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Abstract. Radiometric calibration of space-based elastic backscatter lidars is accomplished by comparing the measured 

backscatter signals to theoretically expected signals computed for some well-characterized calibration target.  For any given 

system and wavelength, the choice of calibration target is dictated by several considerations, including signal-to-noise ratios 

(SNR) and target availability.  This paper describes the newly implemented procedures used to calibrate the 1064 nm 

measurements acquired by CALIOP (i.e., the Cloud Aerosol Lidar with Orthogonal Polarization), the two-wavelength (532 15 

nm and 1064 nm) elastic backscatter lidar currently flying on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite 

Observations (CALIPSO) mission. CALIOP’s 532 nm channel is accurately calibrated by normalizing the molecular 

backscatter from the uppermost aerosol-free altitudes of the CALIOP measurement region to molecular model data obtained 

from NASA’s Global Modeling and Assimilation Office.  However, because CALIOP’s SNR for molecular backscatter 

measurements is prohibitively lower at 1064 nm than at 532 nm, the direct high-altitude molecular normalization method is 20 

not a viable option at 1064 nm.  Instead, CALIOP’s 1064 nm channel is calibrated relative to the 532 nm channel using the 

backscatter from a carefully selected subset of cirrus cloud measurements.  In this paper we deliver a full account of the 

revised 1064 nm calibration algorithms implemented for the version 4.1 (V4) release of the CALIPSO lidar data products, 

with particular emphases on the physical basis for the selection of “calibration quality” cirrus clouds and on the new 

averaging scheme required to characterize intra-orbit calibration variability.  The V4 procedures introduce latitudinally 25 

varying changes in the 1064 nm calibration coefficients of 25% or more relative to previous data releases and are shown to 

substantially improve the accuracy of the V4 1064 nm attenuated backscatter coefficients.  By evaluating calibration 

coefficients derived using both water clouds and ocean surfaces as alternate calibration targets, and through comparisons to 

independent, collocated measurements made by airborne high spectral resolution lidar, we conclude that the CALIOP V4 

1064 nm calibration coefficients are accurate to within 3 %. 30 
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1 Introduction 

The Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission was launched on 28 April 2006 

with a payload of three Earth-observing sensors: a single channel (645 nm) wide field-of-view camera, a three channel (8.65 

μm, 10.6 μm, and 12.05 μm) imaging infrared radiometer (IIR), and the Cloud Aerosol Lidar with Orthogonal Polarization 

(CALIOP).  CALIOP is an elastic backscatter lidar that transmits linearly polarized light at two wavelengths (532 nm and 5 

1064 nm), and separately measures the total backscattered signal at 1064 nm and the components of the 532 nm 

backscattered signal polarized parallel and perpendicular to the polarization plane of the transmitted beam (Hunt et al., 

2009).  CALIPSO flies in a sun-synchronous orbit inclined at 98°, acquiring near-continuous measurements between 82° S 

and 82° N on a 16-day repeat cycle (Hunt et al., 2009).  CALIOP acquired its first backscatter profiles on 7 June 2006 and 

has now delivered over 12 years of altitude-resolved measurements of clouds and aerosols in the Earth’s atmosphere.     10 

An essential precondition required to reliably derive the spatial and optical properties of clouds and aerosols from the 

CALIOP measurements (or from any other Earth-observing elastic backscatter lidar) is the accurate calibration of the 

measured backscatter data.  In particular, accurate calibration of the CALIOP 1064 nm measurements is critically important 

in subsequent analyses such as reliably discriminating clouds from aerosols (Liu et al., 2018) and in retrieving accurate 

estimates of aerosol optical depths (Young et al., 2013; Young et al., 2016; Kim et al., 2018).  To date, the radiometric 15 

calibration of space-based elastic backscatter lidar measurements has always been accomplished by calculating time-varying 

scale factors that provide the best near-instantaneous match between the measured data and the theoretically expected 

backscatter signals derived for some stable, well-characterized calibration target.  The choice of calibration target depends 

critically on target availability and the signal-to-noise ratio (SNR) of the target measurements.  By far the most common 

target is the Earth’s atmosphere, which at very high altitudes is essentially free of aerosol contamination and hence the 20 

expected molecular backscatter can be well-characterized using the temperature and pressure profiles provided by 

atmospheric model data (e.g., from NASA’s Global Modeling and Assimilation Office (GMAO)).  The first space-based 

Earth-observing lidar, the Lidar In-space Technology Experiment (LITE), which flew aboard the space shuttle in September 

1994 (Winker et al., 1996), used this high-altitude molecular normalization technique to calibrate the 355 nm and 532 nm 

measurements (Osborn, 1998; Osborn et al., 1998).  However, because the molecular scattering cross-sections at 1064 nm 25 

are a factor of ~ 17 lower than at 532 nm (and ~ 89 times lower than at 355 nm), the 1064 nm SNR in the high-altitude 

calibration region precluded the use of the molecular normalization technique for those data.  As a consequence, the 1064 nm 

measurements were left uncalibrated in LITE level 1 data distributed by NASA’s Atmospheric Sciences Data Center (see 

https://eosweb.larc.nasa.gov/project/lite/lite_table; last access: 8 September 2018). 

Following the release of the LITE data, Reagan et al. (2002) devised a method to calibrate the 1064 nm channel using the 30 

backscatter signals from dense cirrus clouds.  The ice crystal sizes within the clouds used by the calibration routines are 

assumed to be quite large with respect to the laser wavelengths, and hence the in-cloud extinction is concomitantly assumed 
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to be spectrally independent.  Reagan et al. further argue that the cirrus backscatter coefficients are also spectrally 

independent at 532 nm and 1064 nm, and thus estimates of the 1064 nm calibration coefficients could be obtained by 

comparing the uncalibrated 1064 nm measurements to the calibrated 532 nm measurements of strongly scattering cirrus 

clouds. Reagan’s technique was subsequently used to calibrate 1064 nm lidar measurements made by the Geoscience Laser 

Altimeter System (GLAS), a two-channel space-based elastic backscatter instrument that launched on 12 January 2003 5 

(Palm et al., 2004; Spinhirne et al., 2005).   

The CALIOP 1064 nm calibration scheme also traces its lineage directly back to the pioneering work of Reagan et al. 

(2002).  However, the use of cirrus clouds as a calibration target is not uniformly implemented for all space-based lidars.  

Unlike LITE, GLAS and CALIOP, the Cloud-Aerosol Transport System (CATS) used the molecular normalization 

technique, together with estimates of aerosol loading provided by CALIOP, to calibrate their 1064 nm measurements over an 10 

altitude range of 23 to 27 km (Yorks et al., 2016).  This was possible because the CATS instrument design delivered 

nighttime SNR in the low–to–middle stratosphere that was substantially higher than in the earlier systems.  The CATS 

transmitters have laser pulse rate frequencies (PRFs) of 4 kHz and 5 kHz, per-pulse energies of 1–2 mJ, and are coupled to 

receivers that use photon counting detection at 1064 nm.  In contrast, CALIOP has a PRF of 20.16 Hz, a nominal per-pulse 

energy of 100–110 mJ, and detects the backscattered energy at 1064 nm using an avalanche photodiode (APD) (Hunt et al., 15 

2009).  While the APD has a relatively high quantum efficiency, it also has a high detector dark count rate, which contributes 

significant levels of noise in the high-altitude molecular signals.  These high noise levels, combined with the greatly reduced 

sensitivity to molecular scattering, eliminate high altitude molecular normalization as a viable option for calibrating the 

CALIOP 1064 nm channel. 

Through the course of three major data releases spanning ~ 8 years of on-orbit operations, the CALIOP 1064 nm calibration 20 

scheme remained relatively unchanged.  The theoretical basis of the original algorithm is given in Hostetler et al. (2005).  

