
RE-­‐REVIEW  OF  ‘JOINT  RETRIEVAL  OF  SURFACE  REFLECTANCE  AND  AEROSOL  PROPERTIES  
WITH  CONTINUOUS  VARIATIONS  OF  THE  STATE  VARIABLES  IN  THE  SOLUTION  SPACE:  PART  
2:  APPLICATION  TO  GEOSTATIONARY  AND  POLAR-­‐ORBITING  SATELLITE  OBSERVATIONS’  
  
My  primary  comments  concern  your  response  our  opinions  of  Fig.  14.  
•   “The  bias  between  the  CISAR  retrieval  and  the  AERONET  data  is  shown  in  Fig.  2,  which  

shows  different  performances  for  SEVIRI  and  PROBA-­‐V.  These  differences  show  that  the  
bias  does  not  only  depend  on  the  CISAR  algorithm  itself,  but  also  on  the  quality  of  the  
processed  data.”  
  
Your  SEVIRI  and  PROBA-­‐V  implementations  use  a  different  number  of  channels,  so  it  is  
entirely  reasonable  for  them  to  exhibit  different  bias  profiles.  This  does  not  excuse  the  
fact  that  your  algorithm  exhibits  biases  of  around  50%  in  your  own  validation  (and  an  
independent  validation  would  be  expected  to  find  worse  comparisons).  I  appreciate  
that  the  two  satellites  you  use  don’t  exhibit  the  radiometric  quality  of  MODIS  or  AATSR.  
That  is  expressed  (as  I  would  expect)  through  the  large  uncertainty  in  your  products  
relative  to  MODIS.  
  
The  PV-­‐LAC  validation  report  (https://earth.esa.int/documents/700255/2632405/PV-­‐
LAC_ATMO_VR_v2.2.pdf/4c46403b-­‐bfe5-­‐4208-­‐bfdf-­‐2d42585d6589),  prepared  by  Erwin  
Wolters  from  VITO  (De  Vlaamse  Instelling  voor  Technologisch  Onderzoek)  through  an  
independent  verification,  does  not  show  much  worse  results,  keeping  in  mind  that  the  
algorithm  improved  since  then.  

  
However,  Fig.  2  of  your  response  only  worsens  my  opinion  of  your  results.  A  calibration  
offset  should  result  in  a  retrieval  bias  that  is  (roughly)  independent  of  optical  depth.  
Lower  quality  detectors  should  give  a  wider  scatter  (which,  admittedly,  you  appear  to  
have).  Cloud  contamination  should  result  in  a  positive  bias.  Yes,  your  results  for  SEVIRI  
are  within  the  GCOS  requirements  for  a  particular  range  but  your  biases  for  AOD  <  0.2  
are  almost  100%.  As  AOD  is  log-­‐normally  distributed,  this  region  carries  significant  
weight.  
  
We  recognize  the  limitations  of  CISAR  retrieval  for  low  AODs  when  applied  on  SEVIRI  
and  PROBA-­‐V  data.  However,  the  bias  for  AOD  =  0.1  is  54%  for  SEVIRI  and  48%  for  
PROBA-­‐V.  For  AOD=0.15  the  bias  decreases  to  18%  for  SEVIRI  and  27%  for  PROBA-­‐V.  
    
I  think  we  see  Fig.  2  very  differently.  I  expect  you  see  the  SEVIRI  bias  as  a  straight  line  
around  zero,  that  drops  off  above  0.7  due  to  the  small  volume  of  data  and  cloud  
contamination.  I  look  that  that  line  and,  neglecting  the  last  point,  see  a  linear  
downwards  trend.  PROBA-­‐V  does  the  same,  but  with  a  different  gradient.  I  can  live  with  
data  with  a  large  RMS—average  could  reduce  it.  I  can  live  with  data  that  has  a  bias  —  
one  can  subtract  it.  Your  data  has  a  slope.  I’d  need  both  coefficients  of  ax+b  to  bias  
correct  your  data  and  that’s  difficult.  To  my  mind,  an  algorithm  that  sruggles  to  retrieve  
both  small  and  large  AOD  provides  little  of  use.  
So  what  do  I  think  should  be  done?  It  would  be  inhuman  to  ask  you  to  rubbish  your  own  
data  in  your  own  paper.  Your  revisions  do  better  represent  the  quality  of  this  data,  but  



you  primarily  blame  the  instruments  and  cloud.  If  those  were  the  only  problem,  you  
should  resubmit  the  paper  after  applying  it  to  a  better  instrument.  
I  continue  to  believe  that  your  algorithm  is  conceptually  interesting.  What  I  need  is  a  
discussion  of  what  you  intend  to  do  next.  What  aspects  of  the  algorithm  are  you  
working  on?  Where  do  you  think  the  problem  lies?  
  
The  sentence  “The  cloud  mask  omission  errors  impact  on  the  AOT  overestimation  at  
low  optical  thickness  deserve  additional  work.”  has  been  moved  at  line  516  and  the  
following  lines  have  been  added  afterwards:    
“In  order  to  reduce  the  impact  of  cloud  contamination  in  the  AOT  retrieval,  a  new  
version  of  the  CISAR  algorithm  is  under  development  in  the  framework  of  the  ESA-­‐
SEOM  ConsIstent  Retrieval  of  Cloud  Aerosol  Surface  (CIRCAS)  project  (www.circas.eu).  
The  new  version  of  CISAR  aims  to  retrieve  both  the  AOT  and  the  Cloud  Optical  
Thickness  (COT),  overcoming  the  need  of  an  external  cloud  mask.  Within  the  CIRCAS  
project  CISAR  will  be  applied  to  observations  acquired  by  the  Sea  and  Land  Surface  
Temperature  Radiometer  (SLSTR)  on-­‐board  Sentinel-­‐3.”  

  
  

•   It  can  be  seen  there  only  few  points  correspond  to  AOT  È  0.8  (less  than  5%  of  the  total  
number  of  observations),  affecting  the  reliability  of  the  statistics  for  high  values  of  AOT.  
The  histograms  have  been  added  in  Fig.  14.  
  
Though  I  agree  that  large  AOD  events  are  rare,  they  can  be  very  important.  Large  dust  
plumes  seed  the  equatorial  ocean,  large  fires  impact  air  quality  over  entire  continents,  
and  volcanic  eruptions  affect  international  air  travel.  Most  algorithms  have  trouble  with  
high  AOD,  where  the  fundamental  assumptions  of  such  retrievals  begin  to  break  down,  
but  they  are  an  area  of  active  development.  
  
As  stated  in  the  manuscript,  we  believe  that  the  processing  of  more  data  would  be  
necessary  to  increase  the  confidence  in  the  results  for  high  AOT  values.  

  
•   The  overestimation  rapidly  decreases  as  the  AOT  approaches  values  of  about  

0.2.  
This  is  unimportant  as  the  line  has  to  cross  the  axis  somewhere.  
  
It  is  not  clear  to  me  what  the  reviewer  means  by  this.    

  
•   We  are  not  aware  of  any  algorithm  capable  of  delivering  a  good  AOT  product  from  

PROBA-­‐V  over  land  surfaces.  
I’m  not  aware  of  anyone  having  tried  as  I’d  never  heard  of  the  instrument  before  
reading  this  paper.  
  
The  operational  product  includes  an  atmospheric  correction  method.  However,  when  
compared  with  CISAR  retrieval  during  the  PV-­‐LAC  project,  it  did  not  show  promising  
results.  
  



•   With  regard  to  my  own  point  33,  your  Fig.  14  shows  the  comparison  of  CISAR  to  
AERONET  through  boxplots.  In  the  supplement,  you  show  a  comparison  of  CISAR  to  
MODIS  through  2D  histograms.  I  vastly  prefer  the  later  form  of  plot  and  was  requesting  
a  second  version  of  Fig.  14  in  the  style  of  Fig.  S1.  
  
During  the  Aerosol-­‐CCI  project,  it  was  strongly  advised  to  show  boxplots  for  the  AOD  
retrieval,  hence  our  choice.  

  
A  few  other  thoughts:  
•   I’m  not  overly  happy  with  the  assumptions  you  make  in  §2.4  but  they’re  rational.  I  will  

note,  though,  that  on  L148  you  state  you  set  the  uncertainty  to  a  ‘high  arbitrary  value’.  
Unity  is  not  high.  When  I  wish  to  avoid  setting  a  prior  for  a  variable,  I  use  a  prior  
uncertainty  of  108.  
  
Reviewer#1  seemed  to  believe  the  opposite.  From  his  annotate  pdf  “2.0  for  the  coarse  
mode  is  unreasonably  high”.  An  uncertainty  of  1.0  associated  with  values  <  0.2  (this  is  
the  cases  for  the  AOD  climatology  values)  can  be  considered  as  a  high  value.  
  

