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Abstract. There is more useful information in the time series of satellite-derived column-averaged carbon dioxide 

(XCO2) than is typically characterized. Often, the entire time series is treated at once without considering detailed 

features at shorter timescales, such as non-stationary changes in signal characteristics - amplitude, period, and phase. 15 
In many instances, signals are visually and analytically differentiable from other portions in a time series. Each Rise 

(increasing) and Fall (decreasing) segment, in the seasonal cycle is visually discernable in a graph of the time series. 

The Rise and Fall segments largely result from seasonal differences in terrestrial ecosystem production, which 

means that the segment’s signal characteristics can be used to establish observational benchmarks because the signal 

characteristics are driven by similar underlying processes. We developed an analytical segmentation algorithm to 20 
characterize the Rise and Fall segments in XCO2 seasonal cycles. We present the algorithm for general application 

of the segmentation analysis and emphasize here that the segmentation analysis is more generally applicable to 

cyclic time series.  

We demonstrate the utility of the algorithm with specific results related to the comparison between 

satellite- and model-derived XCO2 seasonal cycles (2009-2012) for large bioregions on the globe. We found a 25 
seasonal amplitude gradient of 0.74-0.77 ppm for every 10˚ degrees of latitude for the satellite data, with similar 

gradients for Rise and Fall segments. This translates to a south-north seasonal amplitude gradient of 8 ppm for 

XCO2, about half the gradient in seasonal amplitude based on surface site in-situ CO2 data (~19 ppm). The 

latitudinal gradients in period of the satellite-derived seasonal cycles were of opposing sign and magnitude (-9 

days/10˚ latitude for Fall segments, and 10 days/10˚ latitude for Rise segments), and suggests that a specific latitude 30 
(~ 2˚ N) exists which defines an inversion point for the period asymmetry. Before (after) the point of asymmetry 

inversion, the periods of Rise segments are less (greater) than the periods of Fall segments; only a single model 

could reproduce this emergent pattern. The asymmetry in amplitude and period between Rise and Fall segments 

introduces a novel pattern in seasonal cycle analyses, but while we show these emergent patterns exist in the data, 

we are still breaking ground in applying the information for science applications. Maybe the most useful application 35 
is that the segmentation analysis allowed us to decompose the model biases into their correlated parts of biases in 

amplitude, period, and phase, independently for Rise and Fall segments. We offer an extended discussion on how 

such information on model biases and the emergent patterns in satellite-derived seasonal cycles can be used to guide 

future inquiry and model development. 

KEYWORDS: GOSAT, DGVM, segmentTS, time series analysis, land use change, seasonal cycle  40 
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1. Introduction 

Most of our understanding about atmospheric CO2 dynamics has come from CO2 sampled by in-situ flask samples 

or eddy-flux towers at Earth’s surface (Ciais et al., 2014). While these data streams have proved incredibly useful, 

the transient dynamics of fluxes simulated by global-scale terrestrial models have only been compared to a relatively 

few locations on Earth. In contrast to surface CO2 samples, which sample CO2 concentrations in the planetary 45 
boundary layer, satellite observations of CO2 are made by downward-looking Fourier spectrometers from the top of 

the atmosphere and represent an integrated estimate of CO2 concentrations in a full column of atmosphere, hereafter 

‘XCO2’ (Wunch et al., 2011; Crisp et al., 2012). Although fluxes from the surface have a large influence on the total 

column CO2, the vertical and horizontal transport of air masses in higher atmospheric layers, each with different 

concentrations CO2, also influences the CO2 concentrations in the total column (Belikov et al., 2017), including that 50 
of the stratosphere (Saito et al., 2012). 

The synoptic coverage and integrated nature of XCO2 means that surface fluxes from around the globe impart 

information into the seasonal dynamics and inter-annual variability of regional seasonal cycles, which is both a 

confounding and useful property for evaluating large-scale models. The integrated nature of the data also means that 

even a few years of data will be sufficient to evaluate the simulated dynamics of global-scale models. We propose 55 
that if models can reasonably simulate the timing and magnitude of terrestrial surface fluxes in all bioregions, then 

we would expect that the simulated XCO2 would match reasonably well with the seasonal dynamics from the 

benchmark satellite data. Such demonstrated ability could strengthen confidence in regional-to-global model 

simulations. 

To gain insight into seasonal cycle dynamics of satellite XCO2 and individual model behavior, we demonstrate 60 
a novel approach to extract more information from the seasonal cycle than is typically characterized. In evaluations 

of model performance, traditional performance statistics (root-mean-squared-error, correlation, standard deviation) 

are used to quantify bias in phase and amplitude of the seasonal cycle against a benchmark signal (Coupled Model 

Intercomparison Project (CMIP) Earth System Models in Glecker et al., 2008; DGVMs in Anav et al., 2015). In 

almost all applications, however, the entire time series is treated at once without considering detailed features at 65 
shorter timescales, such as non-stationary changes in amplitude, magnitude, period, or phase (Fig. 1). We suggest 

that traditional performance statistics be applied to categories of unique patterns in the seasonal cycle, and not to the 

entire time series, thereby characterizing the error structure in a manner that can relate temporal dynamics 

(amplitude, magnitude, phase) with unique underlying processes. 

We extend and apply a time series segmentation method (Ehret and Zehe, 2011) to extract the Rise and Fall 70 
segments in seasonal cycles of satellite-derived and simulated XCO2, based on a suite of terrestrial ecosystem 

models. The advantage of the segmentation approach is that it allows an error structure to be accurately 

characterized by separately calculating the errors in amplitude, period and phase for each segment type (Rise, Fall). 

For example, in a graph of a multi-year seasonal cycle of XCO2 (Fig. 1), each increasing and decreasing segment is 

visually discernable and analytically differentiable from other portions in the seasonal cycle; hereafter, Rise refers to 75 
increasing segments and Fall refers to decreasing segments in a seasonal cycle. The Rise and Fall segments largely 

result from seasonal differences in the onset and cessation of terrestrial ecosystem production (Keeling et al., 1995), 
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which means that a segment’s signal characteristics (i.e., amplitude, period, phase) are likewise influenced by 

different stages of terrestrial ecosystem activity. By segmenting the time series into similar component signals, we 

can then test for differences in the signal characteristics of Rise and Fall patterns and provide insight into a model’s 80 
ability to recreate these features of the seasonal cycle over multiple years.  

Our first aim was to simply characterize the satellite-derived XCO2 seasonal cycles in terms of Rise- and Fall-

type segment variation. Secondly, we evaluated if signal characteristics and model biases differed or were correlated 

among Rise and Fall segments, which would help provide information in the missing parts of the satellite-based 

time-series (i.e., at high latitudes during boreal winter and in the Tropics during the wet-season), which we 85 
demonstrate is possible. We also evaluated if model biases between Rise and Fall segments differed enough to 

provide information about the underlying model representation of terrestrial dynamics, which we underscore as 

possible but discuss the limits for inference in this regard. Lastly, we explored how a single modeled process (land 

use and land cover change; LUC) manifests in the different signal characteristics and biases in Rise and Fall 

segments. We offer discussion on how the segment-based model biases and emergent patterns in satellite-derived 90 
seasonal cycles can be used to guide future inquiry and model development. 

