the AOT 2.0 2.0
04,,RPv  Default prior uncertainty for the RPV parameters 1.0 1.0

defined:
Xo(ta) =Xp(ta) +(—1)" xox, (ta) ®)

where 4, is the index of the current accumulation period and X; is the prior information at the
accumulation period t4.

From the retrieved set of RPV parameters the BHR is calculated, assuming perfectly diffuse il-
lumination conditions, and the AOT is extrapolated at 0.55 pm through the extinction coefficient

a:

Q0,550
T0.55,0 = TA,v () 9

Q) ,U
where v is the considered aerosol vertex and A is the wavelength from which the AOT at 0.55 pm is

extrapolated.
195 3.2 Aerosol vertices

The choice of the aerosol vertices subsamples the entire solution space to a region where the aerosol
properties can be retrieved. The relationship between the particle size and the single scattering
properties has been discussed in Part I. As recommended, three vertices are selected, defined by the
asymmetry factor g and the Single Scattering Albedo (SSA) wy: two fine mode vertices, absorbing
200 and non-absorbing, and one coarse mode vertex, defining a triangle in the [g,wo] space in each
processed band. The three vertices are chosen analysing the single scattering properties derived from
the AERONET inversion product on all available observations since 1993 (Dubovik et al., 2006),
similarly to the approach proposed by Govaerts et al. (2010). The aerosol single scattering properties
distribution in the [g,w] space, as derived from AERONET inversion product, is shown in Fig. 4
205 for A=0.6 um. The aerosol properties are clustered in the region defined by 0.60 < g < 0.80 and
0.85 < wp < 0.98, containing 68.3% of the data (blue line). The selected CISAR vertices defining

the solution space cover about the 80% of possible solutions (black triangle).

11
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Fig. 4: Solution space (black triangle) for the wavelength 0.6 um defined by the non absorbing
fine mode (FN), the absorbing fine mode (FA) and the coarse mode (C) vertices. The red, green
and blue lines show respectively the 99.7%, 95.5% and 68.3% probability regions respectively, as
derived from AERONET inversion product for all the observations available over all the AERONET
stations.

4 Information content

The analysis of the information content relies on a two-fold approach. First, the Jacobians are used
as an indicator of the TOA BRF sensitivity to state variable changes under different observation
conditions. Next, the entropy is used as a rigorous metric to determine the information content of
the observation system for each radiometer. The Jacobians, i.e., the partial derivatives of the forward
model with respect to the state variables, are affected by the changes in illumination and viewing
geometry both in terms of sign and magnitude (Luffarelli et al., 2016). The minimisation of the
cost function relies on an iterative approach where the direction of steepest descent is determined by
the Jacobians (Marquardt, 1963). An analysis of the Jacobians gives information about the amount
of information carried by the observation and the challenges associated to its sign and magnitude
variations throughout the year. The larger the magnitude of the Jacobians, the higher the sensitivity
of the signal on the selected state variable. The Jacobians have been scaled by the variability range
of each state variable to compare their dimensionless magnitude.

An illustrative example of the distributions of the Jacobians relative to the RPV parameters is
shown in Fig. 5. The Jacobians are dominated by the py parameter (controlling the magnitude
of the surface BRF), followed by 6, k and p. (characterising the surface reflectance anisotropy).
Consequently, the retrieval of the surface reflectance shape is more challenging than the retrieval

of its mean magnitude; nevertheless, its accurate retrieval is necessary to correctly account for the

12
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Fig. 5: Histograms of the distribution of the scaled Jacobians related to the RPV parameters (x-axis),
scaled by the variability range of each variable. These distributions are obtained from PROBA-V
observations (RED band) over Carpentras, France (vegetated target). Positive (negative) values of
the Jacobian show that the TOA BREF is positively (negatively) correlated to the considered state
variable.

coupling between the surface and the atmosphere (Govaerts et al., 2008).