•   You  reference  an  unusual  number  of  reports  and  conference  presentations.  I  know  
private  companies  struggle  to  justify  publication  costs  but  I’m  slightly  concerned  that  
many  background  details  for  this  algorithm  haven’t  been  peer  reviewed.  
  
We  will  be  happy,  in  the  future,  to  cite  this  paper  and  its  companion.  

  
•   I  think  I  now  understand  §5.  I’m  not  fond  of  this  manner  of  qualitative  quality  filtering,  

but  it  is  commonly  used  so  I’ll  not  comment  further.  
  

•   Is  Fig.  12  actually  binned  (i.e.  showing  the  average  correlation  for  all  retrievals  with  QI  
in  a  certain  range)?  If  so,  it  would  be  useful  to  represent  those  ranges  on  the  plot  (e.g.  
the  step  histograms  of  matplotlib).  

  
The  final  QI  is  rounded  to  one  decimal  place;  therefore  no  binning  is  performed  in  Fig.  
12.  

  
  
All  the  reviewer’s  suggestions  in  the  pdf  were  implemented,  with  the  exception  of:  

•   “CISAR  has  been  applied  to  SEVIRI  and  PROBA-­‐V  observations  acquired  over  20  
AERONET  stations”.  The  reviewer  suggestions  was  to  replace  “over”  with  “from”.  
However,  the  satellite  observations  are  not  acquired  from  AERONET,  but  over  an  
area  surrounding  the  AERONET  station.  

•   “PROBA-­‐V  satellite  mission  is  intended  to  ensure  the  continuation  of  the  Satellite  
Pour  l’Observation  de  la  Terre  5  (SPOT5)  VEGETATION  products  since  May  2014”.  
The  reviewer  suggestion  was  to  replace  “since”  with  “begun  in”.  However,  it  was  
preferred  to  replace  “since”  with  “starting  from”.  

•   “FASTRE  uncertainty  is  in  the  range  of  1%  -­‐  3%  (Table  6),  which  is  smaller  or  equal  to  
the  instrument  radiometric  noise.”  The  reviewer  suggestion  was  to  replace  “smaller  



or  equal”  with  “equivalent”.  However,  this  would  change  the  meaning  of  the  
sentence.  

•   The  reviewer  suggests  eliminating  the  word  “however”  at  L406.  Nonetheless,  it  is  
needed  to  relate  to  the  previous  sentence  and  explaining  why,  despite  the  poor  
radiometric  performances,  the  AOT  retrieval  from  the  two  instruments  is  
meaningful.  
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Abstract. This paper presents the simultaneous retrieval of Aerosol Optical Thickness and surface

properties from the CISAR algorithm applied both to geostationary and polar orbiting satellite ob-

servations. The theoretical concepts of the CISAR algorithm have been described in Govaerts and

Luffarelli (2017). CISAR has been applied to SEVIRI and PROBA-V observations acquired over

20 AERONET stations during
:::
the year 2015. The CISAR retrieval from the two sets of observa-5

tions is evaluated against independent datasets such as
::
the

:
MODIS land product and AERONET

data. The performance differences resulting from the two types of orbit are discussed, analysing and

comparing the information content of SEVIRI and PROBA-V observations.

1 Introduction

Aerosol properties retrieval
:::
The

::::::::
retrieval

::
of

:::::::
aerosol

:::::::::
properties

:
over land surfaces from space10

observation
::::::::::
observations is a challenging problem due to the strong radiative coupling between at-

mospheric and surface radiative processes. Different approaches are usually exploited to retrieve

different Earth system components (e.g. Hsu et al. (2013), Mei et al. (2017)), leading to inconsis-

tent and less accurate datasets. The joint retrieval of surface reflectance and aerosol properties, as

originally proposed by Pinty et al. (2000), presents many advantages, such as the possibility to per-15

form the retrieval over any type of surface and assure the radiative consistency among the retrieved

variables.

Govaerts and Luffarelli (2017) (hereafter referred to as Part I) describes the theoretical aspects

of the Combined Inversion of Surface and AeRosols (CISAR) algorithm, designed for the joint re-

trieval of surface reflectance and aerosol properties. This new generic retrieval method specifically20

1



addresses issues related to the continuous variation of the state variables in the solution space within

an Optimal Estimation (OE) framework. Through a set of experiments, the capability of CISAR

of retrieving surface reflectance and aerosol properties within the solution space was illustrated.

Nonetheless, these experiments only represent ideal simulated observation conditions, i.e.noise free

::::::::
noise-free

:
data acquired in narrow spectral bands placed in the principal plane, assuming unbiased25

surface prior information. This second part aims to demonstrate CISAR’s applicability to actual

satellite observations, with less favourable geometrical conditions than the principal plane and ac-

counting for the radiometric noise. For this purpose, the algorithm has been applied to two radiome-

ters with similar spectral properties but different orbits (geostationary and polar). Radiometers on

board of
:::::::
on-board

:
geostationary platforms deliver observations with a revisit time of tens of minutes30

but with a limited field of view
::::::::::
field-of-view

:
so that many instruments are needed to cover the entire

Earth. The poles cannot be observed. Conversely, a polar orbit, combined with an adequate swath,

could offer a daily revisit time of the entire globe. The selected radiometers are the Spinning En-

hanced Visible and Infrared Imager (SEVIRI), flying on board of the Meteosat Second Generation

(MSG) geostationary platform, and the PRoject for On-Board Autonomy - Vegetation (PROBA-V).35

These two instruments have similar radiometric performances and both have acquired more than 15

years of observations thanks to the launch of a succession of radiometers with very similar charac-

teristics. Applying the same algorithm on similar instruments flying in different orbits represents a

meaningful way to analyse the CISAR generic algorithm performance.

This paper is organised as follows. Section 2 describes the observation system considered in the40

OE framework: the satellite observation, the ancillary information, the prior information and the for-

ward model. The uncertainty characterisation of the observation system is also described in Sect. 2.

The algorithm implementation is described in Sect. 3. Section 4 analyses the information content of

the satellite observations, comparing the differences between the geostationary and polar orbiting in-

struments, and discusses the challenges encountered when little or no information about the retrieved45

variables is carried by the observation. Given these difficulties in the retrieval, a Quality Indicator

(QI) is implemented and presented in Sect. 5, characterising the reliability of the solution. Finally,

the performance of CISAR is discussed in detail in Sect. 6. The CISAR retrieved Aerosol Opti-

cal Thickness (AOT) and Bidirectional Hemispherical Reflectance (BHR) will be compared against

those derived from the Aerosol Robotic Network (AERONET) (Giles et al., 2017) and the Moderate50

Resolution Imaging Spectroradiometer (MODIS) Land product data (DAAC, 2017), respectively.

The performance differences between the retrieved datasets obtained from SEVIRI and PROBA-V

observations will be further investigated through statistics on the quality of the retrieval and through

the information content of the satellite observations.

2



Fig. 1: Selected AERONET stations location. All stations are located within the SEVIRI field of
view.

2 Observation system characterisation55

2.1 Observation system definition

The fundamental principle of the OE is to maximise the probability P = P (x|yΩΛ̃,xb,b) with re-

spect to the values of the state vector x, conditional to the value of the measurements and any prior

information (Rodgers, 2000). The ensemble of measurements, prior information, ancillary data and

the forward model constitutes the observation system. This section describes each component of this60

system for the two satellite datasets processed in the framework of this study.

In order to evaluate the CISAR algorithm performance when applied to observations acquired

from different orbits, 20 AERONET stations located within the SEVIRI field of view have been

selected (Fig. 1, Table 1). These targets span different geometries and land cover types (vegetation,

urban, bare areas, water, mixed). The observations pertain year 2015.65

For each of these stations, satellite data have been acquired, together with ancillary information,

such as the cloud mask and the model parameters, which are all the parameters that are not re-

trieved by the algorithm but that influence the observation. Satellite data and ancillary information

are accumulated in time to form a multi-angular observation vector yΩΛ̃, in order to correctly char-

acterise the surface reflectance anisotropy. Nevertheless, retrieving surface and aerosol properties70

from satellite observations is an ill posed problem (Wang, 2012). Consequently, assumptions on the

magnitude and on the temporal/spectral variability of the state variables are made. The ensemble of

these assumptions and their associated uncertainties constitutes the prior information.
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Table 1: AERONET targets

Name Latitude Longitude Land Cover Type

Athens NOA 37.99 23.77 Urban
Barcelona 41.39 2.12 Urban
Bucharest Inoe 44.35 26.03 Mixed
Bure OPE 48.56 5.50 Vegetation
Burjassot 39.51 -0.42 Urban
Carpentras 44.08 5.06 Vegetation
Dakar 14.39 -16.96 Costal
Gloria 44.60 29.36 Water
Granada 37.16 -3.60 Urban
IMS-METU-ERDERMLI 36.56 34.25 Costal
Kyiv 50.36 30.50 Vegetation
Mainz 49.50 8.30 Mixed
Murcia 38.01 -1.17 Vegetation
Paris 48.87 2.33 Urban
Petrolina SONDA -9.38 -40.50 Urban
Pretoria CSIR-DPSS -25.76 28.28 Mixed
Sede Boker 30.85 34.78 Bare Areas
Toulouse MF 43.57 1.37 Urban
Venise 45.31 12.51 Water
Zinder Airport 13.78 8.99 Bare Areas

The observation uncertainty σo characterisation is one of the most critical aspect of the CISAR

algorithm as it directly determines the likelihood of the solution. In fact, σo determines the ob-75

servation term of the cost function (Eq. 17 of Part I). The observation uncertainty is composed of

the radiometric uncertainty , (directly related to the radiometer characteristics
:
), the forward model

uncertainty and the uncertainty related to the model parameters.