Vaughan et al. (2010) provide details on some procedural modifications that were incorporated for the version 3 (V3) data 

release.  In contrast to these V3 updates, the version 4.1 (V4) release is a comprehensive upgrade that features major changes 

to all of the primary components of the 1064 nm calibration algorithm.  In particular, we (a) defined a detailed set of sharply 

focused criteria to identify a much more homogeneous population of clouds used in the calibration procedure; (b) 25 

implemented a wholly new data averaging scheme that reduces uncertainties while simultaneously preserving intra-orbit 

variations in the calibration coefficients; and (c) augmented the lidar level 1 (L1) data products with substantially more 

robust estimates of calibration uncertainties.  This paper describes all of these changes in detail.  In doing so, we make 

repeated references to several earlier works.  The fundamentals of the CALIOP 532 molecular normalization technique are 

given in Hostetler et al. (2005) (hereafter H05) and Powell et al. (2009) (hereafter, P09).  Initial development of CALIOP’s 30 

1064 nm cirrus cloud calibration scheme and the mathematical development of the error propagation is given in H05, with 

post-launch updates provided in Vaughan et al. (2010) (hereafter V10).  The paper is organized as follows.  Section 2 

reviews the fundamental assumptions and equations that are used in the CALIOP 1064 nm calibration scheme.  Section 3 
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provides a brief review of the specific techniques used for the V3 data release and highlights the shortcomings that motivated 

the development of the V4 scheme.  Details of the V4 approach, including the physical basis for selecting “calibration 

quality” cirrus clouds and the constraints involved in developing a multi-orbit data averaging scheme, are given in Sect. 4.  

An in-depth comparison between the V3 and V4 calibration coefficients is conducted in Sect. 5, while Sect. 6 explores a 

variety of internal consistency checks and validation techniques.  Concluding remarks are given in Sect. 7. 5 

2 CALIOP 1064 nm calibration fundamentals 

The CALIOP 1064 nm calibration scheme uses the calibrated 532 nm attenuated backscatter coefficients measured in cirrus 

clouds to derive 1064 nm calibration coefficients from the simultaneously acquired but as yet uncalibrated 1064 nm cirrus 

measurements.  As described in Sect. 3 of V10, in V3 and earlier the equation used to transfer the 532 nm calibration to the 

1064 nm channel is 10 

1064 V3 532C C= f , (1) 

where C1064 and C532 are, respectively, the calibration coefficients at 1064 nm and 532 nm.  fV3 is a calibration scale factor 

computed using measurements acquired at both wavelengths:   

( )
( )

10641
V3 cirrus

532

X z
X z

−
 ′

= χ   ′ 
f . (2) 

In this expression, ( )X zλ′  is the background-subtracted, range-corrected, gain and energy normalized measured backscatter 15 

signal at altitude z and wavelength λ (i.e., either 532 nm or 1064 nm), with additional corrections applied to account for 

molecular and ozone attenuations (V10).  ( )X zλ′  is the mean value of ( )X zλ′ , computed from cloud top to cloud base.  In 

terms of the atmospheric components being measured, 

( ) ( ) ( )( ) ( )
,p

2
,p ,mX z C z z T z

λλ λ λ λ′ = β +β , (3) 

where Cλ is the wavelength-dependent calibration coefficient, βλ(z) is the wavelength-dependent backscatter coefficient for 20 

either particulates (subscript p) or molecules (subscript m), and T2
λ,p(z) is the particulate two-way transmittance due to the 

ice crystals in cirrus clouds.  Because these crystals are quite large relative to the CALIOP wavelengths, the extinction 

coefficients are assumed to be spectrally independent, and hence 
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. (4) 

The remaining term in Eq. (2), χcirrus, is the mean backscatter color ratio for cirrus clouds, defined as 

( )
( )

p,1064
cirrus

p,532

z

z

β
χ =

β
,  (5) 

where the angle brackets once again represent the mean value computed from cloud top to cloud base.  Note that when Eq. 

(4) is applied to appropriately selected cirrus clouds, ( ) ( )1064,p 532,pz zβ ≈ β  (i.e., the assumption invoked by Reagan et al. 5 

(2002)) and ( ) ( )532,p 532,mz zβ β , so that the ratio of the total backscatter coefficients (i.e., molecular and particulate 

combined) reduces to a very close approximation to the ratio of the particulate backscatter terms alone. 

On the right-hand side of Eq. (1), the values of ( )532X z′  and ( )1064X z′  used to compute fV3 are obtained directly from the 

measured data, and C532 is derived by calibrating the 532 nm data (Kar et al., 2018; Getzewich et al., 2018).  The χcirrus term 

in fV3 is an externally prescribed a priori value, and the only quantity in Eq. (1) that is not directly derived from CALIOP’s 10 

onboard measurements.  For versions 1 and 2 of the CALIPSO data products, χcirrus was assumed to be 1.00 ± 0.04 (H05).  

This assumption was revisited and revised prior to the release of V3. Based on the analysis of over 400 hours of multi-

wavelength elastic backscatter measurements acquired by the Cloud Physics Lidar (McGill et al., 2002), χcirrus is now 

assigned a uniform value of 1.01 ± 0.25 for all CALIOP 1064 nm calibration procedures.  Our rationale for this choice is 

described at length in V10.  Recent field observations using the Raman lidar technique at both 532 nm and 1064 nm provide 15 

further evidence for the spectral independence of cirrus backscatter (Haarig et al., 2016), as do previous elastic backscatter 

lidar measurements acquired at 550 nm and 728 nm (Ansmann et al., 1993) and multi-wavelength Raman measurements 

acquired at 355 nm and 532 nm (Beyerle et al., 2001). 

The uncertainties in the V3 CALIOP 1064 nm calibration coefficients are estimated using 

( )
( )

( )
( )

2 22 2 2
1064 5321064 cirrus 532

1064 cirrus 5321064 532

X z X zC C
C CX z X z

   ′ ′∆ ∆     ∆ ∆χ ∆
= + + +           ′ ′χ        

, (6) 20 

where Δa is the standard deviation or random uncertainty in the quantity a (see Eq. (12) in V10).  Because the 1064 nm 

calibration coefficients are not independent calculations, but are instead derived from previous calibrations of the 532 nm 

channel, the uncertainties in the 1064 nm calibration coefficients depend directly on the uncertainties estimated for the 532 

nm calibration coefficients.  The relationships between the different components of the calibration procedure are diagramed 
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in Figure 1.  The 1064 nm daytime calibration coefficients are derived from the 532 nm daytime calibration coefficients, 

which in turn are derived from the 532 nm nighttime calibration coefficients (Getzewich et al., 2018).  The uncertainties for 

the daytime 1064 nm daytime calibration coefficients thus contain contributions from both the daytime and nighttime 532 

nm calibrations. 

 5 
Figure 1: Dependency diagram showing the functional relationships between the 532 nm and 1064 nm CALIOP calibration 
algorithms 

3 Motivation for change: the V3 calibration algorithms 

Effective use of the 1064 nm calibration equation implicitly requires two critically important subroutines: (1) an algorithm to 

identify cirrus clouds appropriate for use in the calibration calculation, and (2) a data averaging scheme to reduce the random 10 

noise in the calibration coefficients without simultaneously introducing biases.  In this section we review the methods used 

for these tasks in the CALIOP V3 calibration scheme and point out the shortcomings that led to the subsequent development 

of revised techniques for V4. 

3.1 Identifying calibration quality cirrus 

As described in H05 and V10, the technique for identifying the calibration targets (i.e., clouds) used in the V3 calibration 15 

scheme is straightforward.  First, profiles of 532 nm attenuated backscatter coefficients, ( )532 z′β , are averaged horizontally 

and then converted to profiles of attenuated scattering ratios, ( )532R z′ , where 

( )
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )
( )
( ) ( )3

3

2 2 2
,m ,p ,m ,O ,p ,p 2

,p2 2
,m ,m ,O ,m

z z T z T z T z z
R z 1 T z

z T z T z z

η
λ λ λ λ λ λ η

λ λ
λ λ λ λ

β +β  β
′ = = +  β β 

.  (7) 

The numerator of Eq. (7) represents the measured attenuated backscatter coefficients, where βλ,x(z) is a backscatter 

coefficient measured for constituent x at altitude z and wavelength λ.  The constituent-specific attenuations are given by the 20 

two-way transmittance terms, 
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( ) ( )
0

z
2
,x ,x ,x

z
T z exp 2 dη
λ λ λ

 = − η σ 
 ∫ r r , (8) 

where σλ,x(z) is an extinction coefficient and ηλ,x  is a layer-effective multiple scattering factor.  The subscripts O3 and m 

indicate contributions from, respectively, ozone absorption and molecular backscatter and attenuation, and 
3m O 1η = η =  

