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Abstract. This article focuses on a selection of satellite infra-red IASI observations and their simulation in the global Numeri-

cal Weather Prediction (NWP) system ARPEGE (Action de Recherche Petite Echelle Grande Echelle), using the sophisticated

radiative transfer model RTTOV-CLD which takes into account the cloud multi-layers and the cloud scattering from atmo-

spheric profiles and cloudy microphysical parameters (liquid water content, ice content and cloud fraction). The aim of this5

work is to select homogeneous scenes by using information of the collocated Advanced Very High Resolution Radiometer

(AVHRR) pixels inside each IASI field of view and to retain the most favourable cases for the assimilation of IASI infrared

radiances. Two methods to select homogeneous scenes using homogeneity criteria already proposed en the literature were

employed; criteria derived from Martinet et al. (2013) for cloudy sky selection in the French mesoscale model AROME (Ap-

plications of Research to Operations at MEsoscale), and the criteria from Eresmaa (2014) for clear sky selection in the global10

model IFS (Integrated Forecasting System). An intercomparison between these methods reveals considerable differences, ei-

ther in the method to compute the criteria or in the statistical results. From this comparison a revised method is proposed that

is a compromise between the different tested methods, using the two infrared AVHRR channels to define the homogeneity

criteria in the brightness temperature space. This revised method has a positive impact on the observation statistics minus the

simulation statistics, while retaining 36% observations for the assimilation. It was then tested in the NWP system ARPEGE15

and tested for the clear-sky assimilation. These criteria were added to the current data selection based on the Mc Nally and

Watts (2003) cloud detection. It appears that the impact on analyses and forecast is rather neutral.

1 Introduction

Satellite observations are currently the dominant source of information for Numerical Weather Prediction (NWP) systems.

Their assimilation together with in-situ observations give the atmosphere analysis, which is a necessary step in the definition20

of the initial conditions of the forecast. This analysis consists in finding a state of the atmosphere that is compatible with the

different sources of observations, the dynamics of the atmosphere and a previous state of the model. In the Météo-France global

model ARPEGE (Action de Recherche Petite Echelle Grande Echelle, Courtier et al. (1991)), 70% of used observations come

from infrared hyperspectral sounders, of which IASI (Infrared Atmospheric Sounding Interferometer, Cayla (2001) fills a large

part. This sounder provides information about the atmospheric temperature and humidity and through its window channels25
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information about the land surface parameters in clear sky or cloudy parameters can be obtained. However, the wealth of

information provided by this type of sensor with its large number of channels or radiances (8461 per pixel in the case of IASI)

and its overall coverage with a horizontal resolution of 12 km at nadir, is far from being fully exploited. Indeed, the presence

of clouds in the instrument field of view, which affects the majority of observations, prevents from an accurate simulation of

the radiances. In fact, NWP centres use only a small amount of observations from these sounders mostly in clear sky avbove5

clouds. Previous studies have shown that sensitive areas are often covered by clouds (McNally (2002), Fourrié and Rabier

(2004)) and different techniques have been developed in the frame of global models to use infrared radiances in these regions.

In the past, different approaches have been proposed for cloud detection. A method to detect clear channels from high-

resolution IR spectral instruments was proposed by McNally and Watts (2003) to assimilate channels unaffected by clouds.

At the Met Office, Pavelin et al. (2008) showed that it was possible to assimilate cloud-affected infrared radiances when10

retrieved cloud parameters are used as set constraints. The cloud-top pressure (CTOP) and the effective cloud fraction (Ne)

are firstly retrieved by a one-dimensional variational data assimilation system (1D-Var) and then provided to four-dimensional

variational data assimilation (4D-Var) for the assimilation of cloud-affected infrared radiances. The analysis is significantly

improved over the first guess by this method and it is used operationally to assimilate AIRS and IASI cloud-affected radiances.

At ECMWF (European Centre for Medium-Range Weather Forecasts), McNally (2009) proposed a method based on two cloud15

parameters (CTOP and Ne) to assimilate cloud-affected IR radiances directly. In that case, the cloud parameters are determined

with two channels and they are then introduced into the analysis control vector of the 4D-Var system of the global NWP model.

to constrain the minimization.

At Météo-France, the cloud parameters (CTOP and Ne) are retrieved for AIRS and IASI cloud-affected radiances with the

CO2-slicing method Menzel et al. (1983). Channels affected by clouds, with the values of cloud top pressure (CTOP) ranges20

from 650–900 hPa with a effective cloud fraction (Ne) of 1, are assimilated in addition to clear ones in the ARPEGE 4D-Var

and the AROME (Applications of Research to Operations at MEsoscale) 3D-Var Pangaud et al. (2009) and Guidard et al.

(2011).

As pointed out by Errico et al. (2007), studies on the assimilation of clouds and precipitation from satellite sensors have

started in the 80s and despite the encountered difficulties to implement them, operational weather centres are now assimilating25

them with a clear benefit for the forecast quality. Efforts started with microwave radiances and direct all-sky microwave radi-

ance assimilation is effective at ECMWF (Bauer et al., 2010) since 2009 and at NOAA (National Oceanic and Atmospheric

Administration) NCEP (National Centers for Environmental Prediction) since 2016. Even though ECMWF focussed on the as-

similation of microwave imaging and humidity-sounding channels and NOAA NCEP, on the contrary, of temperature channels

from Advanced Microwave Sounding Unit-A (AMSU-A), both centres noticed benefits of such an all-sky assimilation on the30

forecast quality (Geer et al., 2017; Zhu et al., 2016).

Concerning infrared radiance all-sky assimilation, no operational centre is yet to assimilate infra-red observations but re-

search has still started in this area. Many aspects have already been studied as the information on cloud microphysics brought

by the adjoint sensitivity in the assimilation (Greenwald et al., 2002) or by the retrieval of cloudy infrared radiances (Martinet

et al., 2013). In addition the sensitivity, the reproducibility and the nonlinearity of the simulation of IR radiances in the presence35
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of multi-layer clouds was studied using diagnosed cloud schemes (Chevallier et al., 2004) and (Stengel et al., 2010). These

studies also showed beneficial results. A step further was achieved with the study by Okamoto et al. (2014). They studied the

assimilation of multi-layer cloud-affected infrared radiances using the all-sky assimilation approach already implemented for

microwave imager at ECMWF. They particularly investigated the cloud effects on the differences between observations and

simulations and thus proposed an appropriate quality check and dedicated observation errors.5

In this study we are interested in IASI observations, where the radiances are considered with colocated clusters statistical

properties of the Advanced Very High Resolution Radiometer (AVHRR) co-located with IASI on the METOP platform with

a horizontal resolution of 1km at nadir (Cayla, 2001). Intuitively, collocated AVHRR data provide information on surface

properties and the presence of clouds in the IASI Field Of View (FOV). They can therefore be used for cloud detection. The

AVHRR cluster information associated with IASI has already proven to be useful for selection purposes in the context of10

cloud data assimilation, with an explicit treatment of microphysical variables in the AROME model by Martinet et al. (2013).

