Dear Dr. Saverio Mori,

Thank you very much for kindly inviting us to submit a revised manuscript titled “Simulating
precipitation radar observations from a geostationary satellite” to Atmospheric Measurement
Techniques. We would also appreciate the time and effort you and the reviewers have dedicated to

providing insightful feedback on the ways to strengthen our paper.

We would like to submit our revised manuscript. We have incorporated changes that reflect the
suggestions you and the reviewers have provided. We hope that the revisions properly address the

suggestions and comments.
Sincerely,

A. Okazaki, T. Honda, S. Kotsuki, M. Yamaji, T. Kubota, R. Oki, T. Iguchi, and T. Miyoshi



The reviewer comments are in blue and italic and the replies are in black.

Anonymous Referee #1

The manuscript presents the usefulness of a “feasible” Ku-band precipitation radar for a
geostationary satellite (GeoSat/PR). It is an effort ongoing at JAXA to overcome two limitations of
orbiting radar-based systems such as TRMM or GPM, namely, the limited swath and revisit time. A
geostationary satellite needs a larger antenna than TRMM PR and GPM KuPR. A 20-m antenna for a
20 km footprint is considered in the study for its feasibility. The scan of the radar is within 6° that

makes measurements available for a circular disk with a diameter of 8400 km.

Effects of Non Uniform Beam Filling (NUBF) and clutter are presented usng an extremely simple cloud
model. The impact of coarse resolutions of the GeoSat/PR is quantified on 3-D Typhoon observations
obtained with realistic simulations. The subject of is important and the manuscript is, in general, well
written. Therefore it can be recommended for publication. | have some comments and suggestions

that should result in a minor revision work for the authors.
1. What is the need of the approximation of equation 4? (moreover, tetab is not defined in the text).

We made the approximation to truncate the edge of the Gaussian function and to confine the
calculation domain for Pr and Ps. Nevertheless, we changed the beam pattern from Gaussian to the
uniform distribution to consider the impact of sidelobe clutter. We also added the definition of

theta_b. Thank you.

2. The model of NRCS of ocean surface does not take into account the modification due to impinging

rain. Authors should provide evidence of the fact that this contribution can be neglected.

We appreciate the suggestion. As previous studies show (e.g. Braun et al., 1999; Contreras et al.,
2003), the impact of impinging rain is negligible at high wind speed (10 m s1~). Because the main
target of this study is a typhoon which accompanies strong winds, we did not account for the
modification due to impinging rain. We included the reason for the assumption of the study in the

revised manuscript.

3. Lines 233-234: | guess that the case of a 5 km beamwidth is given provided to make something
similar to TRMM PR as reference. The text should better explain why the authors choose the different

spatial resolutions. Also the “feasibility” of a 20x20 m antenna should better justified.

We simulated the case with 5 km beam width to see the sensitivity of the result to radar resolution.

We included the reason why we show the case in the revised manuscript.



For the latter point, we cited a study by Meguro et al. (2009) and Joudoi et al. (2018) on the feasibility

of 20m-by-20m size antenna in the revised manuscript.

4. Lines 350-351: Authors guess that Ku attenuation can be corrected. Do they think that SRT method
can be applied with this configuration ? (maybe some references are needed; the same is for sidelobe

correction)

We are not sure if the SRT method is applicable to this radar measurement because of its relatively
large scattering volume: it is possible that scattering from the surface is not affected by the
attenuation because of NUBF. However, development of the attenuation correction method is out of
the scope of this study. Therefore, we would like to leave this point for future work. Nevertheless, we
added discussion on the impact of the attenuation and the attenuation correction in the revised

manuscript. We also included discussion on the sidelobe clutter.
5. Figure 6: please report in the caption that “distance” in the panel is referred to the nadir.
We defined the term “distance” explicitly in the revised manuscript. Thank you.

6. Figure 8, 9, 11, 12: The captions report “Note that the areas where reflectivity form precipitation
larger than 0 dBZ are shaded”. It is not clear. In figure 9 and 12, close to ground we can see some

darker grey that maybe are due to the resolution of the manuscript available to reviewers.

We revised the caption as “Area where reflectivity from precipitation less than 0 dBZ are left blank”.

To make the point clear, we also modified the figure in the revised manuscript.

7. Figure 8: | suggest to remove wind from panel (a) because it just clutters the “true” reflectivity

image.

Removed.

References:

Braun, N., Gade, M., & Lange, P. A., Radar backscattering measurements of artificial rain impinging
on a water surface at different wind speeds, paper presented at 1999 International Geoscience and

Remote Sensing Symposium (IGARSS), Inst. Of Elect. And Elect. Eng., New York, 1999.

Conteran, R. F.,, Plant, W. J.,, Keller, W. C., Hayes, K., & Nystuen, J., Effects of rain on Ku-band
backscatter from the ocean, J. Geophys, Res., 108(C5), 3165, 2003.

Joudoi, D., Kuratomi, T., & Watanabe, K., The construction method of a 30-m-class large planar

antenna for Space Solar Power Systems, 69" International Astronautical Congress, Bremen, Germany,



1-5, October 2018.

Li, X., He, J., Wang, C., Tang, S., & Hou, X., Evaluation of surface clutter for future geostationary

spaceborne weather radar, atmosphere, 8, 14.