(Winker, 2003; Young and Vaughan, 2009).  The quantities in the denominator of Eq. (7) are derived from meteorological 

model data (i.e., profiles of molecular and ozone number densities) obtained from the GMAO.  Nighttime profiles of 5 

( )532R z′  are averaged over 15 consecutive laser pulses (~ 5 km along-track).  To reduce the additional noise introduced by 

solar background signals, daytime profiles are averaged over 30 consecutive laser pulses (~ 10 km along-track).  These 

attenuated scattering ratio profiles are then searched downward over an altitude range from 17 km to 8.2 km in order to 

identify the highest altitude for which ( )532R z 50′ > for three or more consecutive range bins. All regions satisfying this 

search criterion are identified as calibration quality clouds and subsequently used in the V3 1064 nm calibration calculations.  10 

Requiring the scattering ratio to exceed 50 throughout the layer minimizes calibration biases by ensuring that the molecular 

contributions to the total backscatter signals will be negligible (see Sect. 7 in H05).  On the other hand, the V3 L1 

requirements for identifying a layer are very different from those used in the V3 level 2 (L2) analysis, and hence V3 

calibration quality clouds typically appear as strongly scattering regions embedded within the more vertically extensive 

structures reported in the V3 L2 data products. 15 

While the V3 L1 detection scheme effectively identifies strongly scattering cloud regions between 17 km and 8.2 km, it is 

also subject to three kinds of sampling bias: suboptimal sampling as a function of latitude, due to fixed altitude limits; 

contamination by water clouds in the tropics, and/or by polar stratospheric clouds (PSCs) in the polar regions; and 

differential attenuation of the backscatter signals due to undetected layers lying above the top of the calibration cloud.  The 

first two of these effects are illustrated in Figure 2, which shows the zonal mean occurrence frequency for ice clouds detected 20 

at night in the V4 level 2 data during August 2016.  Between ~ 20° S and ~ 30° N, the predefined V3 search limits 

encompass ~ 90 % of all range bins classified as containing ice.  However, as seen in Figure 3, outside of this latitude range, 

the fraction of ice clouds falling with the V3 search limits drops linearly, falling to less than 50 % at ~ 34° S and ~ 54° N.  

Between ~ 70° S and ~ 50° S, approximately 75 % of the potential ‘calibration quality’ clouds – i.e., tropospheric cirrus – are 

located below the minimum search altitude of 8.2 km.  Based solely on Figure 3, the fraction of clouds available as potential 25 

calibration targets appears to increase to ~ 50 % poleward of ~ 70° S.   However, Figure 2 shows that this apparent increase 

is illusory, as this region is dominated by PSCs that lie well above the local tropopause altitude.  The particle sizes in PSCs 

are often substantially smaller than is typical for tropospheric cirrus (Reichardt et al., 2004; Heymsfield et al., 2014), and 

thus the requisite assumption that χcirrus ≈ 1 cannot be confidently applied for these layers. 
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Figure 2: zonal mean occurrence frequency of ice clouds for V4 nighttime data acquired during August 2016.  The solid gray line 
shows the mean tropopause heights for the month, while the red dashed lines demarcate the V3 calibration cloud search region 
between 17 km and 8.2 km.  Polar stratospheric clouds are responsible for the high occurrence frequencies above the tropopause 
poleward of ~ 60° S. 5 

 
Figure 3: latitudinally varying fraction of ice cloud range bins in Figure 2 that lie within the V3 calibration cloud search limits. 

The V3 calibration cloud identification scheme relies solely on the magnitude of the attenuated scattering ratios within a 

fixed altitude range, and does not consider other available information such as volume depolarization ratios and/or in-cloud 

temperatures.  One consequence of this choice is the introduction of the second of the three kinds of sampling bias: ~ 13% of 10 

the clouds used in the V3 calibration scheme are almost certainly water, not ice.  This is illustrated by Figure 4a, which 

shows the occurrence frequency of the layer-integrated volume depolarization ratios, δv, for all V3 calibration clouds 

identified during August 2013.  The distribution is clearly bimodal, with a primary peak at δv ≈ 0.39, consistent with cirrus 

cloud depolarization (Sassen et al., 2012), and a secondary peak at δv ≈ 0.10, consistent with the multiple scattering induced 

depolarization observed by CALIOP in dense water clouds (Hu, 2007).  Figure 4b shows the distribution of δv as a function 15 

of mean R′532 for the same V3 calibration clouds.  Depolarization ratios below 0.2 are seen to increase approximately linearly 

as a function of R′532, as is expected for increasingly dense liquid water clouds (Hu, 2007).  On the other hand, there is no 

obvious trend for those clouds having δv > ~ 0.3.  Figure 4c shows the distribution of δv as a function of mid-layer 
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temperature (Tmid).  The depolarization ratios less than 0.2 are strongly associated with warmer temperatures, giving further 

credence to the supposition that these clouds are supercooled water clouds. 

 
Figure 4: panel a (left) shows the distribution occurrence frequencies of layer-integrated volume depolarization ratios for all 
calibration clouds identified by the V3 algorithm during August 2013; panel b (center) shows the joint distribution of layer-5 
integrated volume depolarization ratios as a function of and layer mean attenuated scattering ratio; and panel c (right) shows the 
joint distribution of layer-integrated volume depolarization ratios as a function of and mid-layer temperatures.  The colors in 
panels ab and c indicate log10 of the number of samples per bin. 

The third type of bias occasioned by the V3 calibration routine is the risk of differential attenuation of the 532 nm and 1064 

nm signals.  While X′532 and X′1064 are both corrected for wavelength-dependent attenuation effects due to molecular and 10 

ozone two-way transmittances, at this initial stage of the lidar data analysis, no correction is possible for as-yet-undetected 

particulates (i.e., cloud or aerosol layers) lying between the lidar and the top of the calibration cloud.  A more rigorous 

expansion of Eq. (2) would explicitly include these terms; i.e., 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

2
p,1064 top 1064 top base1

V3 cirrus 2
p,532 top 532 top base

T 0, r z X r z , r z

T 0, r z X r z , r z
−

 ′
 = χ  ′ 
 

f , (9) 

where ( )( )2
p, topT 0, r zλ  represents the particulate two-way transmittance between the lidar (at range = 0) and the top of the 15 

calibration cloud (at range = ztop) and the mean signals are now explicitly calculated over the range from ztop to zbase.  The 

ubiquitous presence of stratospheric aerosols suggests that, because the stratospheric extinction and aerosol optical depth 

(AOD) are typically larger at 532 nm than at 1064 nm (Thomason and Peter, 2006), fV3 is slightly overestimated because, in 

general, ( )( ) ( )( )2 2
p,1064 top p,532 topT 0, r z T 0, r z 1> .  For the most part, this kind of bias error is negligible.  However, on those 

occasions when substantial aerosol or PSC layers are located above a V3 calibration cloud, the resulting biases in fV3 can be 20 

significant (e.g., T2
p,1064/T2

p,532 ≈ 1.25 and higher at the tops of clouds located below the Black Saturday smoke plumes over 

Australia in February 2009). 

(a) (b) (c) 
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3.2 The V3 calibration averaging scheme 

Although individual estimates of fV3 use high SNR measurements (i.e., ( )532R z 50′ > ), the uncertainties for these estimates 

are still large, and thus obtaining reliable values requires some amount of signal averaging.  To maximize the number of fV3 

samples averaged, the V3 scheme computes mean values of fV3, denoted as V3f , over each granule of the CALIOP data 

record (H05, V10).  CALIOP data granules extend from one terminator to the next, thus dividing each orbit into separate 5 

daytime and nighttime segments.  This averaging scheme implicitly assumes that the pattern of thermally driven intra-orbit 

changes observed in the 532 nm calibration coefficients (P09) is reproduced more-or-less identically in the 1064 nm 

calibration coefficients, and hence fV3 can be considered constant with respect to the elapsed time throughout the individual 

daytime and nighttime segments of any orbit.  The time-varying V3 1064 nm calibration coefficients are then computed 

using ( ) ( )1064 V3 532C t C t= f , where t represents granule-elapsed time and C532(t) is the 532 nm calibration coefficient at 10 

time t.  As illustrated in Figure 5, monthly averages of instantaneous calculations estimates of fV3, computed as functions of 

granule-elapsed time and plotted as functions of latitude, demonstrate conclusively that the assumption that fV3 is constant 

within a granule is not valid.  fV3 is seen to exhibit a strong dependence on granule elapsed time, and can vary by up to 40 % 

or more within a single granule.  Furthermore, fV3 exhibits a seasonally varying hysteresis, with latitudinal day–night 

differences being maximized in the boreal winter (Figure 5a) and minimized during the boreal summer (Figure 5c). 15 
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Figure 5: monthly averages of daytime (yellow) and nighttime (blue) V3 calibration scale factors (i.e., fV3) as computed as 
functions of granule-elapsed time and plotted as functions of latitude for (a) January, (b) April, (c) July, and (d) October 2008. 

