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Abstract. This paper presents the simultaneous retrieval of Aerosol Optical Thickness and surface

properties from the CISAR algorithm applied both to geostationary and polar orbiting satellite ob-

servations. The theoretical concepts of the CISAR algorithm have been described in Govaerts and

Luffarelli (2017). CISAR has been applied to SEVIRI and PROBA-V observations acquired over

20 AERONET stations during the year 2015. The CISAR retrieval from the two sets of observa-5

tions is evaluated against independent datasets such as the MODIS land product and AERONET

data. The performance differences resulting from the two types of orbit are discussed, analysing and

comparing the information content of SEVIRI and PROBA-V observations.

1 Introduction

The retrieval of aerosol properties over land surfaces from space observations is a challenging prob-10

lem due to the strong radiative coupling between atmospheric and surface radiative processes. Dif-

ferent approaches are usually exploited to retrieve different Earth system components (e.g. Hsu et al.

(2013), Mei et al. (2017)), leading to inconsistent and less accurate datasets. The joint retrieval of

surface reflectance and aerosol properties, as originally proposed by Pinty et al. (2000), presents

many advantages, such as the possibility to perform the retrieval over any type of surface and assure15

the radiative consistency among the retrieved variables.

Govaerts and Luffarelli (2017) (hereafter referred to as Part I) describes the theoretical aspects

of the Combined Inversion of Surface and AeRosols (CISAR) algorithm, designed for the joint

retrieval of surface reflectance and aerosol properties. This new generic retrieval method specifically

addresses issues related to the continuous variation of the state variables in the solution space within20
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an Optimal Estimation (OE) framework. Through a set of experiments, the capability of CISAR

of retrieving surface reflectance and aerosol properties within the solution space was illustrated.

Nonetheless, these experiments only represent ideal simulated observation conditions, i.e.noise-free

data acquired in narrow spectral bands placed in the principal plane, assuming unbiased surface

prior information. This second part aims to demonstrate CISAR’s applicability to actual satellite25

observations, with less favourable geometrical conditions than the principal plane and accounting

for the radiometric noise. For this purpose, the algorithm has been applied to two radiometers

with similar spectral properties but different orbits (geostationary and polar). Radiometers on-board

geostationary platforms deliver observations with a revisit time of tens of minutes but with a limited

field-of-view so that many instruments are needed to cover the entire Earth. The poles cannot be30

observed. Conversely, a polar orbit, combined with an adequate swath, could offer a daily revisit time

of the entire globe. The selected radiometers are the Spinning Enhanced Visible and Infrared Imager

(SEVIRI), flying on board of the Meteosat Second Generation (MSG) geostationary platform, and

the PRoject for On-Board Autonomy - Vegetation (PROBA-V). These two instruments have similar

radiometric performances and both have acquired more than 15 years of observations thanks to the35

launch of a succession of radiometers with very similar characteristics. Applying the same algorithm

on similar instruments flying in different orbits represents a meaningful way to analyse the CISAR

generic algorithm performance.

This paper is organised as follows. Section 2 describes the observation system considered in the

OE framework: the satellite observation, the ancillary information, the prior information and the for-40

ward model. The uncertainty characterisation of the observation system is also described in Sect. 2.

The algorithm implementation is described in Sect. 3. Section 4 analyses the information content of

the satellite observations, comparing the differences between the geostationary and polar orbiting in-

struments, and discusses the challenges encountered when little or no information about the retrieved

variables is carried by the observation. Given these difficulties in the retrieval, a Quality Indicator45

(QI) is implemented and presented in Sect. 5, characterising the reliability of the solution. Finally,

the performance of CISAR is discussed in detail in Sect. 6. The CISAR retrieved Aerosol Opti-

cal Thickness (AOT) and Bidirectional Hemispherical Reflectance (BHR) will be compared against

those derived from the Aerosol Robotic Network (AERONET) (Giles et al., 2017) and the Moderate

Resolution Imaging Spectroradiometer (MODIS) Land product data (DAAC, 2017), respectively.50

The performance differences between the retrieved datasets obtained from SEVIRI and PROBA-V

observations will be further investigated through statistics on the quality of the retrieval and through

the information content of the satellite observations.
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Fig. 1: Selected AERONET stations location. All stations are located within the SEVIRI field of
view.

2 Observation system characterisation

2.1 Observation system definition55

The fundamental principle of OE is to maximise the probability P =P (x|yΩΛ̃,xb,b) with respect to

the values of the state vector x, conditional to the value of the measurements and any prior infor-

mation (Rodgers, 2000). The ensemble of measurements, prior information, ancillary data and the

forward model constitutes the observation system. This section describes each component of this

system for the two satellite datasets processed in the framework of this study.60

In order to evaluate the CISAR algorithm performance when applied to observations acquired

from different orbits, 20 AERONET stations located within the SEVIRI field of view have been

selected (Fig. 1, Table 1). These targets span different geometries and land cover types (vegetation,

urban, bare areas, water, mixed). The observations pertain year 2015.

For each of these stations, satellite data have been acquired, together with ancillary information,65

such as the cloud mask and the model parameters, which are the parameters that are not retrieved by

the algorithm but that influence the observation. Satellite data and ancillary information are accumu-

lated in time to form a multi-angular observation vector yΩΛ̃, in order to correctly characterise the

surface reflectance anisotropy. Nevertheless, retrieving surface and aerosol properties from satellite

observations is an ill posed problem (Wang, 2012). Consequently, assumptions on the magnitude70

and on the temporal/spectral variability of the state variables are made. The ensemble of these as-

sumptions and their associated uncertainties constitutes the prior information.
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Table 1: AERONET targets

Name Latitude Longitude Land Cover Type

Athens NOA 37.99 23.77 Urban
Barcelona 41.39 2.12 Urban
Bucharest Inoe 44.35 26.03 Mixed
Bure OPE 48.56 5.50 Vegetation
Burjassot 39.51 -0.42 Urban
Carpentras 44.08 5.06 Vegetation
Dakar 14.39 -16.96 Costal
Gloria 44.60 29.36 Water
Granada 37.16 -3.60 Urban
IMS-METU-ERDERMLI 36.56 34.25 Costal
Kyiv 50.36 30.50 Vegetation
Mainz 49.50 8.30 Mixed
Murcia 38.01 -1.17 Vegetation
Paris 48.87 2.33 Urban
Petrolina SONDA -9.38 -40.50 Urban
Pretoria CSIR-DPSS -25.76 28.28 Mixed
Sede Boker 30.85 34.78 Bare Areas
Toulouse MF 43.57 1.37 Urban
Venise 45.31 12.51 Water
Zinder Airport 13.78 8.99 Bare Areas

The observation uncertainty σo characterisation is one of the most critical aspect of the CISAR

algorithm as it directly determines the likelihood of the solution. In fact, σo determines the ob-

servation term of the cost function (Eq. 17 of Part I). The observation uncertainty is composed of75

the radiometric uncertainty (directly related to the radiometer characteristics), the forward model

uncertainty and the uncertainty related to the model parameters.