Meguro, A., Shintate, K., Usui, M., & Tsujihata, A., In-orbit deployment characteristics of large
deployable antenna reflector onboard Engineering Test Satellite VIII, Acta Astronautica, 65(9-10),

1306-1316, 2009.

Anonymous Referee #2

The manuscript “Simulating precipitation radar observations from a geostationary satellite” details a
theoretical study of the performance of a hypothetical geostationary weather radar using both a
uniform rain layer and more realistic cloud model output. Offering a cogent analysis of the challenges
of observing precipitation in the presence of surface clutter due to the coarse resolution of a
geostationary platform, the paper is straightforward, well-written, and highly relevant, and should

be published after minor revisions.
Specific Comments

There is one point that is really lacking from the discussion: sidelobe clutter. The idealized antenna
pattern in the paper neglects antenna sidelobes. Given the attention focused on realistic distributions
of precipitation, such analysis can be considered outside of the scope of the paper; however,
discussing the results presented in this manuscript in the context of other studies that look at sidelobe

clutter (Kubota et al., 2016; Li et al., 2017) would add more depth to the conclusions of the paper.

Thank you for the comments and the helpful references. We included the discussion on the impact
of sidelobe clutter and sidelobe clutter correction. Although the impact is not negligible, the
correction method proposed by Kubota et al. (2016) should be applicable after a reasonable number

of observations are collected.

Technical Corrections

Throughout the paper, “incident” should be “incidence.”

Corrected in the revised manuscript.

Lines 44-45: contaminations from the surface clutters -> contamination from surface clutter

Corrected



Line 51: the surface clutters -> surface clutter

Corrected

Line 122: The word “power” should come between “path” and “beam”
Corrected

Line 182: The word “image” after “schematic” is unnecessary.
Removed

Line 227: Include “the” before “Marshall Islands.”

Included

Line 228: Remove “the” before “generation.”

Removed
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Abstract

Spaceborne precipitation radars, such as the TabRiainfall Measuring Mission (TRMM) and the
Global Precipitation Measurement (GPM) Core Obderya have been important platforms to
provide —a direct measurement of three-dimensional pretipitastructure globally. Building upon
the success of TRMM and GPM Core Observatory, #ygad Aerospace Exploration Agency
(JAXA) is currently surveying the feasibility of potential satellite mission equipped with a
precipitation radar on a geostationary orbit. Theagicontinuous observation realized by the
geostationary satellite radar would offer a newighs into meteorology and would advance
numerical weather prediction (NWP) through thefeetive use by data assimilation.

Although the radar would be beneficial, the radarttoe geostationary orbit measures precipitation
obliquely at off-nadir points. Besides, the obsegviesolution will be several times larger tharstho
onboard TRMM and GPM Core Observatory due to thtdid antenna size that we could deliver.
The tilted sampling volume and the coarse resalutiovould result in  more
contaminationscontaminatioffom the-surfaceeluttersclutter To investigate the impact of these
limitations and to explore the potential usefulne§ghe geostationary satellite radar, this study
simulates the observation data for a typhoon casg@an NWP model and a radar simulator.

The results demonstrate that it would be possibl®htain three-dimensional precipitation data.
However, the quality of the observation dependtherbeam width, the beam sampling span, and the
position of precipitation systems. With a wide beaidth and a coarse beam span, the radar cannot
observe weak precipitation at low altitudes du¢htesurfaceeluttersclutter The limitation can be
mitigated by oversampling (i.e., a wide beam widltid a fine sampling span). With a narrow beam
width and a fine beam sampling span, the surfadteclinterference is confined to the surface level
When the precipitation system is located far frov@ madir, the precipitation signal is obtained only
for strong precipitation.
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1. Introduction

Knowing the distribution of precipitation in spaaed time is essential for scientific developments
as precipitation plays a key role in global wated a&nergy cycles in the Earth system. Such
knowledge is also indispensable to our daily ligad disaster monitoring and prevention. However,
observing precipitation globally is not an easktasround-based observations may not adequately
represent the rainfall amounts of a broader areaesthe vast surface of the earth remains
unobserved (Kidd et al., 2016). Alternatively, #i#ts provide an ideal platform to observe
precipitation globally. There are three types oftlnds to observe or estimate precipitation from
satellites: visible and infrared, passive microwaared active microwave (radar). Among them, radar
is the most direct method and is the only sensat tilan provide three-dimensional structure of
precipitation. The first satellite equipped withepipitation radar was the Tropical Rainfall
Measuring Mission (TRMM) launched in 1997 (Kummeretal., 1998; Kozu et al., 2001), and the
first satellite-borne dual-frequency precipitatimaar onboard the Global Precipitation Measurement
(GPM) Core Observatory was launched in 2014 (Hoal.e2014; Skofronick-Jackson et al., 2017).
The observations produced by the precipitationnsadaboard the low-earth-orbiting satellites have
been contributing to enhance our knowledge on melegy. For instance, their ability to see
through clouds helps understand storm structuredly(ket al., 2004) and the nature of convection
(e.g. Takayabu 2006; Hamada et al., 2015; Houaé,e2015).