The aerosol contribution to the TOA BRF differs according to the brightness of the surface. Figure
6 shows the AOT scaled Jacobians distribution over Carpentras (dark surface) and Zinder Airport
(bright surface). The Jacobians over Carpentras reach higher values with respect to the Jacobians
related to Zinder Airport, because the signal at Zinder is dominated by the bright surface (Sun et al.,
2016). When the magnitude of the AOT Jacobian is close to 0, the observed TOA BRF is not sensitive
to changes in the aerosol concentration in the atmosphere. It is worth noticing that the AOT scaled

Jacobians can be both negative and positive, meaning that the aerosols can increase or decrease the
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Fig. 6: Distribution of the AOT scaled Jacobian over Carpentras (dark surface) and Zinder Airport
(bright surface). The histograms are obtained from PROBA-V observations (RED band) over year
2015.
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Table 8: Median and standard deviation of the scaled Jacobians. The table refers to all processed
targets during 2015. The values are shown for the SEVIRI and PROBA-V bands centred at 0.6 pm.

Median value Standard deviation

o 1.316 0.385
K -0.008 0.038
0 -0.250 0.265
Pe -0.023 0.023
TF 0.017 0.014
TC 0.007 0.008

TOA BRF depending on the season and the viewing and illumination geometry. This variability of
the sign of the Jacobians, occurring also over dark target (Fig. 6a), represents one limitation in the
MODIS Dense Dark Vegetatation (DDV) algorithm (Kaufman et al., 1997), which assumes that an
increase in the AOT results in an increased signal at the satellite.

Table 8 shows the median value and the standard deviation of the scaled Jacobians for all the state
variables at SEVIRI and PROBA-V bands centred at 0.6 um, over all selected AERONET stations.
This Table confirms the previous findings on the Jacobians magnitude shown in Fig. 5 and 6 over
Carpentras and Zinder Airport. The AOT scaled Jacobian is about 2 orders of magnitude smaller
than the one of the magnitude of the surface reflectance. The variability of the Jacobian sign and
magnitude along the year is illustrated in Fig. 7, where it can be seen that the effect of the aerosols
on the reflectance can vary with the geometry for the same land cover type. The Jacobian variations
in Fig. 7 essentially depend on the viewing and illumination geometry. Aerosol particles mostly
scatter in the forward direction, given the positive sign of the asymmetry factor g (controlled, among
other factors, by the aerosol size distribution) (Andrews et al., 2006). For this reason, the maximum
information on the aerosols is located in the forward direction, while it decreases when approaching
the backscattering direction. Additionally, a longer atmospheric path increases the aerosol effects
on the reflectance, given the higher probability of interactions between the reflected sunlight and
the atmospheric particles. The impact of the length of the atmospheric path is highlighted in Fig.
8, showing the Jacobian daily cycle over Carpentras. The sensitivity of the TOA BRF with respect
to the AOT almost disappears at noon, when the atmospheric path is shortest and the effect of the
aerosol on the signal is minimised. A more detailed analysis of the AOT Jacobians and their relation
with the AOT magnitude is performed by Luffarelli et al. (2016). Given the seasonal variations of
the Jacobians, shown in Fig. 7 and 8, it is not expected to get the same accuracy of the retrieval
throughout the day and throughout the year.

A more rigorous analysis of the information content can be made through the entropy, which
measure the uncertainty reduction (Rodgers, 2000). In an OE framework, the prior information and

its uncertainty represent an hypothesis on the expected value of the state variables. It is envisaged
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Fig. 8: Scaled AOT Jacobians (left y-axis) associated to SEVIRI observation int the VIS0.6 band
over Carpentras, France, for 2015/6/5. The blue dots represent the fine mode, the red triangles the
coarse mode. The black crosses represent the retrieved AOT at 0.55 pm (right y-axis).

that the inversion process provides a posterior uncertainty on the state variables which is smaller
than the prior one; the entropy quantifies this uncertainty reduction. When there is no information
coming from the satellite observations, the entropy will be close to 0 as the observation does not add
any additional knowledge on the system. Formally, the entropy is computed as follows:

_ L (1Ss]
H= 21n(|sm|) (10)

where S; (Eq. 21 of Part I) and S, are the uncertainties of the posterior and the prior information
respectively.