2.2 Satellite data

MSG nominal position is 0◦ over the equator in a geostationary orbit. SEVIRI is the main instrument

of the MSG mission, which has as primary objective the observation in the near real-time of the80

Earth’s full disk, shown in Fig. 1. SEVIRI achieves this with 12 channels, ranging from 0.6 µm

to 13 µm, three of which are located in the solar spectrum and centred at 0.64 µm, 0.81 µm and

1.64 µm and are used within this study. SEVIRI observes the Earth’s full disk with a 15 minute

repeat cycle. The sampling distance between two adjacent pixels at the sub-satellite point is 3 km

for the visible bands. As there is no on-board device for the calibration of the solar channels, the85

calibration within this study has been performed with the method proposed by Govaerts et al. (2013).

The PROBA-V satellite mission is intended to ensure the continuation of the Satellite Pour

l’Observation de la Terre 5 (SPOT5) VEGETATION products starting from May 2014 (Sterckx
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Fig. 2: SEVIRI (in blue), PROBA-V (in red) and MODIS (in green) spectral responses.

et al., 2014). The microsatellite offers global coverage of land surface with daily revisit for latitude

from 75◦N to 56◦S in four spectral bands, centred at 0.46 µm, 0.66 µm, 0.83 µm and 1.61 µm.90

The PROBA-V products are provided at a spatial resolution of 1/3 km and 1 km, the latter being

used in the framework of this study. To cover the wide angular field of view (101◦) in a small-sized

platform, the optical design of PROBA-V is made up of three cameras (identical three-mirror anas-

tigmatic telescopes). The three cameras have an equal field of view. The down-pointing central

camera covers a swath 500 km wide, while the swath of the right and left cameras is 875 km wide.95

Although the three cameras have different responses, a mean Spectral Response Functions (SRF) is

considered within this study, accounting for the radiometric uncertainty associated with this approx-

imation. Each camera has two focal planes, one for the short wave infrared (SWIR) band and one for

the visible and near-infrared (VNIR) bands. Despite the different viewing angles in the SWIR band,

CISAR assumes the observations are acquired with the same geometry in all bands. This assumption100

leads to an additional term in the observation uncertainty. Because of the omission of on-board cali-

bration devices, the PROBA-V in-flight calibration relies only on vicarious methods (Sterckx et al.,

2013).

The similarities between the three SEVIRI solar bands and the red, NIR and SWIR PROBA-V

bands permit the evaluation and comparison of the CISAR performances when applied to the105

two instruments, whose spectral responses are shown in Fig. 2. The satellite observations have

been acquired from the European Organisation for the Exploitation of Meteorological Satellites

(EUMETSAT) Earth Observation Portal and from the Flemish Institute for Technological Research

(VITO) for SEVIRI and PROBA-V respectively. The Top Of Atmosphere (TOA) Bidirectional Re-

flectance Factor (BRF) is computed directly from the digital count value in case of SEVIRI, whereas110

for PROBA-V the Level 2-A TOA BRF is provided by VITO (Wolters et al., 2018). The satellite
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Table 2: PROBA-V instrument noise [%]

Band Left camera Center Camera Right Camera

BLUE 4 4 4
RED 3 3 3
NIR 3 3 3
SWIR 5 4 5

observation uncertainty is derived from the radiometric noise σi and the geolocation uncertainty σr.

For PROBA-V two additional terms are calculated: the uncertainty σc associated with the approx-

imation of a mean SRF of the cameras and the one deriving from considering the same viewing

geometry in the SWIR and in the VNIR bands, σΩ.115

PROBA-V radiometric noise has been delivered by VITO (Sindy Sterckx, personal communi-

cation, September 2017) per camera and per band (Table 2). For SEVIRI, this term is computed

considering (i) the instrument noise due to the dark current, (ii) the difference between the detectors

gain and (iii) the number of digitalization levels (Govaerts and Lattanzio, 2007). The geolocation un-

certainty σr, arising from the assumption of the satellite data being correctly mapped to the surface

of the Earth, is estimated for each pixel p as follows (Govaerts et al., 2010):

σ2
r(t,λ̃,p) =

(
∂y0(t,λ̃,px,py)

∂px
σx(t,λ̃)

)2

+

(
∂y0(t,λ̃,px,py)

∂py
σy(t,λ̃)

)2

(1)

where σx,y is the geolocation/coregistration standard deviation and y0(t,λ̃,px,py) is the TOA BRF

in the channel λ̃ acquired at the time t.

The uncertainty σc, originating from the usage of a mean SRF for the three PROBA-V cameras,

has been estimated by simulating the TOA BRF considering both the mean and actual SRF for a

wide range of observation conditions. The assessed σc is lower than 0.2% in all bands and for all120

cameras. Finally, the assumption of having the same viewing geometry for the three PROBA-V

bands is associated with the uncertainty σΩ, computed as follows:

σ2
Ω(t,λ̃,Ω,p) =

(
∂y0(t,λ̃,θ)

∂θ
σθ(t,λ̃)

)2

(2)

Table 3: Total radiometric uncertainty median values [%]

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 3 2 3
PROBA-V 4 3 3 4
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The total relative radiometric uncertainty median values are shown in Table 3.

2.3 Ancillary data

In addition to satellite observations, a cloud mask and the model parameters are required. For SE-125

VIRI observations, the nowcasting Satellite Application Facility (SAF) cloud mask (Meteo France,

2013), provided at the radiometer’s native temporal and spatial resolution, is used; for PROBA-V

the cloud mask is provided by VITO (Wolters et al., 2018). The model parameters, i.e.Total Col-

umn Water Vapour (TCWV), Total Column Ozone (TCO3) and surface pressure are taken from the

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Dee et al., 2011).130

The uncertainties of the model parameters b are converted into an equivalent noise σB , calculated

as follows (Govaerts et al., 2010):

σ2
B(b,λ̃,Ω0,Ωv) =

(
∂y(x,Uoz;Ω,λ̃)

∂Uoz
σUoz

)2

+

(
∂y(x,Uwv;Ω,λ̃)

∂Uwv
σUwv

)2

+

(
∂y(x,Usp;Ω,λ̃)

∂Usp
σUsp

)2

(3)

where Uoz , Uwv are the ozone and water vapour total column concentration, Usp is the surface pres-

sure and σUoz , σUwv and σUsp are their associated uncertainties. The surface pressure contribution

to the signal is about 10 times smaller than the contribution of the water vapour concentration. The

TCWV is distributed among the two atmospheric layers in the forward radiative transfer model as-

suming a US76 water vapour vertical profile (Sissenwine et al., 1976). The fraction of TCWV in135

the scattering layer interacts with the aerosol particles and thus strongly affects the CISAR retrieval.