2.2 Satellite data

MSG nominal position is 0◦ over the equator in a geostationary orbit. SEVIRI is the main instrument80

of the MSG mission, which has as primary objective the observation in the near real-time of the

Earth’s full disk, shown in Fig. 1. SEVIRI achieves this with 12 channels, ranging from 0.6 µm

to 13 µm, three of which are located in the solar spectrum and centred at 0.64 µm, 0.81 µm and

1.64 µm and are used within this study. SEVIRI observes the Earth’s full disk with a 15 minute

repeat cycle. The sampling distance between two adjacent pixels at the sub-satellite point is 3 km85

for the visible bands. As there is no on-board device for the calibration of the solar channels, the

calibration within this study has been performed with the method proposed by Govaerts et al. (2013).

:::
The

:
PROBA-V satellite mission is intended to ensure the continuation of the Satellite Pour

l’Observation de la Terre 5 (SPOT5) VEGETATION products since
::::::
starting

:::::
from May 2014 (Ster-
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Fig. 2: SEVIRI (in blue), PROBA-V (in red) and MODIS (in green) spectral responses.

ckx et al., 2014). The microsatellite offers global coverage of land surface with daily revisit for90

latitude from 75◦N to 56◦S in four spectral bands, centred at 0.46 µm, 0.66 µm, 0.83 µm and 1.61

µm. The PROBA-V products are provided at a spatial resolution of 1/3 km and 1 km, the latter

being used in the framework of this study. To cover the wide angular field of view (101◦) in a small-

sized platform, the optical design of PROBA-V is made up of three cameras (identical three-mirror

anastigmatic telescopes). The three cameras have an equal field of view. The down-pointing central95

camera covers a swath 500 km wide, while the swath of the right and left cameras is 875 km wide.

Although the three cameras have different responses, a mean Spectral Response Functions (SRF) is

considered within this study, accounting for the radiometric uncertainty associated with this approx-

imation. Each camera has two focal planes, one for the short wave infrared (SWIR) band and one for

the visible and near-infrared (VNIR) bands. Despite the different viewing angles in the SWIR band,100

CISAR assumes the observations are acquired with the same geometry in all bands. This assumption

leads to an additional term in the observation uncertainty. Because of the omission of on-board cali-

bration devices, the PROBA-V in-flight calibration relies only on vicarious methods (Sterckx et al.,

2013).

The similarities between the three SEVIRI solar bands and the red, NIR and SWIR PROBA-V105

bands permit the evaluation and comparison of the CISAR performances when applied to the

two instruments, whose spectral responses are shown in Fig. 2. The satellite observations have

been acquired from the European Organisation for the Exploitation of Meteorological Satellites

(EUMETSAT) Earth Observation Portal and from the Flemish Institute for Technological Research

(VITO) for SEVIRI and PROBA-V respectively. The Top Of Atmosphere (TOA) Bidirectional Re-110

flectance Factor (BRF) is computed directly from the digital count value in case of SEVIRI, whereas

for PROBA-V the Level 2-A TOA BRF is provided by VITO (Wolters et al., 2018). The satellite
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Table 2: PROBA-V instrument noise [%]

Band Left camera Center Camera Right Camera

BLUE 4 4 4
RED 3 3 3
NIR 3 3 3
SWIR 5 4 5

observation uncertainty is derived from the radiometric noise σi and the geolocation uncertainty σr.

For PROBA-V two additional terms are calculated: the uncertainty σc associated to
:::
with

:
the ap-

proximation of a mean SRF of the cameras and the one deriving from considering the same viewing115

geometry in the SWIR and in the VNIR bands, σΩ.

PROBA-V radiometric noise has been delivered by VITO (Sindy Sterckx, personal communi-

cation, September 2017) per camera and per band (Table 2). For SEVIRI, this term is computed

considering (i) the instrument noise due to the dark current, (ii) the difference between the detectors

gain and (iii) the number of digitalization levels (Govaerts and Lattanzio, 2007). The geolocation un-

certainty σr, arising from the assumption of the satellite data being correctly mapped to the surface

of the Earth, is estimated for each pixel p as follows (Govaerts et al., 2010):

σ2
r(t,λ̃,p) =

(
∂y0(t,λ̃,px,py)

∂px
σx(t,λ̃)

)2

+

(
∂y0(t,λ̃,px,py)

∂py
σy(t,λ̃)

)2

(1)

where σx,y is the geolocation/coregistration standard deviation and y0(t,λ̃,px,py) is the TOA BRF

in the channel λ̃ acquired at the time t.

The uncertainty σc, originating from the usage of a mean SRF for the three PROBA-V cameras,

has been estimated
::
by

:
simulating the TOA BRF considering both the mean and actual SRF for a120

wide range of observation conditions. The assessed σc is lower than 0.2% in all bands and for all

cameras. Finally, the assumption of having the same viewing geometry for the three PROBA-V

bands is associated to
:::
with

:
the uncertainty σΩ, computed as follows:

σ2
Ω(t,λ̃,Ω,p) =

(
∂y0(t,λ̃,θ)

∂θ
σ2
θ(t,λ̃)

)
2 (2)

Table 3: Total radiometric uncertainty median values [%]

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 3 2 3
PROBA-V 4 3 3 4
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The total relative radiometric uncertainty median values are shown in Table 3.

2.3 Ancillary data125

In addition to satellite observations, a cloud mask and the model parameters information are re-

quired. For SEVIRI observations, the nowcasting Satellite Application Facility (SAF) cloud mask

(Meteo France, 2013), provided at the radiometer’s native temporal and spatial resolution, is used;

for PROBA-V the cloud mask is provided by VITO (Wolters et al., 2018). The model parameters,

i.e.Total Column Water Vapour (TCWV), Total Column Ozone (TCO3) and surface pressure are130

taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Dee

et al., 2011).

The uncertainties of the model parameters b are converted into an equivalent noise σB , calculated

as follow (Govaerts et al., 2010):
::::::
follows

::::::::::::::::::
(Govaerts et al., 2010)

:
:

σ2
B(b,λ̃,Ω0,Ωv) =

∂y(x,Uoz;Ω,λ̃)

∂Uoz

∂y(x,Uoz;Ω,λ̃)

∂Uoz
::::::::::::

σUoz

2

+

∂y(x,Uwv;Ω,λ̃)

∂Uwv

∂y(x,Uwv;Ω,λ̃)

∂Uwv
:::::::::::::

σUwv

2

+

∂y(x,Usp;Ω,λ̃)

∂Usp

∂y(x,Usp;Ω,λ̃)

∂Usp
::::::::::::

σUsp

2

(3)

where Uoz , Uwv are the ozone and water vapour total column concentration, Usp is the surface pres-

sure and σUoz , σUwv and σUsp are their associated uncertainties. The surface pressure contribution

to the signal is about 10 times smaller than the contribution of the water vapour concentration. The135

TCWV is distributed among the two atmospheric layers in the forward radiative transfer model as-

suming a US76 water vapour vertical profile (Sissenwine et al., 1976). The fraction of TCWV in

the scattering layer interacts with the aerosol particles and thus strongly affects the CISAR retrieval.

Unlike the ozone which is mainly present in the stratosphere, the water vapour is dominant in the

lower part of the atmosphere, severely impacting the aerosol retrieval in SEVIRI and PROBA-V140

band 0.8 µm (Table 4). Hence, only the uncertainty related to the TCWV is considered and Eq. ??

is approximated to:

Table 4: Water Vapour transmittance in the SEVIRI, PROBA-V and MODIS bands

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 0.993 0.915 0.988
PROBA-V 1.000 0.990 0.926 0.995
MODIS 1.000 0.990 0.985 0.996
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Table 5: Total EQMPN median values [%]

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 0.28 2.02 0.38
PROBA-V 0.01 0.37 1.49 0.14

σ2
B(b,λ̃,Ω0,Ωv)≈

(
∂y(x,Uwv;Ω,λ̃)

∂Uwv
σUwv

)2

(4)

The median values of the Equivalent Model Parameter Noise (EQMPN), computed as in Eq. 4,

are shown in Table 5.