While the underlying causes of the time-varying behaviors of fV3 have not yet been determined, accurately compensating for 5 

these changes remains essential for reliably calibrating the CALIOP 1064 nm measurements.  Revising the averaging scheme 

to compute running averages of fV3 as a function of granule-elapsed time would seem to be an obvious strategy for 

characterizing the intra-orbit changes observed in Figure 5.  However, successful application of this approach on a single 

granule basis is unlikely, simply because the occurrence of a sufficient number of calibration quality clouds at any location 

or within any time frame cannot be guaranteed.  10 

Figure 6 (from Vaughan et al., 2012) shows the monthly occurrence frequency of V3 calibration quality clouds detected 

during daytime granules as a function of granule elapsed time (y-axis) for each calendar month from June 2006 through 

December 2010 (x-axis).  The white grid cells seen along the top edge of the figure represent regions where no suitable 

clouds were detected for the entire month.  The sample counts throughout the tropics (i.e., the oscillating dark red region 

between elapsed times of ~ 1100 s to ~ 2100 s) are always quite high, and hence estimates of fV3 can be readily obtained in 15 

this region.  However, sample counts in the Arctic (elapsed time > 2500 s) during spring 2008 or late winter 2009 are 

extremely low, and the likelihood of obtaining trustworthy estimates of fV3 in these times and places is likewise extremely 

low.  Clearly then, any new averaging scheme devised for the V4 calibration must simultaneously accomplish two tasks. 

First, it must characterize the calibration scale factors as a function of granule elapsed time throughout the full extent of each 

(b) 

(d) 

(a) 

(c) 
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granule.  And second, in order to produce high SNR estimates of these time-varying scale factors, the new averaging scheme, 

in concert with the revised cloud selection routine, must harvest significantly more calibration quality clouds at all latitudes 

than would be available using the V3 algorithm. 

 
Figure 6: monthly counts of V3 daytime scale factor calculations as a function mission elapsed time (x-axis) and granule elapsed 5 
time (y-axis). Colors are displayed on a log10 scale, so that dark reds indicate many thousands of samples, whereas dark blues indi-
cate one or two samples.  Regions where no calibration quality clouds were detected are shown in white. 

3.3 Calculating profiles of V3 attenuated backscatter coefficients 

Once V3f  has been computed for a granule, the V3 1064 nm calibration coefficients are computed for each profile in the 

granule using Eq. (1).  The altitude-resolved profiles of 1064 nm attenuated backscatter, β′1064(z), reported in the CALIPSO 10 

lidar level 1 data products are then derived as follows (H05): 

( )
( ) ( )( )

( ) ( )( ) ( ) ( ) ( )
3

2
1064 1064,bkg 2 2 2

1064 1064,m 1064,p ,m ,O ,p
1064 1064 1064

r z P z P
z z z T z T z T z

G E C
η

λ λ λ

−
′β = = β +β ,  (10) 

where P1064(z) is backscattered signal from altitude z measured aboard the satellite in the 1064 nm receiver (units = digitizer 

counts), P1064,bkg is the background signal measured aboard the satellite for each profile, and r(z) is the range (units = km) 

from the lidar to altitude z.  E1064 is the per-pulse energy transmitted at 1064 nm (units = J) and G1064 quantifies the electronic 15 

gain at 1064 nm (unitless). The subscripts m, p, and O3 once again indicate contributions from, respectively, molecules, 

particulates, and ozone.  The units of β′1064(z) are km–1 sr–1.  The units of C1064 are km3 × sr × J–1 × counts.   

4 The version 4 calibration algorithms 

To correct the shortcomings discovered in the V3 calibration scheme, CALIOP’s V4 algorithm differs from its predecessors 

in three fundamental aspects: cirrus cloud selection, data averaging, and the characterization of uncertainties.  Each of these 20 
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will be addressed in the following subsections.  Additionally, we incorporate a seemingly small, but nonetheless important, 

change in the way the V4 calibration scale factors, fV4, are calculated.  The same calibration transfer equation still applies; 

i.e., 1064 V4 532C C= f , as in Eq. (1).  However, in computing fV4, the layer-mean values of the background-subtracted, range-

corrected, gain and energy normalized measured backscatter signals, ( )X zλ′ , are replaced with the integrated values, gλ, 

where 5 

( ) ( ) ( ) ( )( )
base

top base base top
top

1
2X d ,  where  z z X z X zλ λ λ λ λ λ′ ′ ′= − = − +∫g r r g gd d  (11) 

(e.g., as derived in equations 18–20 in V10), and thus 

1 1064
V4 cirrus

532

−  = χ  
 
gf g . (12) 

The dgλ terms represent corrections for the molecular scattering contributions to the signals measured within the cloud 

boundaries.  As explained in detail in Sect. 4.1, the V4 cirrus cloud selection method no longer enforces the large scattering 10 

ratio requirement (R′532 > 50) that allowed us to neglect these contributions in V3, and thus corrections for molecular 

scattering are essential in the V4 calibration algorithm.  Note, though, that the correction is only applied at 532 nm.  Because 

CALIOP is largely insensitive to molecular scattering at 1064 nm, dg1064 is set uniformly to zero. 

4.1 Selecting calibration quality cirrus clouds 

The selection of calibration quality clouds in V3 was based on two globally applied criteria: layer altitude and the magnitude 15 

of ( )532R z′ .  In contrast, the V4 algorithm identifies calibration quality clouds based on four different quantities: layer 

altitude, mid-layer temperature (Tmid), layer integrated volume depolarization (δv), and layer integrated attenuated backscatter 

at 532 nm (γ′532).  These latter two quantities are defined as, respectively, 

( )

( )
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j
j top

basev

j
j top

X z

X z

⊥

=

=

δ =
∑

∑ 

, (13) 

where ( )X z⊥  and ( )X z


 are, respectively, the signals measured at altitude z in the 532 nm perpendicular and parallel 20 

channels, and 
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λ
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λ
′ ′ ′γ = = β − β∫g r r d , (14) 

where β′λ(z) is the attenuated backscatter coefficient at altitude z and wavelength λ and dβ′λ = dgλ / Cλ. 

4.1.1 V4 layer detection and selection based on altitude 

The V3 calibration algorithm implemented a dedicated layer detection scheme that was sensitive only to strongly scattering 

features.  Moreover, as discussed in section 3.1, the fixed altitude range over which this layer detection procedure was 5 

applied effectively eliminated a large fraction of potential calibration quality clouds, while at the same time permitting the 

inclusion of PSCs for which the assumption of χcirrus ≈ 1 is not well-founded (Sect. 3.1).  V4 addresses these defects in two 

ways.  In the most far-reaching change, V4 abandons the dedicated layer detection scheme used in V3 and replaces it with 

the same layer detection algorithm that is used in the CALIOP L2 analyses (Vaughan et al., 2009).  The L2 layer detection 

algorithm identifies layers having a much wider range of backscatter intensity, and its cirrus detection capabilities have been 10 

extensively validated (McGill et al., 2007; Thorsen et al., 2011; Yorks et al., 2011; Candlish et al., 2013; Kim et al., 2014).  