Eresmaa (2014) at ECMWF also used AVHRR cluster information for cloud detection and observation selection in clear sky.

Martinet et al. (2013) selected cloudy scenes based on cloud homogeneity. This study was done in a 1D-Var framework using

an advanced radiative transfer model (RTTOVCLD) including profiles for liquid water content, ice water content and cloud

fraction to simulate cloud-affected radiances as background equivalents to AROME fields. The persistence of cloud information15

brought by the analysis of cloud variables during a 3h forecast has then been evaluated successfully with an one-dimensional

model AROME version (Martinet et al., 2014).

In this article, we try to determine whether or not collocated AVHRR and IASI information would facilitate the selection of

homogeneous scenes which could be potentially used in an all sky assimilation approach. Section 2 describes the ARPEGE

NWP system, the IASI instrument and the radiative transfer model RTTOV-CLD in cloudy sky conditions. In section 3, infor-20

mation about the AVHRR clusters is detailled, the strengths and weaknesses of the different methods to select homogeneous

observations are discussed, the chosen method is presented together with a description of the selected observations. Section 4

depicts the impacts on analyses and forecasts of selected clear and cloudy IASI observations. Conclusion and perspectives are

given in section 5.

2 Experimental framework25

2.1 The ARPEGE model and its 4D-Var system

The ARPEGE model is the global NWP model at Météo-France, used operationally since the early 1990s (Courtier et al.,

1991). This system is fully integrated within the ARPEGE-IFS software that was conceived, developed and maintained in

collaboration with ECMWF.

This model is a spectral global model with a stretched grid having a horizontal resolution around 7.5 km over France and30

37 km over the antipodes. It has 105 vertical levels according a following-terrain pressure hybrid coordinate, with the first level

at 10 m above the surface and an upper level at around 70 km. Clouds and precipitation are described by using three different

scheme in the ARPEGE model. The stratiform clouds in terms of cloud profile and precipitation are explicitly modeled from
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the microphysical condensation scheme by Lopez (2002). The large-scale effects of deep convection are parametrized from a

mass-flux scheme derived from Bougeault (1985) and the shallow convection ones with the Bechtold et al. (2001) one. In these

last two cases, the cloud fraction and the liquid water, ice and precipitation profiles are diagnosed.

ARPEGE has four analyses per day at 00, 06, 12 and 18 UTC. Since June 20th, 2000 the operational data assimilation system

of the ARPEGE model is a 4D-Var. This implementation, as detailed in Janiskova et al. (1999) and Rabier et al. (2000), is used5

to provide an analysis which corresponds to the best atmospheric state knowing observations, an a-priori state, dynamical and

physical constraints. The background error statistics are derived from a climatological matrix and an 25-member assimilation

ensemble which runs for every analysis times. The control variables considered are temperature, specific humidity, vorticity,

divervence and the logarithm of the surface pressure.

At each analysis around 7 million observations are assimilated. They include conventional observations (from radiosound-10

ing, aircraft, ground stations, ships, buoys, etc.) and satellite data. These latter include radiances in the infrared and micro-

wave spectra such as AIRS (Atmospheric InfraRed Sounder), IASI, CrIS (Cross-track Infrared Sounder), SEVIRI (Spinning

Enhanced Visible and InfraRed Imager), AMSU-A (Advanced Microwave Sounding Unit-A), MHS (Microwave Humidity

Sounder), ATMS (Advanced Technology Microwave Sounder) and atmospheric motion vectors. Scatterometers provide infor-

mation on ocean surface wind. Zenithal total delay signals and from radio-occultation measurements from the Global Naviga-15

tion Satellite System (GNSS) are also assimilated.

With the advent of hyperspectral sounders such as AIRS and IASI, a variational bias correction (VarBC) method (Auligné

et al., 2007) has been operationally implemented at Météo France and notably in the ARPEGE model. The VarBC scheme

aims to minimize systematic innovations in radiances while preserving the differences between the background and other

observations in the analysis system.20

The observation operator translates the atmospheric variables quantities into the measured quantities for comparison with the

actual measurements. For satellites radiances, it includes a radiative transfer model. It has then some limitations. Indeed, several

atmospheric conditions are difficult to model and impose to exclude them in the assimilation process. The infrared radiances as

IASI observations affected by clouds must be treated more carefully than in clear-sky conditions as their modelisation is more

difficult.25

The assimilation of clear radiances at Météo France is based on the McNally and Watts cloud detection scheme (McNally

and Watts (2003)) which was designed to detect and isolate cloudy radiances from the clear-sky spectrum for a particular

pixel. The method consists in finding the altitude at which the cloud affects the radiances and in filtering out the contaminated

channels. The observed spectrum is compared to a clear sky simulated spectrum from the model guess. Channels are ordered

according to their altitude sensitivity. This ranked partition is computed separately for each band sensitivity (CO2, water vapour,30

ozone. . . ). In addition, a cloud characterization is made using cloud parameters (a cloud top pressure (PTOP) and an effective

cloud fraction (Ne)) deduced from a CO2-slicing algorithm ( Pangaud et al. (2009)). These two parameters are used to model

the radiative impact of cloud as a single layer cloud, with an emissivity set to 1 using a clear sky radiative transfer model.
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2.1.1 Main features of the IASI instrument

IASI is a key element of the Metop series payload of European polar orbiting meteorological satellites (Cayla, 2001). It was

designed by CNES (Centre National d’Etudes Spatiales) in cooperation with EUMETSAT. The first flight model was launched

in 2006 on board the first European meteorological satellite Metop-A in polar orbit. The second instrument, mounted on the

Metop-B satellite, was launched in September 2012. The third instrument will be mounted on the Metop-C satellite, which is5

scheduled to be launched during the Autumn 2018. The horizontal resolution of the instrument is 12 km at the nadir. IASI is

dedicated to operational meteorological soundings with a high level of accuracy (specifications on temperature accuracy: 1 K

for 1 km and 10% for humidity (Chalon et al., 2001)). Its measurements are also useful for atmospheric chemistry to estimate

and monitor different trace gases such as ozone, methane or carbon monoxide on a global scale (Hilton et al., 2012).

