

Reply to anonymous referee #2

We appreciate the time taken for anonymous referee #2 to carefully read and evaluate our manuscript. We thank her/him for the helpful comments and suggestions to clarify issues and to improve the content, readability and presentation of the manuscript. Below we address each question, suggestion, correction or criticism individually. Referees' comments are shown in blue. Responses are in regular font. Quotes from the manuscript are in quotation marks, with altered manuscript wording given in bold type. References referred to in replies are listed at the end.

Smale et al. describe and document in this paper a ten year time-series of continuous Greenhouse Gas mole fractions measured using a FTIR analyser at Lauder, New Zealand. They describe the improvements introduced to the measurement setup and the instrument and evaluate how these affected the measurement precision and accuracy. Unfortunately they do not describe the results for CO₂ and ¹³CO₂ in this paper and focus only on CH₄, CO and N₂O.

We agree, it would have been nice to include CO₂ and $\delta^{13}\text{C}$ -CO₂, but these datasets are not ready for publication. We have not concluded CO₂ error characterization (details can be found in Smale et. al., GAW report 206, 2012 and Smale et. al., GAW report 213, 2014). The current $\delta^{13}\text{C}$ -CO₂ spectral retrieval analysis and calibration strategies are currently not fit for publication. A complete reanalysis is required using analysis and calibration methodologies prescribed by Griffith, 2018. We intend to do this.

General comments:

I concur with reviewer #1 that the paper is generally well written but way too long. Many of the detailed descriptions could be abbreviated with at least 50% or be transferred into the appendices (e.g. sections 5.4 and 5.5).

Reduction of manuscript length was also recommended by referee 1. Section 5.4 has been moved to the appendices (as Appendix E). We feel that section 5.5 should remain in the manuscript as opposed to the appendices as no previous (UoW/Spectronus FTIR analyser) published study has investigated interferometer performance. We hope that groups using the FTIR analyser/Spectronus will start to routinely look at interferometer parameters as part of overall QC/QA diagnostics.

The overall aim of the manuscript is a detailed investigation of FTIR long term performance. We feel a 50% reduction in content would seriously detract from the amount of detail needed to meet the aim of this work.

We have additional responses to this comment, which are the same as given to referee 1. To save repetition please see replies to referee 1 comments on the same topic (i.e. manuscript reduction).

Changes to the manuscript (same as in reply to referee 1):

Appendix E added.

In the last paragraph of section 5.3 we have added a sentence stating:

"Extended periods of automation are possible (such as at remote unmanned sites) with a different measurement schedule but given that the FTIR is located on-site and accessible, regular checks and intervention are not an issue. **Details on routine maintenance can be found in appendix E.**"

Section 5.2.3 and 5.2.4 has been shortened (reduction in technical detail).

Details pertaining to the air sampling line maintenance in section 4 have been moved to appendix E.

All figures in the manuscript from figure 7 onwards have been relabelled, as figures 5 and 6 are now figures E2 and E3. Sections 5.4 to 5.12 have been relabelled due to section 5.4 now appendix E.

Note: All further replies to comments are relate to the new section and figure numbering in the manuscript.

Although the paper claims that this is the longest time series from this kind of instrument to date, this could be taken with a grain of salt, one could argue that the actual homogeneous time series only starts after the many changes in setup that took place up until Feb 2014.

We thank the referee for culinary advice on how to season our time series, but we disagree with this comment as there are numerous high precision in situ (and remote sensing) time series that span multiple decades comprised of measurements taken with multiple successive instruments but, as a whole, provide single long-term datasets. For example, datasets in Brailsford et al., 2012, Liley et al., 2000 and Prinn et al., 2000

Common to all instruments, parts will be replaced and upgraded to improve performance. In this study each CH₄, CO and N₂O dataset is essentially homogeneous as across the respective time series the same spectral analysis and calibration methodologies have been employed, a common static RCS_p sensitivity is used and all working tanks and target cylinders are on the same scale. Instrument upgrades have improved accuracy and precision, but we do not think this disqualifies it from being considered a single time series.

Stability greatly improved after cell pressure could be actively held at 1100 hPa (Sept 2013), but there have been continual small improvements to the system before and after this major change. How do we define a change that make time series inhomogeneous? Each individual WT change will also introduce a small systematic bias (the largest factor in systematic uncertainty is the WT assignment uncertainty). Is this a discontinuity in homogeneity?