2.4 Prior information145

Within an OE framework, the definition of the prior information and its uncertainty plays a funda-

mental role. In CISAR four different sources of prior information are considered:

1. Surface parameters magnitude. The surface reflectance, represented by the RPV (Rahman-

Pinty-Verstraete) model (Rahman et al., 1993), is not expected to undergo rapid variations on

a short temporal scale, hence the retrieval in the previous accumulation period can be used as

prior information for the next inversion (Govaerts et al., 2010). The prior information on the

RPV parameters at the time td is built
::
by computing a running mean over the Nr previously-

converged accumulation periods.

xb(td) =
Σtd−1
ti=0 x̂(ti)

Nr
(5)

The corresponding prior uncertainty is defined as half of the variability range of the solution

x̂(ti) retrieved during the considered Nr accumulation periods.

σxb(td) =
maxt∈Nr x̂(ti)−mint∈Nr x̂(ti)

2
(6)

When Nr is smaller than a certain minimum threshold Nmin (Table 7), the prior information

on the magnitude of the RPV parameters is taken from the last successful retrieval and its

uncertainty is computed as in Eq. 7, where Nd is the number of days since the last successful

retrieval (Govaerts et al., 2017).

σxb(td) =σxb(td−1)1.05Nd (7)

2. AOT magnitude. This information is taken from an annual mean climatology dataset (Kinne
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et al., 2013). From this dataset, the prior information on the AOT magnitude for the coarse

and fine mode (absorbing and non absorbing distinctly) is taken. The uncertainty is set to a150

high arbitrary value σxb for all the wavelengths (Table 7).

3. Constraints on the AOT temporal variability. These constraints result from the assumption that

the AOT is not changing rapidly on a very short temporal scale, therefore a maximum temporal

variation is defined through a sigmoid function. The temporal constraints are described by the

matrix Ha in Eq. 13 of Part I.155

4. Constraints on the AOT spectral variability. The AOT is expected to decrease with the wave-

length, proportionally to the ratio of the extinction coefficient (see Eq. 15 of Part I). The

applied constraints define the matrix Hl (Eq. 14 of Part I).

2.5 Forward model

FASTRE, the CISAR forward Radiative Transfer Model (RTM), and its uncertainty σF are described160

in Sect. 4.4 of Part I. FASTRE uncertainty in the SEVIRI and PROBA-V processed bands has been

estimated as in Eq. 10 of Part I, comparing the outcome of FASTRE with a more elaborated RTM,

where 50 atmospheric layers are considered. The results of this evaluation are shown in Table 6. The

forward model uncertainty is lower than 3% in all processed bands, presenting its largest value in the

SEVIRI VIS0.8 band, the most affected by water vapour absorption (Table 4). The FASTRE two-165

layer approximation of the atmosphere does not allow a correct discretisation of the water vapour

vertical profile and, thus, a correct characterisation of its interaction with the scattering particles.

Moreover, the two-layer approximation assumes that the scattering particles are only present in the

lower layer. Given the spectral behaviour of the AOT, this assumption leads to a higher uncertainty

at wavelengths shorter than 0.4 µm (Seidel et al., 2010). Despite the limitations associated to
::::
with170

the two-layer approximation, FASTRE uncertainty is in the range of 1% - 3% (Table 6), which is

smaller or equal to the instrument radiometric noise.

Table 6: FASTRE relative uncertainty in the SEVIRI and PROBA-V processed bands [%]

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 1.88 2.75 0.96
PROBA-V 2.38 1.31 2.20 0.75
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3 Data processing

3.1 General setup

In order to perform the inversion on actual satellite data, the observations are accumulated in time175

and the corresponding uncertainty is computed as described in Sect. 2. This temporal accumulation

is performed in order to build a multi-angular observation vector yΩΛ̃ to characterise the surface

reflectance anisotropy. The surface optical properties are considered invariant during the accumula-

tion period, and therefore a trade-off between having enough cloud free
::::::::
cloud-free observations to

build the observation vector and allowing the algorithm to catch surface variations is introduced; the180

high-repeat temporal coverage of geostationary satellites allows a shorter accumulation periods with

respect to polar orbiting instruments. For SEVIRI acquisitions, although the angular sampling does

not vary much from one day to the next, the length of the accumulation period is set to 5 days in

order to maximise the occurrence of cloud free
::::::::
cloud-free observations. For polar orbiting satellites,

the length of the temporal accumulation is normally driven by the repeat cycle, as it is the case for185

MODIS (DAAC, 2018). In the case of PROBA-V, the satellite orbit is not maintained and there is

no repeat cycle. Hence, the choice of the length of the time window during which the satellite ob-

servations are accumulated results from empirical studiesaims at balancing
:
,
::::::
aiming

::
to

:::::::
balance the

trade-off previously described. Consequently, the length of the accumulation is set to 16 days and the

successive accumulation periods are shifted by 8 days. An example of the angular sampling during190

this accumulation period is shown in Fig. 3 for SEVIRI and PROBA-V. During the accumulation

period, observations acquired with a sun or viewing angle larger than θmax (defined in Table 7) are

discarded.

The definition of the first guess is an important aspect of the inversion process and it is defined

in order to minimise the possibility of finding local minima. When a minimum value is found, an

investigation of the cost function in the vicinity of the solution should be made in order to deter-

mine whether or not it is a local minimum. However, this exploration could be computationally

expensive. In order to minimise the possibility of local minima without degrading the computational

performances, the AOT first guess is assigned to successive observations alternating between a low

value τlow and a larger one τhigh (see Table 7). As CISAR retrieves one
:
a single set of RPV param-

eters over the entire accumulation period in each processed band, only one set of first guesses x0 is

defined:

x0(td) = xb(td)+(−1)itd ∗σxb(td) (8)

where itd is the index of the current accumulation period and xb is the prior information at the

accumulation period td.195

From the retrieved set of RPV parameters the BHR is calculated, assuming perfectly diffuse il-

lumination conditions, and the AOT is extrapolated at 0.55 µm through the extinction coefficient

10



0°
30°

60°

90°

120°

150°
180°

210°

240°

270°

300°

330°

10
20
30
40
50
60
70

(a) SEVIRI

0°
30°

60°

90°

120°

150°
180°

210°

240°

270°

300°

330°

10
20
30
40
50
60
70

(b) PROBA-V

Fig. 3: Polar plot of the angular sampling during 5 days (2015/05/01-2015/05/05) of SEVIRI obser-
vations (left panel) and during 16 days (2015/05/01-2015/05/16) of PROBA-V observations (right
panel) over Carpentras, France. The blue triangles represent the satellite viewing angles, the red di-
amonds the illumination one. Circles represent the zenith angle and polar angles represent azimuth
angles with zero azimuth pointing to the North.

Table 7: CISAR setup parameters

SEVIRI PROBA-V

Nd Length of the accumulation period 5 16
Ns Shift between the accumulation period 5 8
Nmin Minimum converged retrievals to compute 5 5the mean on the RPV parameters
- Maximum number of iterations 20 20
θmax Maximum processed sun and viewing zenith angles [◦] 70 70
τlow Minimum AOT first guess value 0.001 0.001
τhigh Maximum AOT first guess value 0.100 0.100
σxb,τF Fine mode prior uncertainty for the AOT 1.0 1.0
σxb,τC Coarse mode prior uncertainty for the AOT 2.0 2.0
σxb,RPV Default prior uncertainty for the RPV parameters 1.0 1.0

α:

τ0.55,v = τλ,v

(
α0.55,v

αλ,v

)
(9)

where v is the considered aerosol vertex and λ is the wavelength from which the AOT at 0.55 µm is

extrapolated.
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Fig. 4: Solution space (black triangle) for the wavelength 0.6 µm defined by the non absorbing
fine mode (FN), the absorbing fine mode (FA) and the coarse mode (C) vertices. The red, green
and blue lines show the 99.7%, 95.5% and 68.3% probability regions respectively, as derived from
AERONET inversion product for all the observations available over all the AERONET stations.