2. Methods 

2.1 Satellite XCO2 data 

Satellite observations of XCO2 were obtained from the Greenhouse gases Observing SATellite (GOSAT; version 

7.3). Onboard the satellite, a Fourier-transform spectrometer measures the thermal and near-infrared absorption 95 
spectra of the constituent atmospheric gases within the footprint of observation (~10 km). Satellite data was freely 

obtained and analyzed only for 2009-2012 because it corresponded to the overlapping timeframe of available 

simulation data. The data were downloaded from NASA Goddard Earth Sciences (GES) Data and Information 

Services Center (DISC) online repository 

(<https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_Level2/ACOS_L2_Lite_FP.7.3/>; accessed 25 April 100 
2018). We used the Level-2 Lite data products, which include only high-quality and bias-adjusted data points, based 

on the Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm version 7.3 (Crisp et al., 2012; 

O’Dell et al., 2012).  

 A note that satellite data have uncertainties of their own based on instrument noise, version of retrieval 

algorithm used to filter atmospheric effects, and averaging kernels (Yoshida et al., 2011; Lindqvist et al., 2015). We 105 
made the assumption that averaging kernel has a minimal effect on extracted seasonal cycles and we did not apply 

averaging kernels to the simulation data in this study. A full quantification of uncertainty in satellite-derived 

seasonal cycles is beyond the scope of this study, but such an analysis could be useful for benchmarking purposes as 

models continue to reduce large biases (>> 1.0 ppm). Nevertheless, we make the assumption that lower biases are 

generally indicative of better model performance. 110 

2.2 Simulated Terrestrial Fluxes from DGVMs 
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The Net Biome Exchange (NBP) from land-to-atmosphere was simulated by six terrestrial ecosystem models (Table 

1) that were part of the TRENDY model inter-comparison project version 2 (Sitch et al., 2015; dgvm.ceh.ac.uk). We 

use the atmospheric convention and make fluxes to the atmosphere positive, and fluxes to the land negative. We 

assumed that the primary modes of seasonal variability in terrestrial NBP at large scales is described by three terms, 115 
Net Ecosystem Production (Net Primary Production – Heterotrophic Respiration), fluxes from fire, and land use 

change (LUC). The protocol for the DGVM inter-comparison standardized the (i) forcing data: gridded (0.5°) 

climate (air temperature, short- and long-wave radiation, cloud cover, relative humidity and precipitation), global 

annual mean CO2; and the (ii) initial conditions for time-varying simulations for the past century (1860-2012). We 

used simulated NBP for two sets of model simulations, one where land use (natural vegetation, crop, and pasture 120 
fractional cover) is fixed at values from the year 1860 (‘S2’ scenario described in Sitch et al., 2015), and another 

simulation where land use change is simulated according to the HistorY Database of the global Environment 

(HYDE v3.1; Goldewijk et al., 2011) (‘S3’ scenario as described in Sitch et al., 2015); both simulation types were 

forced with time-varying climate and CO2.  

2.3 Fossil Fuel and Ocean Fluxes  125 

The modes of variability (trend, seasonality, intra- and inter-annual variability) in XCO2 are also influenced by 

fluxes from oceanic exchange, fossil fuel consumption and cement production. We used a simplified model of 

oceanic CO2 exchanges from Takahashi et al. (2009), and monthly-mean fossil fuel emissions from the European 

Commission’s Emissions Database for Global Atmospheric Research (EDGAR v. 4.2), based on country-level 

reporting and emissions factors, and the Fossil Fuel Data Assimilation System (http://edgar.jrc.ec.europa.eu/).  130 

2.4 Simulated XCO2 using an Atmospheric Model 

Simulations of atmospheric CO2 were conducted for the period of 2009-2012 using the land, ocean, and fossil fuel 

fluxes. We used the Center for Climate Systems Research/National Institute for Environmental Studies/Frontier 

Research Center for Global Change (CCSR/NIES/FRCGC) AGCM-based chemistry transport model (ACTM) 

(Patra et al., 2009). The ACTM was run at a horizontal resolution of T106 (~1.125° X 1.125°), and 32 sigma-135 
pressure vertical levels. The simulated XCO2 values were obtained by taking the sum of the pressure-weighted CO2 

concentrations over all vertical layers, equivalent to the column-averaged observations. We then used ‘co-location’ 

sampling of the ACTM XCO2 data to match the location and timeframe (13:00 hr local time) of observations, ± 5 

days to account for (i.e., by averaging) sub-weekly transport errors (Guerlet et al., 2013). We obtained the simulated 

XCO2 for each component flux (land, fossil fuel, ocean) and finally summed the components to get the XCO2 used 140 
in bias evaluations.  

2.5 Extraction of XCO2 Seasonal Cycles 

We first estimated the mean of daily XCO2 values by averaging gridded values within each of the 11 TransCom 

region (Fig. 2), for both the observed and modeled XCO2. This procedure was as straight forward as written above, 

and the accompanying computer code (software: R for Statistical Computing) is provided as additional 145 
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Supplementary Material. We then applied a digital filtering algorithm (ccgcrv by Thoning et al., 1989; 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html) to the mean time series to extract the long-term trend 

and seasonal cycles, fitted as a 2-term polynomial (linear growth rate was used because the time series spanned only 

3 years) and a 4-term harmonic function to account to seasonal asymmetry. Temporal data gaps were linearly 

interpolated by the algorithm. After subtracting the long-term trend and seasonal cycle, the ccgcrv algorithm filters 150 
the residuals in the frequency domain using a Fast-Fourier Transform (FFT) algorithm to retain short- and long-term 

interannual variation (additional details in Nakazawa et al., 1997; Pickers and Manning 2015). The cutoff for the 

short-term filter was set at the recommended value of 80 days (Thoning et al., 1989). The short-term cutoff of 80-

days retains data variations that are evident, or maintained, for the time scale of 3-4 months (4.56 cycles/yr). The 

cutoff for the long-term filter was set to a large number (3000), which is longer than the number of days in our time 155 
series (365 days/yr * 3 yr= 1095 days) because, with such a short time series, we needed to force the estimation of a 

linear trend with no interannual variation; otherwise, the algorithm would be too sensitive and derive variation in the 

trend without practical justification. For all analyses here forth, we combined the seasonal cycle with the digitally 

filtered short-term variation and used the derived data points along the smoothed seasonal cycle curves for analysis. 

2.6 Technical description of algorithm: Segmentation of seasonal cycles 160 

The purpose of this section is to describe the technical algorithms used in the analysis. These algorithms are based 

on concepts put forth by Ehret and Zehe (2011), translated herein to the R computing language (R Development 

Core Team, 2008). Where Ehret and Zehe (2011) focused on the single hydrological events, we modify and 

restructure the algorithm to accommodate much longer non-stationary cyclic time series for general application to 

seasonal cycle analyses. An R package for the segmentation algorithm is freely available at the GitHub repository 165 
<https://github.com/lcalle/segmentTS>. A permanent version of the code is available in the Dryad Digital 

Repository <doi:10.5061/dryad.vk8ms62>. The computer code is annotated and provides data used in this study 

with demonstrations for applying the algorithm to remove local minima or maxima and the categorization of 

seasonal cycle segments.  

2.6.1 Categorize segments and isolate seasonal Rise and Fall cycles 170 

We first determine the first derivatives numerically. The ccgcrv signal decomposition algorithm outputs a daily time 

series in the form of a multi-dimensional array, but we focus on a subset of the array, the 2-dimensional rectangular 

matrix representing points along the detrended seasonal cycle, 

! = 	
$%,%
⋮
$(,%

		$%,)
⋮
$(,)

		$%,*
⋮
$(,*

                                                                                                                                            (1) 

, where the first column is the row index, the second column are dates, the third column is the detrended XCO2 ppm 175 
with the short-term variation added back-in, the rows are the triplets of the index, time in the x-direction, and 

magnitude (XCO2 ppm) in the y-direction. 