In CISAR, the entropy is calculated considering the surface and atmospheric state variables and
their associated prior and posterior uncertainty separately; the entropy distribution is shown in Fig. 9.
The distribution of the surface and AOT entropy related to SEVIRI observations exhibits higher val-
ues compared to the one related to PROBA-V observations, given the larger radiometric uncertainty
associated to the observations acquired by the polar orbiting satellite. The entropy depends not only
on the information carried by the satellite observation, but also on the uncertainty associated to the
prior information. As the prior information on the surface is updated (Sect. 2.4), the associated un-
certainty decreases in time, whereas the prior information on the AOT remains weakly constrained,
as the uncertainty is kept to the default high value. For this reason the entropy associated to the RPV

parameters exhibits smaller value than the one associated to the AOT (Fig. 9a).
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Fig. 9: Distribution of the entropy related to the AOT (left panel) and to the RPV parameters (right
panel).

5 Quality indicator
5.1 Review of existing methods

Section 2.5 discussed the limitations of the forward model FASTRE. Furthermore, in Sect. 4 it
has been shown how the AOT Jacobian magnitude is subject to temporal variations, depending on
the viewing and illumination geometries. These issues compromise the reliability of the retrieved
solution, which can however be assessed using different methods. Dubovik et al. (2011) use the
relative fitting measurement residual, to filter the retrieval outliers. Such an approach presents some
limitations as the number of degrees of freedom can vary depending on the availability of cloud
free observations. The requirement on the quality of the fit should be stricter when only a limited
number of observations is available (Govaerts et al., 2010). To address this specific issue, Govaerts
and Lattanzio (2007) developed an approach which also takes into account the number of cloud
free observations. The authors observed that the cost function is proportional to the quadratic sum
of the mismatch between the simulation and the observation for each acquisition, weighted by the
observation uncertainty. As the cost function is strongly dependent on the number of observations,
it is not possible to define a universal range of acceptable values for its residual without performing
additional operations on the cost function. Both methods do not correctly identify situations in
which a good fit is reached but the retrieval of the state variables is not reliable, due to limited or no
dependency of the TOA BRF on the state variables (the Jacobians are close to 0). A more elaborate
QI has been developed for the MODIS Aerosol Product Collection 6 (Hubanks, 2017), which is
composed of different tests accounting for the fitting residual, the magnitude of the retrieved AOT,
the possible presence of cirrus, the brightness of the scene and information on the number of pixels
and the percentage of water pixels present in the processed area. Despite taking into account different

factors in addition to fitting residuals, this approach does not consider the actual information content
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of the satellite observation. Moreover, as CISAR processes each pixel independently, the information
on the number and type of pixels over which the retrieval is performed, as used in the MODIS

product, is not applicable within this method.
5.2 Overview

A new approach is proposed for the CISAR algorithm, which combines a series of individual tests j
with an associated value p; in the range [0,1], defining a Q1 (t;) associated to the solution retrieved
at the time ¢;. These tests are performed on the convergence of the inversion to a solution after a
given number of iterations (0), on the validity range of the total AOT (1) and surface albedo (2),
on the mismatch between observations and simulations (3) and on the information content of the
satellite acquisition through the Jacobians (4) and the entropy, as discussed in Sect. 4. The entropy
is computed separately for the AOT (5) and RPV parameters (6). These tests have been defined
through an analysis of their impact on CISAR performance when evaluated against independent
reference datasets. The value p; associated to each test can assume values between 0 (bad quality)
and 1 (good quality). Figure 10 shows an example of the evaluation of the retrieved AOT against
AERONET data for the mismatch test (3). As the mismatch increases, the correlation decreases,

while the RMSE shows opposite behaviour.

| 0.166
0.680 —8— correlation coefficient
| 0164 —®— RMSE
0.675 - L 0.162
s
=1 I 0.160
© 0.670 4
: 2
S L 0.158
(&)
0.665 -
I 0.156
0.660 - 0.154
: : : . I F0.152
1.0 1.2 1.4 1.6 1.8
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Fig. 10: Correlation (in red) and RMSE (in blue) variations in function of the mismatch between
the satellite observation and the simulated signal (test 3). The figure refers to the CISAR AOT re-
trieval evaluation against AERONET data. These results are obtain from CISAR applied to SEVIRI
observations.
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5.3 Quality indicator tests
5.3.1 Convergence