3.2 Aerosol vertices

The choice of the aerosol vertices subsamples the entire solution space to a region where the aerosol

properties can be retrieved. The relationship between the particle size and the single scattering200

properties has been discussed in Part I. As recommended, three vertices are selected, defined by the

asymmetry factor g and the Single Scattering Albedo (SSA) ω0: two fine mode vertices, absorbing

and non-absorbing, and one coarse mode vertex, defining a triangle in the [g,ω0] space in each

processed band. The three vertices are chosen analysing the single scattering properties derived from

the AERONET inversion product on all available observations since 1993 (Dubovik et al., 2006),205

similarly to the approach proposed by Govaerts et al. (2010). The aerosol single scattering properties

distribution in the [g,ω0] space, as derived from AERONET inversion product, is shown in Fig. 4

for λ= 0.6 µm. The aerosol properties are clustered in the region defined by 0.60<g < 0.80 and

0.85<ω0 < 0.98, containing 68.3% of the data (blue line). The selected CISAR vertices defining

the solution space cover about the 80% of possible solutions (black triangle).210

4 Information content

The analysis of the information content relies on a two-fold approach. First, the Jacobians are used

as an indicator of the TOA BRF sensitivity to state variable changes under different observation

conditions. Next, the entropy is used as a rigorous metric to determine the information content of
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Fig. 5: Histograms of the distribution of the Jacobians related to the RPV parameters (x-axis), scaled
by the variability range of each variable. These distributions are obtained from PROBA-V obser-
vations (RED band) over Carpentras, France (vegetated target). Positive (negative) values of the
Jacobian show that the TOA BRF is positively (negatively) correlated to the considered state vari-
able.

the observation system for each radiometer. The Jacobians, i.e.
:
the partial derivatives of the forward215

model with respect to the state variables, are affected by the changes in illumination and viewing

geometry both in terms of sign and magnitude (Luffarelli et al., 2016). The minimisation of the

cost function relies on an iterative approach where the direction of steepest descent is determined by

the Jacobians (Marquardt, 1963). An analysis of the Jacobians gives information about the amount

of information carried by the observation and the challenges associated to its sign and magnitude220

variations
::::::::
highlights

:::::::::
variations

::
in

:::::::::
sensitivity

:
throughout the year. The larger the magnitude of the

Jacobians, the higher the sensitivity of the signal on
::
to the selected state variable. The Jacobians have

been scaled by the variability range of each state variable to compare their dimensionless magnitude.

An illustrative example of the distributions of the Jacobians relative to the RPV parameters is

shown in Fig.
:

5. The Jacobians are dominated by the ρ0 parameter (controlling the magnitude225

of the surface BRF), followed by θ, k and ρc (characterising the surface reflectance anisotropy).

Consequently, the retrieval of the surface reflectance shape is more challenging than the retrieval

of its mean magnitude; nevertheless, its accurate retrieval is necessary to correctly account for the

coupling between the surface and the atmosphere (Govaerts et al., 2008).

The aerosol contribution to the TOA BRF differs according to the brightness of the surface. Figure230

6 shows the AOT scaled
::::::::::
AOT-scaled Jacobians distribution over Carpentras (dark surface) and Zinder

Airport (bright surface). The Jacobians over Carpentras reach higher values with respect to the

Jacobians related to Zinder Airport, because the signal at Zinder is dominated by the bright surface

(Sun et al., 2016). When the magnitude of the AOT Jacobian is close to 0, the observed TOA BRF

is not sensitive to changes in the aerosol concentration in the atmosphere. It is worth noticing that235

the AOT scaled
:::::::::
AOT-scaled

:
Jacobians can be both negative and positive, meaning that the aerosols
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Table 8: Median and standard deviation of the scaled Jacobians. The table refers to all processed
targets during 2015. The values are shown for the SEVIRI and PROBA-V bands centred at 0.6 µm.

Median value Standard deviation

ρ0 1.316 0.385
κ -0.008 0.038
θ -0.250 0.265
ρc -0.023 0.023
τF 0.017 0.014
τC 0.007 0.008

can increase or decrease the TOA BRF depending on the season and the viewing and illumination

geometry. This variability of the sign of the Jacobians, occurring also over dark target
:::::
targets

:
(Fig.

6a), represents one limitation in the MODIS Dense Dark Vegetatation (DDV) algorithm (Kaufman

et al., 1997), which assumes that an increase in the AOT results in an increased signal at the satellite.240

Table 8 shows the median value and the standard deviation of the scaled Jacobians for all the state

variables at SEVIRI and PROBA-V bands centred at 0.6 µm, over all selected AERONET stations.

This table confirms the previous findings on the Jacobians magnitude shown in Fig. 5 and 6 over

Carpentras and Zinder Airport. The AOT scaled
::::::::::
AOT-scaled Jacobian is about 2 orders of magnitude

smaller than the one of the magnitude of the
::::
tthat

:::
for

:::
the surface reflectance. The variability of the245

Jacobian sign and magnitude along the year is illustrated in Fig. 7, where it can be seen that the

effect of the aerosols on the reflectance can vary with the geometry for the same land cover type.

The Jacobian variations in Fig. 7 essentially depend on the viewing and illumination geometry.

Aerosol particles mostly scatter in the forward direction, given the positive sign of the asymmetry

factor g (controlled, among other factors, by the aerosol size distribution) (Andrews et al., 2006).250
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Fig. 6: Distribution of the AOT scaled
:::::::::
AOT-scaled

:
Jacobian over Carpentras (dark surface) and

Zinder Airport (bright surface). The histograms are obtained from PROBA-V observations (RED
band) over year 2015.
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Fig. 7: Scaled AOT Jacobians timeseries over Carpentras, France (vegetated target) related to
SEVIRI VIS0.6 band (top panel) and PROBA-V RED band (bottom panel) observations. The blue
dots represent the fine mode, the red triangles the coarse mode.
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::::
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band over Carpentras, France, for 2015/6/5. The blue dots represent the fine mode, the red triangles
the coarse mode. The black crosses represent the retrieved AOT at 0.55 µm (right y-axis).

For this reason, the maximum information on the aerosols is located in the forward direction, while

it decreases when approaching the backscattering direction. Additionally, a longer atmospheric path

increases the aerosol effects on the reflectance, given the higher probability of interactions between

the reflected sunlight and the atmospheric particles. The impact of the length of the atmospheric

path is highlighted in Fig. 8, showing the Jacobian daily cycle over Carpentras. The sensitivity of255

the TOA BRF with respect to the AOT almost disappears at noon, when the atmospheric path is

shortest and the effect of the aerosols on the signal is minimised. A more detailed analysis of the

AOT Jacobians and their relation with the AOT magnitude is performed by Luffarelli et al. (2016).

Given the seasonal variations of the Jacobians, shown in Fig. 7 and 8, it is not expected to get the

same accuracy of the retrieval throughout the day and throughout the year.260

A more rigorous analysis of the information content can be made through the entropy, which

measures the uncertainty reduction (Rodgers, 2000). In an OE framework, the prior information and

its uncertainty represent an
:
a
:
hypothesis on the expected value of the state variables. It is envisaged

that the inversion process provides a posterior uncertainty on the state variables which is smaller

than the prior one; the entropy quantifies this uncertainty reduction. When there is no information

coming from the satellite observations, the entropy will be close to 0 as the observation does not add

any additional knowledge on the system. Formally, the entropy is computed as follows:

H =−1

2
ln

(
|Sx̂|
|Sx|

)
(10)

where Sx̂ (Eq. 21 of Part I) and Sx are the uncertainties of the posterior and the prior information
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Fig. 9: Distribution of the entropy related to the AOT (left panel) and to the RPV parameters (right
panel).

respectively.

In CISAR, the entropy is calculated considering the surface and atmospheric state variables and

their associated prior and posterior uncertainty separately; the entropy distribution is shown in Fig. 9.

The distribution of the surface and AOT entropy related to SEVIRI observations exhibits higher val-265

ues compared to the one related to PROBA-V observations, given the larger radiometric uncertainty

associated to the observations acquired by the polar orbiting satellite. The entropy depends not only

on the information carried by the satellite observation, but also on the uncertainty associated to the

prior information. As the prior information on the surface is updated (Sect. 2.4), the associated un-

certainty decreases in time, whereas the prior information on the AOT remains weakly constrained,270

as the uncertainty is kept to the default high value. For this reason the entropy associated to the RPV

parameters exhibits smaller value than the one associated to the AOT (Fig. 9a).