We can numerically determine the first derivative in the y-direction at each point via differencing, as in, 

∇$,,) = 	 $,,) − 	$,.%,)                                                                                                                              (2) 
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We then classifying each row in first column ($,,) … $(,)) into one of the following categories below and expand B 180 
to a n X 4 matrix to store the classified values. The main objective is to classify the endpoints (Trough, Peak) of the 

Rise and Fall segments: 

∀i ∈ 1…4 , 56,7 =

89:;<ℎ, (∇	$,,) < 	0)	⋀	(∇	$,C%,) > 0)

EFGH, (∇	$,,) < 	0)	⋀	(∇	$,C%,) < 0)	

IJKK, (∇	$,,) > 	0)	⋀	(∇	$,C%,) > 0)

LHJM, (∇	$,,) > 	0)	⋀	(∇	$,C%,) < 0)

N;KK, :OℎH9PFGH

                                                                    (3) 

We then take the subset of endpoints (S) in the classified matrix B, 

Q ⊂ S = S	 	56,T:	89:;<ℎ, LHJM                                                                                                                              (4) 185 
, where S retains the dimensions of the B. A unique segment (s) is defined as a set of two consecutive endpoints 

(rows) in S that alternate in their classification of Trough or Peak, meeting the condition: 

G ⊂ Q = Q|	(Q,,W:	89:;<ℎ	 ∧ 	Q,C%,W:	LHJM)	⋁		(Q,:	LHJM	 ∧ 	Q,C%,W:	89:;<ℎ)                                                     (5) 

We identify local minima and maxima that are deviations in otherwise longer (seasonal) and more general 

Rise and Fall patterns based on two criteria below, and then reclassify the segments based on the class of the 190 
segment with the largest amplitude. The amplitude of a segment (as) is defined as: 

JZ = 	 G%,) − G),)                                                                                                                                              (6) 

, where s1,2 is the first endpoint in the second column (XCO2 ppm), either a Trough or a Peak, and s2,2 is the second 

endpoint for the specific segment, which, by definition the first endpoint must be classified (s1,4) as one of Peak or 

Trough and must not have the same classification as the second endpoint (s2,4). 195 
The first criterion sets a minimum threshold for the amplitudes, redefining the set of endpoints defining the 

segments, as below: 

G∗ ⊂ G = G	|	JZ > 	\F4F\;\	Oℎ9HGℎ:K]                                                                                                               (7) 

Segments that represent local minima or maxima that are not of interest to the user can be identified by a 

comparison of amplitudes of consecutive segments, dropping the segment with the lowest amplitude, as below: 200 
G∗^ ⊂ G∗ = G∗	|	G∗ ≠ \F4(JZ.%, JZ, JZC%)                                                                                                               (8) 

This procedure results in a new subset of segment endpoints (G∗^)	with consecutive elements that have similar 

classification (e.g., G%,W∗^ ≔ LHJM, and	also, G),W
∗^ ≔ LHJM), which needs to be rectified. We keep the endpoints with 

the lowest Trough value and the largest Peak value,  

G[O]∗ ⊂
G[O]%,) G[O + 1]%,)
G[O]),) G[O + 1]),)

= 205 

G[O]%,)
∗ =

\F4 G[O]%,), 	G[O + 1]%,) , G[O]%,W ≔ 89:;<ℎ	⋀	G[O + 1]%,W ≔ 89:;<ℎ

\Jj G[O]%,), 	G[O + 1]%,) , G[O]%,W ≔ LHJM						⋀	G[O + 1]%,W ≔ LHJM

G[O]),)
∗ =

\F4 G[O]),), 	G[O + 1]),) , G[O]),W ≔ 89:;<ℎ	⋀	G[O + 1]),W ≔ 89:;<ℎ

\Jj G[O]),), 	G[O + 1]),) , G[O]),W ≔ LHJM						⋀	G[O + 1]),W ≔ LHJM

     (9) 

, where G[O] is a unique segment in the set of s segments, G[O + 1] is the following consecutive segment, G[. ]%,) and 

G[. ]),) are the segment first and last endpoints, respectively, and G[O]∗ is the updated segment with new endpoints 

G[O]%,)
∗  and G[O]),)∗ , while segments G O , G[O + 1] have been removed from the set of segments (s).  
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A (subjective) limit can also be set to exclude or include segments based on temporal proximity. For example, 210 
consecutive minima (minima/maxima/minima) should not be considered local minima if separated by 365 days; 

these are probably real local minima driven by processes unique to different seasons. By contrast, local minima 

separated by 60 days may represent signals within the overall seasonal Rise and Fall pattern (e.g., due to fire). For 

this study, we are more interested in assessing the general seasonal patterns. We therefore estimate the temporal 

distance, in ‘days’ (lZ), between the first endpoints of consecutive segments and evaluate the condition as below,  215 
lZ = G[O + 1]%,* − G O %,*	, given	G O %,W	 	 G O %,W	 are	of	the	same	class	 89:;<ℎ, LHJM                        (10) 

G∗ ⊂ G = G	|	lZ > 	\F4F\;\	Oℎ9HGℎ:K]                                                                                                             (11) 

, where G[. ]%,* is the endpoint date in the x-direction, and the minimum threshold for distance between endpoints is 

set at a conservative 250 days (~8 months), ensuring that only the main Rise and Fall patterns within a given year 

are captured. This conditional evaluation also results in a new subset of segments (G∗)	with consecutive elements 220 
with similar classification, as above, but Eq. 9 can be re-applied to select the endpoints which represent general Rise 

and Fall patterns. 

Additional criteria can be applied to automate the removal of local minima/maxima that are not relevant to the 

user, but we caution that visual inspection of the signal is important to avoid unwanted reclassification of segments 

in the time series. 225 

2.6.2 Human-assisted pattern recognition via visual inspection 

The procedure outline in Sect. 2.6.1, above, is applied to both the reference (R) and modeled (M) seasonal cycle time 

series. In the best of cases, the procedure would result in matrices for R and M, each with an equal number segments 

and the same sequence of endpoint classes (Trough, Peak, Trough, Peak, ...). In practice, however, the number and 

sequence of segments in M will not always equal the number or sequence of segments in R. When variability in the 230 
modeled seasonal cycle results in many local minima/maxima, and therefore many short Rise/Fall segments, there 

can be a mismatch between the indices of segments, wherein smaller/shorter segments in M are matched to much 

larger/longer segments in R; this is simply an artefact from automation of the procedure outlined previously. 

Although we have implemented automated procedures in the algorithm that reconcile these types of mismatches, we 

found that it was considerably quicker to (i) conduct a ‘blind’ run of the algorithm on the data, (ii) visually inspect 235 
the automated graphical plots of the seasonal cycles for mis-matching segments (Supplementary Material Fig. S1), 

(iii) identify the index of the mis-matching endpoints in M, and then finally (iv) re-run the algorithm specifying the 

index of the endpoint in M for removal.  