The first test to be performed is on the convergence of the inversion. When the maximum number of

iteration is reached pq is equal to 0, otherwise py = 1.
5.3.2 State variable validity range

The validity of the retrieved total AOT and of the surface BHR is examined in the tests 1 and 2.
In CISAR, a validity range for each state variable is defined, based on physical boundaries and
empirical observations. When the value of retrieved AOT (BHR) falls on the extremes of this range,
p1 (p2) is equal to 0. The acceptable values for the BHR range from 0 to 1, while the AOT can only
assume positive values smaller than 5. The values p; and py are equal to 1 when 0 < BHR < 1 and

0 < AOT < 5 respectively.
5.3.3 Mismatch between observation and simulation

As discussed in Sect. 5.1, the fitting residual between the observation and the simulation is normally
used to assess the reliability of the solution, as it describes how well the signal simulated with the
forward model y,, (¢;,\) fits the satellite observations y(¢;,A). The mismatch between the observed
and simulated TOA BRF is weighted by the observations uncertainty o (¢;,A). For this test, the
largest mismatch among the processed bands is considered. Two thresholds 73 and 75 are defined
to identify good (p3 =1) and bad (p3 = 0) quality retrievals. The difference between the simulated
signal and the satellite observation should have the same magnitude as the observation uncertainty
oo(t;,N), therefore the T} is set to 1. Conversely, the maximum acceptable mismatch value Tp = 2
has been chosen observing the relation between the mismatch and the performances of CISAR when
evaluated against independent datasets used as reference. Fig. 10 represents an example of this
analysis. When the mismatch assumes values within the range defined by 77 and T5, thresholds
included, a value between a minimum m and 1 is assigned to p3 through a sigmoid function with
width equal to 10/(T> —T4) (Fig. 11). A different coefficient m is defined for each test j in order
to give different weights to the tests, according to the magnitude of their impact on the retrieved
solution and its evaluation against the reference dataset. The outcome of the test 3 is thus defined as

follows:

N . |ym(ti7A)_y0(ti7)\)|
p3(t;)=0 if mfxx{ o) >T5
p3(t;)=1 if m/gx{ oV <T (1D
. |y (i, A) —yo(ti, )]
a(t: < <
m<ps(t;) <1l if Tl_m):}x{ ol \) <T
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Fig. 11: Non linear p3 definition between the minimum value m and 1 which applies when the
mismatch is larger than 7} and smaller than 7%.

with A\=1,... ,number of wavelengths.
5.3.4 Jacobians

The magnitude of the Jacobians gives information on the sensitivity of the TOA BRF on the state
variables. Performing a test on the Jacobians related to each state variable can be computationally
expensive. In order to reduce the computational effort, only the Jacobian of the AOT is taken into
account. The spectral constraints applied to the AOT variability as in Sect. 2.4 impose a correlation
between the AOT retrieved in the different spectral bands. Consequently, it is desirable to have large
absolute Jacobians in at least one band. To have a good retrieval of the total AOT, the AOT associated
to each aerosol vertex has to be correctly retrieved. The quantity K, (t;) analysed in the test 4 is thus

the following:

Ko () = max{ min {| K., (t)]} } (12)
with A\=1,... ,number of wavelengths and v=1,..., number of aerosol vertices.

The aim of this test is to discard observations with little or no sensitivity to the AOT, identifying
those situations where the test on the miss-fit is successful because of the prior information and/or
the temporal and spectral constraints (Sect. 2.1) rather than actual information coming from the
observations. The thresholds 7} and 75 are set to 0.01 and 0.02 respectively. The values of py are
defined similarly to ps:

p4(ti)=0 if Km(ti)<T1
palt) =1 if K,(t;)>Th (13)
m<py(t;) <1 if Ty <K,(t;)<Ty
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5.3.5 Entropy

Section 4 discusses how the entropy, quantifying the uncertainty reduction from the prior knowl-
edge on the system to the posterior uncertainty, represents a rigorous analysis of the information
content. Tests 5 and 6 analyse the entropy associated to the AOT and the one associated to the RPV

parameters, computed as follows:

N 1 H)\H'u Opost (tivAvv)
HAOT(tZ)_ 2N)\ ln(HAHvO’pT’LOT(t%Aav)
14
1 H)\Hpo'post(tiaAap) 1
Hppv(ti)=— In
2N>\ H/\ Hpo-prio’r'(ti;AJ?)