10

IASI is a passive IR remote-sensing instrument using an accurately calibrated Fourier transform spectrometer to cover the

spectral range from 3.62 µm (2760 cm−1) up to 15.5 µm (645 cm−1) with 8461 channels. Its spectral resolution is 0.5 cm−1

with a spectral sampling of 0.25 cm−1. The IASI spectrum can be divided into three major bands:

– from 645–1210 cm−1 : CO2, window and ozone channels mainly sensitive to temperature, called long-wave (LW)

channels;15

– from 1210–2040 cm−1 : channels mainly sensitive to humidity, called water-vapour (WV) channels;

– from 2040–2700 cm−1 : named short-wave (SW) channels.

Only a subset of 314 channels (300 channels selected by Collard (2007) and 14 additional channels for monitoring purposes)

used in operations at Météo-France, is considered in this study

2.1.2 Towards the assimilation of cloudy infrared IASI radiances20

Assimilation of cloudy radiances is a crucial challenge for NWP centres as the cloudy observations discard represent an

underexploitation of hyperspectral sounders and an error source in sensitive meteorological areas (McNally, 2002; Fourrié

and Rabier, 2004). As mentioned in the introduction, studies about all-sky infrared assimilation have started. The radiative

transfer model RTTOV-CLD for cloudy sky, included in RTTOV version 11 (Saunders et al., 2013), offers a realistic modeling

of the cloud scattering. This model also allows to better describe the cloud emissivity as well as cloud scattering, using the25

microphysical cloud profiles (water content, cloud ice content and cloud cover).

To simulate the radiances observed in cloudy conditions using RTTOV-CLD, we use two main types of clouds: firstly liquid

water cloud, which corresponds to the Stratus Continental and Stratus Maritime ; secondly the ice water cloud of the Cirrus

type, using Baran parameterisation (Vidot et al., 2015) to define the optical properties.

To illustrate the benefit brought by RTTOV-CLD, Figure (1) shows IASI brightness temperature observations of a cloud-30

sensitive surface channel (1271, 962.5 cm−1) and corresponding simulations with RTTOV considering clear-sky and RTTOV-

CLD. Brightness temperatures less than 250 K are usually associated with higher elevation cloud structures. By using RTTOV
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in clear sky (figure 1.b) to simulate IASI observations, despite the presence of some cases with almost similar values, many

cloud structures are not well simulated due to the lack of cloud information in the radiative tranfer simulation. On the other

hand, when IASI observations are simulated using RTTOV-CLD (figure 1.c), a good agreement is obtained and similar cloud

structures are found, for example, over the North Atlantic (30N-70N, 40W-0W) and above (30S-70S, 60W-0W) the Southern

Atlantic Ocean. In this case, clouds in mid-latitudes are better simulated than in the Tropics. This may be explained by the fact5

that clouds are better simulated in the ARPEGE model for mid-latitudes than in the Tropics.

3 Selection method of homogeneous observations

The assimilation of cloudy radiances in NWP models remains an innovative challenge. In the context of the preparation of

all-sky assimilation, we plan to assimilate clear or cloudy observations that are completely covered the IASI FOV in a ho-

mogeneous way, discarding the cases of fractional cloud observations. These scenes are supposed to be better characterized10

and simulated than fractional cloudy scenes in NWP models. Indeed, by selecting homogeneous cloudy scenes in both model

and observation spaces, we improve the agreement between observations and background simulations. This selection of cases

seen as homogeneous by both IASI and the model avoids misplacement errors. In this section, limited to cases over sea to

avoid problems related to the land surface properties, we describe several methods for analysing the homogeneity of the scene

in the observation and model space. However these methods were applied over all surface in the assimilation experiments of15

section 4.

3.1 AVHRR clusters

In order to select homogeneous pixels, the AVHRR imager information collocated within IASI on the MetOp platform is used.

The spatial resolution of AVHRR observations is around 1 km at nadir and measures the radiation emitted in six broad-band

channels: one visible channel, two near-infrared channels, a shortwave infrared channel and two long-wave infrared channels20

(10.5 µm and 11.5 µm). Two IASI Level 1c products provided by EUMETSAT were used: the AVHRR clusters (Cayla, 2001)

and the percentage of cloudy AVHRR pixels in the IASI FOV (product GEUMAvhrr1BCldFrac:Pequignot and Lonjou (2009)).

The AVHRR pixels are clustered into homogeneous classes in the radiance space, (visible and infrared channels) using the K-

mean classification algorithm. For each AVHRR cluster and each AVHRR channel, the mean radiance, the standard deviation

and the class coverage in the IASI FOV are given.25

3.2 Selection criteria for homogeneous observations

This study intends to focus on those IASI pixels that contain only one cluster, which corresponds to a homogeneous scene.

However only 2% of daytime IASI observations over sea contain only one class. The aggregation is built with all available

AVHRR channels (visible, NIR, IR), several classes can be produced with the K-mean classification even with relatively small

standard deviations for the IR channels. An IASI FOV with several classes, each one having a small standard deviation and a30

mean radiance close to the ones of the other classes, can thus be more homogeneous than a FOV with a single class.
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(a) Observations

(b) RTTOV (clear-sky) simulations

(c) RTTOV-CLD simulations

Figure 1. IASI brightness temperature (K) observations (a) from Metop A and B satellites and corresponding simulations using RTTOV (b)

and RTTOV-CLD (c) for surface channel (1271, 962.5 cm−1) for 30 January 2017 daytime over sea from ARPEGE 6-hour forecast fields.

For this reason, the number of AVHRR clusters within each IASI pixel has not been used as a homogeneity criterion, but

these characteristics have been used to calculate the overall AVHRR cluster statistics, aggregating the information provided by

all clusters in the IASI FOV.
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We tested four methods for selecting homogeneous scenes by calculating homogeneity criteria in the observation space as

well as in the model space, using the AVHRR channels. The first two ones are described in the literature and we propose two

other ones which are detailed below.

3.2.1 Homogeneity criteria derived from Martinet and al., (2013)

These homogeneity criteria are based on a single AVHRR infrared channel 11.5 µm, which is used to compute three homo-5

geneity tests, the first two tests are calculated in the observation space and the third one in the model space:

Intercluster homogeneity

The intercluster homogeneity is based on σinter defined as:

σinter =

√√√√ 1∑
Cj

N∑

j=1

Cj(Lj −Lmean)2 (1)

Where Lj is the mean radiances of cluster j at channel 11.5 µm , Lmean represents the radiance weighted average. The10

weighting is determined by Cj is the cluster fraction of each class inside the IASI pixel. N is the number of classes in the IASI

pixel.

