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Abstract. To recover the actual responsivity for Ultraviolet Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR), the 15 

complex (e.g. unstable, noisy, and with gaps) time series of its in-situ calibration factors (Vo) need to be smoothed. Many 

smoothing techniques require accurate input uncertainty of the time series. A new method is proposed to estimate the dynamic 

input uncertainty by examining overall variation and subgroup means within a moving time window. Using this calculated 

dynamic input uncertainty within Gaussian Process regression (GP) provides the mean and uncertainty functions of the time 

series. This proposed GP solution was first applied on a synthetic signal and showed significant smaller RMSEs than a 20 

Gaussian Process regression performed with constant values of input uncertainty and the mean function. GP was then applied 

to three UV-MFRSR Vo time series at three ground sites; The method appropriately accounted for variation in slopes, noises, 

and gaps at all sites. The validation results at the three test sites (i.e. HI02 at Mauna Loa, Hawaii, IL02 at Bondville, Illinois, 

and OK02 at Billings, Oklahoma) demonstrated that the agreement between aerosol optical depths (AODs) at the 368 nm 

channel calculated using Vo determined by the GP mean function and the equivalent AERONET AODs were consistently 25 

better than those calculated using Vo from standard techniques (e.g. moving average). For example, the average AOD biases 

by the GP method (0.0036 and 0.0032) are much lower than those by the moving average method (0.0119 and 0.0119) at IL02 

and OK02, respectively. The GP method’s absolute differences between UV-MFRSR and AERONET AOD values are 

approximately 4.5%, 21.6%, and 16.0% lower than those of the moving average method at HI02, IL02, and OK02, respectively. 

The improved accuracy of in-situ UVMRP Vo values suggests the GP solution is a robust technique for accurate analysis of 30 

complex time series and may be applicable to other fields. 
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1 Introduction 

While many instruments generate relatively stable data time series over short time windows, dynamic uncertainty levels, 

variable sampling densities, and/or different lengths of gaps with missing data can complicate the analysis of long-term 

datasets. For example, the five-year time series of a solar variability indicator (Mg II core to wing index) shows consistency 35 

on the order of days but increasing noise level and gaps are observed at the month-scale (Cebula et al., 1992). The time series 

of the geopotential scale factor, a function of the geoidal potential, is also relatively stable on shorter time scales but 

demonstrates a slowly increasing long-term pattern (Burša et al., 1997). Additionally, the time series of a ratio (F factor) for 

calibrating a satellite radiometer suite (i.e. VIIRS) shows band-specific gap distributions and variable trends (Cardema et al., 

2012). As a result, these time series may not be described as a simple deterministic function of time due to possible noise and 40 

gaps. 

 

Long term measurements of irradiance by Multi-Filter Rotating Shadowband Radiometers (MFRSRs) are also subject to errors 

imposed by the factors mentioned above. The MFRSR measures direct normal, diffuse horizontal, and total horizontal 

irradiances at seven visible channels with a roughly 10 nm full half-maximum width (FHMW) (Harrison and Michalsky, 1994). 45 

The Ultraviolet (UV) version of MFRSR measures the same three irradiance components at seven UV channels (i.e. 300, 305, 

311, 317, 325, 332, and 368 nm) with a 2 nm FHMW (Gao et al., 2010). Currently, the U.S. Department of Energy (DOE) 

Atmospheric Radiation Measurement (ARM) Climate Research Facility (Mather and Voyles, 2013), the NOAA Surface 

Radiation (SURFRAD) (Augustine et al., 2005) and the U.S. Department of Agriculture (USDA) UV-B Monitoring and 

Research Program (UVMRP) (Gao et al., 2010) maintain their own MFRSR and/or UV-MFRSR at multiple sites across the 50 

U.S. To capture immediate instrument responsivity variation, the UVMRP performs in-situ calibrations using the Langley 

method (Slusser et al., 2000;Harrison and Michalsky, 1994) or derived approaches [e.g. (Chen et al., 2013;Chen et al., 

2016;Chen et al., 2015)] on (UV-)MFRSR direct beam measurements on days with extended clear-sky periods (Gao et al., 

2010).  

 55 

Many factors contribute to the error or uncertainty of the Langley method including variations in aerosol and/or other 

atmospheric constituents over the course of the calibration period (Augustine et al., 2003;Chen et al., 2015;Zhang et al., 2016), 

the presence of thin cirrus (Shaw, 1976), as well as instrument errors (e.g. instrument tilt and misalignment, incorrect night-

time offset and angular corrections) (Alexandrov et al., 2007). Thus, the sequence of original UVMRP (UV-)MFRSR in-situ 

calibration factors exhibits certain levels of noise. Among these uncertainties, variable AOD is considered the major 60 

contributor to the variability of the Langley calibration factors obtained in typical atmospheric conditions over the continental 

United States (Alexandrov et al., 2008), even with careful cloud screening [e.g. (Chen et al., 2014;Alexandrov et al., 2004)]. 

In addition, extended cloudy periods and low solar zenith angles during winter months further reduce the sequence quality, 

which appear as large time gaps in the datasets. Since the in-situ calibration factor represents the instrument’s responsivity 
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which is assumed to be relatively stable, it has been suggested that one applies some smoothing methods (e.g. averaging or 65 

fitting a smooth curve) on the daily calibration time series (Alexandrov et al., 2008) to reduce the issue. Currently, UVMRP 

implements an outlier detection and moving smoothing technique to overcome these issues. However, the process involves 

manual interaction, performs unreliably during sparse and gapped periods, and lacks the uncertainty estimation.  

 

Analyses of complex long-term time series, such as those of (UV-)MFRSR Vo values, must consider: (i) the underlying 70 

continuous trend (i.e. the mean function) and the corresponding trend uncertainty and (ii) the (dynamic) input uncertainty. For 

problem (i), there is a variety of available approaches, such as local polynomial regression, smoothing splines, and Gaussian 

Process regression (Proietti, 2011). Local polynomial regression (LPR) constructs a polynomial within each local time window, 

and fits its coefficients by locally weighted least squares. LPR’s computational complexity is low, and it can eliminate some 

of the randomness in the data (Hyndman, 2011). However, LPR may have difficulty on the cases with varying sampling 75 

densities or gaps. In addition, LPR does not allow estimating the trend near the ends of the time series and cannot be used for 

forecasting (Hyndman, 2011). A spline is a piecewise polynomial function with continuous derivatives (Proietti, 2011), and 

smoothing splines estimate the underlying spline by minimizing the distance between the spline and the observations while 

penalizing the roughness of the spline (Wahba, 2011). For example, a cubic spline fit was used to fill the large gaps in the Mg 

II index time series (Viereck et al., 2004). Both LPR and smoothing splines are unable to utilize the information about the 80 

input uncertainties or to estimate the uncertainty associated with the trend. Unlike the two methods above, Gaussian Process 

does not restrict the class of the underlying functions because it is not a parametric model (Rasmussen and Williams, 2006). 