We think we are justified that the statement “Being the longest continuous deployed operational FTIR system...” is not an exaggerated or false claim.

However, the careful evaluation of measurement biases and precision as a function of time as performed here are a significant improvement over just providing the mole fraction time-series, and should be recommended good practice for all published GAW in-situ observations.

Specific comments:

The paper refers in the abstract to the compatibility goals as set by WMO GAW for greenhouse gas observations and compares the most recent results after all improvements and fine tuning to these by looking at the comparison with analyses of flask samples. Although the comparison with flask samples is a useful and common measure for quality assurance it is not the most authoritative measure.

We agree, flask sampling is not the most authoritative in situ measurement. We state reasons why we choose to start a parallel flask sampling: “Routine (weekly) in situ flask air sample collection at Lauder started in May 2009 as a robust proven cost-effective approach to provide independent measurements of CH₄, CO, N₂O, CO₂ and δ¹³C-CO₂ for comparison against FTIR measurements.” and additionally state the drawbacks of using flask samples: “One drawback of flask sampling is that measurements are not continuous, offering only a sparse temporal dataset.”

As in section 6 the rejection criterium for the duplo analysis of the flasks for N₂O at the NIWA GC system is set to 0.5 ppb, I assume that the GC analysis reproducibility is about half of this and thus we cannot expect that the comparison between flask and FTIR measurements will be conclusive and be better than this 0.3 ppb. A better comparison would be to compare with in-situ continuous observations with different techniques such as CRDS or QCL or results of one of the round-robin exercises from the GAW CCL.

An error in the manuscript was spotted in the reporting of the GC N₂O duplo flask rejection criteria of 0.5ppb, it should be 0.4ppb. This does not alter the reported analysis or results as the error was only in the manuscript.

The manuscript (section 6) has been changed to read:

“Samples with intra-flask differences greater than the combined uncertainty in each sample pair are rejected or if flask difference exceed 2.0 ppb, 1.0 ppb and **0.4** ppb for CH₄, CO and N₂O respectively.”

This quantitative change does not alter the referee’s valid point that comparison results must consider the combined measurement uncertainties. The so called authoritative dataset (flask) has uncertainties. Comparison of the measurement differences to that of the GAW recommended compatibility goals also must take into consideration the FTIR measurement uncertainties along with the authoritative dataset uncertainties. The combined FTIR flask difference uncertainty (illustrated as error bars in fig 14 a, d, g) are calculated using both FTIR and flask measurement uncertainties and sample period variability. The uncertainty in the CH₄ FTIR flask measurement differences are comparable in magnitude to the GAW recommend compatibility goal and for CO, the uncertainties are less. For N₂O, the FTIR flask measurement difference uncertainties are greater than the GAW recommended compatibility goal of 0.1ppb. Achieving this goal may be unobtainable given the current FTIR and flask sampling N₂O systematic and random uncertainty components. We agree that a comparison of FTIR measurements against that of another high precision in situ continuous system at Lauder would be very beneficial, especially for N₂O

We have added to the manuscript (section 7) these points:

“For N₂O, a bias of -0.01 ± 0.77 ppb is within the GAW recommended compatibility goal of 0.1ppb but this is more serendipitous when the FTIR flask time series and correlation scatter plots are viewed (Fig. 14 g, h). **Any comparison of bias to that of the GAW recommended compatibility goal also must take into consideration the FTIR and flask measurement uncertainties. In each N₂O FTIR flask comparison, the uncertainties (error bars in fig 14 a, d, g) are greater than the GAW recommended compatibility goal of 0.1ppb. Achieving combined uncertainty estimates less than the compatibility goal may be unobtainable given the current FTIR and flask sampling N₂O systematic and random uncertainty components.** Care must **also** be taken in interpretation as systematic differences dominate in different time periods, but as an ensemble, produce statistical results that could convey a large, but Gaussian spread (Fig. 14i). For instance, there is an increased bias over the time interval 2014.65-2016.08. So far, the causes are unknown. There is no explicit correlation between the bias with any FTIR instrument or flask sample events, and only affects N₂O (not CO or CH₄). We suspect the issue is with the FTIR measurement as the elevated level of N₂O is greater than what simple trend analysis would indicate, as seen in the baseline time series (see Fig. 15c). There is also a sudden (step) decrease of N₂O at the start of 2016 that is not seen in the N₂O flask samples.