Unlike the ozone which is mainly present in the stratosphere, the water vapour is dominant in the

lower part of the atmosphere, severely impacting the aerosol retrieval in SEVIRI and PROBA-V

band 0.8 µm (Table 4). Hence, only the uncertainty related to the TCWV is considered and Eq. 3 is

approximated to:140

σ2
B(b,λ̃,Ω0,Ωv)≈

(
∂y(x,Uwv;Ω,λ̃)

∂Uwv
σUwv

)2

(4)

The median values of the Equivalent Model Parameter Noise (EQMPN), computed as in Eq. 4,

are shown in Table 5.

Table 4: Water Vapour transmittance in the SEVIRI, PROBA-V and MODIS bands

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 0.993 0.915 0.988
PROBA-V 1.000 0.990 0.926 0.995
MODIS 1.000 0.990 0.985 0.996
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Table 5: Total EQMPN median values [%]

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 0.28 2.02 0.38
PROBA-V 0.01 0.37 1.49 0.14

2.4 Prior information

Within an OE framework, the definition of the prior information and its uncertainty plays a funda-

mental role. In CISAR four different sources of prior information are considered:145

1. Surface parameters magnitude. The surface reflectance, represented by the RPV (Rahman-

Pinty-Verstraete) model (Rahman et al., 1993), is not expected to undergo rapid variations on

a short temporal scale, hence the retrieval in the previous accumulation period can be used as

prior information for the next inversion (Govaerts et al., 2010). The prior information on the

RPV parameters at the time td is built by computing a running mean over the Nr previously-

converged accumulation periods.

xb(td) =
Σtd−1
ti=0 x̂(ti)

Nr
(5)

The corresponding prior uncertainty is defined as half of the variability range of the solution

x̂(ti) retrieved during the considered Nr accumulation periods.

σxb(td) =
maxt∈Nr x̂(ti)−mint∈Nr x̂(ti)

2
(6)

When Nr is smaller than a certain minimum threshold Nmin (Table 7), the prior information

on the magnitude of the RPV parameters is taken from the last successful retrieval and its

uncertainty is computed as in Eq. 7, where Nd is the number of days since the last successful

retrieval (Govaerts et al., 2017).

σxb(td) =σxb(td−1)1.05Nd (7)

2. AOT magnitude. This information is taken from an annual mean climatology dataset (Kinne

et al., 2013). From this dataset, the prior information on the AOT magnitude for the coarse

and fine mode (absorbing and non absorbing distinctly) is taken. The uncertainty is set to a

high arbitrary value σxb for all the wavelengths (Table 7).

3. Constraints on the AOT temporal variability. These constraints result from the assumption that150

the AOT is not changing rapidly on a very short temporal scale, therefore a maximum temporal
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variation is defined through a sigmoid function. The temporal constraints are described by the

matrix Ha in Eq. 13 of Part I.

4. Constraints on the AOT spectral variability. The AOT is expected to decrease with the wave-

length, proportionally to the ratio of the extinction coefficient (see Eq. 15 of Part I). The155

applied constraints define the matrix Hl (Eq. 14 of Part I).

2.5 Forward model

FASTRE, the CISAR forward Radiative Transfer Model (RTM), and its uncertainty σF are described

in Sect. 4.4 of Part I. FASTRE uncertainty in the SEVIRI and PROBA-V processed bands has been

estimated as in Eq. 10 of Part I, comparing the outcome of FASTRE with a more elaborated RTM,160

where 50 atmospheric layers are considered. The results of this evaluation are shown in Table 6. The

forward model uncertainty is lower than 3% in all processed bands, presenting its largest value in the

SEVIRI VIS0.8 band, the most affected by water vapour absorption (Table 4). The FASTRE two-

layer approximation of the atmosphere does not allow a correct discretisation of the water vapour

vertical profile and, thus, a correct characterisation of its interaction with the scattering particles.165

Moreover, the two-layer approximation assumes that the scattering particles are only present in the

lower layer. Given the spectral behaviour of the AOT, this assumption leads to a higher uncertainty

at wavelengths shorter than 0.4 µm (Seidel et al., 2010). Despite the limitations associated with the

two-layer approximation, FASTRE uncertainty is in the range of 1% - 3% (Table 6), which is smaller

or equal to the instrument radiometric noise.170

Table 6: FASTRE relative uncertainty in the SEVIRI and PROBA-V processed bands [%]

0.4 µm 0.6 µm 0.8 µm 1.6 µm

SEVIRI 1.88 2.75 0.96
PROBA-V 2.38 1.31 2.20 0.75

3 Data processing

3.1 General setup

In order to perform the inversion on actual satellite data, the observations are accumulated in time

and the corresponding uncertainty is computed as described in Sect. 2. This temporal accumulation

is performed in order to build a multi-angular observation vector yΩΛ̃ to characterise the surface re-175

flectance anisotropy. The surface optical properties are considered invariant during the accumulation

period, and therefore a trade-off between having enough cloud-free observations to build the obser-

vation vector and allowing the algorithm to catch surface variations is introduced; the high-repeat
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Fig. 3: Polar plot of the angular sampling during 5 days (2015/05/01-2015/05/05) of SEVIRI obser-
vations (left panel) and during 16 days (2015/05/01-2015/05/16) of PROBA-V observations (right
panel) over Carpentras, France. The blue triangles represent the satellite viewing angles, the red di-
amonds the illumination one. Circles represent the zenith angle and polar angles represent azimuth
angles with zero azimuth pointing to the North.

temporal coverage of geostationary satellites allows a shorter accumulation periods with respect to

polar orbiting instruments. For SEVIRI acquisitions, although the angular sampling does not vary180

much from one day to the next, the length of the accumulation period is set to 5 days in order to

maximise the occurrence of cloud-free observations. For polar orbiting satellites, the length of the

temporal accumulation is normally driven by the repeat cycle, as it is the case for MODIS (DAAC,

2018). In the case of PROBA-V, the satellite orbit is not maintained and there is no repeat cy-

cle. Hence, the choice of the length of the time window during which the satellite observations are185

accumulated results from empirical studies, aiming to balance the trade-off previously described.

Consequently, the length of the accumulation is set to 16 days and the successive accumulation pe-

riods are shifted by 8 days. An example of the angular sampling during this accumulation period is

shown in Fig. 3 for SEVIRI and PROBA-V. During the accumulation period, observations acquired

with a sun or viewing angle larger than θmax (defined in Table 7) are discarded.190

The definition of the first guess is an important aspect of the inversion process and it is defined

in order to minimise the possibility of finding local minima. When a minimum value is found, an

investigation of the cost function in the vicinity of the solution should be made in order to deter-

mine whether or not it is a local minimum. However, this exploration could be computationally

expensive. In order to minimise the possibility of local minima without degrading the computational

performances, the AOT first guess is assigned to successive observations alternating between a low

value τlow and a larger one τhigh (see Table 7). As CISAR retrieves a single set of RPV parame-

ters over the entire accumulation period in each processed band, only one set of first guesses x0 is
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Table 7: CISAR setup parameters

SEVIRI PROBA-V

Nd Length of the accumulation period 5 16
Ns Shift between the accumulation period 5 8
Nmin Minimum converged retrievals to compute 5 5the mean on the RPV parameters
- Maximum number of iterations 20 20
θmax Maximum processed sun and viewing zenith angles [◦] 70 70
τlow Minimum AOT first guess value 0.001 0.001
τhigh Maximum AOT first guess value 0.100 0.100
σxb,τF Fine mode prior uncertainty for the AOT 1.0 1.0
σxb,τC Coarse mode prior uncertainty for the AOT 2.0 2.0
σxb,RPV Default prior uncertainty for the RPV parameters 1.0 1.0

defined:

x0(td) = xb(td)+(−1)itd ∗σxb(td) (8)

where itd is the index of the current accumulation period and xb is the prior information at the

accumulation period td.