A small calculed standard deviation σinter means that all classes observe a similar cloudy scene in the infrared channel. If this

standard deviation is too high, each class observes a different scene (clear or cloudy) and the IASI pixel is very heterogeneous.

Intracluster homogeneity15

In order to finalize the homogeneity criterion in the observation space, it is also necessary to check if each class itself is

sufficiently homogeneous, using the following formula:

σintra =

√√√√ 1∑
Cj

N∑

j=1

Cjσ2
j (2)

Where the σj are the standard deviations of each cluster j calculated for the infrared channel 11.5 µm. The IASI observation

is considered homogeneous if it verifies the following criteria:20

– Ratio between intracluster homogeneity σintra and mean radiance Lmean < 4%.

– Ratio between intercluster homogeneity σinter and mean radiance Lmean < 8%.
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Background departure check

Finally, in order to obtain a similar criterion in the model space, each AROME grid point within IASI FOV was used to simulate

the equivalent AVHRR channel 11.5 µm with RTTOV-CLD. Homogeneous IASI observations are preserved if the ratio of the

standard deviation of the AVHRR simulations and the simulated mean radiance of the AVHRR is less than 8%.

Adaptation of the method5

In our study, which focuses on the ARPEGE global model, we chose to use the simulated brightness temperature from the

guess profiles coming from a 6-hour forecast and interpolated using 12 points surrounding the observation position. The

homogeneous cases are retained as long as the difference between AVHRR observations and simulations is less than 7 K. This

method will be noted M2013.

3.2.2 Homogeneity criteria derived from Eresmaa (2014)10

The study of Eresmaa (2014) aimed to propose an imager assisted cloud detection for the global ECMWF NWP system and

was based on the hypothesis that each AVHRR cluster are made of fully clear or fully cloudy pixels.

Therefore, his selection criteria is only intended to diagnose and retain observations when they were completely clear,

using the last two infrared channels of AVHRR (10.5 µm and 11.5 µm). This detection is based on three checks called the

homogeneity check, the intercluster consistency check and the background departure check. If a IASI pixel do not satisfy one15

of these checks, it is not free of cloud and is rejected.

The standard deviation of the brightness temperatures of the two infrared channels from all pixels present in the FOV is used

for the first check. If both standard deviations are over the pre-determined threshold values (0.75 and 0.80 K, respectively), it

means that a cloud is potentially observed and the IASI observation is rejected.

The intercluster consistency check relies on the comparison between the properties of the different clusters within the IASI20

FOV. The distance of each cluster to the background in both infrared AVHRR channels as well as the distance between each

pair of clusters. A cloud is detected if there is a pair of clusters covering more than 3% of the IASI FOV and for which the

intercluster distance exceeds the minimum value of the distances between these clusters and the background.

The distance between 2 clusters j and k is computed as the squared-summed intercluster departure:

Djk =
5∑

i=4

(Rj
i −Rk

i )2 (3)25

where Rj
i is the mean brightness temperature of cluster j for channel i. In addition the distance of the cluster j to the

background is computed with:

Dj =
5∑

i=4

(Rj
i −RBG

i )2 (4)

9
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Where RBG
i is the background brightness temperature for AVHRR channel i. The observation is rejected due to the diag-

nostics of the presence of a cloud if the following inequality is true and the coverage of clusters j and k is over 3%:

Djk >min(Dj ,Dk) (5)

The last check on the background departure is computed as a fractional-weighted mean of the squared-summed background

departures:5

Dmean =
N∑

j=1

Djf j (6)

where N is the number of clusters in the IASI FOV and f j is the fractional coverage of cluster j. The presence of cloud is

diagnosed if Dmean exceeds the threshold value of 1K².

Adaptation of the method

Since this method assumes that each cluster is made of pixels that are either all clear or cloudy, its homogeneity tests have been10

adapted to the selection of clear and cloudy pixels, with criteria that would fit our purpose, with the first test in the observation

space and the second one in the model space. Selection thresholds were modified and all simulations from background made

with RTTOV-CLD.

– Inter-cluster homogeneity. This test uses the standard deviation of the infrared brightness temperature, calculated on

all clusters occupying the IASI field of view. The standard deviation is calculated in the same way as Eresmaa (2014)15

but the IASI pixel is considered homogeneous if the two standard deviations (one for each channel) are below their

predetermined threshold values of 0.75 K and 0.8 K respectively.

– Background departure check. In this test, we used the Dmean proposed by Eresmaa (2014) but the IASI pixel is consid-

ered as homogeneous if Dmean is less than 49 K².

This method is referenced as E2014 in the following.20

The threshold values of the homogeneity criteria derived from Martinet et al. (2013) and Eresmaa (2014), are based on the

analysis of statistics, applied to all IASI FOVs of the different situations (day/night at sea). Threshold values are specified in

such a way that the standard deviation between the observations and simulations is not too large while keeping a fair amount

of the observations.

3.2.3 Selecting homogeneous scenes in observation space25

This third method, (called Obs_HOM thereafter) proposes a homogeneity check in the brightness temperature space calculated

only on the observation space, using both infrared AVHRR channels (10.5 µm and 11.5 µm). This inter-cluster homogeneity

10
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criterion is based on the relative standard deviation of AVHRR clusters inside the IASI pixel. This test is satisfied when all

classes observe a very similar scene in the AVHRR infrared channels. To evaluate the interclass homogeneity, the standard

deviation of the mean brightness temperature of clusters which occupy the IASI FOV has been calculated using the following

formula:

σinter =

√√√√ 1∑
Cj

N∑

j=1

Cj(Ri,j −Ri,mean)2 (7)5

Where: Ri,j is the mean brightness temperature of cluster j on channel i, Ri,mean represents the weighted average on

channel i, N is the number of classes in the IASI pixel, and Cj is the cloud fraction.
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Figure 2. Density plot of the values of effective cloud fraction retrieved from IASI by a CO2-slicing algorithm (on the abscissa) with respect

to the relative cluster standard deviation of the mean radiances (on the y-axis) for intercluster homogeneity for (a) the AVHRR IR Channel

(10.5 µm) and (b) the AVHRR IR Channel (11.5 µm)

Figure 2 provides a calibration to determine the thresholds to be used to define homogeneous scenes. These thresholds

should lead to a sufficient size of the selected dataset and avoid selecting the fractional cloud as much as possible. Therefore

we decided to select an observation if the relationship between intercluster homogeneity and mean radiance for both AVHRR10

IR channels (10.5 µm and 11.5 µm) are less than 0.8%.