Building upon the success of the TRMM and GPM COieservatory, the Japan Aerospace
Exploration Agency (JAXA) is currently studying tfeasibility of a geostationary satellite equipped
with precipitation radar (hereafter, simplyGéeSat/PRGPR. The main advantage of
GeoSat/PRGPIRver the existing ones with precipitation radathis observation frequency. Because
the previous satellites are low earth orbitersy tbannot observe the same area frequently. For
instance, TRMM overpasses a 500 by 500 kox 1-2 times a day on average (Bell et al., 1996)

make the situation worse, it is difficult to camuthe whole figure of a large-scale precipitation
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system (e.g. tropical cyclone) at once due to #ireow scan swath (e.g. 245 km for KuPR on GPM
Core Observatory). AlternativelyseeSat/PRGPRstays at the same location all the time and
continuously measures precipitation in its rangeol$ervation. Those data are expected to help
understand important scientific issues. Furthermtirese frequent data could improve the skill of
numerical weather prediction (NWP) through datanai$ation, leading to more accurate and timely
warnings of floods and landslides.

Although GeeSat/PRGPRwould be beneficial, it has potential disadvansageSince
GeoSatfPRGPRmeasures precipitation from the geostationary toribi measures precipitation
obliquely at off-nadir points. It is unclear howseely this may degrade the observation. In addlitio
the tilted sampling volume worsens the contamimatibthe precipitation echo by the surface clutter.
Takahashi (2017) showed that the clutter heightatamically increases with thiecidentincidence
angle from the wide swath observation during thd-elamission experiment of the TRMM. The
impact of the surface clutter interference withaggéincidentincidenceangle would be large if the
horizontal resolution of the radar is coarse, drat ts the case faeeeSat/PRGPRThe horizontal
resolution is limited by the antenna size and wavgth. A larger antenna is needed for higher
resolution. However, it is challenging to constradarge antenna on a geostationary ofbitrently

we-considera-20-m-by-20The JAXA has launched ellgatwith a relatively large antenna of 19 m

by 17 m (ETS-VIII, Meguro et al., 2009). Based be experience and further efforts (Joudoi et al,

2018), currently we consider a 30-m-by-80square antenna as a feasible choice, whoseakpati
resolution is 20 km at nadir, that is several tint@ger than that of TRMM/PR (4.3 km). To
investigate the mission feasibility ébeeSat/PRGPRIt is important to simulate observation of
GeoeSat/PRGPRN to find its potential usefulness and weakness.

In the past decade, a geostationary radar instrukmenwn as the Next Generation Weather Radar
(NEXRAD) In Space (NIS; Im et al., 2007) has beeoppsed. A few studies demonstrated the

capability of NIS. Lewis et al. (2011) examined fhasibility of a 35 GHz Doppler radar to observe



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

the wind field. They showed that the direct measw@t of winds from the geostationary orbit
would be possible for a hurricane case. Li et201{) evaluated the impact of surface clutter tier t
same radar assuming a uniform rain layer. They shdothat most of rain echoes at off-nadir
scanning angles will not be contaminated by thé&serclutter, when rain intensity is greater thén 1
mm h*.

However, the impact of the surface clutter and dbbque measurement would depend on the
shape and position of the precipitation systems Bhidy extends Li et al. (2017) for a realistiseca
By considering the importance to societal and gifiefbenefit, we chose a typhoon as a test case in
this study. We investigate the impact with varidyshoon locations and radar parameters such as
radar beam width and sampling span for realismados of a simulated typhoon case.

This paper is structured as follows. Section 2 dess the proposed specifications of
GeoSat/PRGPRand presents the newly-developed radar simulgdection 3 describes the
characteristics of the observation wileeSat/PRGPRFor an idealized case. Section 4 presents the
results of applying the radar to a typhoon caseti@e 5 provides the sensitivity results to the

location of the typhoonSection 6 shows the impact of attenuation and alelclutter.Finally,

Section 6 provides conclusions.

2. Radar simulator
2.1. Radar specifications

The specifications ofceeSat/PRGPRare summarized in Table. 1. TheeeSat/PRGPHs
anticipated at 13.6 GHz, the same as KuPR onbod®® &ore Observatory. We assume a
2030m-by-2033m square phased array radar with the -palfrer beam width (-3 dB) of 0.032°,
with which we can achieve horizontal resolutior26fkm at the nadir point on the earth surface. The
range resolution is 500 m. Though shorter-rangeluéisn is technically viable, we adopt this value

by considering the balance to the horizontal rasmiu The number of the range bins is 60; the
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corresponding height of the beam center ranges fhensurface to 30 km at nadir. The scan angle is
+6°, which covers a circular disk with a diametéB8400 km on Earth’s surface. BeeSat/PRGPR
were placed at 135°E of the equator, it would cdvem Sumatra to New Caledonia, and from
Australia to the southern half of Japan.

We assume that the satellite can complete thedfsK scan within one hour. In addition to the
normal mode, it is expected to have several moddscan observe a targeting precipitation system
intensively as in Himawari-8 (Bessho et al., 20168}his study, we focus only on snap-shots and do

not consider the time faeeeSat/PRGPR complete the full disk scan.