5 Quality indicator

5.1 Review of existing methods

Section 2.5 discussed the limitations of the forward model FASTRE. Furthermore, in Sect. 4 it275

has been shown how the AOT Jacobian magnitude is subject to temporal variations, depending on

the viewing and illumination geometries. These issues compromise the reliability of the retrieved

solution, which can however be assessed using different methods. Dubovik et al. (2011) use the

relative fitting measurement residual, to filter the retrieval outliers. Such an approach presents some

limitations as the number of degrees of freedom can vary depending on the availability of cloud free280

::::::::
cloud-free

:
observations. The requirement on the quality of the fit should be stricter when only a

limited number of observations is available (Govaerts et al., 2010). To address this specific issue

17



, Govaerts and Lattanzio (2007)
:::
This

:::::::
specific

::::
issue

::::
was

:::::::::
addressed

::
in

:::::::::::::::::::::::::
Govaerts and Lattanzio (2007)

:
,
::::
who developed an approach which also takes into account the number of cloud free

:::::::::
cloud-free

observations. The authors observed that the cost function is proportional to the quadratic sum of285

the mismatch between the simulation and the observation for each acquisition, weighted by the

observation uncertainty. As the cost function is strongly dependent on the number of observations,

it is not possible to define a universal range of acceptable values for its residual without performing

additional operations on the cost function. Both methods do not correctly identify situations in

which a good fit is reached but the retrieval of the state variables is not reliable, due to limited or no290

dependency of the TOA BRF on the state variables (the Jacobians are close to 0). A more elaborate

QI has been developed for the MODIS Aerosol Product Collection 6 (Hubanks, 2017), which is

composed of different tests accounting for the fitting residual, the magnitude of the retrieved AOT,

the possible presence of cirrus, the brightness of the scene and information on the number of pixels

and the percentage of water pixels present in the processed area. Despite taking into account different295

factors in addition to fitting residuals, this approach does not consider the actual information content

of the satellite observation. Moreover, as CISAR processes each pixel independently, the information

on the number and type of pixels over which the retrieval is performed, as used in the MODIS

product, is not applicable within this method.

5.2 Overview300

A new approach is proposed for the CISAR algorithm, which combines a series of individual tests

j with an associated value pj in the range [0,1], defining a QI(ti) associated to
:::
with

:
the solution
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Fig. 10: Correlation (in red) and RMSE (in blue) variations in function of the mismatch between
the satellite observation and the simulated signal (test 3). The figure refers to the CISAR AOT re-
trieval evaluation against AERONET data. These results are obtain from CISAR applied to SEVIRI
observations.
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retrieved at the time ti. These tests are performed
:::::::
evaluate

:
on the convergence of the inversion to

a solution after a given number of iterations (0), on the validity range of the total AOT (1) and sur-

face albedo (2), on the mismatch between observations and simulations (3) and on the information305

content of the satellite acquisition through the Jacobians (4) and the entropy, as discussed in Sect.

4. The entropy is computed separately for the AOT (5) and RPV parameters (6). These tests have

been defined through an analysis of their impact on the CISAR performance when evaluated against

independent reference datasets. The value pj associated to
::::
with each test can assume values be-

tween 0 (bad quality) and 1 (good quality). Figure 10 shows an example of the evaluation of the310

retrieved AOT against the AERONET data for the mismatch test (3). As the mismatch increases, the

correlation decreases, while the Root Mean Square Error (RMSE) shows opposite behaviour.

5.3 Quality indicator tests

5.3.1 Convergence

The first test to be performed is on the convergence of the inversion. When the maximum number of315

iteration is reached p0 is equal to 0, otherwise p0 = 1.

5.3.2 State variable validity range

The validity of the retrieved total AOT and of the surface BHR is examined in the tests 1 and 2.

In CISAR, a validity range for each state variable is defined, based on physical boundaries and

empirical observations. When the value of retrieved AOT (BHR) falls on the extremes of this range,320

p1 (p2) is equal to 0. The acceptable values for the BHR range from 0 to 1, while the AOT can only

assume positive values smaller than 5. The values p1 and p2 are equal to 1 when 0<BHR< 1 and

0<AOT < 5 respectively.

5.3.3 Mismatch between observation and simulation

As discussed in Sect. 5.1, the fitting residual between the observation and the simulation is normally325

used to assess the reliability of the solution, as it describes how well the signal simulated with the

forward model ym(ti,λ) fits the satellite observations y0(ti,λ). The mismatch between the observed

and simulated TOA BRF is weighted by the observations
:::::::::::
observation’s

:
uncertainty σ0(ti,λ). For

this test, the largest mismatch among the processed bands is considered. Two thresholds T1 and T2

are defined to identify good (p3 = 1) and bad (p3 = 0) quality retrievals. The difference between the330

simulated signal and the satellite observation should have the same magnitude as the observation un-

certainty σ0(ti,λ), therefore the T1 is set to 1. Conversely, the maximum acceptable mismatch value

T2 = 2 has been chosen observing the relation
::
by

::::::::
observing

:::
the

::::::::::
relationship

:
between the mismatch

and the performances of CISAR when evaluated against the independent datasets used as reference.

Fig. 10 represents an example of this analysis. When the mismatch assumes values within the range335
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Fig. 11: Non linear p3 definition between the minimum value m and 1 which applies when the
mismatch is larger than T1 and smaller than T2.

defined by T1 and T2, thresholds included, a value between a minimum m and 1 is assigned to p3

through a sigmoid function with width equal to 10/(T2−T1) (Fig. 11). A different coefficient m is

defined for each test j in order to give different weights to the tests, according to the magnitude of

their impact on the retrieved solution and its evaluation against the reference dataset. The outcome

of the test 3 is thus defined as follows:340



p3(ti) = 0 if max
λ

{
|ym(ti,λ)−y0(ti,λ)|

σ0(ti,λ)

}
>T2

p3(ti) = 1 if max
λ

{
|ym(ti,λ)−y0(ti,λ)|

σ0(ti,λ)

}
<T1

m<p3(ti)< 1 if T1≤max
λ

{
|ym(ti,λ)−y0(ti,λ)|

σ0(ti,λ)

}
≤T2

(11)

with λ=1,. . . ,number of wavelengths.

5.3.4 Jacobians

The magnitude of the Jacobians gives information on the sensitivity of the TOA BRF on
::
to the state

variables. Performing a test on the Jacobians related to each state variable can be computationally

expensive. In order to reduce the computational effort, only the Jacobian of the AOT is taken into345

account. The spectral constraints applied to the AOT variability as in Sect. 2.4 impose a correlation

between the AOT retrieved in the different spectral bands. Consequently, it is desirable to have large

absolute Jacobians in at least one band. To have a good retrieval of the total AOT, the AOT associated

to
::::
with each aerosol vertex has to be correctly retrieved. The quantity K̂x(ti) analysed in the test 4

is thus the following:350

K̂x(ti) = max
λ

{
min
v

{
|Kxλ,v (ti)|

}}
(12)
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with λ=1,. . . ,number of wavelengths and v=1,. . . , number of aerosol vertices.

The aim of this test is to discard observations with little or no sensitivity to the AOT, identifying

those situations where the test on the miss-fit is successful because of the prior information and/or

the temporal and spectral constraints (Sect. 2.1) rather than actual information coming from the

observations. The thresholds T1 and T2 are set to 0.01 and 0.02 respectively. The values of p4 are355

defined similarly to p3:


p4(ti) = 0 if K̂x(ti)<T1

p4(ti) = 1 if K̂x(ti)>T2

m<p4(ti)< 1 if T1≤ K̂x(ti)≤T2

(13)

5.3.5 Entropy

Section 4 discusses how the entropy, quantifying
:::::
which

::::::::
quantifies

:
the uncertainty reduction from

the prior knowledge on the system to the posterior uncertainty, represents a rigorous analysis of

the information content. Tests 5 and 6 analyse the entropy associated to
:::
with

:
the AOT and the one360

associated to
:::
with

:
the RPV parameters, computed as follows:

HAOT (ti) =− 1

2Nλ
ln

( ∏
λ

∏
vσpost(ti,λ,v)∏

λ

∏
vσprior (ti,λ,v)

)
HRPV (ti) =− 1

2Nλ
ln

( ∏
λ

∏
pσpost(ti,λ,p)∏

λ

∏
pσprior (ti,λ,p)

) (14)

where Nλ is the number of processed wavelengths, λ=1,. . . ,Nλ, p=1,. . . ,number of RPV parameters

and v=1,. . . ,number of aerosol vertices. The normalization to Nλ assures consistency in the entropy

evaluation when different number of bands are analysed, as for SEVIRI and PROBA-V cases. The

entropy computation is strongly dependent on the magnitude of the prior uncertainty as explained in365

Sect. 4. Low entropy might be due to reliable prior information, with a low associated uncertainty.

Similarly, the uncertainty reduction would be very large in case of little prior information on the state

variable. For these reasons, tests 5 and 6 are only performed when the prior uncertainty is smaller

than the validity range of the AOT and RPV respectively and larger than 1/6 of it. The thresholds

associated to
:::
with

:
the two tests on the entropy are T1 = 0.1 and T2 = 0.6 that correspond to a 20%370

and 70% uncertainty reduction respectively. The values p5(ti) and p6(ti) are computed as in Eq. 15.


p5,6(ti) = 0 if HAOT (ti),HRPV (ti)<T1

p5,6(ti) = 1 if HAOT (ti),HRPV (ti)>T2

m<p5,6(ti)< 1 if T1≤HAOT (ti),HRPV (ti)≤T2

(15)

5.4 Quality indicator computation

The final QI is computed
::
by

:
combining the results of the tests performed on the retrieved solution:

21



0.0 0.2 0.4 0.6 0.8 1.0
QI

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Co
rre

la
tio

n

RMSE (SEVIRI)
correlation coefficient (SEVIRI)
RMSE (PROBA-V)
correlation coefficient (PROBA-V)

0.16

0.18

0.20

0.22

RM
SE

CISAR vs AERONET AOT
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figure refers to the CISAR AOT retrieval from SEVIRI (in blue) and PROBA-V (in red) observations
evaluated against AERONET data.