In its standard configuration, the L2 layer detection algorithm applies a nested, multi-resolution data averaging scheme that 

detects layers at five different horizontal averaging resolutions: 1/3 km (i.e., single shot resolution), 1 km, 5 km, 20 km and 

80 km.  In the 1064 nm calibration algorithm, only the 5 km resolution is used, and thus, unlike V3, the profiles of R′532(z) 

used in the V4 layer detection algorithm are averaged uniformly over 15 consecutive shots for both daytime and nighttime 15 

analyses.  These 5 km averaged profiles are then scanned between 30 km and the local surface altitude obtained from a 

digital elevation model (DEM) (Tanelli et al., 2014).  Only the uppermost layer detected is further evaluated as a potential 

calibration quality cloud; layers detected at lower altitudes are discarded, irrespective of their scattering intensity.  Enforcing 

this condition contributes to reducing the severity of the bias errors that can creep into the calculation of fV4. 

The second altitude-based change to the layer acceptance criteria is that the cirrus selection region is no longer static.  20 

Instead, within each 5 km horizontal average, a valid cirrus acceptance region is dynamically defined based on maximum 

altitudes of the local tropopause (obtained from GMAO atmospheric model data) and the Earth’s surface (obtained from a 

DEM).  To account for overshooting cloud tops and uncertainties in the tropopause height, the search for calibration quality 

clouds begins 2 km above the maximum GMAO tropopause altitude. Similarly, to eliminate the possibility of surface 

contamination the search is terminated 1 km above the maximum DEM altitude. 25 

These two changes have important consequences for the eventual selection of calibration quality clouds.  This is illustrated in 

Figure 7a, which shows a smoke plume from the February 2009 Black Saturday fires in Australia (de Laat et al., 2012) that 

partially overlies an opaque cirrus cloud layer.  As seen in Figure 7b, the attenuated scattering ratios in the cirrus below the 

smoke exceed the calibration quality cloud threshold implemented in the V3 algorithm, and thus this cloud was used to 
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calculate estimates of fV3 in the V3 data set.  But because smoke is strongly absorbing at 532 nm, with Ångström exponents 

typically in the neighborhood of 1.8–2.0 (Chand et al., 2006; Chand et al., 2008), the differential attenuation term in Eq. (9) 

becomes notably larger than 1, and the estimates of fV3 are biased correspondingly high.  This is not an issue in V4.  The 

cirrus layer will not be considered for the calibration routine, simply because it is not the highest layer detected in the profile.  

And while the smoke layer is considered, it is subsequently rejected based on additional criteria described in the following 5 

sections. 

 
Figure 7: (a) CALIOP 532 nm attenuated backscatter coefficients (km–1 sr–1) showing smoke from the February 2009 Black 
Saturday fires in Australia lofted over an opaque cirrus deck; (b) a profile of attenuated scattering ratios (in green) for which the 
cirrus beneath the smoke plume qualifies as a calibration quality cloud in the V3 algorithm.  In panel b, the blue dashed vertical 10 
line indicates an attenuated scattering ratio of 1, while the red dashed vertical line indicates the V3 cloud detection threshold of 
R′532 = 50.  Below the high-altitude smoke plume, the ratio of particulate two-way transmittances is T2p,1064/T2p,532 = 1.25 ± 0.20. 

4.1.2 Selection based on Tmid and δv 

In deriving a more comprehensive set of selection criteria for identifying calibration quality clouds, our initial efforts focused 

on determining appropriate thresholds for mid-layer temperature and layer-integrated depolarization ratio.  To test the 15 

proposition that supercooled water clouds (i.e., as in Figure 4) were biasing calculations of fV3, we generated two months of 

test data (February and March, 2009) for which the layer search region was defined by the local tropopause and DEM 

surface (see Sect. 4.1.1), but the sole layer selection criterion remained, as in V3, R′532 > 50 for three consecutive range bins.  

As expected, changing the search region greatly increased the number of calibration quality clouds detected at higher 

latitudes (red and black lines in Figure 8a).  At the same time, this change also greatly increased both the mean magnitude of 20 

the calibration scale factors computed poleward of ±30° (red and black lines in Figure 8b) and the variability of the 

calibration scale factors computed in these regions.  This increase in magnitude and variability is caused by the much wider 

range of mid-cloud temperatures in the lower altitude data set.  When the test data are restricted to calibration clouds with 

mid-layer temperatures of –35° C or colder (blue and green lines in Figure 8), the number of samples poleward of ±30° falls 

by an order of magnitude or more, and the scale factors drop to levels similar to those in the V3 data.  Figure 9a shows the 25 

distribution of the scale factors as a function of mid-layer temperature.  The scale factors appear to be naturally partitioned 
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into two clusters that fall on either side of a dividing line at –35° C, with the colder clouds having a lower mean scale factor 

and showing less variability. 

 
Figure 8: (a) sample counts and (b) mean scale factors for all daytime and nighttime granules acquired during February and 
March, 2009.  V3 results are shown in yellow (day) and dark gray (night).  The initial test results (new altitude regime only) are 5 
shown in red (day) and black (night).  The test results with a –35° C temperature requirement imposed are shown in green (day) 
and blue (night). 

As seen in Figure 9b, the 532 nm layer-integrated volume depolarization ratios also appear to cluster into two distinct 

groups, with centers falling on either side of a dividing line at δv = 0.3.  Figure 9c plots the occurrence frequency of δv as a 

function of Tmid, and shows a structure that is essentially identical to what is seen in Figure 4c.  The dividing lines at Tmid = –10 

35°C and δv = 0.3 partition the data into four quadrants.  The upper left quadrant, where Tmid < –35°C and δv > 0.3 can be 

confidently assumed to contain only ice clouds (Campbell et al., 2015).  The bottom right quadrant is, in all likelihood, 

populated mostly by supercooled water clouds.  Table 1 shows the descriptive statistics for the scale factors associated with 

the data points in the upper left and lower right quadrants of Figure 9c.  In the mean, the scale factors in the upper left 

quadrant are smaller than those in the lower right quadrant by ~ 19 %. 15 

 
Figure 9: for the February and March 2009 test data set, (a) shows the occurrence frequency of fV3 as a function of mid-layer 
temperature; (b) shows the occurrence frequency of fV3 as a function of 532 nm layer-integrated volume depolarization ratio; and 
(c) shows the occurrence frequency of layer-integrated depolarization as a function of mid-layer temperature.  For all panels, the 
plot colors represent log10 of the number of sample counts in each grid cell. 20 

(b) 

(a) 

(a) 

(b) (c) 
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Table 1: descriptive statistics for the scale factors associated with the data points in the upper left and lower right quadrants of the 
right panel in Figure 9 (MAD = median absolute deviation) 

 Tmid < –35°C and δv > 0.3 Tmid > –35°C and δv < 0.3 
Minimum 0.0174 0.0783 
Maximum 0.2268 0.3979 
Median 0.1270 0.1482 
MAD 0.0129 0.0159 
Mean 0.1262 0.1498 
Standard deviation 0.0160 0.0214 
Samples 104728 117176 

4.1.3 Selection based on γ′532 

The fundamental assumption underlying the CALIOP 1064 nm calibration scheme is that because the ice crystals in cirrus 

clouds are most often quite large relative to the CALIOP wavelengths, the layer-mean cirrus backscatter coefficients are 5 

spectrally independent at 532 nm and 1064 nm (Reagan et al., 2002).  Satisfying this assumption thus requires some method 

for estimating cirrus particle size prior to calibrating the 1064 nm channel.  To accomplish this, we used the CALIPSO V3 

level 2 lidar and IIR track data products to derive an empirical relationship between γ′532, which is readily obtained from the 

calibrated 532 nm measurements, and the effective diameters retrieved from perfectly exactly collocated IIR measurements 

(Garnier et al., 2012; Garnier et al., 2013).  Figure 10 compares the lidar measurements to the collocated IIR retrievals for all 10 

clouds used in the V3 1064 nm calibration scheme during October 2010.  As seen in Figure 10a, the V3 attenuated back-

scatter color ratios, layer 1064 532′ ′ ′χ = γ γ , remain relatively constant for IIR effective diameters above ~ 35 μm, with a mean 

value of 0.96 ± 0.05.  Similarly, Figure 10b shows that the majority of these large effective diameters are concentrated within 

a γ′532 range between 0.023 sr –1 and 0.038 sr –1.  (Note that, consistent with the analyses in V10, both χ′layer and γ′532 are 

computed for the entire cloud, and not just the strongly scattering region used in the V3 calibration procedure.)  From this 15 

analysis, we conclude that, for the V4 calibration scheme, we can isolate the population of large-particle cirrus for which χ′ is 

relatively constant by imposing the appropriate limits on γ′532.  Assuming a lidar ratio of 30 sr and a multiple scattering factor 

of 0.6 (Young et al., 2018), these limits on γ′532 ensure that the optical depths of the clouds used in the calibration procedure 

are typically larger than ~1.47. 
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Figure 10: (a) χ′layer and (b) γ′532 as functions of IIR-derived effective particle size for all nighttime calibration quality clouds 
detected by the V3 1064 nm calibration scheme during October 2010.  The filled circles in each panel represent median values of 
the distributions.  The horizontal red lines in (b) show γ′532 limits of 0.023 sr –1 (lower line) and 0.038 sr –1 (upper line). 