From the retrieved set of RPV parameters the BHR is calculated, assuming perfectly diffuse il-

lumination conditions, and the AOT is extrapolated at 0.55 µm through the extinction coefficient

α:

τ0.55,v = τλ,v

(
α0.55,v

αλ,v

)
(9)

where v is the considered aerosol vertex and λ is the wavelength from which the AOT at 0.55 µm is

extrapolated.

3.2 Aerosol vertices195

The choice of the aerosol vertices subsamples the entire solution space to a region where the aerosol

properties can be retrieved. The relationship between the particle size and the single scattering

properties has been discussed in Part I. As recommended, three vertices are selected, defined by the

asymmetry factor g and the Single Scattering Albedo (SSA) ω0: two fine mode vertices, absorbing

and non-absorbing, and one coarse mode vertex, defining a triangle in the [g,ω0] space in each200

processed band. The three vertices are chosen analysing the single scattering properties derived from

the AERONET inversion product on all available observations since 1993 (Dubovik et al., 2006),

similarly to the approach proposed by Govaerts et al. (2010). The aerosol single scattering properties

distribution in the [g,ω0] space, as derived from AERONET inversion product, is shown in Fig. 4

for λ= 0.6 µm. The aerosol properties are clustered in the region defined by 0.60<g < 0.80 and205

0.85<ω0 < 0.98, containing 68.3% of the data (blue line). The selected CISAR vertices defining

11



0.4 0.5 0.6 0.7 0.8
Asymmetry factor

0.5

0.6

0.7

0.8

0.9

1.0

Si
ng

le
 sc

at
te

rin
g 

al
be

do

FN

FA

C

99.7 %
95.5 %
68.3 %

Fig. 4: Solution space (black triangle) for the wavelength 0.6 µm defined by the non absorbing
fine mode (FN), the absorbing fine mode (FA) and the coarse mode (C) vertices. The red, green
and blue lines show the 99.7%, 95.5% and 68.3% probability regions respectively, as derived from
AERONET inversion product for all the observations available over all the AERONET stations.

the solution space cover about the 80% of possible solutions (black triangle).

4 Information content

The analysis of the information content relies on a two-fold approach. First, the Jacobians are used

as an indicator of the TOA BRF sensitivity to state variable changes under different observation210

conditions. Next, the entropy is used as a rigorous metric to determine the information content of

the observation system for each radiometer. The Jacobians, i.e. the partial derivatives of the forward

model with respect to the state variables, are affected by the changes in illumination and viewing

geometry both in terms of sign and magnitude (Luffarelli et al., 2016). The minimisation of the cost

function relies on an iterative approach where the direction of steepest descent is determined by the215

Jacobians (Marquardt, 1963). An analysis of the Jacobians gives information about the amount of

information carried by the observation and highlights variations in sensitivity throughout the year.

The larger the magnitude of the Jacobians, the higher the sensitivity of the signal to the selected state

variable. The Jacobians have been scaled by the variability range of each state variable to compare

their dimensionless magnitude.220

An illustrative example of the distributions of the Jacobians relative to the RPV parameters is

shown in Fig. 5. The Jacobians are dominated by the ρ0 parameter (controlling the magnitude

of the surface BRF), followed by θ, k and ρc (characterising the surface reflectance anisotropy).

Consequently, the retrieval of the surface reflectance shape is more challenging than the retrieval
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Fig. 5: Histograms of the distribution of the Jacobians related to the RPV parameters (x-axis), scaled
by the variability range of each variable. These distributions are obtained from PROBA-V obser-
vations (RED band) over Carpentras, France (vegetated target). Positive (negative) values of the
Jacobian show that the TOA BRF is positively (negatively) correlated to the considered state vari-
able.

of its mean magnitude; nevertheless, its accurate retrieval is necessary to correctly account for the225

coupling between the surface and the atmosphere (Govaerts et al., 2008).

The aerosol contribution to the TOA BRF differs according to the brightness of the surface. Figure

6 shows the AOT-scaled Jacobians distribution over Carpentras (dark surface) and Zinder Airport

(bright surface). The Jacobians over Carpentras reach higher values with respect to the Jacobians

related to Zinder Airport, because the signal at Zinder is dominated by the bright surface (Sun et al.,230

2016). When the magnitude of the AOT Jacobian is close to 0, the observed TOA BRF is not

sensitive to changes in the aerosol concentration in the atmosphere. It is worth noticing that the
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Fig. 6: Distribution of the AOT-scaled Jacobian over Carpentras (dark surface) and Zinder Airport
(bright surface). The histograms are obtained from PROBA-V observations (RED band) over year
2015.
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Fig. 7: Scaled AOT Jacobians timeseries over Carpentras, France (vegetated target) related to
SEVIRI VIS0.6 band (top panel) and PROBA-V RED band (bottom panel) observations. The blue
dots represent the fine mode, the red triangles the coarse mode.

14



Table 8: Median and standard deviation of the scaled Jacobians. The table refers to all processed
targets during 2015. The values are shown for the SEVIRI and PROBA-V bands centred at 0.6 µm.

Median value Standard deviation

ρ0 1.316 0.385
κ -0.008 0.038
θ -0.250 0.265
ρc -0.023 0.023
τF 0.017 0.014
τC 0.007 0.008

AOT-scaled Jacobians can be both negative and positive, meaning that the aerosols can increase or

decrease the TOA BRF depending on the season and the viewing and illumination geometry. This

variability of the sign of the Jacobians, occurring also over dark targets (Fig. 6a), represents one235

limitation in the MODIS Dense Dark Vegetatation (DDV) algorithm (Kaufman et al., 1997), which

assumes that an increase in the AOT results in an increased signal at the satellite.

Table 8 shows the median value and the standard deviation of the scaled Jacobians for all the state

variables at SEVIRI and PROBA-V bands centred at 0.6 µm, over all selected AERONET stations.

This table confirms the previous findings on the Jacobians magnitude shown in Fig. 5 and 6 over240

Carpentras and Zinder Airport. The AOT-scaled Jacobian is about 2 orders of magnitude smaller than

that for the surface reflectance. The variability of the Jacobian sign and magnitude along the year is

illustrated in Fig. 7, where it can be seen that the effect of the aerosols on the reflectance can vary

with the geometry for the same land cover type. The Jacobian variations in Fig. 7 essentially depend

on the viewing and illumination geometry. Aerosol particles mostly scatter in the forward direction,245

given the positive sign of the asymmetry factor g (controlled, among other factors, by the aerosol size

distribution) (Andrews et al., 2006). For this reason, the maximum information on the aerosols is

located in the forward direction, while it decreases when approaching the backscattering direction.