2.2. Precipitation reflectivity
This subsection describes how to calculate refl#gtimeasured byseeSat/PRZ:)»-GPR ().

First, we convert model hydrometedcsoud water, cloud ice, rain, snow, and graufeieflectivity

on-thetotal backscattering,) and extinction coefficients(,.) at everymodel grid{Zs)point using
an existing software called Joint Simulator foreflae Sensors (Joint-Simulator; Hashino et al.,
2013). The Joint-Simulator is a suite of softwahattsimulates satellite observations based on

atmospheric states simulated by cloud-resolving et®dFhe—computation—of—reflectivity—in

The total backscattering and

extinction coefficients are obtained respectivefyshmming single-particle backscatterirug ) and

extinction coefficientsi;,;) for thei th hydrometeor specie following its drop siZ® @istribution

(N (D)) as follows:

Nspec

Ai oo
b =—To 0 Hz_ﬁb = Z f 0;(D)N(D)dD, (1)
i=1 "0
Nspec o
Eext= Z.f kgxt,i(D)N(D)dD: 2
i=1 0
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hydrometeorspecie—following—its—drop—sizR Hdistribution—{D))}-hydrometeor speciedn this

study, up to five hydrometeor specié®., cloud water, cloud ice, rain, snow, anduged, were

considered. The Mie approximationaissurmedusetd calculatehe-single-particle-backseatteriny

and k;,.; for allthespecies (Masunaga and Kummerow, 2005).
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169 | W} (2 /¥) = 0.5-for W The, andoy_is the half-power beam width (-3 dBj, (1, 6, ¢)_is the

170 | attenuation factor from theadarreflectivity-measured-by-GeeSat/PR is to rangethédirection of
171 | (6, ¢)_andcalculatechsfollews:by

,%4_? P %4% . - (5) //" Es:ﬁgtief: Centered, Indent: First ‘
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172 | The radar reflectivity measured by GPR is calcdlas follows:

fro"'% 6o+ f¢'o+E

24 et Jog-n ¢O_%2 f4(6,$)3,(r,6,9)Ap(r, 6, ¢) cosd do df dr
— 4
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cT 3
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173 | where A_is the wavelengthK the function of a complex refractivity index ofas@ring particles.

174 | Following Masunaga and Kummerow (200%K|?_is assumed to be a constant (0.925) in this studly.

175 | We do not consider the impact of attenuatidp £ 1.0_everywhere) as it can be corrected with

176 | proper methods (e.tguchi et al.2000) for Sects. 3, 4, and 5.

177

178  2.3. Surfaceclutter

179 Surface clutter echoes contaminate the precipitagignals. In this study, we assumed that the
180  surface is completely covered by the ocean for kiityp Radar-received power from the sea surface

181  (Ps) was calculated by

o P# ([P _ P ﬂ £, $)oAe(r,0,8)
S]], = ST a3l -

182 | where o, is the normalized radar cross section (NRCS) efotean surface, anélS the scattering

©)T)

183  area. We obtained, using a model proposed by Wentz et al. (1984)daseobservations from a

184  microwave scatterometer onboard the Seasat satdllie model expresses, as,

0o = bo(Uy)™ AHEB)
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where U, is the 10-m wind speed, arg, and b;are fitted parameters. The NRCS for various

wind speed is shown in Fig2. When raindrops hit the ocean surface, they aidime properties of

the surface and the scattering signals (Bliven.e1897). The impact of impinging rain is neglilgib

at high wind speed (e.g. Braun et al., 1999; Coasreet al., 2003). Since this study focuses on a

typhoon case accompanying strong winds, we doomider the impact of impinging rain. Also, we

do not consider the impact of sidelobe cluttertasn be filtered with proper methods (e.g. Kubota

et al., 2016) for Sects. 3,4, and 5

« [ Formatted: Indent: First line: 0 ch J

3. Homogeneous case

To understand the characteristics of the radarreagen, we first show the results from an
idealized case, in which we assume the atmospraosvi2 km is uniformly filled with a certain
amount of hydrometeor. We tested five cases: 20,480 50, and 60 dBZ. The corresponding
precipitation intensity is roughly 1, 2, 5, 20, a@ mm R if the hydrometeor consists of only rain.
The 10-m wind speed was fixed at 10 thusiformly for all cases. The horizontal resolutiohthe
radar was assumed to be 20 km at the nadir point.

Figure 3a show®. for the case of 60 dBZ. Two features are appadrettte figure. The first is
that the precipitation signal is beyond the preaipn area and becomes taller along with the
distance from the nadir, and the second is thatlecreases monotonically with height. Here and
hereafter, the distance was measured along the ®aface.

Before discussing the reason for these, first welaéx the scattering volume of the

GeoSat/PRGPRHere, the scattering volume of the beam pointamgge r, and scan angl®, and
¢, is defined as the area wherefr,and ¢ satisfy bothr, — % <r<nr+ % and £200>0

less than the first null point (Fig. 1). Note tlsadelobe area is not included in the scatteringivel

in_this section.Figure 4 shows a schematimage-of the scattering volume. At the nadir, the

inreidentincidenceangle is zero, and the scattering volume is nqaatgallel to the earth surface (Fig.
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4a). As thenreidentincidencangle increases, the scattering volume beconted tigainst the earth
surface (Fig. 4b). As a result, the upper edgehefdcattering volume reaches as higl2@s6 km
when the beam center of tl=eSat/PRGPHs at a point 4000 km away from the nadir evethim
lowest range bin (range bin number 1 in Fig. 5b)tHe same angle but the highest range bin, the
scattering volume ranges fro2d km to 4438 km in height (range bin number 60 in Fig. 5bje

range of the scattering volume is even larger widlelobe area.