3.2.4 Compromise for the homogeneous scene selection

Based on the previous methods, we propose a fourth one which represents a compromise between them. Two AVHRR infrared

channels (10.5 µm and 11.5 µm) are used, and we define two homogeneity criteria in the observed and simulated brightness

temperature spaces.15

The first criterion for homogeneity is the interclass homogeneity check which was used in the third method, calculated in

the observation space (presented in section 3.2.3). Similarly, in model space, we used Dmean (presented in section 3.2.2).
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Methods Literature AVHRR channels Homogeneity criteria Test on background simulation

used in observation space

M2013 Martinet et al. (2013) 11.5µm intra and intercluster distance with observation

E2014 Eresmaa (2014) 10.8 and 11.5µm intercluster average distance with each cluster

Obs_HOM 10.8 and 11.5µm intercluster No

COMPR 10.8 and 11.5µm intercluster average distance with each cluster
Table 1. Summary of the criteria for homogeneous IASI observation selection used in this study.

Only observations that fulfilled the two following criteria were selected:

– Ratio between intercluster homogeneity and mean radiance for two AVHRR IR channels (10.5 µm and 11.5 µm) < 0.8%.

– Sum of the average distances between each cluster and the background < 49 K².

This method is named COMPR in the following. All the four methods are sumerized in Table 1.

4 Inter-comparison of selection criteria5

We applied our selection criteria on January 30, 2017 and result from an observation sample composed of 59,040,599 IASI

FOV during the daytime over the sea are presented. Same conclusions were found for the other cases (night-time and/or over

land).

To ensure that the monitoring is focused on overcast and clear scenes, the percentage of cloudy AVHRR pixels in the IASI

field was used to assess the choice of homogeneity criteria.10

Our dataset is made of 50% of the observations entirely covered by clouds and 12% of clear observations according to the

AVHRR cloud cover. The bias and standard deviation of observations minus simulations (O-G), are shown in Figure 3.(a) for

the 314 IASI channels. As expected, the best statistics are obtained for channels less affected by clouds (e. g. CO2 and water

vapour high peaking channels).

The mean standard deviations are larger for window channels sensitive to the surface, therefore to the presence of clouds:15

11.7 K with a bias of -0.6 K for window channels between 770-980 cm−1 and 11.0K with a bias of -0.7 K for window

channels between 1080-1150 cm−1. Channels between 650-770 cm−1 show an averaged standard deviation of 2.5 K and a

bias of 0.06 K.

The M2013 selection method (figure 3. (b)), reduces the standard deviation of 3.7 K with a bias of -0.16 K and to a standard

deviation of 3.6 K with a bias of -0.37 K for window channels between (770-980 cm−1) and (1080-1150 cm−1), respectively.20

For brightness temperature channels in the range between (650-770 cm−1), we obtain a standard deviation of 0.8 K with a bias

of 0.14 K. The E2014 selection method (figure 3. (c)) improves the bias to 0.11 K and -0.16 K with a standard deviation of

2.0 K for the window channels between (770-980 cm−1) and (1080-1150 cm−1), respectively, while the standard deviation of

12
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Figure 3. Bias (red solid line) and standard deviation (green dashed line) in Kelvin (K) of the differences between IASI observations

and background simulations using RTTOV-CLD and a 6-hour forecast: (a) for the whole dataset, (b) after applying the homogeneity criteria

derived from (Martinet et al., 2013), (c) after applying the homogeneity criteria derived from (Eresmaa, 2014), (d) after applying the selecting

homogeneous scenes based on observation space, (e) after applying the compromise to select the homogeneous scenes. Observations are for

January 30, 2017.
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the brightness temperature channels between (650-770 cm−1) is reduced to 0.6 K with a 0.13 K bias. As expected, the impact

is larger for surface sensitive (and thus cloud sensitive) channels.

With the Obs_HOM method (figure 3. (d)), small statistics improvement is obtained: the standard deviation is slightly

decreased to 10.5 K and the bias to -0.2 K for window channels between 770-980 cm−1. For window channels between 1080-

1150 cm−1, the bias is reduced to -0.5 K and the standard deviation to 10.0 K, while the brightness temperatures between5

(650-770 cm−1) present a bias of 0.2 K and a standard deviation of 2.2 K.

The COMPR method reduces the bias to -0.09 K and a standard deviation to 2.2 K for window channel between 770-980

cm−1 and a bias to -0.29 K and a standard deviation to 2.1 K for the second range of window channels between 1080-1150

cm−1 (Fig. 3.(e)). A lower bias and standard deviation result (0.1 K and 0.6 K, respectively) is found for the channels between

650-770cm−1 as scenes are constrained be clear or cloudy both in the observations and in the models.10

To complete the comparison, the Probability Density Function (PDF) of the O-G differences was studied (Fig.4). Three

channels were assessed: the window channel 1271 (962.5 cm−1, whose weighting function peaks at around 1000 hPa), the

mid-tropospheric water vapour channel 2701 (1320 cm−1, weighting function maximum at around 400 hPa) and the low-

tropospheric water vapour channel 5403 (1955 cm−1, weighting function peaking at around 900 hPa),

The distribution asymmetry is relatively small for mid and low tropospheric water vapour channels. The impact of clouds15

is evident on the window channel, with differences ranging from -90 to 64 K. After the homogeneity criteria is been applied,

narrower Gaussian distributions are observed for all channels with a significant improvement for the window channel. Using

the M2013 criteria, differences in O-G for the window channel are significantly reduced, from -18 K to 20 K, and from -7 to

9 K using the E2014 criteria (Figure 4.g, h, i).

With Obs_HOM criteria (Figure 4.(j, k, l)), the O-G distribution is not much improved for all channels except for the low-20

tropospheric water vapour channel where the range is reduced from 60 K to 40 K. When the homogeneity criterion in the

model space is added using the COMPR selection, the O-G distributions become symmetrical (and Gaussian) and centrered

around zero for the three previously selected channels(Figure 4.(m, n, o)), which indicates the data are correctly diagnosed as

homogeneous.