Instead, it gives a priori probability to every possible function based on the desired function characteristics such as smoothness 

(Rasmussen and Williams, 2006). Gaussian Process regression assumes both the observations and the underlying function are 

from one joint (prior) Gaussian distribution, and derives the underlying function distribution by conditioning the joint (prior) 85 

distribution on the observations (Rasmussen and Williams, 2006). The method takes the observational error into consideration 

and naturally gives the uncertainty of the underlying function, making itself an appropriate tool for problem (i). Gaussian 

Process regression has been widely used in many fields [e.g. forecasting of mortality rates (Wu and Wang, 2018), prediction 

of spatial-temporal violent events (Kupilik and Witmer, 2018), and modelling received signal strength for wireless local area 

network location fingerprinting (Richter and Toledano-Ayala, 2015)]. 90 

 

For problem (ii), the input error statistics (e.g. input uncertainty) is often assumed to be known or roughly estimated in advance; 

In practice, a typical approach may use some predetermined constant (e.g. the nominal uncertainty of an instrument, or the 

standard deviation of its observation) to estimate input uncertainty for the entire dataset. However, this kind of approach omits 

the information of the possible time-varying observation error, leading to over- or under- estimation of the input uncertainty 95 

at a given (temporal) location (Chandorkar et al., 2017). A sophisticated approach may treat the dynamic input uncertainty as 

additional parameters and solve them together with other model parameters through optimization under the Bayesian 
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framework (Kavetski et al., 2006b, a). However, this method requires the specification of valid error/uncertainty models, which 

are normally poorly understood in practice (Kavetski et al., 2006b, a).  

 100 

In this study, we developed and validated a generic solution that combines Gaussian Process regression with a new dynamic 

input uncertainty estimation method, to determine the underlying continuous trend and the corresponding uncertainty for the 

given time series. In section 2, we briefly summarize the basics of the Gaussian Process regression and develop the dynamic 

input uncertainty estimation method. We also describe a complex (noisy, gapped, etc.) synthetic time series and real UV-

MFRSR in-situ calibration factor time series used in the analysis. In section 3, we present and discuss the performance of the 105 

Gaussian Process method on the test data, in comparison with the UVMRP current operational method and a moving average 

technique. Validation of the calibration factors determined with the Gaussian Process method via the comparison of AODs 

calculated with these factors and those reported by the AErosol RObotic NETwork (AERONET)(Holben et al., 1998) is also 

discussed in section 3. 

  110 

2 Materials and Methods 

2.1 Gaussian Process regression (GP) 

2.1.1 Main Procedure 

A Gaussian Process is a technique used in the analysis of a finite number of random variables with a joint Gaussian distribution 

(Rasmussen and Williams, 2006). The following introduces briefly the theory of GP regression. An observed dataset,115 
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where, I is the identity matrix, *

*X X
K R

N N
  denotes the covariance matrix between observed ( *X ) and test inputs (X), and 

similarly for the other three terms XX
K R

N N , *

*XX
K R

N N
 , and *

*X X
K R

N N
 . Each element of these covariance 125 

matrices is determined by a kernel function K(z1,z2), which maps any pair of inputs ( 1 2, R
Dz z ) into R. There are a wide 

variety of kernel functions such as the radial basis function (RBF) and the rational quadratic (RQ) kernel (Rasmussen and 

Williams, 2006). For example, The RQ kernel is defined by the following equation with length scale (l) and alpha (α) as its 

two parameters (Rasmussen and Williams, 2006): 
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z z .  (2) 130 

In practice, users need to use prior knowledge or techniques such as autocorrelation to choose the best kernel function to 

represent the correlation among input data. The hyperparameters (θ) of the chosen kernel function are then optimized by 

maximizing the log transformed marginal likelihood (Rasmussen and Williams, 2006): 

      
1

2 21 1
log | , log log 2

2 2 2
XX y XX yX K I K I

T N
p 



       y θ y θ σ y θ σ .  (3) 

To simplify the calculation, the mean of y has been subtracted from both the actual observed values and the test function 135 

values. Therefore, the joint distribution has a mean equal to zero.  

 

Based on the (optimized) joint distribution [Eq. (1)], the theorem that derives the conditional distribution from the joint 

Gaussian distribution (Eaton, 1983), and the inversion equations of a partitioned matrix (Press, 1992), the Gaussian Process 

regression predicts *f  from given X, y, and *X  (Rasmussen and Williams, 2006): 140 

    * * * *| , ,cov( )X ,Xf y f f ,  (4) 

where, 
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    *
f σ . (6) 

The GP predicted sample standard deviations [i.e. the square root of the diagonal elements in cov( )
*

f ] can be converted to the 145 

predicted confidence intervals. For example, the predicted 0.99999 confidence intervals used in this study are obtained by 

multiplying a constant (i.e. 4.42) with predicted sample standard deviation. Points outside the predicted confidence intervals 

may be considered as outliers and can be excluded iteratively until all points are within the confidence intervals or the average 

ratio between GP predicted means and standard deviations are less than a threshold (e.g. the threshold is 0.01 in this study). 
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2.1.2 Proposed Dynamic Input Uncertainty Estimation 150 

As mentioned before, the statistical properties of the noise ε of the observed time series y might be unknown. Even if assuming 

 2, ( )
y

diagε 0 σ  in practice, y
σ is not always a constant and could vary in time. Therefore, we propose to estimate y

σ with 

a moving window approach. Within each moving window (W), the input uncertainty (denoted as si) is assumed to be relatively 

stable and can be estimated using all points in the window (W). Note that si is not equivalent to the standard deviation of all 

points within the period (sW), unless the mean function of the time series is invariant. We derive the relationship between si 155 

and sW (see Appendix A for the detailed derivation) to estimate si: 
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 ,  (7) 

where, all points within W are clustered into J subgroups based on their similarity in both time and value; Nj is the number of 

points in each subgroup j; 
1

J

jj
N N


  is the number of all points within W; μj is the mean of subgroup j, which can vary 

among subgroups; si is the estimated uncertainty of each point within W, acting as the sample standard deviation across all 160 

subgroups; μW and sW are the mean and sample standard deviation of all points within W. The classic K-Means algorithm was 

used for the clustering process. To increase the reliability to estimate statistics (mean or sample standard deviation), small 

subgroups are merged with adjacent ones to ensure each subgroup has more than required minimum points. The numbers of 

initial subgroups and the required minimum points depend on the prior knowledge on the variability and availability of the 

data. Sensitivity studies (not shown) indicate that 5 initial subgroups per moving window and 3 required minimum points per 165 

subgroup worked well for our applications. The dynamic input uncertainty estimation process is applied on every data point 

in a sequence. The squares of the estimated input standard deviations [i.e. 
2

is  in Eq. (7)] are stored on the respective diagnostic 

positions in y
σ . 