When the beam center is at the level higher thanptiecipitating area, there is no precipitation
around the beam center. On the other hand, theoftithe scattering volume may touch the
precipitating area with the tilted scattering vokuat off-nadir. In such a case, the scatteringmelu
is not fully filled with precipitation. Such nondarm beam filling (NUBF) results in the reduction
of P. with ZzG;, = 0 in the upper part of the volume compared withftlky filled case. Although
the value is small, stilseeSat/PRGPRatches the signal of precipitation, and tiyshas a value
even when the beam center is at the point higtzer tihe precipitating area. As the scattering volume
becomes more tilted against the earth surface aldtigthe distance from the nadir (Fig. 5a), the
maximum height at which the beam gets a signal fpoetipitation becomes higher along with the
distance from the nadir. Hence, we have the sitpegond the precipitation area and the area
becomes taller along with the distance from thdrnad

The P, magnitude dependence on the height is also exglainy the NUBF. Due to the
experimental setting where precipitation existsyanlthe atmosphere below 2 km, the beam with
the scattering volume touching the level highentBakm areisnot fully filled with precipitation.
The higher theseeSat/PRGPRbserves, the less the scattering volume is fik@tl precipitation.
Accordingly, P. decreases with height.

The pattern ofP; is similar to that ofP,, showing dependence on the distance from the (Raidjr
3b) becauses,, is a function of théacidentincidencangle (Fig. 2).

Figure 6 shows signal-to-clutter ratio (SCR) defires P./P; (dB). The larger SCR, the less
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contaminated by the clutter. In the figure, are&ene the reflectivity from precipitation exceeds 0
dBZ are shaded. For all the cases, SCR is thedaggenadir and high altitudes. The minimum SCR
is found at the surface level around 500 km awagnfthe nadir reflecting the peak of the echo from
the surface clutter. As expected, SCR becomes lahgm precipitation is strong since the received
power from the precipitation becomes larger while is the same for all the cases. The

GeoSat/PRGPRan perceive precipitation only at the nadir paimdi high altitudei the case of 20

dBZ (Fig. 6a), but SCR is larger than zero overwhmwle precipitating area in the case of 60 dBZ
(Fig. 6e) except for the surface level in 0 to 1@@0 away from the nadir. The comparison of the
two cases also suggests that the surface clutigaminates the precipitation signal from high
altitudes for weak precipitation. On the other haifidhe precipitation is strong enough, the clutte
interference is,erylimited, and we should get the signal even at thiéase level.

The simulated results are consistent with Takah@ii7) and Li et al. (2017), suggesting that

both results be plausible.

4. Typhoon case

Section 3 presented the characteristics of refliegtof GeeSattPRGPRHowever, what we can
observe will depend on the size and structure eftéinget precipitation system. To investigate the
capability ofGeeSat/PRGPIHh detail, we ran an atmospheric model and apghedadar simulator
to produce synthetic observations of reflectivitg.an example, we chose Typhoon Soudelor in 2015,
which was the strongest typhoon in that year. Sloudgenerated on 1 August 2015 arouhd
Marshall Islands, rapidly intensified to Super Tgph equivalent to Category 5 Hurricane within 24
hours fromthegeneration and dissipated on 11 August 2015. kghidy, we focused on the mature
stage of Soudelor at 0000 UTC 5 August 2015.

In this section, we focus on the sensitivity to twamar parameters: beam width and beam

sampling span. Three cases were examined: thexfiogits the beam width and sampling span of 20
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km, the experiment named “bw20bs20 The seconduses—the5-km—beam—width—and—span
{bwO5bs05)—and-the-thingses 20-km resolution of beam width, but the bepan is chosen to be 5

km (bw20bs05), representing an over-sampling céseThe third uses the 5-km beam width and

span_(bw05bs05). Although it is unrealistic to assua radar with the 5-km beam width at this

moment, exploring what kind of observations we cgt with the 5-km beam width would be

beneficial for the antenna design in the futuree Tddaisettings are summarized in Table 2.

41. SCALE-RM simulation

We used a regional cloud-resolving model, SCALE-R&fsion 5.0.0 (Nishizawa et al., 2015;
Sato et al., 2015) to simulate Soudelor. SCALE-RNbvased on the SCALE library for weather and
climate simulations. The source code and documaite SCALE library including SCALE-RM

are publicly available athttp://r-ccs-climate.riken.jp/scale/The moist physical process is

parameterized by a 6-class single-moment bulk mltysics scheme (Tomita et al., 2008), and the
five species of hydrometeors (rain, cloud wateyudlice, snow, and graupel) were used to calculate
the radar reflectivity. We use the level-2.5 clesusf the Mellor—Yamada—Nakanishi—Niino
turbulence scheme to represent subgrid-scale embas (Nakanishi and Niino 2004). For shortwave
and longwave radiation processes, the Model SinonlaRadiation Transfer code (MSTRN) X

(Sekiguchi and Nakajima, 2008) is used. Bee://r-ccs-climate.riken.jp/scalédr more detail.