Additionally, a longer atmospheric path increases the aerosol effects on the reflectance, given the

higher probability of interactions between the reflected sunlight and the atmospheric particles. The250

impact of the length of the atmospheric path is highlighted in Fig. 8, showing the Jacobian daily cycle

over Carpentras. The sensitivity of the TOA BRF with respect to the AOT almost disappears at noon,

when the atmospheric path is shortest and the effect of the aerosols on the signal is minimised. A

more detailed analysis of the AOT Jacobians and their relation with the AOT magnitude is performed

by Luffarelli et al. (2016). Given the seasonal variations of the Jacobians, shown in Fig. 7 and 8, it255

is not expected to get the same accuracy of the retrieval throughout the day and throughout the year.

A more rigorous analysis of the information content can be made through the entropy, which

measures the uncertainty reduction (Rodgers, 2000). In an OE framework, the prior information and
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Fig. 8: Scaled AOT Jacobians (left y-axis) associated with SEVIRI observation in the VIS0.6 band
over Carpentras, France, for 2015/6/5. The blue dots represent the fine mode, the red triangles the
coarse mode. The black crosses represent the retrieved AOT at 0.55 µm (right y-axis).

its uncertainty represent a hypothesis on the expected value of the state variables. It is envisaged that

the inversion process provides a posterior uncertainty on the state variables which is smaller than the

prior one; the entropy quantifies this uncertainty reduction. When there is no information coming

from the satellite observations, the entropy will be close to 0 as the observation does not add any

additional knowledge on the system. Formally, the entropy is computed as follows:

H =−1

2
ln

(
|Sx̂|
|Sx|

)
(10)

where Sx̂ (Eq. 21 of Part I) and Sx are the uncertainties of the posterior and the prior information

respectively.

In CISAR, the entropy is calculated considering the surface and atmospheric state variables and260

their associated prior and posterior uncertainty separately; the entropy distribution is shown in Fig. 9.

The distribution of the surface and AOT entropy related to SEVIRI observations exhibits higher val-

ues compared to the one related to PROBA-V observations, given the larger radiometric uncertainty

associated to the observations acquired by the polar orbiting satellite. The entropy depends not only

on the information carried by the satellite observation, but also on the uncertainty associated to the265

prior information. As the prior information on the surface is updated (Sect. 2.4), the associated un-

certainty decreases in time, whereas the prior information on the AOT remains weakly constrained,

as the uncertainty is kept to the default high value. For this reason the entropy associated to the RPV

parameters exhibits smaller value than the one associated to the AOT (Fig. 9a).
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Fig. 9: Distribution of the entropy related to the AOT (left panel) and to the RPV parameters (right
panel).

5 Quality indicator270

5.1 Review of existing methods

Section 2.5 discussed the limitations of the forward model FASTRE. Furthermore, in Sect. 4 it has

been shown how the AOT Jacobian magnitude is subject to temporal variations, depending on the

viewing and illumination geometries. These issues compromise the reliability of the retrieved solu-

tion, which can be assessed using different methods. Dubovik et al. (2011) use the relative fitting275

measurement residual, to filter the retrieval outliers. Such an approach presents some limitations

as the number of degrees of freedom can vary depending on the availability of cloud-free observa-

tions. The requirement on the quality of the fit should be stricter when only a limited number of

observations is available (Govaerts et al., 2010). This specific issue was addressed in Govaerts and

Lattanzio (2007), who developed an approach which also takes into account the number of cloud-280

free observations. The authors observed that the cost function is proportional to the quadratic sum

of the mismatch between the simulation and the observation for each acquisition, weighted by the

observation uncertainty. As the cost function is strongly dependent on the number of observations,

it is not possible to define a universal range of acceptable values for its residual without perform-

ing additional operations on the cost function. Both methods do not correctly identify situations in285

which a good fit is reached but the retrieval of the state variables is not reliable, due to limited or no

dependency of the TOA BRF on the state variables (the Jacobians are close to 0). A more elaborate

QI has been developed for the MODIS Aerosol Product Collection 6 (Hubanks, 2017), which is

composed of different tests accounting for the fitting residual, the magnitude of the retrieved AOT,

the possible presence of cirrus, the brightness of the scene and information on the number of pixels290

and the percentage of water pixels present in the processed area. Despite taking into account dif-

ferent factors in addition to fitting residuals, this approach does not consider the actual information
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content of the satellite observation. Moreover, as CISAR processes each pixel independently, the

information on the number and type of pixels over which the retrieval is performed, as used in the

MODIS product, is not applicable within this method.295

5.2 Overview

A new approach is proposed for the CISAR algorithm, which combines a series of individual tests

j with an associated value pj in the range [0,1], defining a QI(ti) associated with the solution

retrieved at the time ti. These tests evaluate the convergence of the inversion to a solution after a

given number of iterations (0), on the validity range of the total AOT (1) and surface albedo (2),300

on the mismatch between observations and simulations (3) and on the information content of the

satellite acquisition through the Jacobians (4) and the entropy, as discussed in Sect. 4. The entropy

is computed separately for the AOT (5) and RPV parameters (6). These tests have been defined

through an analysis of their impact on the CISAR performance when evaluated against independent

reference datasets. The value pj associated with each test can assume values between 0 (bad quality)305

and 1 (good quality). Figure 10 shows an example of the evaluation of the retrieved AOT against

the AERONET data for the mismatch test (3). As the mismatch increases, the correlation decreases,

while the Root Mean Square Error (RMSE) shows opposite behaviour.
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Fig. 10: Correlation (in red) and RMSE (in blue) variations in function of the mismatch between
the satellite observation and the simulated signal (test 3). The figure refers to the CISAR AOT re-
trieval evaluation against AERONET data. These results are obtain from CISAR applied to SEVIRI
observations.
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5.3 Quality indicator tests

5.3.1 Convergence310

The first test to be performed is on the convergence of the inversion. When the maximum number of

iteration is reached p0 is equal to 0, otherwise p0 = 1.

5.3.2 State variable validity range

The validity of the retrieved total AOT and of the surface BHR is examined in the tests 1 and 2.

In CISAR, a validity range for each state variable is defined, based on physical boundaries and315

empirical observations. When the value of retrieved AOT (BHR) falls on the extremes of this range,

p1 (p2) is equal to 0. The acceptable values for the BHR range from 0 to 1, while the AOT can only

assume positive values smaller than 5. The values p1 and p2 are equal to 1 when 0<BHR< 1 and

0<AOT < 5 respectively.