 

The flowchart of the proposed Dynamic Input Uncertainty Estimation method and the complete GP procedure of estimating 170 

the mean and confidence interval functions of a given time series is presented in Figure 1.  

 

 

 

 175 
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Figure 1. Main procedure for deriving the mean and confidence interval functions using Gaussian Process Regression (left black 

box) and detailed procedure of the proposed Input Uncertainty Estimation method (right red box). 

2.2 Moving Average (MA) 

Moving Average (MA) is a simple smoothing technique. To assess the performance of the GP regression with other methods, 180 

this study implements MA for one-dimensional case as follows. For a given *ix , we first choose its nearby observations 

 *( , ) , ( , )i obsx y x x win_size x y   within the given window win_size and then calculate the mean y value of the subset 

as the smoothed observation at *ix . The process is repeated for all possible x in * . The parameter win_size of MA is set at 20 

for all applicable cases in this study. 

2.3 UVMRP operational algorithm (OPER) 185 

UVMRP operational algorithm (OPER) was specially designed for smoothing its in-situ calibration factor sequences 

(http://uvb.nrel.colostate.edu/UVB/dataProcessingInfo/VnaughtsDataProcessing.jsf). OPER is included as an additional 

source for methods comparison. The algorithm has three steps. In the first step, a 12-count running mean and the corresponding 

standard deviation are maintained to detect outliers (i.e. points outside half of the running mean or two standard deviation). 

During the process, if three consecutive points are determined to be outliers, visual examination is performed to determine if 190 
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a permanent change in the instrument responsivity has occurred. If such a change is confirmed, calculation of a new running 

mean begins on the three points. In the second step, a moving linear regression is used to smooth the values at the center of 

each moving window. The moving window size is ±3 months. If visual examination finds significant value changes on a date 

of interest (the center of a moving window), the regression is not performed on that date. In the final step, the regression results 

from step two are used as input into a weighted means algorithm to generate continuous smooth in-situ calibration factors. The 195 

inverse of year fraction between the current date of interest and the date of each participating point is used to calculate the 

weights. The weighting window is also ±3 months from the date of interest. 

2.4 Validation method for 368-nm in-situ calibration factors 

Ideally, to avoid additional uncertainties caused by the interpolation between wavelengths, the calibration factors should be 

validated via a direct comparison of direct sun signals from the to-be-calibrated UV-MFRSR and a reference instrument 200 

measuring at the 368 nm channel [e.g. the standard precision Filter radiometer (PFR) operated by the Physikalisches-

Meteorologisches Observatorium Davos, World Optical Depth Research Calibration Center (WORCC)]. However, such 

reference measurements are not available at most UVMRP stations. Therefore, the estimated mean normalized Vo (Vo_norm) 

values from the Gaussian Process regression and the other two comparison methods (i.e. MA and OPER) are validated 

indirectly in terms of aerosol optical depth (AOD) against those obtained at the collocated AERONET sites. We admit that the 205 

uncertainty of UV-MFRSR AODs could exceed the World Meteorological Organization (WMO) U95 criterion [e.g. 95% of 

the measured data have uncertainty in the range of 0.005 ± 0.01 / airmass, (Kazadzis et al., 2018)] at many UVMRP sites 

because the stability assumption of the Langley method may not be strictly fulfilled. Therefore, the AOD comparison in this 

study can only serves as an indirect evidence to verify whether the calibration of UV-MFRSR is reasonably accurate.  

 210 

AERONET sunphotometers are routinely calibrated with the uncertainty of AOD around 0.002 to 0.005 in the visible and up 

to 0.01 in the UV region (Eck et al., 1999;Holben et al., 2001) and are therefore considered a reliable source for AOD 

intercomparison and radiometer validation [e.g. (Alexandrov et al., 2002, 2008;Augustine et al., 2003;Krotkov et al., 

2005a;Krotkov et al., 2005b;Kassianov et al., 2007;Tang et al., 2013;Yin et al., 2015;Zhang et al., 2016)]. During the recent 

Fourth Filter Radiometer Comparison held in Davos, Switzerland (between 28 September and 16 October 2015), most AOD 215 

values derived from the three AERONET CIMEL sunphotometers are within the ±0.01 range compared with the PFR triad 

standard (Kazadzis et al., 2018). This includes those determined at 368nm from the extrapolation of AERONET AODs at 

340nm and 380nm. The 2015 Davos campaign also included four MFRSR instruments. Overall, the results showed good 

agreement between the four MFRSRs and the PFR triad standard, though one instrument exhibited a positive bias and low 

precision compared to the sun-pointing instruments (Kazadzis et al., 2018). However, such errors were likely explained by 220 

instrument-specific uncertainties (e.g. angular response correction, responsivity calibration, and shadowband position issues) 

and do not suggest inherent error in MFRSR AODs (Kazadzis et al., 2018).  
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Previous comparison between (UV-) MFRSRs and AERONET AODs have generally showed good agreement and demonstrate 

the utility of AERONET as an effective standard for field-based measurements. For instance, Krotkov et al. (2005a);Krotkov 225 

et al. (2005b) validated the UVMRP UV-MFRSR AODs with the interpolated AERONET AODs at 368 nm at the National 

Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) site in Greenbelt, Maryland. They found 

that the UV-MFRSR AODs at 368-nm channel on cloud-free days had a daily RMSE less than 0.01 when calibrated using 

AERONET measurements and increased to approximately 0.02-0.05 (depending on the season) when calibrated using standard 

Langley method (Harrison and Michalsky, 1994;Slusser et al., 2000). Alexandrov et al. (2002) developed an comprehensive 230 

calibration method for the VIS-MFRSR and validated the calibration at the four channels (i.e. 440, 500, 670, and 870 nm) by 

comparing the derived AOD values with interpolated AERONET values at the ARM Cloud and Radiation Testbed (CART) 

site. The results showed small AOD difference (i.e. <0.005) at 440, 500, and 870 nm channels for a variety of atmospheric 

conditions with AODs ranging from 0.03 to 0.4 (at 500-nm). Alexandrov et al. (2008) considered optical depth of NO2 and 

Ozone during the MFRSR AOD calculation, although they were small enough to be ignored (i.e. 0.008 NO2 optical depth at 235 

415 nm and 0.005 ozone optical depth at 615 nm) at their test location at the ARM Southern Great Plains (SGP) site. The long-

term intercomparison showed a good agreement (i.e. difference between them <0.01) between the MFRSR and AERONET 

AODs at 440, 675, and 870 nm channels. Kassianov et al. (2007) validated the MFRSR-retrieved optical properties and 

reported small RMSE values (i.e. 0.0043-0.0075) among MFRSR, AERONET, and Normal incidence multifilter radiometer 

(NIMFR) derived AODs at 500 and 870 nm channels during the ARM Program's Aerosol Intensive Operational Period (IOP) 240 

in 2003. 