We performed an offline nesting simulation. The ibamtal grid spacings and the number of
vertical levels for the outer (inner) domain webekin (3 km) and 36 levels (56 levels), respectively
Hereafter, the simulation for the outer (inner) @imis referred to as D1 (D2) (Fig. 7a). The initia
and lateral boundary conditions for D1 were takeomf the National Centers for Environmental
Prediction (NCEP) Global Forecasting System (GH®)rational analyses at 0.5° resolution every 6
hour. The initial and lateral boundary conditions D2 were taken from D1. The simulation covers

the period from 0000 UTC 28 July 2015 (0000 UTCJ28y 2015) to 0000 UTC 9 August 2015
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(0000 UTC 7 August 2015) for D1 (D2).

Figure 7 shows the Soudelor’s track and minimum Isgal pressure (MSLP) at the typhoon
center from the best track of the Japan Meteoro&ghigency (JMA) and the D1 and D2 simulations.
The JMA best track shows a rapid decrease of MSlfhg the three days from 1 August. D1
captures the rapid intensification while D2 shovgightly slower intensification than the best kac
As for the track, both D1 and D2 closely follow thest track albeit slightly shifted northward. We

used D2 as a reference to simulate radar obsemngatio

4.2. Results

Figures 8 and 9 show radar reflectivity near thdase level and its vertical cross section in a
mature stage of the simulated Soudelor (0000 UTAu§ust 2015). The results are shown in the
longitude-latitude coordinate for Fig. 8 (a) andtlee scan-angle coordinate of tBeeSat/PRGPR
for Fig. 8 (b-d) covering the same domain as Fifp)8As in the homogeneous case, areas where the
reflectivity from precipitation exceeds 0 dBZ aleded by grey.

Figure 8 (a) and 9 (a) show the reflectivity of tludl-resolution nature run for reference. The
figures show the typical structure of a tropicatlope characterized by no rainfall within the eye,
heavy rainfall in the eye wall, and the spiral eutgnband structure.

The bw20bs20 captures the spatial distribution Wwetlwithout fine structures. The difference is
noticeable in the outer rainband (gray-colored yireavhich the shape of the bands is different from
the reference. With the tilted and relatively lasgattering volume, the radar catches the signal of
precipitation that is in the level higher than teeel shown in the figure. The bw20bs20 also misses
the local maxima of precipitation. For instances #trongest precipitation south of the eye (red are
in Fig. 8a) was not well captured by bw20bs20. Tikibecause the echo from sharp and strong
precipitation was averaged out due to NUBF witliia telatively large scattering volume. For the

vertical cross-section, the observation roughlytegs the structure albeit in a jaggy and disceetiz
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manner because of the tilted and relatively laggtsring volume (Fig. 9b). The tilted scattering
volume also results in the precipitation echo tahan the reference as discussed in Sect. 3.

On the other hand, the satellite observes pretimitaaccurately for both spatial and vertical
cross-sections in bw05bs05 (Fig. 8d and Fig. 9d).

In the case of bw20bs05 (i.e. oversampling cad®), radar inherited the shortcomings in
bw20bs20 due to the wide beam width: the largecipitated area in the outer rainband (Fig. 8c) and
taller precipitation pattern (Fig. 9c) comparedhathe reference. On the other hand, the resulte wer
arguably improved thanks to the fine sampling spampared with bw20bs20. For instance, the
strong precipitation south of the eye was well gegid compared with bw20bs20 (Fig. 9c).
Furthermore, individual convective cells south bé ttyphoon were observed as individual cells
although they were blurred due to NUBF within thegke scattering volume. This is because the finer
sampling span increased the probability for tharbeanter to hit the area of heavy rainfall.

To compare the skills quantitatively, we computeel threat scores with a threshold of 20, 30, 40,
and 50 dBZ for all the experiments. Figure 10 shtved bw05bs05 is the best and also shows the
benefit of oversampling. Namely, the score of bwsflbincreased by more than 20 % on average for
all the thresholds compared with that of bw20bs20.

Figures 9 and 10 also shows the impact of the saidutter. The hatched area in Fig. 9 shows the
area where SCR is less than or equal to zero. Asguthat the SCR of zero is the minimum
threshold to indicate whether the clutter intenfieewill be serious (Li et al., 2017), the hatcheea
is considered as unobservable. The unobservaldeveas confined up to 3-km in bw05bs05, while
they reached as high as 7 km in bw20bs20 and bwB30d$us, to reduce the impact of the surface

clutter, the beam width needs to be narrow enough.

5. Dependence on the position of typhoon

At other than the nadir point, the radar observeipitation obliquely and consequently the
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precipitation echo is easy to be contaminated lkystirface clutter. As mentioned in Sect. 3, how
severely surface clutter contaminates the pretipitzecho depends on thecidentincidenceangle

of the beam, which corresponds to the distance fiemmadir. Therefore, the location of the target
precipitation system should have an impact on thelity of the observations. This section
investigates the sensitivity to the location of tyyghoon.