N₂O FTIR comparison measurements carried out by Griffith et al., 2011 show much better results. A bias of -0.12 ppb was also reported but with a standard deviation of 0.22 ppb. N₂O FTIR comparisons conducted by Vardag et al. (2014), also report a much smaller standard deviation (0.22 ppb) than our

results. A comprehensive investigation of five continuous N₂O analysers (including the FTIR) by Lebegue et al. (2016), showed FTIR performance comparable to the other instruments. These findings point to a specific but as yet unidentified issue with the Lauder FTIR N₂O measurements. ~~It also highlights the need for independent dataset validation~~ Internal FTIR QC/QA did not identify any issues over the 2014.65-2016.08 period. Overall, for N₂O, such independent validation via flask sampling comparisons may not be of sufficiently low uncertainty or high enough temporal resolution to address issues. Comparisons at a greater temporal resolution, such as another high precision in-situ continuous system operating in parallel, may assist in resolving disparities encountered and reduce combined uncertainty estimates.”

And in section 9 (conclusion):

“Comparison of FTIR and co-located flask measurements show good agreement for CH₄ and CO. Whilst the bias of N₂O FTIR flask comparisons is within GAW recommended compatibility goals, this is serendipitous and dominated by systematic differences. **A comparison campaign at Lauder using another high precision continuous N₂O in situ instrument would be advantageous.** Simplistic baseline time series trend analysis was conducted with calculation of linear annual trends and seasonal cycles. The deduced trends and seasonal cycles align with estimates from other southern hemisphere in situ measurements.”

Lastly, being part of GAW CCL round robin as already been proven to be beneficial. NIWA Gaslab is part of such activities, which highlighted issues in N₂O working tank assignments: “A 0.65ppb bias was observed in WCC-N₂O travelling standard measurements at NIWA-Gaslab during an audit of the Baring Head GAW station in 2009 (Scheel, 2012).”. FTIR measurements of such round robin tanks would highlight this issue locally at Lauder. The ANIWANIWA tank suite performs a quasi-round robin role as suite assignment was done at NOAA GMDL, independent of NIWA Gaslab.

Technical comments:

P8L8: for the PT100 RTD one should specify the tolerance class, the resolution of the transmitter is not that relevant as long as it is order of magnitude better than the tolerance class value. From the value specified in P8L16 one might guess the tolerance class is F 0.1.

The PT100 RTD (flat film) has a ‘Class A’ tolerance value. The tolerance nomenclature was revised in the IEC 60751 2008-0 international standard, thus the new tolerance designation of ‘Class A’ is ‘F0.15’.

The acronym ‘RTD’ is also removed as it is not required further on in the manuscript.

Section 5.1 in the manuscript has been changed to read:

“The FTIR enclosure is thermostatically controlled, with a manual set point at 34.0 °C. Cell temperature was originally monitored with a LM335 integrated circuit sensor attached to the outside of the cell (resolution 0.1 °C) later replaced with ~~an~~ more precise in-cell temperature sensors as described further below.”

Along with changes in Section 5.2.1

“In September 2010, a PT100 (**tolerance class F0.15**) resistance thermometer detector (**RTD**) was inserted into the cell to measure gas temperature invitro.”

P8L19: A thermocouple will show significant more short term and long term drift than any PT100 so the reason for this change is questionable. There also very thin, fast response time, PT100 RTDs.

The original reason for the replacement was to use a temperature probe with a faster response to allow investigation of temperature disequilibrium effects and to bring the Lauder FTIR prototype componentry more in line with the Spectronus FTIR system (which uses the Type-J thermocouple). The biggest 'step' in temperature monitoring was the replacement of the external LM335 with faster response in vitro probes.

In hindsight, we agree, a change from the PT100 to the thermocouple was not needed as both sensors gave similar readings during temperature disequilibrium testing, and in standard operating conditions both sensors give similar readings (see fig 3., before and after April 2013). This is stated as such in Section 5.2.1: "Even though the thermocouple has a faster response time, no significant changes in temperature precision were seen."