 

In this study, for the UV-MFRSR at 368 nm channel, aerosol optical depth (AOD368nm,UVMRP) is calculated by subtracting 

Rayleigh optical depth (RLOD368nm,UVMRP) from total optical depth (TOD368nm,UVMRP) under cloud-free conditions. The 

absorption of O3, NO2, and other trace gases are very small at the 368 nm channel (e.g. NO2 optical depth is around 0.002 to 245 

0.003 at AERONET Cart_Site), so they are ignored during the calculation of AOD368nm,UVMRP: 

 368 , 368 , 368 ,nm UVMRP nm UVMRP nm UVMRPAOD TOD RLOD  .  (8) 

TOD is calculated using Beer’s Law (e.g. (Slusser et al., 2000)), where the actual calibration factor at top of atmosphere 

(Vo_raw) is restored from GP estimated mean Vo_norm. The cosine corrected voltage and airmass are obtained from the 

UVMRP webpage (https://uvb.nrel.colostate.edu/UVB/da_queryCosCorrected.jsf). RLOD is calculated by following the 250 

equations in Bodhaine et al. (1999). The site latitude and height for RLOD calculation are from the UVMRP webpage 

(https://uvb.nrel.colostate.edu/UVB/uvb-siteinfo.jsf), and the instantaneous site-level surface pressure for RLOD calculation 

is obtained from the collocated AERONET sites (https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_opera_v2_new). 

To obtain reliable AOD values, UV-MFRSR measurements with quality concerns or cloud contamination are excluded in the 

following comparison. More specifically, (1) any measurements with UVMRP-provided quality control flag(s) relevant to the 255 

data quality of the direct beam at 368 nm channel are excluded; (2) data with small (direct beam) measurements at 368 nm are 
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also excluded because they are more sensitive to noise or errors introduced during various calibration steps; and (3) a simple 

variation check is performed to reduce the potential of mixing cloud and aerosol optical depth. If the ratio between the standard 

deviation of TODs and the mean TOD value in the 15-minute time window exceeds 0.05, they are excluded from further 

analyses. 260 

 

AERONET (v2.0) provides AOD at 340 and 380 nm channels. These values are interpolated to the effective wavelength of 

the UV-MFRSR 368 nm channel for comparison using the Ångström exponent as follows. Note that in the log transformed 

coordinate system [i.e. log(AOD) vs. log(wavelength)], log(AOD) is generally linear between 340 and 380 nm (Krotkov et al., 

2005a). First, the AERONET AOD spectrum between the two wavelengths is derived by linear interpolation of AERONET 265 

AODs at 340 and 380 nm in the log transformed coordinate system. Next, since the UV-MFRSR AOD at 368 nm is a bandpass 

value over a narrow band (i.e 2 nm FHMW), the equivalent AERONET AOD at that channel is derived by  

 

380

340
368 , 380

340

nm

nm
nm AERONET nm

nm

AOD F d
AOD

F d

 










 , (9) 

where AODλ is the interpolated AERONET AOD spectrum; Fλ is the spectral response function of the UV-MFRSR at 368 nm 

channel (http://uvb.nrel.colostate.edu/UVB/da_queryFilterFunctions.jsf); and the wavelength interval for the integral is 0.05 270 

nm. Note that negative AERONET AOD measurements are excluded from the validation because of using log transform. 

 

Since AERONET and UV-MFRSR AOD values at 368 nm are derived from measurements involving different instruments 

and wavelengths, the uncertainties when comparing these AOD values should be noted. Some important sources of 

uncertainties include:  275 

1) AERONET calibration error – At the time of calibration at MLO, AERONET reference instruments have an 

uncertainty of ~0.2 to 0.5%, which is equivalent to a 0.002 to 0.005 uncertainty in AERONET AOD (Holben et al., 

2001). These calibration factors are likely to shift within the year following calibration, which may result in a total 

AOD uncertainty of ~0.01 to 0.02 (wavelength dependent, higher in the UV) (Holben et al., 2001). 

2) Instrument Field of View (FOV) – AERONET CIMELs have a FOV of 1.2° while the UV-MFRSR has a larger FOV 280 

[e.g. ~6.5°, reported by (Kazadzis et al., 2018)]. AODs obtained from instruments with larger FOVs are associated 

with greater AOD uncertainty due to larger contributions of scattered light to the direct irradiance measurement (Kim 

et al., 2005).  

3) Instrument maintenance – Periodic soiling and cleaning of the UV-MFRSR diffuser can result in spurious increases 

and decreases in AOD, respectively. The frequency of on-site maintenance (e.g. cleaning of the UV-MFRSR dome) 285 

as well as rainfall events may therefore account for some of the AOD difference (Kim et al., 2005;Kim et al., 2008). 

4) Trace gases – As mentioned above, AERONET AOD accounts for NO2 optical depth (e.g. ~0.002-0.003 at OK02) 

while UV-MFRSR AOD does not. 



11 

 

 

2.5 Datasets 290 

2.5.1 Synthetic Case 

We generate a synthetic time series that is composed of six segments with a varying base function and noise levels [Figure 2 

(a)]. The base function [Eq. (10)], including linear, quadratic, and cubic functions, simulates a wide variety of functions for 

which the proposed technique is applicable. The noise levels are the same within each segment but different across segments. 

The noise at segment i is sampled from a fixed normal distribution  20, i , where σi is equal to 4, 8, 6, 15, 7, and 3 from 295 

left to right segments, respectively. Each segment originally contains 200 points. Their x coordinates are sampled randomly 

from six uniform distributions within their domains. Points with x coordinates in the three designated windows (i.e. [64.2, 

69.2], [80.8, 85.8], and [122.5, 127.5]) are removed to simulate data gaps in reality.  
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  (10) 

2.5.2 Application Cases: In-situ calibration factors 300 

In this study, the in-situ calibration factors of UVMRP UV-MFRSRs are used as application cases to test the performance of 

the three smoothing methods (i.e. GP, MA, and OPER). These UV-MFRSR in-situ calibration factors over several months or 

years are obtained through the Langley method on clear days. Their varying uncertainties are mainly attributed to two aspects. 