5.3.3 Mismatch between observation and simulation320

As discussed in Sect. 5.1, the fitting residual between the observation and the simulation is normally

used to assess the reliability of the solution, as it describes how well the signal simulated with the

forward model ym(ti,λ) fits the satellite observations y0(ti,λ). The mismatch between the observed

and simulated TOA BRF is weighted by the observation’s uncertainty σ0(ti,λ). For this test, the

largest mismatch among the processed bands is considered. Two thresholds T1 and T2 are defined325

to identify good (p3 = 1) and bad (p3 = 0) quality retrievals. The difference between the simulated

signal and the satellite observation should have the same magnitude as the observation uncertainty

σ0(ti,λ), therefore the T1 is set to 1. Conversely, the maximum acceptable mismatch value T2 =

2 has been chosen by observing the relationship between the mismatch and the performances of

CISAR when evaluated against the independent datasets used as reference. Fig. 10 represents an330

example of this analysis. When the mismatch assumes values within the range defined by T1 and

T2, thresholds included, a value between a minimum m and 1 is assigned to p3 through a sigmoid

function with width equal to 10/(T2−T1) (Fig. 11). A different coefficient m is defined for each

test j in order to give different weights to the tests, according to the magnitude of their impact on the

retrieved solution and its evaluation against the reference dataset. The outcome of the test 3 is thus335

defined as follows:



p3(ti) = 0 if max
λ

{
|ym(ti,λ)−y0(ti,λ)|

σ0(ti,λ)

}
>T2

p3(ti) = 1 if max
λ

{
|ym(ti,λ)−y0(ti,λ)|

σ0(ti,λ)

}
<T1

m<p3(ti)< 1 if T1≤max
λ

{
|ym(ti,λ)−y0(ti,λ)|

σ0(ti,λ)

}
≤T2

(11)
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Fig. 11: Non linear p3 definition between the minimum value m and 1 which applies when the
mismatch is larger than T1 and smaller than T2.

with λ=1,. . . ,number of wavelengths.

5.3.4 Jacobians

The magnitude of the Jacobians gives information on the sensitivity of the TOA BRF to the state

variables. Performing a test on the Jacobians related to each state variable can be computationally340

expensive. In order to reduce the computational effort, only the Jacobian of the AOT is taken into

account. The spectral constraints applied to the AOT variability as in Sect. 2.4 impose a correlation

between the AOT retrieved in the different spectral bands. Consequently, it is desirable to have large

absolute Jacobians in at least one band. To have a good retrieval of the total AOT, the AOT associated

with each aerosol vertex has to be correctly retrieved. The quantity K̂x(ti) analysed in the test 4 is345

thus the following:

K̂x(ti) = max
λ

{
min
v

{
|Kxλ,v (ti)|

}}
(12)

with λ=1,. . . ,number of wavelengths and v=1,. . . , number of aerosol vertices.

The aim of this test is to discard observations with little or no sensitivity to the AOT, identifying

those situations where the test on the miss-fit is successful because of the prior information and/or

the temporal and spectral constraints (Sect. 2.1) rather than actual information coming from the350

observations. The thresholds T1 and T2 are set to 0.01 and 0.02 respectively. The values of p4 are

defined similarly to p3:


p4(ti) = 0 if K̂x(ti)<T1

p4(ti) = 1 if K̂x(ti)>T2

m<p4(ti)< 1 if T1≤ K̂x(ti)≤T2

(13)
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5.3.5 Entropy

Section 4 discusses how the entropy, which quantifies the uncertainty reduction from the prior knowl-

edge on the system to the posterior uncertainty, represents a rigorous analysis of the information355

content. Tests 5 and 6 analyse the entropy associated with the AOT and the one associated with the

RPV parameters, computed as follows:

HAOT (ti) =− 1

2Nλ
ln

( ∏
λ

∏
vσpost(ti,λ,v)∏

λ

∏
vσprior (ti,λ,v)

)
HRPV (ti) =− 1

2Nλ
ln

( ∏
λ

∏
pσpost(ti,λ,p)∏

λ

∏
pσprior (ti,λ,p)

) (14)

where Nλ is the number of processed wavelengths, λ=1,. . . ,Nλ, p=1,. . . ,number of RPV parameters

and v=1,. . . ,number of aerosol vertices. The normalization to Nλ assures consistency in the entropy

evaluation when different number of bands are analysed, as for SEVIRI and PROBA-V cases. The360

entropy computation is strongly dependent on the magnitude of the prior uncertainty as explained in

Sect. 4. Low entropy might be due to reliable prior information, with a low associated uncertainty.

Similarly, the uncertainty reduction would be very large in case of little prior information on the state

variable. For these reasons, tests 5 and 6 are only performed when the prior uncertainty is smaller

than the validity range of the AOT and RPV respectively and larger than 1/6 of it. The thresholds365

associated with the two tests on the entropy are T1 = 0.1 and T2 = 0.6 that correspond to a 20% and

70% uncertainty reduction respectively. The values p5(ti) and p6(ti) are computed as in Eq. 15.


p5,6(ti) = 0 if HAOT (ti),HRPV (ti)<T1

p5,6(ti) = 1 if HAOT (ti),HRPV (ti)>T2

m<p5,6(ti)< 1 if T1≤HAOT (ti),HRPV (ti)≤T2

(15)

5.4 Quality indicator computation

The final QI is computed by combining the results of the tests performed on the retrieved solution:

QI(ti) = p0(ti)p1(ti)p2(ti)max

1−
6∑
j=3

(1−pj(ti)),0

 (16)

The final QI(ti) ranges from 0 to 1, where 0 designate a poor quality retrieval and 1 indicates a370

reliable solution. Figure 12 shows the variations of the correlation and the RMSE between CISAR

retrieved AOT and AERONET data as a function of the QI. Correlation increases as QI is taking

larger values, while the RMSE decreases. This behaviour is observed with CISAR AOT retrieved

from both SEVIRI and PROBA-V observations (Fig. 12). This correlation increase (RMSE de-

crease) is particularly visible when QI is taking values between 0.0 and 0.2. For this reason, only375

retrievals with QI ≥ 0.2 are considered in Sect.6.
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figure refers to the CISAR AOT retrieval from SEVIRI (in blue) and PROBA-V (in red) observations
evaluated against AERONET data. The QI is rounded to the nearest 0.1.

6 Performance evaluation

6.1 BHR

The CISAR BHR, computed from the RPV parameters, is compared with the MODIS Land product

(Schaaf and Wang, 2015). To account for the different spatial sampling, the MODIS data have been380

averaged on 5x5 km and 1x1 km for the comparison with the retrievals from SEVIRI and PROBA-V

respectively. The results of this comparison are shown in Table 9 in terms of correlation, RMSE,

and Mean Absolute Error (MAE). The CISAR results show a high correlation with the MODIS

product, higher than 0.7 in all the processed spectral bands, except the PROBA-V NIR band, which

shows a correlation of 0.618. The density plots of the CISAR BHR retrievals against MODIS data385

are included in the Supplement for all the processed bands, for both satellites. Despite the instru-

ment differences discussed in Sect. 2.5, the CISAR retrievals and the MODIS Land Product show

similar seasonal trends. Figure 13 shows the BHR timeseries over Zinder Airport (Niger, Africa),

as retrieved from the CISAR algorithm applied to SEVIRI and PROBA-V observations and from

the MODIS Land Product. The rainy season, going from May 20 to October 5 (Weatherspark.com,390

Table 9: CISAR retrieved BHR from actual observations comparison with MODIS in all the pro-
cessed bands.