Table 2 summerizes statistics about the different datasets. The bias and standard deviation obtained by the M2013 method25

have some reasonable statistics before the assimilation (-0.6 K for the bias and 3.75 K for the standard deviation, for the

window channels). The E2014 selection method seems relevant for selecting homogeneous scenes in terms of bias and standard

deviation (0.11 K and 2.0 K respectively, for the window channels). However, the number of selected observations presents

a disadvantage for this selection method, since we keep only 22% of the observations of which 10% are totally clear, 6% are

totally covered by clouds and 6% are heterogeneous. These observations are distributed throughout the globe, but we keep30

more observations on high latitudes.

The Obs_HOM method allows to keep 67% of observations, which 12% are totally clear and 32% are totally covered by

clouds, but this method does not give acceptable statistics (bias of -0.2 K and standard deviation of 10.5K). When the test on

observations minus simulations of the infrared channels AVHRR are added by the fourth method, results are improved. For

window channels the bias is reduced to -0.09 K and the standard deviation to 2.1 K compared to -0.6 K and 11.7 K for all35
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Number of Cloudy Clear Bias Stdev

observations observations observations (Window channels) (Window channels)

CldCover=100 CldCover=0 (770-980) cm−1 (770-980) cm−1

All observations 59040599 50% 12% -0.60 K 11.7 K

M2013 54% 19% 10% -0.16 K 3.7 K

E2014 22% 6% 10% 0.11 K 2.0 K

Obs_HOM 67% 32% 13% -0.20 K 10.5 K

COMPR 36% 11% 10% -0.09 K 2.1 K

Table 2. Overview table of statistics obtained with the different homogeneity criteria : number of observations retained, percentage of cloudy

observations (cloudcover of 100), percentage of fully clear observations (cloudcover of 0), bias and standard deviation computed for the

channels included in the range between 770 and 980 cm−1. Percentage are given with respect to the whole number of observations.

observations, which presents a good score compared to the M2013 and Obs_HOM methods. In addition 36% of the observa-

tions is retained, compared to the whole dataset, with 10% of clear observations and 11% of cloudy observations of the total

amount, which is a better result compared to E2014, which removes many more observations, and shows that the proposed

methodology is effective.

The cloud cover distribution corresponding to the amount of observations that is kept (36%) is made of 28% of clear observa-5

tions and 29% of the observations totally covered by clouds. In addition, 14% of the observations have a cloud cover of less

than 10% and 4% of the observations have a cloud cover exceeding 90%. The observations kept are distributed in different

parts of the globe (Figure 5.a) although we have been able to retain different cloud types, including high clouds even in the

tropics for few cases only (Figure 5.b). This may be explained by the weakness of the model clouds in these areas.

The main objective of the study is to select homogeneous IASI observations in clear and cloudy sky which are well simu-10

lated with RTTOV-CLD and could be used in data assimilation. Comparison of different methods of selecting homogeneous

scenes showed that the M2013 method improves the first guess departure statistics (bias of -0.16 K and standard deviation of

3.17 K) but it keeps more heterogeneous observations (25%) according AVHRR cloud cover than the E2014 method, which

significantly improves the statistics (bias of 0.11 K and standard deviation of 2 K) and favours more clear observations but

keeps only 22% of the observations. The Obs_HOM method, which focuses only on homogeneity in the observation space,15

does not strongly improve the statistics but it filters 33% of heterogeneous observations. However the addition of the criterion

on the simulated observations in the COMPR method improves the scores on IASI simulations (bias of 0.09 K and standard

deviation of 2 K), while retaining 36% of the observations.
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5 Impact on NWP analyses and forecasts

After the selection criteria were implemented in the assimilation system of Météo France, their impact was tested through a

4D-Var assimilation experiments in the ARPEGE global model. The impact of the homogeneity criteria for data selection on

all observation simulations, on analyses and forecasts is evaluated.

5.1 Experimental design5

To evaluate the impact of our homogeneity criteria on the assimilation process over sea and land, during daytime and night, four

experiments were performed over one month from 06/12/2017 to 17/01/2018. 314 IASI channels were used in the simulation,

and 129 channels (Tables A1 and A2 in Appendix) were used for assimilation as operationally.

The first experiment is the reference (REF), where IASI observations are assimilated with all other observation type as in

the operational system at Météo-France.10

The Obs_HOM criteria for selecting homogeneous IASI observations (presented in the 3.2.3 section) are applied in the

second experiment called (EXP.A) on top of the Mc Nally and Watts cloud detection. Finally in the third experiment called

(EXP.B), we applied our COMPR approach (presented in the 3.2.4). These sets of experiments aim to evaluate the impact of

the different methods of selecting homogeneous IASI observations on simulation and assimilation processes. The following

Table 3 details the main features of each experiment.15

Configuration Method used to select

IASI homogeneous scenes

REF None

EXP.A Obs_HOM

(3.2.3 section)

EXP.B COMPR

(3.2.4 section)

Table 3. Summary of the assimilation experiments

In these experiments, no cloudy observations detected with the CO2-slicing method was assimilated.

5.2 Impact on observation

The number of assimilated channels for each observation is different depending the areas, e.g. in the tropics, there are less

clear channels (between 30 and 40 channels) in the REF (Figure 6.a), EXP.A (Figure 6.b) and EXP.B (Figure 6.c), which is

explained by the presence of high clouds in this region. In EXP.A(Figure 6.b) with the Obs_HOM criteria, some observations20

were filtered in the tropical area, and even more in EXP.B(Figure 6.c) where the criterion used is even more stringent, more

observations are filtered in areas corresponding to high clouds.
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Figure 7.a gives the number of assimilated observations into the ARPEGE model as function of the IASI wavenumber for

REF, EXP.A and EXP.B experiments. The order of magnitude is below 8.106 whichever the wavenumber considered and for

the three experiments showing that among the 129 IASI channels selected for the assimilation, the occurrence proportion are

well balanced. However, the assimilated number changes between experiments depending upon the spectral band considered.

Four spectral band can be mentioned:5

- [657, 687.25] cm−1 wavenumbers range corresponding to the stratospheric temperature channels keeps the same number

of observations in the three experiments because these channels are not affected by the presence of clouds.

- [726.5, 1421] cm−1 wavenumber range, corresponding to tropospheric and surface temperature channels and also to mid

and high tropospheric water vapour channels, the number of observations is decreased by 1% for EXP.A and even more for

EXP.B. (15% , Figure 7.b)10

- [1800, 2015.5] cm−1, finally the number of low tropospheric water vapour sensitive channels is slightly decreased for

EXP.A by 0.5% and between 8% and 14% for EXP.B (figure 7.b).