One is the optical stability of atmospheric constituents (e.g., the aerosol, ozone, and thin clouds) when the in-situ calibration 

factor is derived (Chen et al., 2015), and the other is the aging status of the radiometer. UVMRP publish its in-situ calibration 305 

factors on their website (http://uvb.nrel.colostate.edu/UVB/da_queryVoIntercepts.jsf). To reduce the chances of abrupt 

changes in the sequences, the data associated with the same instrument (i.e. UV-MFRSR) at the same UVMRP site (denoted 

as a deployment period) are processed together. Three UVMRP sites with collocated AERONET sites (for validation) were 

selected (Table 1). The in-situ calibration factors at these UVMRP sites represent time series with contrasting densities, 

noisiness, and slopes (Table 1). Appendix B uses the Oklahoma site (OK02) to show that the UV-MFRSR 368-nm in-situ 310 

calibration factors obey normal distribution. 

 

Table 1. The three UVMRP 368-nm UV-MFRSR in-situ calibration factor time series for test. 
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UVMRP 

Site 

Name 

UVMRP Site 

Location 

Collocated 

AERONET 

Site 

Deployment Start 

and End Dates 

Figure 

(original time 

series) 

Time Series Characteristics 

HI02 
19.54° N, 155.58° 

W, 3409 m 
Mauna_Loa 

17 September 2015 

to 1 July 2018 
Figure 3(a1) 

dense, low noise, variable 

slope 

IL02 
40.05° N, 88.37° 

W, 213 m 
BONDVILLE 

21 March 2017 to 

29 May 2018 

Figure 3(b1) 

 

sparse, high noise, sharper 

slope 

OK02 
36.60° N, 97.49° 

W, 317 m 
Cart_Site 

17 January 2007 to 

11 June, 2011 
Figure 3(c1) 

medium density, medium 

noise, variable slope 
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3 Results and Discussion 

3.1 Synthetic Case 315 

 

Figure 2. (a) The synthetic time series based on Eq. (10) (the blue line) with varying noise levels. There are originally 200 samples 

within every 50-wide interval (or segment) in the x coordinate, but points between [64.2, 69.2] (highlighted in yellow, G1), [80.8, 85.8] 

(highlighted in yellow, G2), and [122.5, 127.5] (highlighted in yellow, G3) are removed to simulate data gaps in practice. The final 

number of points in the sequence is 1140. (b) The means (dark blue circles) and confidence intervals (light blue area) of the estimated 320 
uncertainty for the 200 synthetic sequences [all sampled from the distribution of (a) but with different random noise]. The true 

uncertainty (red line segments) is also displayed. (c) The Gaussian Process regression results on the synthetic time series from (a). 

The dark blue line is the predicted mean function and the light blue area is the corresponding confidence intervals. 
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3.1.1 Estimation of Input Uncertainty for Gaussian Process 

The proposed “Dynamic Input Uncertainty Estimation” method is first applied to the synthetic case. To observe the statistical 325 

properties/characteristics of the estimated input uncertainty, this procedure was applied on 200 synthetic time series, each of 

which is generated by adding random noise into the base function [Eq. (10)] following the procedures discussed in section 

“2.5.1 Synthetic Case”.  

 

Figure 2(b) shows the means (dark blue circles) and confidence intervals (light blue area) of estimated uncertainty of the 200 330 

estimated input uncertainty sequences. The mean of the estimated uncertainty is close to the true uncertainty (RMSE = 0.6321) 

for the entire synthetic case as demonstrated by a linear regression between estimated and true uncertainty with a slope close 

to one (i.e. 1.0332) and a high R2 of 0.9759 (Table 2). Most true uncertainty (red line segments) is covered by the confidence 

intervals except for the areas near the ends of the six segments. In these areas, the method averaged the uncertainty from the 

adjacent segments and presented a smooth transition between segments. This small RMSE value suggests that using smaller 335 

subgroup size (e.g., 3~6 points) does not significantly influence the estimation of uncertainty [Figure 2(a)]. Therefore, smaller 

subgroups are preferred over larger ones as larger subgroups are more likely to have gap(s) with large variation, which tends 

to increase its estimated standard deviation [Eq. (7)]. 

 

To demonstrate the improvements in the GP resulting from the dynamic input uncertainty estimation, the GP is also run with 340 

three typical constant input uncertainties: overall standard deviation of the synthetic time series (30.95), minimum true 

uncertainty of the synthetic time series (2.00), and maximum true uncertainty of the synthetic time series (15.00). The results 

from all three constant input uncertainties are less accurate than the estimated input uncertainty generated by the proposed 

method (Table 2). The proposed method has significant smaller RMSE (i.e. 0.6321) compared with the three constant input 

uncertainties (i.e. 24.1152, 6.5226, and 8.7921, respectively). Similarly, the linear regression between the estimated and true 345 

uncertainties shows that the proposed method has the slope and the R2 values both close to one (i.e. 1.0332 and 0.9759) while 

the three constant uncertainties shows no (linear) correlation with true uncertainties (i.e. the slope and R2 values close to zero).  

3.1.2 Estimation of Means and Confidence Interval and Its Validation 

The kernel function in the Gaussian Process regression used in this study is the rational quadratic (RQ) kernel, with two 

parameters: length scale and alpha [Eq. (2)]. To use RQ with Gaussian Process regression, we need to provide the initial 350 

(estimated) values for these two parameters. First, we round the original data points [red points in Figure 2(a)] to the nearest 

0.25 interval grids. Then, we calculate the autocorrelation on these rounded data points from lags of 0.25 to 22.25 

(approximately equivalent to lags of 1 to 90 points). Next, we perform curve fitting on autocorrelation results and obtain 9.80 

and 1.05 as initial length scale and alpha estimates, respectively. With these initial RQ parameters and the estimated inputs 

uncertainty (from the proposed method or using three representative constant input uncertainties), Gaussian Process regression 355 
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predicts the mean and uncertainty functions. Figure 2(c) shows the GP results for the proposed method: dark blue line for the 

mean function and the light blue area for the confidence intervals (4.42 times of the GP predicted uncertainty function). 