We used the simulated Typhoon Soudelor as theemraferas in Sect. 4. We picked out the mature
stage of the typhoon whose center is in 18° N, BB&3% an example and moved it north and south to
represent typhoons whose center is in 10° N, 2G8nd,30° N. We assumed the longitudinal position
of the typhoon centers were the same as the sabisapoint for all the cases to compare the
difference originating from the latitudinal posiiomf the typhoon center. The radar used in this
section was the same as the one in the bw20bs05.

Figure 11 shows the precipitation echo at the seadace level for the three cases together with
the reference. Among them, the precipitation patierl0° N was the most similar to the reference,
and the threat score was the highest (Fig. 13Yh&gyphoon position is away from the sub-satellite
point, the precipitation is observed weaker witk thuter-rainband area more expanded, and the
threat score becomes lower (Fig. 13). As discussetie previous sections, those are due to the
widely tilted scattering volume with which the beamaptures the signal of precipitation in high
altitude whose intensity is weaker than that in ldneel shown (cf. Fig. 12). The tilted scattering
volume also resulted in vertically extended praaimn echo (Fig. 12). The further away from the
nadir, the more vertically extended the precipitatecho. This is also true for the clutter height
(SCR < 0): the further away from the nadir, the higher thetter height. However, this is only the
case for the area with weak precipitation. In theaawith heavy precipitation at a higher latituthes,
impact of the surface clutter is limited to the mearface level. For instance, the strongest
precipitation in the south of the eye is not affecby the surface clutter at all in the case of I80°

(Fig. 12d), while those are masked by the clutighe cases of 10° N and 20° N (Fig. 12b and 12c).
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Those results are also evident in the threat s(aashed line in Fig. 13). The surface clutter is
determined by cross sectiasn, integrated over the scattering ardaand botho, and A decrease
along with theireidentincidenceangle in this area. Therefore, the echo from #eesurface clutter
becomes smaller and SCR becomes larger along hethatitude.

We obtained the similar results as shown in SewutitB the typhoon case. When the observation
target is in low latitude (i.e. close to the nadihe clutter height is low, and the radar can olese
weak precipitation free from clutter at high altias. It should be difficult to observe precipitatiat
the near surface level, even if the precipitat®strong. In case the radar observes precipitation
mid-latitudes (i.e. away from the nadir), the radannot observe weak precipitation at most of the

altitude while it is easier to observe strong pitation at any altitude.

6. Impact of attenuation and sidelobe clutter

In the previous sections, we did not consider tm@act of attenuation and sidelobe clutter,

assuming that they can be corrected (e.qg. Iguchl.£2000) or filtered (e.g. Kubota et al., 20116).

this section, we investigate the impact of atteionadnd sidelobe clutter. To consider attenuatiioa,

attenuation coefficient is included in the calcidatof P., P;, andZ (Egs. 3, 6, and 7). The

attenuation coefficients are calculated with Eq, &hd the extinction coefficients are calculatgd b

Joint-Simulator (Hashino et al., 2013). To invest&gthe impact of sidelobe clutter, the observation

volume is expanded to include the sidelobe aretm tipe fifth null point (Fig. 1).

Figure 14 shows the cross-section of the typhooth warious radar parameters; bw20bs20,

bw20bs05, and bw05bs05. Due to the attenuatiolectefity from heavy rain is weakened for all the

cases (c.f. the reflectivity at south of the eyi)is feature is also evident in the threat scoreltie

case with bw20bwO05 (Fig. 15). Figure 15 compargeetttases: The first case (“main”) does not

consider the impact of attenuation, and its obsewasolume does not include sidelobe area, i.e.,

the same as the bw20bs05 in Fig. 10. The secomd(tasin+side”) does not consider the impact of
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attenuation, but its observation volume includedelsbe area, i.e., considering the impact of

sidelobe clutter. The third case (“main+atten.”)nsiders the impact of attenuation, but its

observation volume does not include the sidelola.aFigure 15 shows that the threat score of

“main+atten.” is almost identical to that of “maiahd the impact of attenuation is negligible with

the thresholds of 20, 30, and 40 dBZ. On the oltleed, the threat score of “main+atten.” with the

threshold of 50 dBZ is zero at all heights. Therefdhe attenuation makes it difficult to obtaiimra

echoes from strong precipitation.

On the other hand, the sidelobe clutter contaménétte weak to moderate rain _echoes. For

example, the top of convection at around 17°N iskad by the sidelobe clutter for the cases with

low resolution beam (Figs. 14a and 14b). Figurel$b shows that threat scores of “main+side” are

smaller than that of “main” for the thresholds @ 30, and 40 dBZ while the impact is negligible

with the threshold of 50 dBZ. Therefore, the sithelelutter contaminates weak to moderate rain.

6.7. Summary

We examined the feasibility of radar observation goecipitation from a geostationary satellite.
The results demonstrated that it would be posdiblebtain three-dimensional precipitation data.
However, the quality of the observation was foumdlépend on the beam width, the beam sampling
span, and the position of targeting precipitatipsteams. With the wide beam width and coarse beam
span, the radar cannot observe weak precipitatitmaaltitudes. The limitations can be somewhat
mitigated by oversampling (i.e., a wide beam wiltih a fine sampling span). With the narrow beam
width and fine beam sampling span, the surfacéecliiterference was confined to the surface level.
For the position of the target precipitation systéime larger (smaller) the off-nadir angle, theieras

(more difficult) it is to obtain the precipitatiaignal if the precipitation is strong (weak).