5.3 Impact on background and analyses

The analysis departure data discussed below are made by comparing the analysis between the REF and the two experiments

(EXP.A and EXP.B) to evaluate the impact of the criteria for selecting homogeneous IASI observations (refer to Table 3).15

Figures 8.a and 8.b present the impact of Obs_HOM criteria (EXP.A) in the temperature and humidity analyses (first assim-

ilation cycle). This implementation removes some IASI observations from the assimilation and this reduction has an impact on

the analysis. In Figure 8.a, a negative temperature difference is located in the Atlantic Ocean near to the South-West African

coast. A similar behaviour on temperature is noticed from the impact of COMPR (EXP.B) as shown in Figure 8.c. Weaker and

patchy impact is reported on specific humidity that is mainly located in the tropics. EXP.A and EXP.B seem to remove some20

temperature and humidity analysis increments from the operational experiment (REF) just at some isolated locations.

In order to assess the impact of the new selection of IASI observations on the analyses and forecast, first guess departures

(FG departures) corresponding to the difference between the observations and the simulation from the 6-h forecast and the

analysis departures (AN departures) are computed. As biases and standard deviations of FG and AN departures were very

weak for IASI, CRIS and AMSU-A instruments, and humidity measurements performed by radiosondes, relative differences25

have been performed between experiments to highlight detailed comparisons.

Figure 9.a shows the relative standard deviation difference between both REF and EXP.A and REF and EXP.B for IASI

FG and AN departure. Regarding exclusively the significant differences with a 95% value, FG departure standard deviation

was either reduced or increased in EXP.A depending upon the wavenumber; increases are observed around 2000 cm−1 and

1400 cm−1 while reduction of 0.5 % is seen around 1320 cm−1 and of 0.3 % at 950 cm−1. Concerning the EXP.B statistics,30

lower impacts are noticed on FG departures with less significant results. Impacts on AN departures are however relatively dif-

ferent. For EXP.A, the standard deviation reduction can be noted at around 2000 cm−1 and 1320 cm−1 but some degradations

have to be must be pointed out at 1520 cm−1, 1400 cm−1 and 950 cm−1. The same behaviours are more or less seen on the
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AN departures with EXP.B but with a better impact at 2000 cm−1, around 1000 cm−1 and 950 cm−1 and a lower degradation

at 1520 cm−1.

Concerning the CrIS observations (Fig. 9.b), the differences results are mainly not significant excepted for the EXP.B where

the standard deviation increases at around the 850 water vapour channels for both FG and AN departures, and a significant

improvement for the AN departures at the channels 160.5

Results obtained for AMSU-A (Fig. 9.c) are mainly satisfactory with FG departure standard deviation differences reduced

by around 0.05 % for channels 6, 9, 10, 11 and 12 with the EXP.A and EXP.B. However, a significant degradation of 0.2 %

is observed for channel 8. The AN departure results follow more or less the same behaviour. Finally, no significant standard

deviation difference is observed concerning the TEMP-q observations (Figure 9.d).

Results shown in this part report non-negligible impact of the homogeneous criteria implemented into EXP.A and EXP.B10

on the analyses and the short range forecasts. Indeed, as seen in the previous section (section 5.2), selected IASI observations

are removed over the more cloudy locations and then impact the humidity and temperature analyses (as seen in Figure 8).

Statistical results in Figure 9 report a non-negligible decrease of the dispersion within the FG departure and AN departure for

IASI observation and AMSU-A for several channels but some negative impact have to be noted for other wavenumbers. More

attenuated and mainly non-significant impacts can be recorded for CrIS and TEMP-q observations. Thus, the analyses and15

short range forecasts have been slightly changed compared to REF.

5.4 Impact on forecast scores

The forecast from EXP.A and EXP.B 00UTC for the period 7 December 2017 to 17 January 2018 were compared to REF ones

and evaluated against radiosondes and operational analyses from ECMWF. Rootmean square forecast errors at the 12-h forecast

ranges with respect to the ECMWF analyses were computed for temperature, relative humidity and wind. Similar computations20

were made against radiosondes . No major difference can be found between the three experiments. Very small improvements

of the 12-hour forecast with respect to the ECMWF analyses were found in the Southern hemisphere for temperature and wind

at around 700 hPa (Figs. 10). This reduction of 2% for temperature and 0.5% for the wind is significant accordind a Bootstrap

test with a 99.5% confidence level. Other improvements are found at 200 hPa for temperature (1.5%) and at 500 hPa for wind

(0.5%). Regarding the evaluation against radiosondes, very small, but not significant, improvements for the wind were found25

in the troposphere in the Southern hemisphere and in the Tropics.

6 Conclusion and perspectives

A new method using of collocated AVHRR cluster information to improve the selection of homogeneous IASI observation

scenes within the numerical weather prediction ARPEGE model has been developed at Météo-France for data assimilation

purposes and has been presented in this study.30

The first step consisted in adapting the IASI observation operator based on the RTTOV radiative transfer model by using the

RTTOV-CLD module with cloudy microphysical parameters (liquid water content (ql), ice content (qi) and cloud fraction)
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for the simulation of cloudy radiances. A qualitative evaluation of such module showed realistic simulated cloud structures at

various locations around the globe with a quite good agreement against IASI observations.

The second and main step of this work was to assess the impact of several methods used to select homogeneous IASI ob-

servations using AVHRR clusters. Two selection methods (derived from the literature : Martinet et al. (2013) and Eresmaa

(2014))) were preliminarily evaluated. Despite a good improvement in terms of biases and standard deviations of the FG de-5

partures, it was found that these two methods were not satisfactory in an operational context (in assimilation) due to a large

IASI observation reduction. Then, two new sets of criteria were defined and implemented within the ARPEGE model:

– The first criterion looks for the consistency between different clusters occupying the same IASI FOV by examining

this homogeneity relative to the weighted average brightness temperature of the AVHRR clusters; it is only based on

observations.10

– In addition, the second criterion assesses the coherence of each cluster compared to the background; it is in fact a good

compromise between the previous criterion and the two historical ones with accurate statistics and a sufficient number

of observations that passed the check.