2.6.3 Segment signal characteristics and error statistics 

The amplitude (Eq. 6) and period (p in ‘days’) for all segments are first characterized, with the period defined as,  240 
vZ = 	 G( − Gw                                                                                                                                                        (12) 

, where G( and Gw are the end and start dates of a segment, respectively. Then, for each segment in M and R, a 

complementary vector xj and Ej is created in the x-direction with a fixed number of, and equally-spaced, dates,  

j = j% …	jy                                                                                                                                                         (13) 
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Each element in xj corresponds, by index, to an element in Ej, such that a matching pair exists. Similarly, a 245 
complementary vector xz and Ez is created in the y-directions, with the length of the vector matching the length of 

the vector in the x-directions (k). For each element in xz and Ez, we perform a linear interpolation of the values of 

XCO2 ppm in B (b.,2) for the indices given by the dates in xj and	Ej; fortunately, the linear interpolation is 

automated by the approx function in R, which makes this procedural step straightforward. The end result is, for 

every segment in M and R, four vectors of equal length in xj,xz and Ej, Ez, with the timing of the data and 250 
values of XCO2 ppm that follow the corresponding seasonal cycles in B. We can then decompose the corresponding 

errors in phase and magnitude along the time series, 

8F\F4<	H99:9 = xj − Ej                                                                                                                           (14) 

xJ<4FO;]H	H99:9 = xz − Ez                                                                                                                           (15) 

Although in this paper we focus only on errors in amplitude, period, and phasing of the segments, the time series of 255 
errors in timing and magnitude are an additional level of detail in the error structure that is evaluated by the 

segmentation algorithm. 

2.7 Statistical summaries 

For each of the Rise and Fall segments within a region, we summarized the characteristics by averaging the 

amplitude (ppm), period (days), and the phase, which we estimated in two ways based on the day of year for the first 260 
and last endpoint of the corresponding segment (DOYstart, DOYend, respectively). For model biases, we used the 

total sum of the component tracers (land + fossil fuel + ocean) and we summarized model biases as the region-

average of segment-to-segment differences between model and observation. Although we aggregate the biases 

among segment types, and therefore lose information, we do this to demonstrate that there are distinct general 

patterns in the Rise and Fall segments, regardless of region. Of course, one might be more interested in one 265 
bioregion over another, and while this is indeed possible and suggested, such analysis is not the intent of this paper.  

     The latitudinal variation of amplitude and period length for Rise and Fall segments was evaluated by comparing 

the regionally-averaged metrics against the average latitude of each TransCom region. We sought to evaluate a 

model’s ability to reproduce the north to south gradient in seasonal cycle characteristics. We also use data from in-

situ [CO2] flask samples for 2005-2015 (NOAA/ESRL/GMD CCGG cooperative air sampling network; 270 
https://www.esrl.noaa.gov/gmd/ccgg/flask.php) as a check to evaluate latitudinal variations of surface site seasonal 

amplitudes. Surface sites were selected if they had a minimum of five years of data between 2005-2015, with at least 

one flask sample per month. The peak-trough amplitude was then taken from monthly averaged data. Linear 

correlations were deemed statistically significant at levels of p=0.05. 

The amplitude and period length asymmetries between Rise and Fall segments were calculated as in the 275 
following example. Given a sequence of data with segments of type {Fall_1, Rise_1, Fall_2, Rise_2}, representing 

seasonal cycles over two years, three asymmetries in amplitude and period length would be calculated for the 

sequence of segments, as (i) Fall_1 - Rise_1, (ii) Fall_2 - Rise_1, and (iii) Fall_2 - Rise_2. The asymmetries are 

referenced to Fall segments such that, for example, negative asymmetries mean that the amplitude (or period length) 

is greater in the Rise segment. The reason we calculated asymmetries between segments immediately before and 280 
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after the Fall segments is because we assumed that there is some degree of autocorrelation in the relational values 

that is both real and could provide useful information, but the underlying causal mechanisms are speculative at this 

point. 

2.8 Application of approach 

We applied the approach to evaluate the effect of LUC on XCO2 by using the segment characteristics setting the 285 
‘S2’ scenario as the reference time series and then following procedures outlined in Sect. 2.6 to match corresponding 

Rise and Fall segments in the S3 and S2 simulations. We then calculated the difference in the amplitude, period, and 

phase between matching segments, hereafter defined as the ‘LUCeffect’. To evaluate the relative influence of the 

LUCeffect on changes in amplitude, period and phase, we transformed the LUCeffect to percentages by (a) dividing 

the LUCeffect in amplitude by region-specific average amplitudes, and (b) dividing the LUCeffect in the period 290 
length and phase (DOYstart, DOYend) by the region-specific average period lengths. We then pooled the absolute 

values of the standardized LUCeffects for all regions, by model; the absolute values of LUCeffect was used because 

we were more interested in any significant change, rather than a directional change in the metric values. We 

conducted an Analysis of Variance to test for significant differences among models and type of LUCeffect 

(amplitude, period, and phase), in terms of the percent LUCeffect, also setting significant differences at p=0.05. In 295 
this manner, we were able to determine the relative importance of LUCeffect by metric and compare amongst 

models. 

3. Results 

3.1 Satellite coverage and XCO2 seasonal cycles 

The satellite data coverage had sufficient temporal density to extract smooth seasonal cycles (Fig. 3), except during 300 
Boreal Winter at high latitudes (> 50˚ N) and during the wet-season in Tropical Asia where there was clear evidence 

of linear interpolation over large data gaps (Supplementary Material Fig. S2-S4). We had to exclude North America 

Boreal and South America Tropical regions from all analyses because the data were too sparse and seasonal cycles 

could not be derived. The mean number of satellite retrievals per day in 5˚ bins was greater than 1 when averaged 

over a season, but the spatial distribution of the retrievals by month (Supplementary Material Fig. S2-S4) showed 305 
that only portions of the TransCom regions were being represented with satellite observations. The lack of a 

complete representative sample of satellite observations in a region suggests that the derived seasonal cycle will be 

biased towards the XCO2 observations in those sub-regions with greater coverage. We take this finding as a caveat, 

but also demonstrate below that the derived seasonal cycles are a good representation of the general seasonal 

dynamics in the data. 310 
There were noticeable deviations (local minimums) from otherwise consistent Rise and Fall patterns during a 

season (for example in North Africa in Fig. 3). We compared the seasonal cycles derived from DGVM XCO2 co-

located with GOSAT retrievals against DGVM seasonal cycles using all simulated XCO2 and complete coverage 

(no-colocation). For the single DGVM studied in this side analysis, the local deviations were still evident in the 

seasonal cycles that used data with complete coverage (Supplementary Material Fig. S5). We believe that these 315 
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deviations are not artefacts of the spatial distribution of satellite retrievals, but instead are true patterns in the XCO2 

seasonal cycle. However, the co-location sampling did appear to have a greater effect on the amplitudes and periods 

in Southern Hemisphere regions, whereas the effect of co-location sampling was less influential in Northern 

Hemisphere regions. 

The magnitude of the GOSAT seasonal cycle residual error, averaged over all regions, was 0.15 ± 1.02 ppm, 320 
which was not a small fraction relative to the average amplitudes when taking into account the standard deviation. 

However, the residuals, were normally and randomly distributed around zero (Supplementary Material Fig. S6), 

which we took to suggest that there was no systematic bias and that the daily spatial variation in data coverage 

averaged out, and what we derived was a realistic estimate of seasonal variation in XCO2. 