In addition to identifying clouds comprised of large particles, the V4 calibration cloud selection scheme must also ensure that 5 

these large particles are ice.  For CALIOP, cloud ice-water phase is readily determined by the relationship between γ′532 and 

δv (Hu, 2007; Hu et al., 2009).  Figure 11 shows the joint occurrence frequencies of δv and γ′532 for different subsets of 

clouds detected during October 2010.  Figure 11a shows data from only those clouds that were detected at a 5-km horizontal 

resolution and were the highest cloud detected in each profile.  Randomly oriented ice (ROI) clouds are characterized by 

smaller integrated attenuated backscatters and higher depolarization ratios, with δv for ice clouds being largely independent 10 

of γ′532.  Water clouds, on the other hand, generally have much larger integrated attenuated backscatter coefficients, and there 

is a strong linear relationship between the magnitudes of δv and γ′532.  The small population of clouds dominated by 

horizontally oriented ice (HOI) crystals, shown in the bottom right of Figure 11a, has very large γ′532 and δv close to zero.  

Figure 11b shows δv and γ′532 calculated over the full vertical extent of all calibration quality clouds identified by the V3 

1064 nm calibration algorithm.  As seen below the solid orange line in Figure 11b, the V3 1064 nm calibration coefficients 15 

for October 2010 are biased by the inadvertent inclusion of a non-negligible fraction of water clouds.  

 
Figure 11: panel (a) shows the joint occurrence frequency of δv and γ′532 for clouds measured by CALIOP during October 2010.  
Only layers detected at 5 km horizontal resolution that are the uppermost layer in each profile are included. The solid black line 

(a) (b) 
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differentiates randomly oriented ice clouds (above the line) from water clouds (below the line).  Clouds containing horizontally 
oriented ice crystals occur within the oval at the bottom of the plot.  Panel (b) shows the joint occurrence frequency of δv and γ′532 
for clouds used in the V3 1064 nm calibration analysis.  The population of points below the green orange threshold line quantifies 
the occurrence frequency of water clouds in the October 2010 V3 calibration data set.  In both plots, the colors indicate log10 of the 
number of samples in each grid cell. 5 

V3 calibration quality clouds were selected based on a scattering intensity requirement (i.e., the magnitude of the attenuated 

scattering ratios) designed to reduce bias errors due to molecular contributions to the total scattering from the clouds. In V4 

this scattering intensity criterion is satisfied using γ′532, with the contributions from molecular scattering being accounted for 

by the dg532 term in Eq. (11).  An example of the differences in calibration cloud sample sizes associated with these two 

metrics is illustrated in Figure 12. The V3 calibration analysis identified seven calibration quality clouds in this scene, shown 10 

as intermittent occurrences within the brightest white regions circled in blue between 12 km and 14 km and clustered near 

1.2° N and 3.4° S.  Clearly these V3 calibration quality “clouds” would more accurately be described as “cloud fragments”, 

as those regions for which three contiguous bins of R′532(z) exceed 50 typically represent only a small fraction of the full 

vertical extent of the cloud identified by the L2 layer detection scheme.  Of the 160 layers detected at 5 km horizontal 

resolution by the V4 analysis, 116 had 532 nm integrated attenuated backscatters in the acceptable range of 0.023 sr –1 < γ′532 15 

< 0.038 sr –1, amounting to a 22-fold increase in the number of potential calibration quality clouds. 

 
Figure 12:  532 nm attenuated scattering ratios, averaged to 5-km horizontally and 60 m vertically, for an extended cirrus layer in 
the southwest Pacific near New Caledonia on 30 November 2015.  Potential V3 calibration opportunities (R′532 > 50) within in the 
cirrus layer are shown in as bright white patches lying within the blue ovals.  V4 cloud boundaries are indicated by filled 20 
diamonds.  The boundaries of those clouds for which 0.023 sr –1 < γ′532 < 0.038 sr –1 are shown in green.  The boundaries of clouds 
having γ′532 outside this range are shown in red.   

4.1.4 Comprehensive selection strategy implemented in V4 

Summarizing the criteria described in the previous subsections, clouds selected for use in the V4 1064 nm calibration 

algorithm are detected using the same layer detection algorithm that is used in the CALIOP level 2 analyses and are required 25 

to meet all of the following specifications. 
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(a) The cloud must be the uppermost layer detected in a profile averaged to a 5-km horizontal resolution (Sect. 4.1.1). 

(b) The boundaries and vertical extent of this uppermost layer are constrained by the local tropopause height at the upper 

end and the Earth’s surface at the lower end (Sect. 4.1.1). 

(c) The temperature at the cloud geometric midpoint must be colder than –35° C (Sect. 4.1.2). 

(d) The layer-integrated 532 nm volume depolarization ratio must fall within a range of 0.3 to 0.55.  The rationale for the 5 

lower limit is described in Sect. 4.1.2.  The upper limit is defined to eliminate unusually large noise excursions that can 

occur during daytime measurements of cirrus above bright clouds or desert surfaces, or during both daytime and 

nighttime when transiting the South Atlantic Anomaly (SAA; see Noel et al., 2014). 

(e) The layer-integrated 532 nm attenuated backscatter is restricted to a range of 0.023 sr –1 < γ′532 < 0.038 sr –1 (Sect. 4.1.3). 

Enforcing these criteria ensures a substantially more homogenous population of clouds than was used in V3.  Water clouds 10 

are effectively eliminated by the Tmid and δv requirements; clouds dominated by horizontally oriented ice crystals are rejected 

by the γ′532 and δv limits; and polar stratospheric clouds are excluded by the altitude restrictions.  Furthermore, the V4 cloud 

selection requirements yield a far larger number of calibration quality clouds with a much more uniform distribution as a 

function of latitude.  Figure 13 compares the number of nighttime calibration quality samples obtained during October 2010 

for V3 (panel a) to the number of samples that would have been obtained had conditions (a) through (e) above been applied 15 

instead (panel b).  The V4 selection parameters are seen to provide a much more uniform sampling as a function of latitude, 

while at the same time delivering a substantially larger number of total samples (59,675 in V3 vs. 92,132 in V4). 

 
Figure 13: (a) γ′532 for all V3 calibration clouds as a function of latitude, and (b) γ′532 for all V4 calibration clouds as a function of 
latitude for October 2010 nighttime measurements.  The filled circles in each plot represent γ′532 mean values over 2° latitude 20 
increments; error bars indicate ± one standard deviation about the means.  The colors indicate log10 of the number of samples in 
each grid cell. 

(a) (b) 
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4.2 Characterizing intra-orbit changes using multi-granule data averaging 

The primary motivation for the complete redesign of the CALIOP 1064 nm calibration scheme is to accurately characterize 

the time-varying behavior of the calibration scale factors.  As illustrated in Figure 5, these changes occur on multiple time 

scales, from intra-orbit to seasonal.  Designing an effective data averaging scheme thus becomes a question of balancing 

requirements in two time dimensions: along-track within a single granule, and again across multiple granules. Specifically, 5 

we need to accumulate a sample size large enough to minimize the random uncertainty in our estimates of fV4, while at the 

same time (a) limiting the extent of the along-track averaging in order to reliably capture the dependence of scale factors 

with respect to granule elapsed time, and (b) limiting the duration of our multi-granule averaging window to prevent 

smearing of legitimate changes in the scale factors that occur on weekly-to-seasonal time scales.  The (not to scale) 

dimensions of the averaging window developed for the V4 1064 nm calibration scheme are illustrated in Figure 14.  The red 10 

boxes indicate notional averaging regions that extend both along-track (i.e., north–south within any one granule) and across-

track (i.e., in the east–west direction, spanning multiple granules). 