SEVIRI PROBA-V

0.6 µm 0.8 µm 1.6 µm 0.4 µm 0.6 µm 0.8 µm 1.6 µm

Number of points 7409 744
Correlation 0.917 0.779 0.854 0.743 0.864 0.618 0.841
Root Mean Square Error 0.045 0.067 0.079 0.029 0.052 0.098 0.091
Mean Absolute Bias 0.039 0.067 0.067 0.025 0.045 0.070 0.077
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Fig. 13: CISAR retrieved BHR from SEVIRI (blue dots) and PROBA-V (red dots) and MODIS
Land Product (green triangle) over Zinder Airport (Niger, Africa). The results are shown for each
sensor’s band centred at 0.6 µm, for year 2015. The vertical bars represent the retrieval uncertainty
for SEVIRI and PROBA-V and standard deviation over the selected area for MODIS.

2018), is distinguishable through the decrease of the surface BHR in both the MODIS and CISAR

datasets, although CISAR retrieves a larger seasonal variation with respect to MODIS product. The

effect of the updating mechanism on the surface prior described in Sect. 2.4 is also visible as the re-

trieval uncertainty decreases in time, given that the prior information on the surface is better defined.

395

6.2 Aerosol Optical Thickness

The CISAR AOT retrieval, extrapolated at 0.55 µm, has been evaluated against the AERONET

data over the selected targets listed in Sect. 2. The CISAR AOT retrieval is evaluated in terms

of correlation, RMSE, MAE with respect to AERONET values. Additionally, the percentage of

points falling within the Global Climate Observation System (GCOS) requirements (Systematic Ob-400

servation Requirements for Satellite-Based Data Products for Climate, 2011 Update), defined as

max{0.03,10%}, is also accounted for. The GCOS requirements are a useful tool to compare dif-

ferent algorithms’ performances. However, both the SEVIRI and PROBA-V missions were not
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originally designed for AOT retrieval. The GCOS requirement of 0.03 for low optical thickness

translates into a radiometric noise requirement much better than 2 (1)% at 0.4 (0.6) µm, well be-405

low the radiometric performance of the SEVIRI and PROBA-V instruments (Table 3). The duration

of the corresponding missions provides however a decisive advantage for the generation of AOT

datasets from these instruments. In the following, the GCOS requirements are evaluated in terms of

percentage of retrievals satisfying them.

Figure 14 shows the evaluation of the retrieved AOT against AERONET data for both SEVIRI410

(left panel) and PROBA-V (right panel). The CISAR retrievals from SEVIRI observations shows a

better agreement with the AERONET data compared to the retrievals from PROBA-V observations.

This is in accordance with the poor radiometric performances of the polar orbiting instrument and

with the outcome of the information content analysis performed in Sect. 4.

The boxplots in Fig. 14 show an overestimation of the retrieval for low AOT and an underesti-415

mation for large AOT. A similar behaviour is also observed in Wagner et al. (2010). The underesti-

mation for large values might be partially due to the temporal constraints described in Sect. 2.4, as

they might prevent the algorithm from fitting rapidly evolving aerosol events associated with large

AOT values. However, the applied temporal constraints are intended to optimise the retrieval of

low aerosol concentration, given the global distribution of AOT which is normally smaller than 0.2420

(Kokhanovsky et al., 2007). Additionally, very high AOT normally correspond to local events, es-
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Fig. 14: Boxplots showing the CISAR AOT retrieval extrapolated at 0.55 µm (left y-axis) against the
AERONET data (x-axis) for SEVIRI (left panel) and PROBA-V (right panel) over all the selected
stations. Only retrievals with QI ≥ 0.2 are considered. The blue boxes represent the interquartile
range (IQR), the red horizontal line represents the median value, the vertical dashed bars represent
the 1.5×IQR range and the black crosses represent the outliers. Boxes with less than 10 points are
not displayed. The green histograms represent the AERONET AOT distribution. The right y-axis
shows the percentage of points contained in each bin.
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pecially in Europe (e.g. plume, fire), therefore the AOT obtained by the retrieval from the satellite

pixel containing the AERONET station will be lower than the one measured by the AERONET tower

(Jiang et al., 2007). The histograms in Fig. 14 show that AOT values larger than 0.8 represent less

than 5% of the total number AERONET observations, affecting the reliability of the statistics for425

high values of AOT. The processing of more data would be necessary to increase the confidence in

the results for high AOT values. Some examples of CISAR’s ability to detect high AOT are shown

in the Supplement.

The overestimation of low AOT might originate from the different spatial scale between the satel-

lite observations and the ground measurements. Most of the selected AERONET stations are located430

in Europe (Fig. 1), where the SEVIRI pixel resolution is about 5x8 km (as opposed to 3x3 km at

the subsatellite point), which is compared to AERONET point measurement. The probability of

residual cloud contamination at this scale might thus explain part of the overestimation (Henderson

and Chylek (2005), Chand et al. (2012)). Furthermore, the shortest SEVIRI spectral band is centred

at 0.67 µm, where the sensitivity to low optical thickness is about 2 times smaller than in the blue435

spectral region. Consequently, the retrieval in these cases essentially relies on the prior information

regardless of the very large associated uncertainty. Despite the presence of a blue band and a better

spatial resolution (1 km), the retrievals from PROBA-V observations still show overestimation at low

AOT, due to the poor radiometric performances which decrease the importance of the information

derived from the observations and to the lack of a thermal channel that leads to an unreliable cloud440

mask.

The CISAR potential to discriminate between the fine and coarse mode is analysed next. Figure
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Fig. 15: Fine-coarse mode ratio distribution at 0.6 µm from AERONET (green) and from CISAR
applied to SEVIRI (blue) and PROBA-V (red) observations.
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15 shows the fine to coarse mode ratio distribution related to AERONET data (in green) and CISAR

retrieval for SEVIRI (in blue) and PROBA-V (in red). It can been seen that the distribution related

to CISAR retrievals from SEVIRI and PROBA-V observations underestimate the fine mode concen-445

tration for τF/τC > 3. The percentage of cases where CISAR succeeds in retrieving a predominantly

fine mode contribution to the total AOT (τF/τC > 1), is equal to 80% when the retrieval is performed

on SEVIRI acquisition and 62% when CISAR is applied to PROBA-V data. This represents an im-

provement with respect to the Land Daily Aerosol (LDA) algorithm (Wagner et al. (2010), Table 4)

where particles retrieved by AERONET as spherical were correctly characterised by the algorithm450

only in 12% of cases. This represents a decisive advantage of the proposed approach with a con-

tinuous variations of the aerosol properties in the solution space, as opposed to the use of a limited

number of aerosol classes, as in Wagner et al. (2010). The coarse particle retrieval appears to be

more challenging for both satellites. The percentage of cases where the coarse mode is correctly re-

trieved as predominant is 43% and 30% for the retrieval from SEVIRI and PROBA-V observations455

respectively. The less accurate retrieval of the coarse mode compared to the fine mode is expected,

as the considered wavelengths are less sensitive to the radii in the range of the coarse particles than

to those of fine ones (Torres et al., 2017). This can also be observed in Table 8 where the median

magnitude of the coarse mode Jacobian is less than an half of the fine mode Jacobian.