Any sensor drift is undesirable. Small long-term temperature drift will not affect the calibrated timeseries, as the calibration method will effectively cancel any drift (assuming the drift effects calibration and sample measurements in the same manner). Given the dataset used in this research we cannot explicitly diagnose any long-term (or short term) temperature drift. The 10-minute averaged cell temperature from 2014.0 to 2017.0 is displayed in the figure below. The dataset is split into two at \sim 2015.3. This is when there was a substantial change in the laboratory air conditioning which effected the FTIR enclosure temperature, hence cell temperature. The red and blue subsets are cell temperatures with 6-sigma outliers removed pre and post laboratory temperature change. The green and orange lines are linear fits to the red and blue subsets respectively. The linear temperature trend prior to 2015.3 was \sim -0.006 $^{\circ}\text{C year}^{-1}$ and 0.007 $^{\circ}\text{C year}^{-1}$ post 2015.3. The trend cannot be completely attributed to sensor drift, as cell temperature maybe slowly varying, but the current analysis is a good indicator of upper limits on temperature sensor drift, and if so due to the small magnitude then such drift will be easily compensated for in the calibration method.

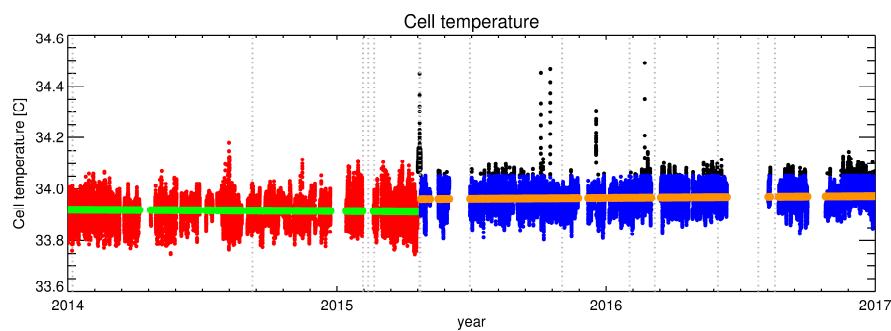


Fig 1. Cell temperature (10-minute average) over three years (2014.0-2017.0). The data set is split into two at \sim 2015.3. This is when there was a substantial change in the laboratory air temperature which effected the FTIR enclosure temperature, hence cell temperature. The red and blue subsets are cell temperatures with 6-sigma outliers removed pre and post laboratory temperature change. The green and orange lines are linear fits to the red and blue subsets respectively.

P10L35:P11L8: There will be a small residual of sample air ($1/200 * 1/870$) left in the WS and TC air samples, is this corrected for in the analyses by using the mole fractions determined in the previous sample?

We do not correct for prior sample residual in WS and TC tank measurements. The main reason is that (assuming complete mixing) the proportion of prior sample residual (psr) is very small and the concentration difference between consecutive measurements is small (relative to the psr). See the equation below.

$$C_{t_corr} = C_{t-1} * psr + C_t * (1-psr) = C_t + psr * (C_{t-1} - C_t)$$

where psr = proportion of prior sample residual

C_{t-1} = species concentration of prior measurement

C_t = species concentration of present measurement

C_{t_corr} = corrected current measurement

In all cases $(C_{t-1}-C_t) \ll (1/psr)$ so $C_{t_corr} \approx C_t$. For example, with a $psr \approx 1/200 * 1/870 \approx 1/174000$ (worst case), or $1/220000$ at 1100 hPa (post April 2013) and an overly exaggerated $(C_{t-1}-C_t)$ of 1000 ppb (rare occurrence but possible for CH_4 between a WS or TC and a sample taken during nocturnal boundary conditions) the correction would be $1000/174000 \approx 0.006$ ppb.

Any applied prior sample concentration correction is well below the FTIR accuracy and precision limits (and respective systematic and random uncertainty estimates). In appendix A of Hammer et al. (2013) prior sample residual proportion (called sample memory effect) of $\approx 0.02\%$ was calculated and not corrected for.

The manuscript (section 5.3) has been changed to read:

“Prior to WS tank measurement the cell is flushed with 200 hPa of WS gas then the cell is re-evacuated to 1 hPa and filled to the prescribed pressure set point. **In this double stage evacuation, the prior sample memory effect is less than 0.001%.** Filling takes approx. 60 seconds.”