3.2 Latitudinal variation in XCO2 seasonal cycle amplitudes  325 

Seasonal amplitude varied predictably with latitude (Fig. 4). Latitude explained between 82-84% of the variation in 

seasonal amplitudes in GOSAT, with the range taken from linear models of Rise and Fall segments (Fig. 4). There 

was an increase in amplitude of 0.74-0.77 ppm for every 10 degrees of latitude for GOSAT. Whereas the XCO2 

amplitudes exhibited a linear relationship with latitude, the in-situ flask samples of CO2 exhibited a log-linear 

relationship with latitude (Fig. 5; R2 = 0.90, d.f.=45, p < 0.001). Furthermore, the latitudinal gradient in seasonal 330 
amplitude for the CO2 in-situ data was 1.25 ppm/10˚ latitude (Fig. 5), a ~65% increase compared to the amplitude 

gradient from GOSAT XCO2. This results in a latitudinal range in seasonal amplitude of ~8 ppm for XCO2 and ~19 

ppm for surface CO2.  The dampened gradient in XCO2 amplitude suggests substantial north-south atmospheric 

mixing, which is consistent with a previous study on the meridional versus zonal contribution to XCO2 via 

atmospheric transport (Keppel-Aleks et al., 2012). In addition, the in-situ sampling stations are located in such a way 335 
that they sample the ‘background’ atmosphere, which reduces the influence of local to regional terrestrial fluxes, and 

instead they provide seasonal cycles representative of hemispheric- and continental-scales. The contrast between the 

latitudinal gradient in amplitude between XCO2 in this study and in-situ surface samples may therefore be even 

greater than reported here (Olsen and Randerson, 2004; Sweeney et al., 2015). 

Only LPX was able to simulate the GOSAT-derived latitudinal gradient (slope) in amplitude, but even in this 340 
model, the magnitudes of the amplitudes were consistently lower than GOSAT by ~1.5 ppm (Fig. 4). ORCHIDEE 

simulated the latitudinal gradient in amplitude reasonably well and CLM simulated a marginally stronger north-

south gradient, whereas the gradient was much weaker in two models (OCN, VISIT) and there was no statistically 

detectable amplitude gradient in LPJ. The evidently enhanced meridional mixing of total column CO2 complicates 

an interpretation of the finding that most models simulated a weaker gradient in XCO2 seasonal amplitude (Fig. 4). It 345 
makes it difficult to determine why models do not reproduce the latitudinal gradient in amplitude very well – for 

example, are the magnitudes of the fluxes in certain regions too low or too high, such that they offset the seasonal 

amplitudes in the region of interest after atmospheric transport? We offer suggestions in the Discussion that might 

help answer these questions. 

3.3 Latitudinal variation in XCO2 seasonal cycle period 350 
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The period lengths of GOSAT XCO2 seasonal cycles also varied predictably with latitude (Fig. 5) and there was no 

significant difference in the magnitude of the latitudinal gradients between Rise and Fall segments, although the 

direction of the gradient was positive for Rise segments and negative for Fall segments (Fig. 4). Latitude explained 

between 67-73% of the latitudinal variation in period lengths in GOSAT seasonal cycles. From South to North, the 

period lengths of Rise segments increased by 10 days per 10˚ of latitude for GOSAT. From South to North, the 355 
period lengths of Fall segments had negative gradient and decreased by -9 days/10˚ latitude for GOSAT. The 

opposite gradient in period lengths of Rise and Fall segments implies that around 2˚ N, the asymmetry in period 

lengths reverse sign. North of this point of inversion in asymmetry, the period lengths of Rise segments are greater 

than in Fall segments, with an increasing asymmetry as latitude increases. We hypothesize that the latitude at the 

point of inversion of period asymmetry is a characteristic indicator global atmospheric dynamics and biosphere 360 
productivity. Our rationale is that if (i) the primary driver of the period of drawdown (Fall) or release (Rise) in 

XCO2 seasonal cycles is the terrestrial biosphere, and (ii) DGVMs themselves simulate the terrestrial biosphere, then 

variation in the simulated point of inversion of asymmetry by different DGVMs suggests a strong influence of 

biosphere activity on this emergent pattern. The most obvious driver affecting the period being plant phenology. 

Furthermore, we already know that seasonal cycle in XCO2 is dominated by flux seasonality in land biosphere, with 365 
the ocean and fossil fuel emission seasonality plays only a secondary role. As of yet, however, it is unclear if this 

point of inversion is relatively stable over time or if, instead, the point shifts in latitude among years or decades 

depending on the relative influence of source-sink dynamics in biospheres in the Northern and Southern 

Hemispheres.  

Most models correctly simulated the satellite-derived latitudinal gradient in period, but LPJ and VISIT did 370 
not simulate statistically significant gradients in either Rise or Fall segments, and LPX could only reproduce the 

gradient for Rise segments, but not for Fall segments (Fig. 4). For CLM, OCN and ORCHIDEE, the simulated 

gradients were statistically similar to GOSAT and OCO-2, although the absolute period lengths differed by up to 25 

days. The latitudinal gradient in period of XCO2 seasonal cycles is emergent from the underlying timing and 

duration of biosphere productivity, and as such, it serves as a high-level constraint on simulated dynamics. It may 375 
therefore be possible to add this emergent pattern as a benchmark to evaluate models that attempt to reproduce more 

direct indicators of biosphere activity, such as seasonal patterns in leaf area (Richardson et al., 2012), or primary 

production (Forkel et al., 2014).  

3.4 GOSAT asymmetries in period and amplitude 

The period asymmetry between Rise and Fall segments (Table 2) is clearer when comparing the periods of 380 
consecutive Rise and Fall segments (Fig. 6), taking the Fall segment as reference, as described in Sect. 2.7. The 

period asymmetries were in the same direction except for the Africa Northern, Africa Southern, and South America 

Temperate regions (Fig. 6A). The asymmetries exhibit stable patterns of consistent direction within many regions, 

and they also display quite a bit of interannual variation in the magnitude (or direction in some cases) of the 

asymmetries themselves (Fig. 6A and 6B). For example, the standard deviation in period asymmetry averaged 11% 385 
of the region-averaged periods for GOSAT seasonal cycles, and it was greatest for the Africa Southern region 
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(42%). For context, a 10% change amounts to a change in period asymmetry by 5-29 days, and as much as 73 days 

in the Africa Southern regions, which is certainly a remarkable change in the atmospheric signal. The period 

asymmetries can provide insight into the underlying terrestrial dynamics, for example, from interannual variation in 

the duration of the carbon uptake period (Xia et al., 2015; Fu et al., 2017), but it is yet unclear how changes in 390 
carbon uptake period manifest to affect these patterns of asymmetry. Furthermore, one DGVM (ORCHIDEE) was 

able to simulate period asymmetries, consistent in direction, with that of the GOSAT record when using co-location 

sampling. Albeit, the magnitude of the period asymmetry for ORCHIDEE was about half that of GOSAT, but it does 

suggest that the surface fluxes from this DGVM were more realistic in timing and magnitude. All other models had 

greater interannual variation in the direction of the asymmetry, with no other model reproducing the direction of 395 
asymmetry in all regions.  

The amplitude asymmetries between consecutive Rise and Fall segments were more variable in the direction of 

the asymmetry for GOSAT (Fig. 6B). There was no consistent pattern in the direction or magnitude of the amplitude 

asymmetries within or among regions, but we did not investigate if there were annual patterns that were consistent 

among all regions. No model successfully reproduced the direction of asymmetry in amplitude across all regions in 400 
all years. As of yet, the relevance of interannual variation in the asymmetries is speculative, but we do know that 

such variation is not simply due to data coverage (Supplementary Material Fig. S5), so there may be more insightful 

information in the signal.  