 

In terms of the GP predicted mean function vs. the base function [Eq. (10)], the proposed input uncertainty estimation method 

shows a 12.0% to 15.7% improvement on RMSE over the three constant input uncertainties (i.e. 1.1785 vs. 1.3146, 1.3976, 360 

and 1.3146) (Table 2). Similarly, the slope of the linear regression between the two functions is closer to one for the proposed 

uncertainty estimation method (i.e. 1.0082) than the three constant uncertainties (i.e. 1.0228). In addition, the predicted mean 

function from the proposed method is close to the base function even near the gaps [G1, G2, and G3 in Figure 2(a)] [Figure 

2(c)].Additionally, the proposed method’s predicted uncertainty function (or confidence intervals) shows better agreement 

with the true uncertainty of the synthetic time series [Figure 2(c)] while the three constant input uncertainties’ results show 365 

consistent over- or under-estimated pattern over the entire time series (figures not shown). It is noted that the predicted 

confidence intervals from the proposed method are wider near the three gaps [G1, G2, and G3 in Figure 2(a)] than nearby 

locations with similar uncertainty. This is anticipated because the constraint in the gaps are from distant points where the RQ 

kernel gives low correlation.  

 370 

Table 2 Validation of the input uncertainty and mean of GP prediction using four input uncertainties: the input uncertainty 

estimated by the proposed method (Section 2.1.2), overall standard deviation of the synthetic time series (30.95), minimum true 

uncertainty of the synthetic time series (2.00), and maximum true uncertainty of the synthetic time series (15.00). RMSE stands for 

root mean square error. LR stands for linear regression. R2 stands for the coefficient of determination for linear regression. Note: † 

y1 represents the true input uncertainty of the synthetic time series, x1 represents the estimated input uncertainties. ‡ y2 represents 375 
the true values on the base function [Eq.(10)], x2 represents the GP estimated mean values using the respective input uncertainty.  

 Metrics 

Proposed input 

uncertainty 

estimation method 

Constant input uncertainty 

Overall standard 

deviation  

(30.95) 

Minimum synthetic 

time series 

uncertainty  

(2.00) 

Maximum synthetic 

time series 

uncertainty  

(15.00) 

input 

uncertainty 

RMSE 0.6321 24.1152 6.5226 8.7921 

LR† y1=1.0332x1-0.2277 y1=-0.1962x1-0.2277 y1=0.0x1+7.1632 y1= 0.0x1+7.1632 

R2 0.9759 0.0 0.0 0.0 

mean of GP 

prediction 

RMSE 1.1785 1.3146 1.3976 1.3146 

LR‡ y2=1.0082x2-0.3865 y2=1.0228x2-0.5351 y2=1.0228x2-0.5636 y2=1.0228x2-0.5351 

R2 0.9986 0.9986 0.9983 0.9986 
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3.2 In-Situ Calibration Factors Cases 

3.2.1 Applications 380 

The same GP procedure is applied on three in-situ calibration factor (Vo_norm, sun-earth distance normalized) sequences from 

three UVMRP deployment periods (Figure 3) at three different UVMRP locations previously described in Table 1.The Hawaii 

site (HI02) sits at a clean, high altitude location, which means its atmospheric condition is more stable than other UVMRP 

sites and its Vo_norm has the lowest variation [Figure 3(a1)]. The Illinois site (IL02) is surrounded by croplands/rangelands 

with the closest city (Champaign) located 12 km northwest [Figure 3(b1)]. The Oklahoma site (OK02) is also surrounded by 385 

croplands/rangelands with the closest city (Oklahoma City) located about 96 km south [Figure 3(c1)]. Both wildfires and 

agricultural activities (e.g. cultivation and harvest) at IL02 and OK02 contribute to the relatively hazy and unstable atmosphere 

condition for Langley regression. As a result, Vo_norms at IL02 and OK02 have larger variation compared with HI02. The 

dynamic input uncertainty estimation results confirm that the uncertainty at HI02 [15–40, Figure 3(a2)] is also lower than the 

other two sites [100–300, Figure 3(b2), (c2)]. Generally, the proposed method gives lower uncertainty values for time windows 390 

with more clustered points (e.g. December 2008 and April 2010 at OK02 [Figure 3(c2)], and February 2017 at HI02 [Figure 

3(a2)]). There are no obvious temporal patterns of uncertainty at any of the three sites. 

Figure 3(a3), (b3), and (c3) show the estimated means (dark blue line) and confidence intervals (light blue area) after the initial 

pass through GP. The length scale parameter of the RQ kernel for the HI02, IL02, and OK02 sites are 6.091, 6.369, and 6.228 

(days), respectively. Their corresponding alpha parameters of the RQ kernel function are all close to 1.0 (i.e. 0.948, 0.862, and 395 

0.944, respectively). As expected, the confidence interval is narrower near time windows with more data points, and the 

confidence intervals are wider near gaps [Figure 3(b3)]. 

As depicted in Figure 1, the outlier removal and GP are repeated following the initial GP regression, giving the final GP results 

shown in Figure 3(a4), (b4), and (c4). After this final pass, the length scale parameter of the RQ kernel function for the HI02, 

IL02, and OK02 sites are 6.091, 11.149, and 6.907 (days), respectively. Compared with the first round, all length scale 400 

parameters increase as more outliers are removed (except for HI02). At HI02, the average ratio between GP means and standard 

deviations is lower than the threshold (i.e. 0.01) after the first round and the iteration stops. The corresponding alpha parameters 

of the RQ kernel function are still all close to 1.0 (i.e. 0.948, 1.010, and 1.110, respectively). Because of outlier removal, 

compared with the first-round results, GP generates smoother mean functions and narrower confidence intervals at the last 

round. 405 

  

The other two methods (i.e. MA and OPER) are applied on the same in-situ calibration time series. They can provide mean 

functions but not confidence intervals. The MA (win_size=20) results [Figure 3(a5), (b5), and (c5)] are generally smoother 

than OPER [Figure 3 (a6), (b6), and (c6)] but both are more responsive to noisy points than GP. In addition, since OPER is 

scheduled to run once per month on active deployments, there may be some lags at the end of those deployments [e.g. Figure 410 

3(a6)]. 
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Figure 3. The results of the three smoothing methods (i.e. GP – Gaussian Process, MA – Moving Average, OPER – UVMRP 

operational algorithm) on the three UVMRP in-situ calibration factor sequences: (a) HI02 (17 September 2015 to 1 July 2018), (b) 

IL02 (21 March 2017 to 29 May 2018), and (c) OK02 (17 January 2007 to 11 June, 2011). The first row (a1, b1, c1) displays the 415 
original in-situ calibration factor (Vo_norm) sequence. The second row (a2, b2, c2) shows the initial input uncertainty estimated for 

GP. The third row (a3, b3, c3) presents the predicted daily mean and confidence interval from the first iteration of GP. The fourth 

row (a4, b4, c4) shows the final results of GP after iterations. The fifth row (a5, b5, c5) shows the results of MA. The sixth row (a6, 

b6, c6) shows the results of OPER.                                                                    . 