P10L35:P11L8: Why were the WS and TC measurements not performed in duplo or triplet? This would allow to detect offsets due to differences between flow and static mode especially for the first filling due to for example differences in water vapor content, this was recognized by the authors as since Feb 2014 the first calibration result is always skipped (P11L24). How big was the effect there?

WS and TC measurements are performed in triplicate after a change in the calibration routine in Feb 2014. With the benefit of hindsight, we should have taken triplicate measurements prior to Feb 2014, but we did not know about the temperature disequilibrium effect and did not know the extent of any static-flow differences. In both cases numerous tests were conducted to quantify these effects which led to the standard operating procedure change in February 2014. Both the temperature disequilibrium effect and change in measurement modes had a large statistically significant effect on measured CO_2 (hence another reason to withhold the current CO_2 dataset until we do more work in it).

As mentioned in the manuscript we note no statistically significant differences in CH_4 , CO and N_2O WT measurements due to the temperature disequilibrium effect. We neglected to mention the effect of any static-flow mode measurement differences. Tests showed no statistically significant differences in CO and N_2O measured in static and flow modes. There were statistically significant differences in the measured CH_4 in all static-flow tests we conducted, but no consistent systematic bias across the tests. The static-flow biases, per test, ranged from ≈ -0.3 to 0.45 ppb. Due to the variability in the biases we cannot determine an overall systematic bias, but we can account for it as a random uncertainty.

We neglected this component in the analysis and presentation in the manuscript (we thank the referee bringing it to our attention!). Data was reprocessed with an additional CH_4 calibration random uncertainty of 0.5 ppb (a conservative estimate, added in quadrature with current terms) in data prior

to February 2014. This propagates directly into scale factor uncertainty (fig 8b) and the measurement uncertainty budget (fig 13a).

Manuscript changes: Figures 8b and Figure 13a were changed due to reprocessing of data.

The manuscript (section 5.3) has been changed to read:

“The combined slower fill rate and longer settling time allows cell temperature and pressure to stabilise with a significant reduction in thermodynamic disequilibrium. The effect of thermodynamic disequilibrium has minimal impact on CH₄, CO and N₂O spectral analysis but significant for CO₂. **Additionally, on the change from static to flow calibrations there were no statistically significant differences in CO and N₂O WT measurements. There were statistically significant differences in CH₄ WT measurements. Tests conducted showed static-flow biases ranging from -0.3ppb to 0.45ppb. The reasons for spread in the bias are unknown. We have included an additional random uncertainty term of 0.5 ppb prior to Feb 2014 in the CH₄ WT uncertainty budget calculation to account for the fact measurements were taken in flow mode whilst calibrations were conducted in static mode.**

Once the cell is filled, tank gas flows at a rate of 0.5 Lmin⁻¹ during which spectra measurements are taken. Four 10-minute spectra are collected. The first is not used, effectively allowing another 10 minutes for the FTIR to stabilise”

The manuscript (section 5.8.2) has been changed to read:

“There is an increase in the CH₄ scale factor **variability** after 2014. This has been attributed to an error in the background spectrum H₂O stripping procedure. This affects both sample and calibration measurements equally hence the calibrated sample measurements remain unaffected. **Conversely, there was a reduction in CH₄ scale factor uncertainty variability after 2014 due to changes in standard operating conditions.** Longer term gradual scale factor changes are harder to diagnose. The **reason for the gradual decline in the CH₄ and N₂O scale factors from 2007 to 2010 is unclear.** Hypothesis include MIR globar intensity deterioration, cell wall effects and pressure/temperature sensor drift. The decline spans multiple WSs and instrument changes.”

The manuscript (section 5.11) has been changed to read:

“Figure 13 displays the total, systematic and random uncertainties of the calibrated timeseries for each species. The average uncertainty is approx. 1.5 ppb, 0.6 ppb, and 0.3 ppb for CH₄, CO and N₂O respectively, with uncertainty proportional with measurement concentration (due to error propagation). The short duration large spikes in uncertainty are related to instances of high sample measurement concentrations in which uncertainties propagate. For two instances in the CH₄ record (at the start of 2007 and 2014) the large uncertainty is due to a larger than usual scale factor uncertainty. **The reduction in CH₄ random uncertainty after February 2014 is due a switch from static to flow mode calibrations.** Since the upgrade in April 2013 RCS_p corrections for all species have been negligible, hence a reduction in associated uncertainty.”