3.5 Correlated biases between Rise and Fall segments 

The correlations of model biases differed more among Northern and Southern Hemispheres (NH and SH, 405 
respectively) than among regions, so we present the following analyses not by region, but by NH and SH. The NH 

regions were comprised of Africa Northern, Europe, Eurasia Temperate, North America Temperate; the SH regions 

were comprised of Africa Southern, Australia, and South America Temperate. These analyses required data on both 

Rise and Fall segments, which eliminated the Asia Tropical and Eurasia Boreal regions from these analyses. 

Among Rise and Fall segments, and among all models and regions, the model biases in amplitude were nearly 410 
perfectly correlated (NH R2 = 0.99, d.f. = 28, t= 64.63, p < 0.001; SH R2 = 0.99, d.f. = 16, t = 65.02, p < 0.001; Fig. 

7a and 7e). Except for ORCHIDEE and CLM, which exhibited the smallest amplitude biases, the other models all 

had amplitudes that were too low. In the SH, there was a similar pattern of negative amplitude biases (Fig. 7e), with 

exception that CLM simulated amplitudes that were too large in two of three SH regions. The strong correlations 

suggest that knowing the amplitude biases in one part of the seasonal cycle is sufficient to gain information about 415 
amplitudes in the missing part of the seasonal cycle. This might be particularly useful for constraining estimates of 

XCO2 seasonal cycle patterns during timeframes that have poor satellite coverage (Boreal Winter, Tropical Wet 

Season). Furthermore, it is revealing that models which simulate amplitudes that are too low do so almost equally 

for both Rise and Fall segments, which is suggestive of a systematic bias in the sensitivity of the models to seasonal 

changes in climate. Such systematic biases can be due to simulated fluxes that are overall lower in magnitude, or due 420 
to a pattern of spatio-temporal fluxes that end up offsetting or cancelling each other in the atmospheric domain, but 

we cannot yet definitively attribute the bias of individual models to one of these possible causes.  
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The average period biases of Rise and Fall segments were also strongly correlated, with a greater strength of 

correlation in the NH (R2 = 0.77, d.f. = 22, t= -8.53, p < 0.001) than in the SH (R2 = 0.82, d.f. = 21, t = -9.87, p < 

0.001). In the NH, almost all models simulated periods that were too short in Rise segments and too long in Fall 425 
segments, in approximately equal and opposing amounts (Fig. 7b). In the SH, the period biases spanned both 

positive and negative values for both of the Fall and Rise segments, but also in approximately equal and opposing 

amounts of bias (Fig. 7f). There were only a few data points where the periods within a region were either biased (a) 

too short for Rise segments and also too short for Fall segments, or (b) where the Rise segment was biased too long 

and the Fall segment also biased too long. These patterns are suggestive of underlying constraints that compensate 430 
for biases in periods, such that situation (a) and (b), from above, rarely occur. Such constraints are likely associated 

with the underlying drivers of the period of Rise and Fall segments. For instance, models that simulate growing 

seasons that are too long will likely simulate Fall-segment periods that are also too long, and as a consequence, the 

dormant season will be shortened, as will the periods of associated Rise segments. Within a given model, the 

magnitude of compensating biases varied by region, so it is possible that biases in biosphere activity varied similarly 435 
by region. To incorporate such insights will require direct manipulation of the phenology represented by models, but 

improving the emergent patterns in period to better match the satellite-derived XCO2 seasonal cycles will bolster 

confidence in the model’s ability to represent both fine-scale dynamics and the emergent large-scale atmospheric 

patterns. 

3.6 Application of Approach: LUCeffects on amplitude, period and phase metrics were non-trivial 440 

We describe the LUCeffect as the percent change in the Rise and Fall segment amplitude, period, and phase 

(DOYstart, DOYend) when LUC processes are included in model simulations, relative to seasonal cycle metrics 

when LUC was not included in simulations. Among all models and Rise and Fall segments, the average LUCeffect 

was largest on amplitude (mean 13.4%, or 0.37 ppm), but there were also non-trivial changes in the period (7.2%, or 

13.2 days), and phase metrics of the DOYend (6.5%, or 11.4 days) and DOYstart (6.2%, or 11.4 days). An Analysis 445 
of Variance suggested that the LUCeffects did not significantly differ between Rise and Fall segments (F= 0.006, 

d.f.=1, p = 0.941), and that the specific model explained 16% of the variation (F= 15.183, d.f.=5, p < 0.001) and the 

metric explained only 5% of the variation (F= 7.815, d.f.=3, p < 0.001). LPJ was an outlier in that it simulated larger 

LUCeffects in every metric (mean LUCeffect=18%), approximately 8% greater than other models. The remaining 

variation in LUCeffect was explained by the larger LUCeffect on amplitude in LPX and VISIT (Fig. 8), whereas 450 
OCN simulated only marginally greater LUCeffects than CLM and ORCHIDEE. The LUCeffects were of similar 

magnitudes as the baseline interannual variation for these metrics, in terms of percent change, or greater in the case 

of the LUCeffect on amplitude (Table 3). 

The importance of the LUCeffect on the amplitude of Rise and Fall segments was somewhat expected because 

LUC directly affects the type of land cover simulated in the models, for example, by converting forest to pasture or 455 
pasture to forest and thereby influencing the magnitude of surface fluxes directly (Arneth et al., 2017). However, the 

effect of LUC on the temporal metrics of the seasonal cycle (period, phase) is typically understated in the literature. 

The LUCeffects on period and phase are of the same relative magnitude as is observed in two-decades of 



 15 

advancement in the start and end dates of the carbon uptake period based on atmospheric inversion studies (Fu et al., 

2017). It should not be a surprise then that LUC can affect the timing of surface fluxes, but this facet is often 460 
overlooked when the focus is solely on variability at annual or decadal timescales. At the very least, this work shows 

that land-surface modelers should consider the impact of LUC on the timing and duration of surface fluxes, in 

addition to its effect on the magnitude of the fluxes.  

4. Discussion  

4.1 Utility of a segment analysis for analyzing cyclic time series 465 

We demonstrated that a segmentation analysis of satellite-derived XCO2 seasonal cycles can generate direct 

estimates of amplitude, period, and phase at global and hemispheric scales, and that it can reveal stable patterns in 

the metrics which can be used as benchmarks to evaluate simulation models. There is obvious value in using 

standard statistics (RMSE, S.D., R2, etc.) to characterize a time series and evaluate it against simulated 

reproductions (e.g., ‘Taylor diagrams’; Taylor, 2001; Supplementary Fig. S7). We do this too, but we argue that 470 
applying statistical measures of goodness-of-fit over the entire time series misses an opportunity to extract valuable 

information from observational data and provide more direct measures of bias. Studies that have evaluated 

amplitude and period biases directly have been based on the mean harmonic of the seasonal cycle (Peng et al. 2015), 

which lacks interannual variation, and therefore does not fully represent the modeled biases. Furthermore, the 

metrics for the asymmetric Rise and Fall patterns in seasonal cycles are not typically estimated, nor evaluated for 475 
bias. In the Europe region, for example, the internanual variation in amplitude (1.25 ppm) and period (25 days) is 

certainly not trivial (Supplementary Fig. S8), and if excluded in evaluations it would cause a biased assessment of 

what the models can and cannot do well, limiting the potential of such assessments to inform potential 

improvements. 