QI(ti) = p0(ti)p1(ti)p2(ti)max

1−
6∑
j=3

(1−pj(ti)),0

 (16)

The final QI(ti) ranges from 0 to 1, where 0 designate a poor quality retrieval and 1 indicates a

reliable solution. Figure 12 shows the variations of the correlation and the RMSE between CISAR375

retrieved AOT and AERONET data as a function of the QI. Correlation increases as QI is taking

larger values, while the RMSE decreases. This behaviour is observed with CISAR AOT retrieved

from both SEVIRI and PROBA-V observations (Fig. 12). This correlation increase (RMSE de-

crease) is particularly visible when QI is taking values between 0.0 and 0.2. For this reason, only

retrievals with QI ≥ 0.2 are considered in Sect.6.380

Table 9: CISAR retrieved BHR from actual observations comparison with MODIS in all the pro-
cessed bands.

SEVIRI PROBA-V

0.6 µm 0.8 µm 1.6 µm 0.4 µm 0.6 µm 0.8 µm 1.6 µm

Number of points 7409 744
Correlation 0.917 0.779 0.854 0.743 0.864 0.618 0.841
Root Mean Square Error 0.045 0.067 0.079 0.029 0.052 0.098 0.091
Mean Absolute Bias 0.039 0.067 0.067 0.025 0.045 0.070 0.077
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6 Performance evaluation

6.1 BHR

The CISAR BHR, computed from the RPV parameters, is compared with the MODIS Land product

(Schaaf and Wang, 2015). To account for the different spatial sampling, the MODIS data have

been averaged on 5x5 km and 1x1 km for the comparison with the retrievals from SEVIRI and385

PROBA-V respectively. The results of this comparison are shown in Table 9 in terms of correlation,

RMSE, and Mean Absolute Error (MAE). The CISAR results show a high correlation with the

MODIS product, higher than 0.7 in all the processed spectral bands, except the PROBA-V NIR

band, which shows a correlation equal to
:
of

:
0.618. The density plots of the CISAR BHR retrievals

against MODIS data are included in the Supplement for all the processed bands, for both satellites.390

Despite the instrument differences discussed in Sect. 2.5, the CISAR retrievals and the MODIS

Land Product dataset show similar seasonal trends. Figure 13 shows the BHR timeseries over Zinder

Airport (Niger, Africa), as retrieved from the CISAR algorithm applied to SEVIRI and PROBA-V

observations and from the MODIS Land Product. The rainy season, going from May 20 to October

5 (Weatherspark.com, 2018), is distinguishable through the decrease of the surface BHR in both the395

MODIS and CISAR datasets, although CISAR retrieves a larger seasonal variation with respect to

MODIS product. The effect of the updating mechanism on the surface prior described in Sect. 2.4

is also visible as the retrieval uncertainty decreases in time, given that the prior information on the

surface is better defined.

6.2 Aerosol Optical Thickness400

The CISAR AOT retrieval, extrapolated at 0.55 µm, has been evaluated against the AERONET

data over the selected targets listed in Sect. 2. The CISAR AOT retrieval is evaluated in terms

of correlation, RMSE, MAE with respect to AERONET values. Additionally, the percentage of

points falling within the Global Climate Observation System (GCOS) requirements (Systematic Ob-

servation Requirements for Satellite-Based Data Products for Climate, 2011 Update), defined as405

max{0.03,10%}, is also accounted for. The GCOS requirements are a useful tool to compare dif-

ferent algorithms’ performances. However, both
:::
the SEVIRI and PROBA-V missions were not

originally designed for AOT retrieval. The GCOS requirement of 0.03 for low optical thickness

translates into a radiometric noise requirement much better than 2 (1)% at 0.4 (0.6) µm, way
::::
well

below the radiometric performance of the SEVIRI and PROBA-V instruments (Table 3). The dura-410

tion of the corresponding missions provides however a decisive advantage for the generation of AOT

datasets from these instruments. In the following, the GCOS requirements are evaluated in terms of

percentage of retrievals satisfying them.

Figure 14 shows the evaluation of the retrieved AOT against AERONET data for both SEVIRI

(left panel) and PROBA-V (right panel). The CISAR retrievals from SEVIRI observations shows a415
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Fig. 13: CISAR retrieved BHR from SEVIRI (blue dots) and PROBA-V (red dots) and MODIS
Land Product (green triangle) over Zinder Airport (Niger, Africa). The results are shown for the
sensors

::::
each

:::::::
sensor’s band centred at 0.6 µm, for year 2015. The vertical bars represent the retrieval

uncertainty for SEVIRI and PROBA-V and standard deviation over the selected area for MODIS.

better agreement with the AERONET data compared to the retrievals from PROBA-V observations.

This is in accordance with the poor radiometric performances of the polar orbiting instrument and

with the outcome of the information content analysis performed in Sect. 4.

The boxplots in Fig. 14 show an overestimation of the retrieval for low AOT and an underesti-

mation for large AOT. A similar behaviour is also observed in Wagner et al. (2010). The underesti-420

mation for large values might be partially due to the temporal constraints described in Sect. 2.4, as

they might prevent the algorithm to fit
::::
from

:::::
fitting

:
rapidly evolving aerosol events associated with

large AOT values. However,
:
the applied temporal constraints are intended to optimise the retrieval

of low aerosol concentration, given the global distribution of AOT which is normally smaller than

0.2 (Kokhanovsky et al., 2007). Additionally, very high AOT normally correspond to local events,425

especially in Europe (e.g. plume, fire), therefore the AOT obtained by the retrieval from the satel-

lite pixel containing the AERONET station will be lower than the one measured by the AERONET

tower (Jiang et al., 2007). The histograms in Fig. 14 show that AOT values larger than 0.8 represent

less than 5% of the total number AERONET observations, affecting the reliability of the statistics
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for high values of AOT. The processing of more data would be necessary to increase the confidence430

in the results for high AOT values. Some examples of CISAR’s ability to detect high AOT are shown

in the Supplement.

The overestimation of low AOT might originate from the different spatial scale between the satel-

lite observations and the ground measurements. Most of the selected AERONET stations are located

in Europe (Fig. 1), where the SEVIRI pixel resolution is about 5x8 km (as opposed to 3x3 km at435

the subsatellite point), which is compared to AERONET point measurement. The probability of

residual cloud contamination at this scale might thus explain part of the overestimation (Henderson

and Chylek (2005), Chand et al. (2012)). Furthermore, the shortest SEVIRI spectral band is centred

at 0.67 µm, where the sensitivity to low optical thickness is about 2 times smaller than in the blue

spectral region. Consequently, the retrieval in these cases essentially relies on the prior information440

regardless
:
of

:
the very large associated uncertainty. Despite the presence of a blue band and a better

spatial resolution (1 km), the retrievals from PROBA-V observations still show overestimation at low

AOT, due to the poor radiometric performances which decrease the importance of the information

derived from the observations and to the lack of a thermal channel that leads to an unreliable cloud

mask.445

The CISAR potential to discriminate between the fine and coarse mode is analysed next. Figure

15 shows the fine and
:
to

:
coarse mode ratio distribution related to AERONET data (in green) and
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Fig. 14: Boxplots showing the CISAR AOT retrieval extrapolated at 0.55 µm (left y-axis) against the
AERONET data (x-axis) for SEVIRI (left panel) and PROBA-V (right panel) over all the selected
stations. Only retrievals with QI ≥ 0.2 are considered. The blue boxes represent the interquartile
range (IQR), the red horizontal line represents the median value, the vertical dashed bars represent
the 1.5×IQR range and the black crosses represent the outliers. Boxes with less than 10 points are
not displayed. The green histograms represent the AERONET AOT distribution. The right y-axis
shows the percentage of points contained in each bin.
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CISAR retrieval for SEVIRI (in blue) and PROBA-V (in red). It can been seen that the distribution

related to CISAR retrievals from SEVIRI and PROBA-V observations seem to underestimate the

fine mode concentration for τF/τC > 3. The percentage of cases where CISAR succeeds in retrieving450

a predominant
::::::::::::
predominantly fine mode contribution to the total AOT (τF/τC > 1), is equal to 80%

when the retrieval is performed on SEVIRI acquisition and 62% when CISAR is applied to PROBA-

V data. This represents an improvement with respect to the Land Daily Aerosol (LDA) algorithm

(Wagner et al. (2010), Table 4) where particles retrieved by AERONET as spherical were correctly

characterised by the algorithm only in the 12% of cases. This represents a decisive advantage of the455

proposed approach with a continuous variations of the aerosol properties in the solution space, as

opposed to the use of a limited number of aerosol classes,
:

as in Wagner et al. (2010). The coarse

particle retrieval appears to be more challenging for both satellites. The percentage of cases where

the coarse mode is correctly retrieved as predominant is 43% and 30% for the retrieval from SEVIRI

and PROBA-V observations respectively. The less accurate retrieval of the coarse mode compared460

to the fine mode is expected, as the considered wavelengths are less sensitive to the radii in the range

of the coarse particles than to those of fine ones (Torres et al., 2017). This can also be observed in

Table 8 where the median magnitude of the coarse mode Jacobian is less than an half of the fine

mode Jacobian.