where V) is the number of processed wavelengths, A=1,...,Ny, p=1,... ,number of RPV parameters
and v=1,... ,number of aerosol vertices. The normalization to N, assures consistency in the entropy
evaluation when different number of bands are analysed, as for SEVIRI and PROBA-V cases. The
entropy computation is strongly dependent on the magnitude of the prior uncertainty as explained in
Sect. 4. Low entropy might be due to reliable prior information, with a low associated uncertainty.
Similarly, the uncertainty reduction would be very large in case of little prior information on the state
variable. For these reasons, tests 5 and 6 are only performed when the prior uncertainty is smaller
than the validity range of the AOT and RPV respectively and larger than 1/6 of it. The thresholds
associated to the two tests on the entropy are 77 = 0.1 and 7> = 0.6 that correspond to a 20% and

70% uncertainty reduction respectively. The values ps(¢;) and pg(t;) are computed as in Eq. 15.

ps6(ti) =0 if Haor(t),Hrpv(t:) <Th
pse(ti)=1 if Haor(t:),Hrpyv(t;) >Ts (15)
m<pse(ti) <l if Th<Haor(t;),Hrpv(ti)<T

5.4 Quality indicator computation
The final QI is computed combining the results of the tests performed on the retrieved solution:

6
QI(t:) =po(t)ps (t:)pa(t:)maxd 1=y (1=p;(£:)),0 (16)
j=3
The final QI(t;) ranges from O to 1, where O designate a poor quality retrieval and 1 indicates a
reliable solution. Figure 12 shows the variations of the correlation and the RMSE between CISAR
retrieved AOT and AERONET data as a function of the QI. Correlation increases as QI is taking
larger values, while the RMSE decreases. This behaviour is observed with CISAR AOT retrieved
from both SEVIRI and PROBA-V observations (Fig. 12). This correlation increase (RMSE de-
crease) is particularly visible when QI is taking values between 0.0 and 0.2. For this reason, only

retrievals with Q1 > 0.2 are considered in Sect.6.
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Fig. 12: Correlation (straight lines) and RMSE (dashed lines) variations in function of the QI. The
figure refers to the CISAR AOT retrieval from SEVIRI (in blue) and PROBA-V (in red) observations
evaluated against AERONET data.

6 Performance evaluation
6.1 BHR

The CISAR BHR, computed from the RPV parameters, is compared with the MODIS Land product
(Schaaf and Wang, 2015). To account for the different spatial sampling, the MODIS data have been
averaged on 5x5 km and 1x1 km for the comparison with the retrievals from SEVIRI and PROBA-V
respectively. The results of this comparison are shown in Table 9 in terms of correlation, Root
Mean Square Error (RMSE), and Mean Absolute Error (MAE). The CISAR results show a high
correlation with the MODIS product, higher than 0.7 in all the processed spectral bands, except the
PROBA-V NIR band, which shows a correlation equal to 0.618. The density plots of the CISAR
BHR retrievals against MODIS data are included in the Supplement for all the processed bands, for
both satellites. Despite the instrument differences discussed in Sect. 2.5, the CISAR retrievals and
the MODIS Land Product dataset show similar seasonal trends. Figure 13 shows the BHR timeseries
over Zinder Airport (Niger, Africa), as retrieved from the CISAR algorithm applied to SEVIRI and
PROBA-V observations and from the MODIS Land Product. The rainy season, going from May 20

Table 9: CISAR retrieved BHR from actual observations comparison with MODIS in all the pro-
cessed bands.