 420 
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3.2.2 Validation 

 

Figure 4. 368-nm AOD scatter plots between UVMRP (y axis) and AERONET (x axis). The UVMRP 368-nm AODs are calculated 

from UV-MFRSR direct normal voltages using calibration factors estimated by the three methods (i.e. from top to bottom: GP, MA, 

OPER) at the three sites (i.e. from left to right: HI02, IL02, OK02). The AERONET 368-nm AODs are derived from collocated (i.e. 425 
Mauna_Loa, BONDVILLE, Cart_Site) AERONET AODs on the 340- and 380-nm channels. The linear regression line (solid, red) 

and the 1-by-1 line (dashed, black) are also plotted. “<y-x>” means the average difference between AERONET and UVMRP AOD 

at 368 nm channel. “stdev(y-x)” means the standard deviation of their difference. 
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Following the procedures described in section 2.4, the UVMRP AODs at 368 nm channel generated by GP, MA, and OPER 

are validated against the corresponding AERONET AODs at the three collocated sites (i.e. HI02 – Mauna_Loa, IL02 – 430 

BONDVILLE, OK02 – Cart_Site). The scatter plots between these UVMRP and AERONET AODs are displayed in Figure 4. 

The performance of all three methods at HI02 [Figure 4(a), (d), (g)] are similar. For example, the average bias “<y-x>” is 

approximately 0.0054 and standard deviation of the difference “stdev(y-x)” is approximately 0.0066. For IL02 [Figure 4(b), 

(e), (h)] and OK02 [Figure 4(c), (f), (i)], GP shows superior agreements with AERONET than the other two methods. For 

example, at IL02, the absolute value of GP’s average bias (0.0036) is about 3.3 to 2.5 times lower than that of MA (0.0119) 435 

and OPER (0.0091). Similarly, at OK02, the average bias for GP (0.0032) is much lower than those for MA (0.0119) and 

OPER (0.0087). The validation results for GP at OK02 are similar to the previous comparison results between AERONET and 

MFRSR AODs at 415 and 440 nm (Tang et al., 2013;Alexandrov et al., 2008).  

 

Table 3 Statistical metrics (average absolute difference, average absolute relative difference, and linear regression) on comparing 440 
368-nm AOD between UVMRP (AOD368,UVMRP) and AERONET (AOD368,AE). The UVMRP 368-nm AODs at the three sites (i.e. HI02, 

IL02, and OK02) are calculated using calibration factors estimated by the three methods (i.e. GP, MA, and OPER). The AERONET 

368-nm AODs are derived from collocated (i.e. Mauna_Loa, BONDVILLE, and Cart_Site) AERONET AODs on the 340- and 380-

nm channels. LR stands for linear regression. R2 stands for the coefficient of determination for linear regression. The “x” and “y” 

in “Linear regression equation” refer to AOD368,AE and AOD368,UVMRP of the respective methods. 445 

Site Metrics 
Method 

GP MA OPER 

HI02 

Avg(|AOD368,UVMRP-AOD368,AE|) 0.0062 0.0065 0.0067 

368,UVMRP 368,AE

368,AE

AOD AOD
Avg

AOD

 
 
 
 

 0.5803 0.6078 0.6261 

LR y=1.0550x+0.0045 y=1.0551x+0.0047 y=1.0601x+0.0043 

R2 0.9000 0.8957 0.8812 

IL02 

Avg(|AOD368,UVMRP-AOD368,AE|) 0.0228 0.0291 0.0270 

368,UVMRP 368,AE

368,AE

AOD AOD
Avg

AOD

 
 
 
 

 0.1669 0.2087 0.1930 

LR y=0.9615x+0.0115 y=0.9543x+0.0213 y=0.9241x+0.0065 

R2 0.9514 0.9420 0.9332 

OK02 

Avg(|AOD368,UVMRP-AOD368,AE|) 0.0150 0.01785 0.01847 

368,UVMRP 368,AE

368,AE

AOD AOD
Avg

AOD

 
 
 
 

 0.1714 0.2067 0.1939 

LR y=1.0054x+0.0027 y=1.0238x+0.0078 y=1.0186x+0.0056 

R2 0.9749 0.9726 0.9554 
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Table 3 shows two additional statistical metrics for validation: “Avg(|AOD368,UVMRP-AOD368,AE|)”, a measure of absolute 

difference between the two quantities and “Avg(|AOD368,UVMRP-AOD368,AE|/AOD368,AE)” a measure of relative difference 

between the two quantities. For HI02, the GP Vo_norm values improves both the absolute and relative  differences between 

AOD368,UVMRP and AOD368,AE when compared to MA (by ~4.5%) and OPER AODs (by ~7.5%), respectively. Results from 450 

linear regressions (LR) performed between AOD368,UVMRP and AOD368,AE are also reported in Table 3. The LR results are 

similar between GP and MA, but GP has closer-to-one LR slope (1.0550) and higher R2 (0.9000) than those of OPER (1.0601 

and 0.8812) for HI02. For IL02, GP shows 21.6% smaller absolute difference and 20.0% smaller relative difference to 

AERONET than MA; GP shows 15.6% smaller absolute difference and 13.5% smaller relative difference to AERONET than 

OPER. Similarly, for OK02, GP shows 16.0% smaller absolute difference and 17.1% smaller relative difference to AERONET 455 

than MA; GP shows 18.8% smaller absolute difference and 11.6% smaller relative difference to AERONET than OPER. 

 

Overall, the 368 nm AODs by GP shows higher correlation, closer-to-one slopes, and lower absolute and relative biases 

compared to AERONET AODs than MA and OPER at all three sites. The improvement of GP over MA and OPER at IL02 

and OK02 are more significant than at HI02. The main reason may be that HI02 is the least polluted site among the three sites. 460 

Both of its maximum and mean 368-nm AOD values are low: 0.35 and 0.016, respectively. As a result, higher accuracy of 

Rayleigh and other optical depth components is required to discern small improvement on AOD for HI02. Since the 

AERONET’s sun photometer is routinely calibrated, the agreement on AOD values suggests that the calibration factors mean 

function generated by GP are more accurate than MA and OPER. 