Therefore, assimilation experiments were conducted to assess the impact of these new selecting homogeneous IASI observation

features in the current clear sky assimilation. This revised check was added to the McNally and Watts (2003) cloud detection.15

The results obtained in this case show that the scenes categorization has been facilitated and cloudy observations can be better

filtered out compared to what is done in the operational ARPEGE version. 3% of all observations are rejected with the com-

promise method and only 1% for the method based only on homogeneity in observation space which is more convenient for

the assimilation. The impacts on the first guess and analysis departures (showing more Gaussian shape) are generally low but

with a beneficial reduction on the standard deviation of first guess departures mainly on the IASI and AMSU-A observations.20

Regarding the forecasts scores, neutral impact is reported when these selection criteria are taken into account on top of the

McNally and Watts (2003) algorithm.

However, this step has been necessary to prepare the future which will consist of the assimilation all sky within the ARPEGE

model. These methods of observation selection allow to separate the clear-sky and cloudy scenes and manage each route in an25

independent way. Then, it could be available to directly assimilate the cloudy radiances into the 4D-Var ARPEGE by adapting

the observation errors for more cloudy situations. However, hydrometeors used in the RTTOV-CLD are not available into

the background error covariance matrix and then cloudy and convective situations are badly represented and will penalise

the cloudy direct assimilation. In order to bypass this problem a the second solution under study is to retrieve information

within cloudy observation by a Bayesian inversion method, in a first step, and assimilate these retrieved products in terms of30

temperature and/or humidity profiles into the 4D-Var in a second step. This method called 1D-Bayesian + 4D-Var was already

studied for microwaves radiances (Guerbette et al., 2016; Duruisseau et al., 2018) and is successfully used since 2010 for radar

reflectivities (Wattrelot et al., 2014) assimilation within the AROME convective scale model.
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Appendix A: List of IASI channels assimilated in ARPEGE model.

Channels Wavenumbers cm−1

49 657.00

51 657.50

55 658.50

57 659.00

59 659.50

61 660.00

63 660.50

66 661.25

79 664.50

81 665.00

83 665.50

85 666.00

87 666.50

104 670.75

109 672.00

111 672.50

113 673.00

116 673.75

122 675.25

125 676.00

128 676.75

131 677.50

133 678.00

135 678.50

138 679.25

141 680.00

144 680.75

Channels Wavenumbers cm−1

146 681.25

148 681.75

151 682.50

154 683.25

157 684.00

159 684.50

161 685.00

163 685.50

167 686.50

170 687.25

173 688.00

176 688.75

179 689.50

180 689.75

185 691.00

187 691.50

193 693.00

199 694.50

205 696.00

207 696.50

210 697.25

212 697.75

214 698.25

217 699.00

219 699.50

222 700.25

224 700.75

Channels Wavenumbers cm−1

226 701.25

230 702.25

232 702.75

239 704.50

242 705.25

246 706.25

254 708.25

260 709.75

265 711.00

267 711.50

269 712.00

275 713.50

280 714.75

282 715.25

294 718.25

296 718.75

299 719.50

306 721.25

2701 1320.00

2910 1372.25

2991 1392.50

2993 1393.00

3002 1395.25

3008 1396.75

3014 1398.25

3027 1401.50

Table A1. The IASI channels assimilated over sea and over land in the operational ARPEGE model at Meteo France

Competing interests. No competing interests are present here.
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Channels Wavenumbers cm−1

323 725.50

327 726.50

329 727.00

345 731.00

347 731.50

350 732.25

354 733.25

356 733.75

360 734.75

366 736.25

373 738.00

375 738.50

383 740.50

386 741.25

398 744.25

401 745.00

404 745.75

407 746.50

410 747.25

414 748.25

426 751.25

428 751.75

432 752.75

434 753.25

439 754.50

Channels Wavenumbers cm−1

445 756.00

457 759.00

515 773.50

1191 942.50

1194 943.25

1271 962.50

1479 1014.50

1587 1041.50

1626 1051.25

1643 1055.50

1652 1057.75

2951 1382.50

2958 1384.25

3049 1407.00

3058 1409.25

3105 1421.00

3577 1539.00

5368 1986.75

5383 1990.50

5397 1994.00

5401 1995.00

5403 1995.50

5405 1996.00

5483 2015.50

Table A2. The additional IASI channels assimilated only over sea in the operational ARPEGE model at Météo-France
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Figure 4. Frequency distribution of brightness temperature difference between observation and background (O-G) for all observations (a, b,

c), after applying the homogeneity criteria derived from Martinet et al 2013 (d, e, f), the homogeneity criteria derived from Eresmaa 2014

(g, h, i,), the third method based on observation space method (j, k, l) and the compromised approach (m, n, o). The PDF are presented for

three channels: window channel 1271, low-tropospheric water vapour channel 5403, and mid-tropospheric water vapour channel 2701). The

Gaussian distributions with the same error characteristics (mean and standard deviation) are also shown in blue dashed lines.
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(a) COMPR

(b)

Figure 5. Map of IASI observations of brightness temperature (K) for surface channel (1271, 962.5 cm−1), after applying the COMPR

method (a), cloud-top pressure (hPa) observations retrieved from a CO2-slicing algorithm applied on IASI data (b), for 30 January 2017

daytime over sea.
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Figure 6. Number of clear channels selected by the McNally and Watts algorithm inside IASI pixels assimilated over sea and land during

daytime and night (a) for REF, (b) for EXP.A, (c) for EXP.B, for 07 December 2017 at 00UTC.
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Figure 7. Number of assimilated IASI data over the whole experimental period (41 days) as a function of wavenumber of IASI (a) and

relative difference of number of observations (b). Data count are shown for the 3 experiments, the REF is plotted in dashed black curve, the

EXP.A with red curve and in green for the EXP.B.
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Figure 8. Temperature (left column) and humidity (right column) analyses difference between REF and EXP.A (a) and (b); and between

REF and EXP.B (c) and (d), for the first assimilation cycle on 07 December 2017 at 00 UTC at ARPEGE model level 43 which corresponds

to 200 hPa
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Figure 9. Relative differences of FG departure (red curve) and AN departure (blue curve) standard deviation between EXP.A and REF (left

panel) and between EXP.B and REF (right panel) for IASI (a), CrIS (b), AMSU-A (c) and TEMP-q (d). The horizontal error-bars represent

the 95% significance value for each difference.
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Figure 10. Root mean square error of the 12-hour forecast error computed with respect to ECMWF analysis over the period from 7 December

2017 to 17 January 2018 for REF, EXP.A and EXP.B. Reference is plotted in black, EXP.A in green and EXP.B in blue. The second line

represents the relative difference with respect to the reference. Green circle (blue star) indicates that the differences of EXP.A (EXP.B

respectively) with REF are statisticaly significant according a Bootstrap test with a 99.5% confidence level.
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