In-thisThisstudy-we-did-ret-coensider also investigated the impd@ttenuatiopassuming-that it
can-be-corrected-{e-g. and sidelddpechi-etal-2000)-Also,-we-assumed-that- the-area-where SCR
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is—grentethon—zeresebsepmblecosumine oglutter e e s benamilable Therelore: an.

The attenuation hinders to obtain rain echoes fsbmng precipitation while the sidelobe clutter

contaminates signals from weak precipitation. Afttenuation correction methodke the

surface-reference method (e.g. Iguchi et al., 200&neghini et al., 2000nd a clutter filteshouid

be-developed-in-thefuture(e.qg. Kubota et al., 20h6st be devised to mitigate the detrimental

impacts One possible idea for the filter may be to digtiish an echo from precipitation and surface
by using Doppler shift, but this remains to be bjsct of future research.

If the wide beam width of 0.032° is used, the ramwdpict may be prohibitively coarse for a
specific purpose. One possible way to effectivedyvdscale such observations is to assimilate the
data for NWP. By doing this, the information cantlesated properly, and we can get precipitation
information in the prediction model coordinate. Hower, it is not trivial whether assimilation of
such data is useful for NWP. In the future, an olbiag system simulation experiment (OSSE) will
be conducted using precipitation measurements atediwith the simulator developed in this study
to evaluate the potential impacts of tieeSat/PRGPRN NWP. Given that wind field observation
may be possible from a geostationary satellitehasva in Lewis et al. (2011), the combined use of

both observations would be an attractive option.
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Tables

Table 1 Specifications of the precipitation radar aboardsggtionary satellite

Parameter Value
Frequency 13.6GHz
Scan angle +6°

Range resolution <500m
Horizontal resolution 20km at nadir
Observation range 30km at nadir

Table 2 Radar settings. The figures show the resolutidghexhadir point.

Experiment Beam width Beam span
bw05bs05 5km 5km
bw20bs05 20km 5km
bw20bs20 20km 20km
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560 | Figure 5 treidentincidenceangle (a) and height of the radar scattering velb) as a function of

561 the distance from the nadir. Thick and thin lines (b) shows the lower and upper bound,

562  respectively.
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566  Figure 6 Signal-to-clutter ratio (SCR) in measuring five gipétation intensity (a) 20, (b) 30, (c) 40,

567 | (d) 50, and (e) 60 dBZas a function of the distance from the nadir (kihjs assumed that the

568  altitude lower than 2 km is filled with homogenequiscipitation.
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584  Figure 9 Precipitation reflectivity (dBZ) along 136.4°E lahgle line passing through the typhoon
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center in the mature stage (0000 UTC, 5 August pfi¥5a) the truth, (b) bw20bs20, (c) bw20bs05,

and (d) bwO5bs05. The areéa-which-SCR—<-0-is-hatched-in{b-d)—Note-that-treaswhere
reflectivity fermfrom precipitationtargerlesgthan 0 dBZ areshaded.left blank and the area in which

SCR < 0 is hatched in (b-d).
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Figure 10 Threat score with a threshold of (a) 20, (b) 30,40, and (d) 50 (dBZ) for bw20bs20

(red), bw20bs05 (green), and bw05bs05 (blue). Thted and solid lines show the threat score with

and without considering the impact of surface elyttespectively.
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596  Figure 11 Precipitation reflectivity (dBZ) measured with bw@5 for the typhoons whose center is

597 in (b) 10°N, (c) 20°N, and (d) 30°N. Contour in dp-corresponds to the area SCR > 0. Panel (a)

598 | shows the truthiNete-thatthe-areasThe amhere reflectivityfermfrom precipitationlargerlesghan
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602  Figure 12 Precipitation reflectivity (dBZ) along 136.4°E Ilgitude line passing through the typhoon
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Figure 13 Threat score with a threshold of (a) 20, (b) 39,4@, and (d) 50 (dBZ) for the typhoons
whose centers are at 30°N (red), 20°N (green),1&itl (blue). The dotted and solid lines show the

threat score with and without considering the intdsurface clutter, respectively.
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Figure 14 Precipitation reflectivity (dBZ) along 136.4°E |dhgde line passing through the typhoon

center in the mature stage (0000 UTC, 5 August Pit5a) the truth, (b) bw20bs20, (c) bw20bs05,

and (d) bw05bs05. The area where reflectivity fiomecipitation less than 0 dBZ are left blank and

the area affected (SCR<0) by main lobe (sidelohd)er is densely (sparsely) hatched in (b-d).
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Figure 15 Threat scores with thresholds of (a) 20, (b) 3p4(@; and (d) 50 (dBZ) for bw20bs05. Red

line overlaps blue line for (a), (b), and (c) amdemn line for (d). The dotted and solid lines shbw

threat score with and without considering the intpdicurface clutter, respectively.
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