 465 

Figure 5 shows the 368-nm AOD time series calculated using GP generated in-situ calibration factors at the three UVMRP 

sites. The blue solid line represents the AODs calculated using the GP means, and the green and red dotted lines represent the 

AODs calculated using the GP confidence intervals. We first note that, unlike the obvious seasonal changes in AOD difference 

reported in the previous study at the NASA/GSFC site by Krotkov et al. (2005a), this study (Figure 5) shows no discernible 

seasonal pattern in the AOD differences at all three sites. It is seen that the AOD confidence intervals are approximately 470 

±0.0095, ±0.0480, and ±0.0273 at HI02, IL02, and OK02, respectively. The corresponding AERONET AOD time series are 

also plotted (i.e. purple lines in Figure 5). The insets in Figure 5 show comparison details at HI02, IL02, and OK02. For most 

of the AOD time series, AERONET results are within the GP confidence intervals. The average absolute differences of daily 

AOD values between GP and AERONET are ~0.006 for HI02, ~0.024 for IL02, and ~0.014 for OK02. These values are also 

close to or within the AERONET AOD uncertainty level (i.e. 0.01), demonstrating the potential for the development of a 475 

reasonably accurate UVMRP AOD product.  
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Figure 5. Time series of UVMRP and AERONET 368-nm daily average AOD at HI02, IL02, and OK02 sites. The daily AOD mean 

values derived from the GP mean in-situ calibration factor (Vo) functions (blue) and the corresponding AERONET values (purple) 480 
are shown in blue solid lines. The corresponding lower and upper limits of AOD derived from the GP Vo confidence intervals are 

shown in dotted red and green lines, respectively. The insets for HI02 (August 2016), IL02 (June 2017), and OK02 (July 2010) are 

also included in the respective subplots to show the comparison details. 
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4 Conclusions 

A new dynamic uncertainty estimation method for noisy time series is developed in this study. Combining this method with 485 

Gaussian Process regression, we provide a solution to estimate the underlying mean and uncertainty functions of time series 

with variable mean, noise, sampling density, and length of gaps. For the synthetic case with linear, quadratic, and cubic base 

functions, noise level varying from 2 to 15, and noticeable gaps, the proposed solution returns a mean function with the RMSE 

of 1.1785 (linear regression R2 of 0.9986), which is at least 12.0% lower than RMSEs associated with the three constant input 

uncertainties. The estimated input uncertainties determined by this method are close to the true uncertainty levels except for 490 

the transitional region between segments. The solution also gives accurate mean values at the three gaps. The proposed GP 

solution as well as the other two comparison methods (i.e. MA and OPER) were then applied on three in-situ calibration factor 

time series of UV-MFRSR (368 nm) at three UVMRP sites. The GP solution handles the variation in slope, noise, sampling 

density, and length of gap in the three cases as expected. Since irradiance at 368 nm is not measured by a collocated (and 

calibrated) radiometer, the performance of the three methods is validated against the collocated AERONET sites in terms of 495 

AOD. The results show that AODs calculated using GP-derived UV-MFRSR calibration factors (Vo_norm) have consistently 

better agreement with AERONET AODs than MA and OPER in terms of average absolute and relative differences, and linear 

regression R2 values. These results suggest that the proposed GP solution is a robust method for time series analyses of data 

with variable mean, noise, sampling density, and length of gap, and has potential for application across disciplines. 

Appendix A. The formulation between the overall standard deviation and the subgroup standard deviation 500 

Given a time series  ix , its total N points are divided into J groups { }jkx , and the number of points in group j is Nj (j=1,2,…,J; 

k=1,2,…, Nj). For data points in each group, their sample mean and standard deviation are μj and sj. For the entire time series, 

its sample mean is 
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where the third term on the right-hand side is equal to zero because 
1

( ) 0
jN

j

k j

k

x 


   (i.e. 
1

1 jN

j

j k

kj

x
N




  ). If assume that the 505 

sample standard deviation of each data point is invariant (i.e. 1 2
ˆ

Js s s s    ), then 
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Appendix B. The distribution of the 368-nm in-situ calibration factors of UV-MFRSR. 

Since the true 368-nm in-situ calibration factors are not available, their distribution is derived using the AERONET 368-nm 

AOD distribution via Beer’s Law (transformed Langley regression).  510 

Beer’s Law links the irradiance [or voltage (V)] at top of atmosphere with the one reaches ground at time t with the equation: 

t tTOD m

t oV V e
 

 , where mt is the airmass at time t and TODt is the corresponding total optical depth. For the 368-nm channel, 

AOD is the main contributor for the TOD variation. Therefore, for a short time period, TODt can be expressed as the sum of a 

constant optical depth ( P ) and variable residual aerosol optical depth (
t tAOD AOD AOD   ): t tTOD P AOD  . To 

derive an unbiased Vo, Langley regression (in the transformed lnV∙m-1 vs. m-1 coordinate system), it requires the participating 515 

measurements have a constant TODt over the calibration period and lnVo is the slope of the regression. tAOD biases to the 

regression slope with the component varying linearly with 
1

tm
 (Chen et al., 2014). Therefore, we decompose tAOD  as the 

sum of a constant term (α) and a 
1

tm
 term (

1

tm 
), where α and β are obtained from daily AERONET 368-nm AOD 

measurements via linear regression. With the TODt components expanded, the original Beer’s Law equation is expressed as

   1 1ln lnt t o tV m P V m         and the (transformed) Langley regression obtains the slope ( ln lno oV V   ) via linear 520 

regression. The disturbed distribution of 
oV  is the same as the distribution of exp(ln )oV  . Assuming the true Vo is 1500 mV 

(a typical value at OK02) and using a long-term set of β values from AERONET at Cart_Site (17 January 2007 to 11 June, 

2011), a set of 
oV is obtained. Removing the tails on the distribution of 

oV (i.e. 
oV <1200 or 

oV >1800), the normal test of the

oV set (using the Python function scipy.stats.normaltest (D'Agostino and Pearson, 1973)) returns the p value of 0.4689, which 

is greater than the threshold (10-3), suggesting that the
oV set comes from a normal distribution. 525 

Data availability 

The in-situ calibration factors (sun-earth distance normalized) used in this study were downloaded from the UVMRP website: 

http://uvb.nrel.colostate.edu/UVB/da_queryVoIntercepts.jsf. The cosine corrected voltage and airmass were obtained from 

http://uvb.nrel.colostate.edu/UVB/da_queryVoIntercepts.jsf
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https://uvb.nrel.colostate.edu/UVB/da_queryCosCorrected.jsf. The spectral response functions of the UV-MFRSRs were 

obtained from http://uvb.nrel.colostate.edu/UVB/da_queryFilterFunctions.jsf. The site latitudes and heights of the three 530 

UMVRP sites tested in this study were obtained from https://uvb.nrel.colostate.edu/UVB/uvb-siteinfo.jsf. The AERONET 

(v2.0) data (i.e. aerosol optical depth and surface pressure) used in this study were downloaded from 

https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_opera_v2_new.  
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