SEVIRI PROBA-V
0.6 um 08 pum 1.6 pm ‘ 04pm 06pum O08pm 1.6pm
Number of points 7409 744
Correlation 0.917 0.779 0.854 0.743 0.864 0.618 0.841
Root Mean Square Error  0.045 0.067 0.079 0.029 0.052 0.098 0.091
Mean Absolute Bias 0.039 0.067 0.067 0.025 0.045 0.070 0.077
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Fig. 13: CISAR retrieved BHR from SEVIRI (blue dots) and PROBA-V (red dots) and MODIS
Land Product (green triangle) over Zinder Airport (Niger, Africa). The results are shown for the
sensors band centred at 0.6 pm, for year 2015. The vertical bars represent the retrieval uncertainty
for SEVIRI and PROBA-V and standard deviation over the selected area for MODIS.

to October 5 (Weatherspark.com, 2018), is distinguishable through the decrease of the surface BHR
in both the MODIS and CISAR datasets, although CISAR retrieves a larger seasonal variation with
respect to MODIS product. The effect of the updating mechanism on the surface prior described in
Sect. 2.4 is also visible as the retrieval uncertainty decreases in time, given that the prior information

on the surface is better defined.
6.2 Aerosol Optical Thickness

The CISAR AOT retrieval, extrapolated at 0.55 um has been evaluated against AERONET data
over the selected targets listed in Sect. 2. CISAR AOT retrieval is evaluated in terms of correlation,
RMSE, MAE with respect to AERONET values. Additionally, the percentage of points falling within
the Global Climate Observation System (GCOS) requirements (Systematic Observation Require-
ments for Satellite-Based Data Products for Climate, 2011 Update), defined as max{0.03,10%},
is also accounted for. The GCOS requirements are a useful tool to compare different algorithms’

performances. However, both SEVIRI and PROBA-V missions were not originally designed for
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AQT retrieval. The GCOS requirement of 0.03 for low optical thickness translates into a radiometric
noise requirement much better than 2 (1)% at 0.4 (0.6) um, way below the radiometric performance
of the SEVIRI and PROBA-V instruments (Table 3). The duration of the corresponding missions
provides however a decisive advantage for the generation of AOT datasets from these instruments.
In the following, the GCOS requirements are evaluated in terms of percentage of retrievals satisfying
them.

Figure 14 shows the evaluation of the retrieved AOT against AERONET data for both SEVIRI
(left panel) and PROBA-V (right panel). The CISAR retrievals from SEVIRI observations shows a
better agreement with the AERONET data compared to the retrievals from PROBA-V observations.
This is in accordance with the poor radiometric performances of the polar orbiting instrument and
with the outcome of the information content analysis performed in Sect. 4.

The boxplots in Fig. 14 show an overestimation of the retrieval for low AOT and an underestima-
tion for large AOT. A similar behaviour is also observed in Wagner et al. (2010). The underestima-
tion for large values might be partially due to the temporal constraints described in Sect. 2.4, as they
might prevent the algorithm to fit rapidly evolving aerosol events associated with large AOT values.
However the applied temporal constraints are intended to optimise the retrieval of low aerosol con-
centration, given the global distribution of AOT which is normally smaller than 0.2 (Kokhanovsky
et al., 2007). Additionally, very high AOT normally correspond to local events, especially in Europe
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Fig. 14: Boxplots showing the CISAR AOT retrieval extrapolated at 0.55 pm (left y-axis) against the
AERONET data (x-axis) for SEVIRI (left panel) and PROBA-V (right panel) over all the selected
stations. Only retrievals with QI > 0.2 are considered. The blue boxes represent the interquartile
range (/QR), the red horizontal line represents the median value, the vertical dashed bars represent
the 1.5 x IQR range and the black crosses represent the outliers. The green histograms represent the
AERONET AOQOT distribution. The right y-axis shows the percentage of points contained in each bin.
Bins with less than 10 points are not displayed.
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(e.g. plume, fire), therefore the AOT obtained by the retrieval from the satellite pixel containing the
AERONET station will be lower than the one measured by the AERONET tower (Jiang et al., 2007).
The histograms in Fig. 14 show that AOT values larger than 0.8 represent less than 5% of the total
number AERONET observations, affecting the reliability of the statistics for high values of AOT.
The processing of more data would be necessary to increase the confidence in results for high AOT
values. Some examples of CISAR’s ability to detect high AOT are shown in the Supplement.