6.3 Single scattering albedo and asymmetry factor465

In Sect. 3.2 the solution space defined by the aerosol classes vertices has been described. CISAR

retrieves the averaged SSA and asymmetry factor within this solution space as linear combinations
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Fig. 15: Fine-coarse mode ratio distribution at 0.6 µm from AERONET (green) and from CISAR
applied to SEVIRI (blue) and PROBA-V (red) observations.
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of the single scattering properties of each selected aerosol vertex (Eq. 8 and 9 of Part I). Figures 16

and 17 show the SSA and asymmetry factor distributions related to the AERONET inversion product

and CISAR retrievals. All the AERONET inversions are considered, without applying the quality470

test as in Holben et al. (2006). The three datasets show similar distributions, although spikes can

be observed at the extremes of the CISAR retrievals distributions. When the AERONET solution

is located outside the solution space, CISAR cannot converge to it and the retrievals falls on the

solution space boundaries, causing the spikes. The aerosol vertices selection as in Fig. 4 is con-

ceived to limit the number of occurrences of these spikes. Figure 17 shows that the g parameter475

distributions obtained from PROBA-V observations is much narrower than the same distribution

related to AERONET and CISAR applied to SEVIRI observations. This is in line with what has

been discussed in Sect. 6.2 on the poorer CISAR performances in retrieving the predominant mode

when applied to PROBA-V observations rather than the SEVIRI ones. In fact, as in computing g

the aerosol size distribution is the most important parameter to measure (Andrews et al., 2006), an480

inexact estimate of the dominant mode (fine or coarse) leads to an erroneous measurement of the

asymmetry parameter.

7 Discussion and conclusion

This paper describes and evaluates the application of the CISAR algorithm to satellite observations

acquired from geostationary and polar orbiting instruments. The theoretical aspects of CISAR, a new485

generic algorithm for the joint retrieval of surface reflectance and aerosol properties, with continuous
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Fig. 16: SSA distributions at 0.6 µm (left panel) and 0.8 µm (right panel) for AERONET (green),
CISAR applied to SEVIRI (blue) and to PROBA-V (red).
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Fig. 17: Same as Figure 16 but for the asymmetry factor.

variation of all the state variables in the solution space, are described in Part I. In the latter,
:
CISAR

is applied to simulated noise free
::::::::
noise-free observations in the principal plane. This paper provides

an evaluation of the algorithm in non ideal situations, i.e.actual satellite observations acquired from

both geostationary and polar orbiting satellites, namely SEVIRI and PROBA-V.490

The proposed retrieval method relies on an OE approach which consists of the inversion of

FASTRE, a simple radiative transfer model composed of two horizontal layers. The FASTRE model

is evaluated in Sect. 2.5 showing an accuracy within 3% when compared to a complex 1D radiative

transfer model. Higher uncertainties are observed in spectral bands affected by water vapour as a

result of the limited vertical discretisation.495

The analysis of the information content of the satellite observations is performed in Sect. 4.

Though the PROBA-V instrument has one blue channel which is not present in SEVIRI, the better

radiometric performances of the geostationary satellite provide more information for the retrieval of

surface reflectance and aerosol properties than the polar orbiting instrument.

The CISAR retrieval is evaluated against independent datasets. The retrieved AOT is compared to500

AERONET data. A specific QI has been developed to disregard suspicious retrievals. With a RMSE

of 0.162 for SEVIRI and 0.176 for PROBA-V, CISAR shows better performances when applied

to the geostationary satellite. CISAR retrieves the single scattering aerosol properties assuming a

linear behaviour of g and ω0 in the solution space; although this assumption is not exactly true

when far from pure single mode situations, CISAR retrieved aerosol properties distributions are in505

good agreement with the AERONET inversion products, especially when the algorithm is applied

to geostationary observations, as discussed in Sect. 6.3. These differences are explained by the

different information content associated to
:::
with

:
the observations acquired by the two satellites. For
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both satellites, CISAR discrimination between fine and coarse mode is improved with respect to the

LDA algorithm (Wagner et al., 2010), as the continuous variation of the aerosol properties in the510

solution space allows more accurate retrievals of the single scattering properties with respect to
:::
that

LUT-based approaches
::::::::
approach. The CISAR surface albedo is compared with the MODIS product,

showing a correlation higher than 0.74 in all processed bands (to
:::
with

:
the exception of the NIR

PROBA-V band). The better performances of CISAR in retrieving the surface reflectance rather

than the AOT are explained by the larger contribution to the TOA BRF at the satellite of the surface.515

The little variance of the
::::
small

:::::::
variance

:::
of surface reflectance on a short time scale allows a good

prior definition based on the previous CISAR retrievals.

Several aspects of the new CISAR algorithm would still require additional efforts to improve its

performance. The cloud mask omission errors impact on the AOT overestimation at low optical

thickness would also deserve additional work. The analysis of the Jacobian median values has520

revealed the very small magnitude of the fine and coarse mode AOT Jacobians. The spectral and

temporal constraints of the AOT variability play therefore a critical role in supporting the assessment

of aerosol properties. However, these constraints might lead to an underestimation of the AOT for

large values.
:::
The

:::::
cloud

:::::
mask

::::::::
omission

:::::
errors

::::::
impact

:::
on

:::
the

:::::
AOT

:::::::::::::
overestimation

::
at

:::
low

:::::::
optical

:::::::
thickness

:::::::
deserve

:::::::::
additional

:::::
work.

:::
In
:::::

order
:::

to
::::::
reduce

:::
the

::::::
impact

:::
of

:::::
cloud

::::::::::::
contamination

::
in
::::

the525

::::
AOT

:::::::
retrieval,

::
a
::::
new

::::::
version

::
of

:::
the

::::::
CISAR

:::::::::
algorithm

::
is

:::::
under

::::::::::
development

::
in
:::
the

::::::::::
framework

::
of

:::
the

::::::::::
ESA-SEOM

:::::::::
ConsIstent

::::::::
Retrieval

:::
of

:::::
Cloud

:::::::
Aerosol

:::::::
Surface

:::::::::
(CIRCAS)

:::::::
project.

::::
The

::::
new

:::::::
version

::
of

::::::
CISAR

:::::
aims

::
to

::::::
retrieve

::::
both

:::
the

:::::
AOT

:::
and

::::
the

:::::
Cloud

::::::
Optical

:::::::::
Thickness

:::::::
(COT),

::::::::::
overcoming

:::
the

::::
need

::
of

::
an

:::::::
external

:::::
cloud

:::::
mask.

:::::::
Within

::
the

::::::::
CIRCAS

::::::
project

:::::::
CISAR

:::
will

:::
be

::::::
applied

::
to

:::::::::::
observations

:::::::
acquired

::
by

:::
the

::::
Sea

:::
and

:::::
Land

::::::
Surface

:::::::::::
Temperature

::::::::::
Radiometer

::::::::
(SLSTR)

:::::::
on-board

:::::::::
Sentinel-3.

:
530

As pointed out in Part I, the limited number of state variables retrieved by CISAR allows the

same algorithm to be applied to sensors which have not been originally designed for aerosol or

surface albedo retrieval. The possibility to apply the same algorithm to data acquired by different

instruments for the retrieval of several ECVs presents a decisive advantage as it provides radiatively

consistent ECVs derived from different sensors. Conversely, the use of separate methods for the535

retrieval of different variables might lead to a radiance bias, which has to be corrected preliminary to

:::::
before

:
the assimilation of these variables (Thépaut, 2003). The effort for the assimilation of surface

and atmospheric products could be reduced if the different ECVs are
::::
were

:
consistently derived with

one single algorithm. The consistent retrieval of the state variables and the algorithm applicability

to different sensors represent an important advantage for the Numerical Weather Prediction (NWP)540

community, whose main future challenges are related to a more consistent retrieval of Earth’s system

components and to the availability of more satellite data.
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8 Supplement

Included are the scatterplots of the BHR retrieved by CISAR versus the BHR delivered by MODIS

(Fig. S1, S2), and a few examples of the CISAR high-AOT retrievals compared with AERONET545

data.
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