Our study focused on the Rise and Fall segments in XCO2 seasonal cycles, corresponding to periods when 480 
terrestrial ecosystems generally release and uptake carbon dioxide, respectively. Other studies might be more 

interested in shorter-term, pulse-type signals, such as the ability of models to simulate the effect of large scale fires 

or volcano eruptions in an atmospheric time series. In either case, the segmentation algorithm could help standardize 

and decompose model bias into its component parts of amplitude, period and phase biases. 

4.2 Asymmetries provide new insights into the interannual variation of atmospheric signals 485 

By definition, the asymmetries (Fig. 6) are not anomalies, but similarly, the amplitude asymmetries are directly 

related to underlying processes generating the imbalance in the amplitude and period between Rise and Fall 

segments. Most likely, the asymmetries reflect the difference in the magnitude or in the timing of fluxes during the 

growing season for Fall segments and phenological dormancy for Rise segments (Randerson et al., 1997). Whereas 

the signature of the terrestrial biosphere may be a more dominant driver of the period asymmetries, the amplitude 490 
asymmetries may also be influenced by processes that the models simply do not simulate well, or in any sufficient 

manner in some cases, such as sub-seasonal representation of Fire and LUC (Earles et al., 2012) or volcano 

eruptions (Jones and Cox, 2001). The interannual variation in XCO2 period and amplitude asymmetries are directly 
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related the activity of terrestrial ecosystems, but questions remain – are the annual asymmetries in amplitudes or 

periods evident of a global response to large-scale climate phenomena, such as the El Niño-Southern Oscillation? 495 
Do some regions dominate and influence the signal more than others? To what degree do the asymmetries in one 

region provide information about asymmetries in other regions, and can we infer dynamics in Boreal regions, for 

example, by analyzing atmospheric signals in regions where satellite coverage is more complete? The asymmetries 

offer a new level of information on atmospheric dynamics that is ripe for exploring. 

4.4 The effect of LUC on seasonal cycles is in addition to the effect on the long-term trend 500 

Much focus has been put on accurately characterizing component fluxes from land use and land cover change 

simulated by DGVMs (Pongratz et al., 2014; Calle et al., 2016), but we also show that LUC influences the 

atmospheric seasonal cycle period and phase at a level that is comparable to the reference rates of interannual 

variation in those metrics (Table 3). This underscores a complex problem of trying to simultaneously resolve the 

contribution of LUC fluxes to the long-term trend in atmospheric CO2 (Le Quéré et al., 2018), and also to represent 505 
realistic LUC effects on seasonal-scale biosphere activity (Betts et al., 2013; Bagley et al., 2014). For instance, when 

land is converted from forest to pasture, the dominant land cover will affect the duration and timing of the surface 

fluxes (Fleishcher et al., 2016) and this seems obvious on its own standing. However, DGVMs were not developed 

during the era of satellite XCO2 observations, and so the main issue of trying to resolve the effect of large-scale 

changes in land use on both the long-term trend and seasonal cycle dynamics is not easily solved. But now that these 510 
data are available, perhaps a new approach is necessary to take advantage of these large-scale benchmarks. 

The inclusion of LUC in the simulations, after including the contribution from fossil fuels and ocean, 

resulted in a combined long-term trend estimate which was too large, by 0.07 to 1.72 ppm yr -1, compared to the 

long-term trend of GOSAT XCO2 (2.16 ± 0.01 ppm yr -1) (Supplementary Fig. S9). The GOSAT estimate is 

comparable to an independent estimate of the long-term trend of XCO2 from SCIAMACHY for the 2000s (1.95 ± 515 
0.05 ppm yr -1; Schneising et al., 2014). If we assume that this study’s simulated long-term trends of fossil fuel 

fluxes (4.44 ± 0.008 ppm yr -1) and those of the ocean (-0.66 ± 0.0006 ppm yr -1) are better constrained than the 

trends from the land fluxes, then according to the GOSAT benchmark, the simulated land sink is too weak. Despite 

the posibility that these simulated LUC fluxes are too high, the DGVM versions applied in this study do not simulate 

a suite of land management processes (shifting cultivation, wood harvesting, pasture harvest, agriculture mgmt.) that 520 
have been shown to increase the annual LUC flux by 20-60% (Arneth et al., 2017), further pointing to a simulated 

land sink that is too weak. DGVM-based estimates of the terrestrial land sink have been compared against a residual 

term in the global carbon budget that is taken as the average flux over a decade (Le Quéré et al., 2018), but perhaps 

we are overlooking something here. The cumulative fluxes simulated by the models in this study (from 2002-2012) 

resulted in a long-term trend that is at odds with the satellite record, and it is unclear why. We must therefore 525 
attempt to reconcile biases in both the long-term trend and seasonal cycle dynamics if we are to use XCO2, or other 

integrated atmospheric measurements to constrain model dynamics, and not simply assess these patterns 

independently. 

4.5 Caveats, limitations and ways forward 
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The XCO2 gradient in amplitude is approximately half the gradient in amplitude of in-situ surface CO2. The 530 
dampened XCO2 gradient suggests the presence of strong meridional mixing, which complicates accurate attribution 

of model biases to any specific bioregion. In effect, the XCO2 seasonal cycle is comprised of the fluxes from all 

regions to varying degrees (Olsen and Randerson, 2004; Sweeney et al., 2015; Lan et al., 2017). Given this, 

simulating the atmospheric transport of the surface fluxes from all regions at once would allow us to both, (a) obtain 

useable estimates of model bias and (b) to provide attribution to those biases. Indeed, the model biases were fully 535 
described, but only in terms of XCO2, not in terms of terrestrial surface fluxes themselves. An approach for 

attribution of model bias in XCO2 might be laid out similar to Liptak et al. (2017), wherein the surface fluxes from 

each region (by year) undergo independent atmospheric transport. In a framework similar to this study, such 

simulations might prove instrumental in determining the fractional contribution of each region’s fluxes the XCO2 

seasonal cycle characteristics while also providing better guidance for model development. 540 
Model evaluations also showed that few models have low bias in all seasonal cycle metrics of amplitude, 

period, and phasing of simulated XCO2. An inherent requirement for reproducing the XCO2 signal is that the land-

to-atmosphere fluxes are reasonable in magnitude, duration and timing in all land regions, or at the very least, in 

land regions with large vegetative areas that might disproportionately dominate the signal. Even though such 

requirement may be necessary to simulate the amplitude asymmetries, this is an extreme level of proficiency that, 545 
simply, the models do not currently exhibit. 

Lastly, the relative contribution of land, ocean and fossil fuel fluxes to the seasonal cycle differs by region, 

latitude, and time period (Randerson et al., 1997). This poses some concern because fossil fuel and cement fluxes 

are considered to have low uncertainty, but they may be biased too high in some regions (Saeki and Patra 2017), 

affecting our interpretation of the contribution of simulated land fluxes to the seasonal cycle amplitudes, especially 550 
if the fossil fuel seasonal cycle signal is additive to (or offsets) the signal from the land fluxes. Other land 

uncertainties were not addressed in this study as it was not our intent to determine which DGVM had zero bias. 