 
Figure 14: Nighttime orbit tracks for 28 March 2014 (in blue), overlaid with notional averaging domains (red boxes) that extend 
over two time dimensions; i.e., traveling along-track (north–south) within individual granules, and spanning the same along-track 15 
distance across multiple granules (east–west) 

The driving factor in sizing this two-dimensional averaging window is the number of calibration quality clouds that can be 

measured in the cloud-sparse seasons and regions of the planet.  For the V3 calibration procedure, these regions are indicated 

by the white grid cells shown in Figure 6.  But because V4 uses entirely different cloud selection criteria, the ‘cloud- sparse’ 

seasons and regions of the planet are also quite different.  Figure 15 shows V4 calibration cloud occurrence frequency as a 20 

function of granule elapsed time in increments of 90 s (equivalent to an along-track averaging distance of ~ 605 km) for the 

months of January, April, July, and October 2014.  For nighttime data (Figure 15a), granule elapsed time begins at the day-

to-night terminator in the northern hemisphere and tracks the temporal progress of the descending node of each orbit.  

Granule elapsed time for daytime data (Figure 15b) begins in the southern hemisphere and tracks the ascending node of each 

orbit.  For the nighttime data, a minimum value of 276 calibration quality clouds occurs during July at a median granule 25 

elapsed time of 1215 seconds (equivalent to ~ 15° S).  For the daytime data, a minimum value of 342 calibration quality 
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clouds occurs during January at a median granule elapsed time of 495 seconds (equivalent to ~ 80° S on the ascending node).  

Given that the random relative uncertainty in CALIOP’s assumed value of χcirrus is ± 0.25 (Vaughan et al., 2010), reducing 

this uncertainty by a factor of 10 requires averaging 100 or more independent samples.  In the V4 calibration procedure we 

achieve this goal at an along-track temporal resolution of 90 s by using a fixed 7-day averaging window, encompassing a 

maximum of 105 granules, centered about the current orbit location (i.e., ~ ±54 granules from the current granule).  This 5 

strategy typically yields well over 250 samples per average, though, as demonstrated in Figure 15, the total for any average 

varies by both season and location.  These averaging intervals are uniformly applied whenever the instrument is in 

continuous data acquisition mode.  As discussed in Getzewich et al. (2018), interruptions (e.g., for periodic boresight 

alignments, as described in Hunt et al., 2009) require a reboot of the calibration procedures at both wavelengths. When these 

reboots occur, the data averaging intervals are reinitiated. For a variety of reasons, the calibration coefficients and scale 10 

factors can be notably different immediately before and after an interruption (Getzewich et al., 2018).  Section 4.3.2 

discusses some consequences of these reboots that are specific to the 1064 nm calibration procedures. 

 
Figure 15: V4 calibration cloud occurrence frequency as a function of granule elapsed time (90 second bins) for January, April, 
July, and October 2014.  Panels (a) and (b) show, respectively nighttime data and daytime data. 15 

4.3 Uncertainty estimates 

The calibration coefficients estimated by CALIOP 1064 nm calibration algorithm are subject to both random uncertainties, 

which can be substantially reduced by applying the appropriate averaging techniques, and systematic bias error, which 

cannot be reduced by averaging.  The sections below discuss both types of errors and describe how input uncertainties 

propagate into the final values of the 1064 nm calibration coefficients. 20 

4.3.1 Random uncertainties 

The random uncertainties in the V4 calibration coefficients are derived using the same formalism used in V3, but with gλ 

replacing ( )X rλ′ ; i.e., 

(a) (b) 
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where ΔC532 and ΔfV4 depend critically on the amount of averaging done when deriving the required estimates of C532 and 

fV4.  Nighttime and daytime derivations for ΔC532/C532 are given in, respectively, Kar et al. (2018) and Getzewich et al. 

(2018).  Random uncertainties for the 532 nm calibration coefficients are typically on the order of 1.5% or less, both at night 

and during the day.  The multi-granule moving window averaging scheme described in Sect. 4.2 is specifically designed to 5 

minimize random uncertainties in fV4.  Figure 16 provides an example.  Figure 16a shows the means and standard deviations 

for the calibration scale factors acquired over 90 second intervals of granule elapsed time during the 7-day period from 24 

November 2015 to 30 November 2015.  Figure 16b shows the number of samples acquired in each 90 second time bin.  The 

minimum sample count is 317, occurring at ~81.7° S during the daytime.  The relative uncertainties in the mean values of fV4 

in each 90 s interval ( )( )i.e., standard deviation / mean  sample counts×  range between 0.11 % and 0.40 % at night (mean 10 

= 0.22 % ± 0.07 %) and 0.17 % and 0.52% during the day (mean = 0.29 % ± 0.09 %).  Since χcirrus is a constant for all 

calculations, these uncertainties quantify the random variability in the g1064/g532 term of fV4.  But by averaging many samples 

we also reduce the random uncertainty in our estimate of χcirrus.  In this example, the relative uncertainty attributed to χcirrus is 

reduced from a single sample value of ~ 25 % to mean values of 0.93 % ± 0.20 % during the day and 0.97 % ± 0.24 % at 

night.  Both in this example and throughout the entire V4 data set, χcirrus remains the dominant random uncertainty in 15 

estimating fV4.  

 
Figure 16: (a) mean values (filled circles) and single-sample standard deviations (error bars) for the calibration scale factors 
averaged over 90 second intervals during the 7-day period from 24 November 2015 to 30 November 2015; (b) the number of 
calibration quality clouds sampled in each 90 second interval. 20 

The CALIOP V4 data products report estimates of random uncertainties in the 532 nm and 1064 nm calibration coefficients 

on a profile-by-profile basis.  Figure 17a plots the mean values of the relative calibration coefficient uncertainties at both 

(a) (b) 



24 

wavelengths as functions of latitude for all of November 2015.  The dip in sample counts shown at ~ 20° N in the right-hand 

panel of Figure 16 is echoed by the increase in 1064 nm calibration uncertainty seen at the same latitude in Figure 17.  The 

mean and median relative uncertainties for all 1064 nm calibration coefficients computed from 1 January through 31 

December, 2015 are shown in Figure 17b and further summarized in Table 2.  Taken over the full year and the full globe, the 

median relative uncertainties during the daytime are 1.77 ± 0.41 %.  Nighttime uncertainties are slightly lower, at 1.63 ± 0.29 5 

%.  Median uncertainties remain below 2 % daytime and nighttime between ~60° S and ~60° N.  The largest relative 

uncertainties occur in the SAA and for daytime measurements in the polar summers.  In polar summers, the daytime 532 nm 

calibration coefficients and uncertainties cannot be calculated directly, but instead are interpolated between the last known-

to-be-valid calibration coefficients in the daytime portion of the orbit and the first last known-to-be-valid calibration 

coefficients in the nighttime portion of the same orbit (see Fig. 4 and Sect. 3.7 in Getzewich et al., 2018). 10 

 
Figure 17: (a) mean relative calibration coefficient uncertainties, daytime and nighttime, at 532 nm (greens) and 1064 nm (purples) 
for November 2015; (b) mean and median relative calibration uncertainties at 1064 nm for all data acquired during 2015.  In panel 
(b), the large excursion in the mean uncertainties at ~ 20° S is due to increased uncertainties in the 532 nm calibration coefficients 
due to high radiation noise in the SAA (Hunt et al., 2009; Noel et al., 2014). 15 

Table 2: summary of CALIOP V4 single profile relative calibration coefficient uncertainties for all 1064 nm attenuated 
backscatter profiles acquired during 2015. 