6.3 Single scattering albedo and asymmetry factor460

In Sect. 3.2 the solution space defined by the aerosol classes vertices has been described. CISAR

retrieves the averaged SSA and asymmetry factor within this solution space as linear combinations
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Fig. 16: SSA distributions at 0.6 µm (left panel) and 0.8 µm (right panel) for AERONET (green),
CISAR applied to SEVIRI (blue) and to PROBA-V (red).
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Fig. 17: Same as Figure 16 but for the asymmetry factor.

of the single scattering properties of each selected aerosol vertex (Eq. 8 and 9 of Part I). Figures 16

and 17 show the SSA and asymmetry factor distributions related to the AERONET inversion product

and CISAR retrievals. All the AERONET inversions are considered, without applying the quality465

test as in Holben et al. (2006). The three datasets show similar distributions, although spikes can

be observed at the extremes of the CISAR retrievals distributions. When the AERONET solution

is located outside the solution space, CISAR cannot converge to it and the retrievals falls on the

solution space boundaries, causing the spikes. The aerosol vertices selection as in Fig. 4 is con-

ceived to limit the number of occurrences of these spikes. Figure 17 shows that the g parameter470

distributions obtained from PROBA-V observations is much narrower than the same distribution

related to AERONET and CISAR applied to SEVIRI observations. This is in line with what has

been discussed in Sect. 6.2 on the poorer CISAR performances in retrieving the predominant mode

when applied to PROBA-V observations rather than the SEVIRI ones. In fact, as in computing g

the aerosol size distribution is the most important parameter to measure (Andrews et al., 2006), an475

inexact estimate of the dominant mode (fine or coarse) leads to an erroneous measurement of the

asymmetry parameter.

7 Discussion and conclusion

This paper describes and evaluates the application of the CISAR algorithm to satellite observations

acquired from geostationary and polar orbiting instruments. The theoretical aspects of CISAR, a480

new generic algorithm for the joint retrieval of surface reflectance and aerosol properties, with con-

tinuous variation of all the state variables in the solution space, are described in Part I. In the latter,
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CISAR is applied to simulated noise-free observations in the principal plane. This paper provides

an evaluation of the algorithm in non ideal situations, i.e.actual satellite observations acquired from

both geostationary and polar orbiting satellites, namely SEVIRI and PROBA-V.485

The proposed retrieval method relies on an OE approach which consists of the inversion of

FASTRE, a simple radiative transfer model composed of two horizontal layers. The FASTRE model

is evaluated in Sect. 2.5 showing an accuracy within 3% when compared to a complex 1D radiative

transfer model. Higher uncertainties are observed in spectral bands affected by water vapour as a

result of the limited vertical discretisation.490

The analysis of the information content of the satellite observations is performed in Sect. 4.

Though the PROBA-V instrument has one blue channel which is not present in SEVIRI, the better

radiometric performances of the geostationary satellite provide more information for the retrieval of

surface reflectance and aerosol properties than the polar orbiting instrument.

The CISAR retrieval is evaluated against independent datasets. The retrieved AOT is compared to495

AERONET data. A specific QI has been developed to disregard suspicious retrievals. With a RMSE

of 0.162 for SEVIRI and 0.176 for PROBA-V, CISAR shows better performances when applied

to the geostationary satellite. CISAR retrieves the single scattering aerosol properties assuming a

linear behaviour of g and ω0 in the solution space; although this assumption is not exactly true

when far from pure single mode situations, CISAR retrieved aerosol properties distributions are in500

good agreement with the AERONET inversion products, especially when the algorithm is applied

to geostationary observations, as discussed in Sect. 6.3. These differences are explained by the

different information content associated with the observations acquired by the two satellites. For

both satellites, CISAR discrimination between fine and coarse mode is improved with respect to the

LDA algorithm (Wagner et al., 2010), as the continuous variation of the aerosol properties in the505

solution space allows more accurate retrievals of the single scattering properties with respect to that

LUT-based approach. The CISAR surface albedo is compared with the MODIS product, showing

a correlation higher than 0.74 in all processed bands (with the exception of the NIR PROBA-V

band). The better performances of CISAR in retrieving the surface reflectance rather than the AOT

are explained by the larger contribution to the TOA BRF of the surface. The small variance of510

surface reflectance on a short time scale allows a good prior definition based on the previous CISAR

retrievals.

Several aspects of the new CISAR algorithm would still require additional efforts to improve its

performance. The analysis of the Jacobian median values has revealed the very small magnitude

of the fine and coarse mode AOT Jacobians. The spectral and temporal constraints of the AOT515

variability play a critical role in supporting the assessment of aerosol properties. However, these

constraints might lead to an underestimation of the AOT for large values. The cloud mask omission

errors impact on the AOT overestimation at low optical thickness deserve additional work. In order

to reduce the impact of cloud contamination in the AOT retrieval, a new version of the CISAR
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algorithm is under development in the framework of the ESA-SEOM ConsIstent Retrieval of Cloud520

Aerosol Surface (CIRCAS) project (www.circas.eu). The new version of CISAR aims to retrieve

both the AOT and the Cloud Optical Thickness (COT), overcoming the need of an external cloud

mask. Within the CIRCAS project CISAR will be applied to observations acquired by the Sea and

Land Surface Temperature Radiometer (SLSTR) on-board Sentinel-3.

As pointed out in Part I, the limited number of state variables retrieved by CISAR allows the525

same algorithm to be applied to sensors which have not been originally designed for aerosol or

surface albedo retrieval. The possibility to apply the same algorithm to data acquired by different

instruments for the retrieval of several ECVs presents a decisive advantage as it provides radiatively

consistent ECVs derived from different sensors. Conversely, the use of separate methods for the

retrieval of different variables might lead to a radiance bias, which has to be corrected before the530

assimilation of these variables (Thépaut, 2003). The effort for the assimilation of surface and atmo-

spheric products could be reduced if the different ECVs were consistently derived with one single

algorithm. The consistent retrieval of the state variables and the algorithm applicability to different

sensors represent an important advantage for the Numerical Weather Prediction (NWP) community,

whose main future challenges are related to a more consistent retrieval of Earth’s system components535

and to the availability of more satellite data.

8 Supplement

Included are the scatterplots of the BHR retrieved by CISAR versus the BHR delivered by MODIS

(Fig. S1, S2), and a few examples of the CISAR high-AOT retrievals compared with AERONET

data.540
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