Instead, we sought to extract unique patterns in the observed signals so that they may inform model development 

and subsequent evaluations in the future. Model improvements in their representation of important land processes 

such as forest demography, wetland and permafrost dynamics, agriculture and land management, and a greater 555 
diversity of functional plant diversity are all on the horizon (Pugh et al., 2016; Fisher et al., 2018) and may further 

improve simulated atmospheric signals. The patterns in XCO2 seasonal cycles are emergent from surface fluxes over 

the globe, and we foresee that a segment-based analysis of atmospheric seasonal cycles as a way to extract emergent 

patterns in the reference data to help guide future development and an improved understanding of the terrestrial 

biosphere. 560 
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Table 1. Terrestrial ecosystem models from the TRENDY v.2 model inter-comparison used to simulate terrestrial Net Ecosystem Exchange. 

 

Model Abbrev. Spatial 
Resolution 

Land Surface 
Model 

Fire 
Simulation 

C-N coupled 
cycle Source 

Community Land Model v.4.5 CLM 2.5 X 2.5 Yes Yes Yes Lawrence et al. (2011) 

Lund-Potsdam-Jena LPJ 0.5 X 0.5 No Yes No Sitch et al. (2003) 

Land-surface Processes and exchanges LPX 1.0 X 1.0 No Yes Yes Prentice et al. (2011) 

ORganizing Carbon and Hydrology in 
Dynamic EcosystEms ORCHIDEE 3.74 X 2.5 Yes Yes No Krinner et al. (2005) 

ORCHIDEE with coupled C-N cycling OCN 1.0 X 1.0 Yes Yes Yes Zaehle and Friend (2010) 

Vegetation Integrative SImulator for 
Trace gases  VISIT 0.5 X 0.5 No Yes Yes Kato et al. (2013) 
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Table 2.  Signal characteristics for Rise and Fall segments of the GOSAT-derived XCO2 seasonal cycles 

(2009-2012) by TransCom region. The timeframe of one Rise plus one Fall segment approximately equates to 

one year. North America Boreal and South America Tropical regions were excluded for lack of observations 

to derive signals for Rise or Fall segments. 

 

 
Period (days) Amplitude (ppm) 

Region Segment Fall Rise Fall Rise 
Africa Northern 1,2 118 241 5.4 6.1 

 3,4 130 229 5.5 5.2 

 5,6 135 232 6.0 5.8 

 7 135 NA 5.7 NA 
Africa Southern 1,2 174 216 2.5 3.0 

 3,4 131 131 4.0 3.6 

 5,6 218 147 3.2 3.0 
Asia Tropical 1,2 NA 194 NA 6.4 

 3,4 NA 200 NA 7.5 

 5,6 NA 190 NA 7.0 
Australia 1,2 140 225 2.0 1.2 

 3,4 136 209 2.0 2.5 

 5,6 155 228 2.4 2.4 
Europe* 2,1 115 236 6.8 8.0 

 3,4 131 239 7.9 6.4 

 5,6 132 244 6.1 7.4 
Eurasia Temperate* 2,1 109 248 6.2 7.1 

 3,4 108 255 7.2 6.4 

 5,6 118 253 5.7 6.5 
Eurasia Boreal 1,2 102 NA 10.9 NA 

 3,4 100 NA 11.7 NA 

 5,6 104 NA 11.2 NA 
North America Temperate 1,2 129 235 6.4 6.8 

 3,4 126 243 5.6 5.4 

 5,6 127 233 6.0 5.3 

 7 129 NA 5.6 NA 
South America Temperate 1,2 232 91 2.1 2.0 

 3,4 238 137 2.2 2.4 
  5,6 234 154 2.9 2.6 
* the first differentiable segment is a Rise segment, starting approximately ~100+ days 
after the first segment in other regions because the initial drawdown (Fall segment) in the 
region is a partial or incomplete segment. 
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Table 3. The interannual variation (IAV) in XCO2 seasonal cycle metrics, presented as the relative standard 

deviation (i.e., RSD or coefficient of variation) and the LUCeffect, defined as the change in the XCO2 seasonal 

cycle metrics when land-use change is included in simulations, relative to simulations with only natural 

vegetation. The values for IAV and LUCeffect presented below are first calculated for each region and 

segment type (Rise, Fall), and then averaged over all regions, and models (for LUCeffect). The values for the 

phasing metrics (day of year, ‘DOY’) are calculated using the period as the divisor.  

 
metric GOSAT IAV (%) LUCeffect (%) 

amplitude 12.3 14.2 

period 14.5 7.5 

DOYstart 9.3 6.5 

DOYend 7.5 6.8 
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Figure 1. Conceptual diagram for the segmentation analysis. (A) interannual variation in seasonal cycle 

amplitudes (vertical, solid colored lines) and periods (horizontal, dashed colored lines); such interannual 

variation may also differ among Rise and Fall segments. (B) a reference (black) and a modeled seasonal cycle 

(red) are compared using the Root Mean Squared Error (RMSE), which is taken as the difference in 

magnitude at the same exact time in reference and modeled seasonal cycles; in out-of-phase signals, the 

RMSE misrepresents bias; the segmentation approach matches segments in the reference and modeled 

seasonal cycles, Rise-to-Rise and Fall-to-Fall, so that the errors in magnitude and phase can be decomposed 

and directly represented (C). 
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Figure 2. TransCom region map. 
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Figure 3. Detrended XCO2 seasonal cycles by TransCom region. Simulated seasonal cycles are the sum of transported fluxes from DGVM, Fossil Fuel 

and Ocean, but only the DGVM model name is listed. 
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Figure 4. Latitudinal variation in amplitude and period in Rise and Fall segments among TransCom regions, 

using the average latitude for each region. Linear regressions shown when significant (p < 0.05). Regression 

statistics and equation only given for GOSAT. OCO-2 data (orange, triangles) are from 2014-2018; all other 

data, including GOSAT, are from 2009-2012, corresponding to the date range of available simulation data. 
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Figure 5. Latitudinal variation in the amplitude for detrended in-situ surface CO2 samples. Data are the 

average of peak-trough amplitudes for 2005-2015, only including sites with a minimum of 5 years of data. 

Points are labeled according to the three-letter code of the sampling station. South Pole (spo), Mauna Loa 

(mlo), and Barrow Island (brw) are highlighted in red for reference as these sites are commonly referenced in 

literature. The latitudinal range in surface site CO2 seasonal amplitudes (~ 19 ppm), is more than 2 times the 

latitudinal range in seasonal amplitudes of XCO2.  
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Figure 6. Period asymmetries (A) and Amplitude asymmetries (B) in GOSAT XCO2 seasonal cycles. Fall 

segments are taken as reference. Asymmetries are only shown for overlapping time periods. 
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Figure 7. Emergent correlations among biases for Rise (x-axes) and Fall (y-axes) segments model biases, using GOSAT XCO2 as reference, for 

TransCom regions in the Northern Hemisphere (top row) and Southern Hemisphere (bottom row). Data points are the average bias by model (unique 

symbols, not shown) for a particular region. Data for the Eurasia Boreal and Asia Tropical regions were excluded for lack of data in both Rise and Fall 

segments. Diagonal black lines are the 1:1 correspondence lines, blue lines are significant linear correlations. 
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Figure 8.  Land Use Change effect on amplitude, period, and day of year (DOY). The percentages were 

calculated from the difference in the metrics between simulations (S3-S2), scaled relative to amplitude and 

period of Rise and Fall segments for each region and model; DOY was scaled against the period. 
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