The overestimation of low AOT might originate from the different spatial scale between the satel-
lite observations and the ground measurements. Most of the selected AERONET stations are located
in Europe (Fig. 1), where the SEVIRI pixel resolution is about 5x8 km (as opposed to 3x3 km at
the subsatellite point), which is compared to AERONET point measurement. The probability of
residual cloud contamination at this scale might thus explain part of the overestimation (Henderson
and Chylek (2005), Chand et al. (2012)). Furthermore, the shortest SEVIRI spectral band is centred
at 0.67 pum, where the sensitivity to low optical thickness is about 2 times smaller than in the blue
spectral region. Consequently, the retrieval in these cases essentially relies on the prior information
regardless the very large associated uncertainty. Despite the presence of a blue band and a better spa-
tial resolution (1 km), the retrievals from PROBA-V observations still show overestimation at low
AQT, due to the poor radiometric performances which decrease the importance of the information
derived from the observations and to the lack of a thermal channel that leads to an unreliable cloud
mask.

The CISAR potential to discriminate between the fine and coarse mode is analysed next. Figure 15

shows the fine and coarse mode ratio distribution related to AERONET data (in green) and CISAR
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Fig. 15: Fine-coarse mode ratio distribution at 0.6 m from AERONET (green) and from CISAR
applied to SEVIRI (blue) and PROBA-V (red) observations.
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retrieval for SEVIRI (in blue) and PROBA-V (in red). It can been seen that the distribution related
to CISAR retrievals from SEVIRI and PROBA-V observations seem to underestimate the fine mode
concentration for 77/r- > 3. The percentage of cases where CISAR succeeds in retrieving a pre-
dominant fine mode contribution to the total AOT (7#/7- > 1), is equal to 80% when the retrieval
is performed on SEVIRI acquisition and 62% when CISAR is applied to PROBA-V data. This
represents an improvement with respect to the Land Daily Aerosol (LDA) algorithm (Wagner et al.
(2010), Table 4) where particles retrieved by AERONET as spherical were correctly characterised
by the algorithm only in the 12% of cases. This represents a decisive advantage of the proposed
approach with a continuous variations of the aerosol properties in the solution space, as opposed to
the use of a limited number of aerosol classes as in Wagner et al. (2010). The coarse particle retrieval
appears to be more challenging for both satellites. The percentage of cases where the coarse mode
is correctly retrieved as predominant is 43% and 30% for the retrieval from SEVIRI and PROBA-V
observations respectively. The less accurate retrieval of the coarse mode compared to the fine mode
is expected, as the considered wavelengths are less sensitive to the radii in the range of the coarse
particles than to those of fine ones (Torres et al., 2017). This can also be observed in Table 8 where

the median magnitude of the coarse mode Jacobian is less than an half of the fine mode Jacobian.
6.3 Single scattering albedo and asymmetry factor

In Sect. 3.2 the solution space defined by the aerosol classes vertices has been described. CISAR
retrieves the averaged SSA and asymmetry factor within this solution space as linear combinations

of the single scattering properties of each selected aerosol vertex (Eq. 8 and 9 of Part I). Figures 16
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Fig. 16: SSA distributions at 0.6 um (left panel) and 0.8 pm (right panel) for AERONET (green),
CISAR applied to SEVIRI (blue) and to PROBA-V (red).
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Fig. 17: Same as Figure 16 but for the asymmetry factor.

and 17 show the SSA and asymmetry factor distributions related to the AERONET inversion product
and CISAR retrievals. All the AERONET inversions are considered, without applying the quality
test as in Holben et al. (2006). The three datasets show similar distributions, although spikes can
be observed at the extremes of the CISAR retrievals distributions. When the AERONET solution
is located outside the solution space, CISAR cannot converge to it and the retrievals falls on the
solution space boundaries, causing the spikes. The aerosol vertices selection as in Fig. 4 is con-
ceived to limit the number of occurrences of these spikes. Figure 17 shows that the g parameter
distributions obtained from PROBA-V observations is much narrower than the same distribution re-
lated to AERONET and CISAR applied to SEVIRI observations. This is in line with what has been
discussed in Sect. 6.2 on the poorer CISAR performances in retrieving the predominant mode when
applied to PROBA-V observations rather than SEVIRI ones. In fact, as in computing g the aerosol
size distribution is the most important parameter to measure (Andrews et al., 2006), an inexact es-
timate of the dominant mode (fine or coarse) leads to an erroneous measurement of the asymmetry

parameter.