[P19L28: indication an -> indication of an](#)

Thanks for spotting this along with Anonymous Referee #1.

The manuscript has been changed to read:

“A step change is an indication **of** an acute incident in the FTIR, FTIR acquisition procedure or a WS change”

[P19L34: approx. -> approximate](#)

Again, thanks.

The manuscript has been changed to read:

“For example, in mid-2011 there was an **approximate** 3% increase in the N₂O scale factor for a short period.”

P30L25: The link given to the data will become obsolete after November 2018, as this website will be shutdown by JMA. The new WDCGG site is: <https://gaw.kishou.go.jp/>. It would be good to have the total uncertainty and bias estimates as in figure 15 also available together with the mole fraction time series in the same file or as a separate datafile.

A good snippet of advice, many thanks.

The manuscript has been changed to read:

“Calibrated baseline CH₄ FTIR and CH₄ flask sample measurements **are archived in the World Data Centre for Greenhouse Gases database** (<https://gaw.kishou.go.jp/>).”

We will also endeavour to include uncertainty (total, systematic and random) estimates in future data submissions.

Figure 16 there seems to be a cluster of obs for N₂O where flask measurements are higher than the FTIR. It would be useful to see if the lower ring of dots below the 1:1 line between flask 325-328 ppb and FTIR 325-327 is a cluster connected in time that could be removed due to a problem in either GC or FTIR obs.

A lot of time was spent on FTIR and GC data QC/QA. This particular issue was identified during analysis, along with possible erroneous flask outliers in late-2010. In these cases, we could not find any diagnostic or correlation with a specific instrument event pointing to erroneous data collection. The only indication was the measurand itself. It is hard to plausibility defend removal of data without a good cause (especially when it improves the bias). Whilst there maybe causes we cannot currently identify them, thus all data passing QC/QA criteria is used. All this illustrates the variability and toughness of making such long-term measurements and the current state of N₂O measurements (FTIR and flask) at Lauder.

In the case of the N₂O data in the interval 2014.65-2016.08, we did remove this subset but only for timeseries trend analysis (see Fig 15c). The subset is still part of the FTIR dataset and the effect on trend analysis by the removal of the time series was diagnosed (section 8): “To check, the annual trend calculated with inclusion of the flagged erroneous data was estimated at 1.06 ppb year-1 (\pm 0.01) compared to 0.99 ppb year-1, demonstrating that inclusion alters the trend estimate by approx. 6%.”.

References mentioned:

Brailsford, G. W., Stephens, B. B., Gomez, A. J., Riedel, K., Mikaloff Fletcher, S. E., Nichol, S. E., and Manning, M. R.: Long-term continuous atmospheric CO₂ measurements at Baring Head, New Zealand, Atmos. Meas. Tech., 5, 3109-3117, 10.5194/amt-5-3109-2012, 2012.

GAW: Report no. 206. 16th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques, Wellington.

http://www.wmo.int/pages/prog/arep/gaw/documents/Draft_GAW_206_5_Nov.pdf, 2012

GAW: Report no. 213. 17th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques, Beijing.

https://library.wmo.int/pmb_ged/gaw_213_en.pdf, 2014

Griffith, D. W. T.: Calibration of isotopologue-specific optical trace gas analysers: a practical guide, *Atmos. Meas. Tech.*, 11, 6189-6201, 10.5194/amt-11-6189-2018, 2018.

Hammer, S., Griffith, D. W. T., Konrad, G., Vardag, S., Caldow, C., and Levin, I.: Assessment of a multi-species in situ FTIR for precise atmospheric greenhouse gas observations, *Atmos. Meas. Tech.*, 6, 1153-1170, 10.5194/amt-6-1153-2013, 2013.

Liley, J. B., et al. "Stratospheric NO₂ variations from at Lauder, New Zealand a long time series." *J. Geophys. Res.* 105(D9) (2000): 11-633.

Prinn, R. G., et al. (2000), A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, *J. Geophys. Res.*, 105(D14), 17751–17792, doi: 10.1029/2000JD900141.

Scheel, H.: GAW World Calibration Centre for Nitrous Oxide (WCC-N₂O) Report 2009 – 2011 FZK: 351 01 069, https://www.imk-ifu.kit.edu/wcc-n2o/docs/WCC-N2O_Report_2009-2011.pdf, 2012.