7 Discussion and conclusion

This paper describes and evaluates the application of the CISAR algorithm to satellite observations
acquired from geostationary and polar orbiting instruments. The theoretical aspects of CISAR, a
new generic algorithm for the joint retrieval of surface reflectance and aerosol properties, with con-
tinuous variation of all the state variables in the solution space, are described in Part L. In the latter

CISAR is applied to simulated noise free observations in the principal plane. This paper provides an
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evaluation of the algorithm in non ideal situations, i.e., actual satellite observations acquired from
both geostationary and polar orbiting satellites, namely SEVIRI and PROBA-V.

The proposed retrieval method relies on an OE approach which consists of the inversion of
FASTRE, a simple radiative transfer model composed of two horizontal layers. The FASTRE model
is evaluated in Sect. 2.5 showing an accuracy within 3% when compared to a complex 1D radiative
transfer model. Higher uncertainties are observed in spectral bands affected by water vapour as a
result of the limited vertical discretisation.

The analysis of the information content of the satellite observations is performed in Sect. 4.
Though the PROBA-V instrument has one blue channel which is not present in SEVIRI, the better
radiometric performances of the geostationary satellite provide more information for the retrieval of
surface reflectance and aerosol properties than the polar orbiting instrument.

The CISAR retrieval is evaluated against independent datasets. The retrieved AOT is compared to
AERONET data. A specific QI has been developed to disregard suspicious retrievals. With a RMSE
of 0.162 for SEVIRI and 0.176 for PROBA-V, CISAR shows better performances when applied
to the geostationary satellite. CISAR retrieves the single scattering aerosol properties assuming a
linear behaviour of g and wy in the solution space; although this assumption is not exactly true
when far from pure single mode situations, CISAR retrieved aerosol properties distributions are in
good agreement with the AERONET inversion products, especially when the algorithm is applied
to geostationary observations, as discussed in Sect. 6.3. These differences are explained by the
different information content associated to the observations acquired by the two satellites. For both
satellites, CISAR discrimination between fine and coarse mode is improved with respect to the LDA
algorithm (Wagner et al., 2010), as the continuous variation of the aerosol properties in the solution
space allows more accurate retrievals of the single scattering properties with respect to LUT-based
approaches. The CISAR surface albedo is compared with the MODIS product, showing a correlation
higher than 0.74 in all processed bands (to the exception of the NIR PROBA-V band). The better
performances of CISAR in retrieving the surface reflectance rather than the AOT are explained by
the larger contribution to the TOA BRF at the satellite of the surface. The little variance of the
surface reflectance on a short time scale allows a good prior definition based on the previous CISAR
retrievals.

Several aspects of the new CISAR algorithm would still require additional efforts to improve its
performance. Cloud mask omission errors impact on the AOT overestimation at low optical thickness
would also deserve additional work. The analysis of the Jacobian median values has revealed the
very small magnitude of the fine and coarse mode AOT Jacobians. Spectral and temporal constraints
of the AOT variability play therefore a critical role in supporting the assessment of aerosol properties.
However, these constraints might lead to an underestimation of the AOT for large values.

As pointed out in Part I, the limited number of state variables retrieved by CISAR allows the same

algorithm to be applied to sensors which have not been originally designed for aerosol or surface
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albedo retrieval. The possibility to apply the same algorithm to data acquired by different sensors
for the retrieval of several ECVs presents a decisive advantage. It provides radiatively consistent
ECVs derived from different sensors. Conversely, the use of separate methods for the retrieval of
different variables might lead to a radiance bias, which has to be corrected preliminary to the assim-
ilation of these variables (Thépaut, 2003). The effort for the assimilation of surface and atmospheric
products could be reduced if the different ECVs are consistently derived with one single algorithm.
The consistent retrieval of the state variables and the algorithm applicability to different sensors
represent an important advantage for the Numerical Weather Prediction (NWP) community, whose
main future challenges are related to a more consistent retrieval of Earth’s system components and

to the availability of more satellite data.

8 Supplement

Included are the scatterplots of the BHR retrieved by CISAR versus the BHR delivered by MODIS
(Fig. S1, S2), and a few examples of the CISAR high-AOT retrievals compared with AERONET
data.
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