 Day (%) Night (%) 

Min 0.02 1.24 

Max 42.05 25.38 

Median 1.77 1.63 

MAD 0.41 0.29 

Mean 2.24 1.75 

Standard deviation 1.91 0.74 

95th percentile 4.67 2.37 

Samples 308,277,495 271,947,645 

(a) (b) 
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4.3.2 Bias errors 

The V4 CALIOP calibration algorithms are specifically designed to accurately capture small-scale thermal changes that 

manifest themselves as intra-granule changes in the calibration coefficients at both 532 nm and 1064 nm.  However, 

unexpected changes to CALIOP’s on-board thermal environment can introduce bias errors into the 1064 nm scale factor 

calculations.  Whenever lidar operations are temporarily halted – e.g., due to space weather anomalies or off-nominal 5 

instrument behavior – the instrument is commanded to “safe” mode and the standard operating temperatures within the 

transmitter and receiver are no longer rigorously maintained.  When the lidar is subsequently restarted after a long duration 

outage (e.g., one or more days), 36 to 72 hours of continuous operation can be required before full thermal stability is 

reestablished.  The detector gains for both the PMTs and the APD are temperature sensitive, so during this warm-up period 

the calibration coefficients for both channels will approach their steady state behaviors, though not necessarily at the same 10 

rate.   

The effects of the changing detector gains during the instrument warm-up period are illustrated in Figure 18a, which shows 

the granule mean of the estimated χ′, ′χ , retrieved for calibration quality clouds measured during all nighttime granules 

between 11 April 2014 at 17:45:33 UTC (granule number 301) and 30 April 2014 at 13:21:37 UTC (granule number 849).  

Due to space weather considerations (i.e., an elevated 10 MeV proton flux), the CALIPSO payload was placed in “safe” 15 

mode at 08:29:42 UTC on 19 April 2014, and no instrument data were collected until the payload was restarted at 16:26:07 

UTC on 22 April 2014.  Prior to shut down, ′χ  oscillates consistently around the expected value of 1.01.  However, when 

the lidar was restarted, the initial values of ′χ  are seen to be substantially lower, though over the course of multiple 

granules, ′χ  gradually and nonlinearly returns to ~ 1.01.  This same behavior is clearly evident in the data acquired 

following any shutdown of ~ 12 hours or longer. 20 

The exact mechanisms driving this behavior in the calibration cloud color ratios are not yet fully understood.  However, as 

illustrated in Figure 18b, which shows granule mean γ′532 for the April 2014 time period, the granule mean γ′532 for 

calibration quality clouds is essentially unaffected by the time-varying detector gains.  The granule mean γ′532 prior to the 

data outage (granules 301–519) is 0.0288 ± 0.009 sr –1.  Following the data outage (granules 619–849), the granule mean γ′532 

is essentially unchanged at 0.0289 ± 0.008 sr –1.  The variability within this time series can be largely attributed to the natural 25 

variability of γ′532 for individual calibration quality clouds.  Given that γ′532 = g532 / C532 remains essentially constant across 

the data outage, while χ′ = γ′1064 / γ′532 = g1064 / (C1064 × γ′532) varies, current investigations are focused on the 1064 nm 

channel measurements (i.e., g1064) and possible time-varying biases in the calculation of C1064.  



26 

  
Figure 18: (a) time series of granule mean χ′ measured for calibration quality clouds detected during nighttime orbit segments 
beginning on 11 April 2014 (granule 301), and extending through 30 April 2014 (granule 849). Due to adverse space weather, 
CALIOP was placed in safe mode and thus data is missing for over 3 days, from 19 April 2014 at 08:29:42 UTC to 22 April 2014 at 
16:26:07 UTC, spanning granules 521–619.  A smaller data gap of just over 8 hours (from 01:09:36 until 09:38:09 UTC on 24 April 
2014, spanning granules 657–669) occurs during a satellite drag make-up maneuver.  A distinct drop in the magnitude of χ′ occurs 5 
when the lidar is restarted on 22 April.  Because there were two instrument shutdowns in relatively rapid succession, full recovery 
to the pre-outage values takes place over ~ 72 hours.  (b) granule mean γ′532 for the same time period.  These values remain 
relatively constant throughout the entire measurement interval, suggesting that the 532 nm calibration appropriately compensates 
for any time-dependent detector gain changes following an instrument restart. 

Potentially biased estimates of C1064 can be identified in the L1 profiles by examining the ‘QC_Flag_2’ scientific data set 10 

(SDS) in the CALIOP level 1b profile products.  These QC flags are implemented as 32-bit integers, and interpreted as a 

series of Boolean values, with each bit indicating a specific warning or error condition.  A QC flag #2 of zero indicates that 

none of these warnings or error conditions has occurred.  Those profiles for which C1064 may be biased will have bit 27 

toggled on (bit 26 if zero-based indexing is used), and thus an otherwise error-free profile with a possibly biased estimate of 

C1064 will have a QC flag #2 of 67108864. 15 

Section 4.3.1 demonstrated that χcirrus is the dominant source of random uncertainties in the 1064 nm calibration scale factor 

error budget.  While the random uncertainties in the calibration scale factors due to χcirrus can be reduced by averaging, χcirrus 

is also a potential source of irreducible bias errors.  The best available estimate of the mean value of χcirrus remains 1.01, as 

determined in V10 and verified by experimentally by Haarig et al., 2016.  However, the uncertainty in this estimate is large 

(± 0.25), and the true value of χcirrus may be somewhat different from the value used in the CALIOP V4 calibration algorithm 20 

(e.g., 1.00 vs. 1.01, which would introduce a bias of 1 % into the scale factor calculations). 

5 Performance assessments and comparisons to version 3 

The V4 calibration coefficients differ substantially from their V3 predecessors, and these differences manifest themselves on 

multiple time scales throughout the CALIOP data set.  The subsections below compare the calibration coefficients and scale 

factors generated by the V4 and V3 algorithms, and highlight the V4 improvements in terms of inter-orbit and long-term 25 

stability and day-to-night continuity. 

(a) (b) 
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5.1 Daily-to-monthly changes 

The magnitude and spatial variability of the granule-to-granule changes in the calibration coefficients are illustrated in 

Figure 19, which shows maps of the mean V3 and V4 calibration coefficients for daytime (panels a–c) and nighttime (panels 

d–f) calculated for March 2015.  In the V3 calibration coefficient images (panels a and d), individual granule tracks are 

easily discerned, indicating that these granules have unusually large or unusually small calibration coefficients relative to 5 

neighboring granules.  This “striping” of the V3 1064 nm calibration coefficients occurs because a single mean scale factor 

is calculated for each granule, and thus when cloud locations or occurrence frequencies shift substantially from one orbit to 

the next, the concomitant changes in the mean scale factor introduce noticeable granule-to-granule discontinuities in the 

calibration coefficients.  Because the V4 algorithm computes scale factors by averaging over multiple granules, 

corresponding to approximately one week of observations, this vertical striping is eliminated in the V4 images and data 10 

(panels b and e).  Additionally, the influence of the SAA, seen in the nighttime data shown in panels d and f, is now virtually 

eliminated.   

Maps of the monthly mean V3 calibration coefficients divided by the monthly mean V4 calibration coefficients are shown in 

panels c and f of Figure 19.  In this example, the variability between the two data versions extends from –20 % (daytime 

southern hemisphere) to +25 % (nighttime northern hemisphere).  The changes in the daytime range from +20 % in the 15 

northern mid-latitudes to –20 % in Antarctica.  Nighttime changes are somewhat more muted in this example, varying 

between +25 % in the Arctic to –7 % in Antarctica. 

  

 
Figure 19: V3 and V4 calibration coefficients for March 2015.  Panels (a) through (c) show daytime mean 1064 nm calibration 20 
coefficients (units = km–3 sr J–1 count); V3 is shown in panel (a), V4 in panel (b), and their ratios (V3/V4) in panel (c).  Similarly, 

(a) (b) (c) 

(d) (e) (f) 
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panels (d) through (f) show nighttime mean 1064 nm calibration coefficients (units = km–3 sr J–1 count), with V3 is shown in panel 
(d), V4 in panel (e), and their ratios (V3/V4) in panel (f). 

5.2 Day-to-night calibration continuity 

An important detail that may not be immediately apparent in Figure 19 is shown explicitly in Figure 20, where the March 

2015 zonal mean calibration coefficients for both V3 (Figure 20a) and V4 (Figure 20b) are plotted separately for daytime 5 

and nighttime granules as a function of latitude.  The V3 1064 nm calibration coefficients show large discontinuities when 

the instrument transitions from day to night (Figure 20a, left side) and again from night to day (Figure 20a, right side).  In 

contrast, the V4 calibration coefficients show no discontinuities crossing the terminators.  Because the signals are normalized 

with respect to electronic gains prior to calibration, this smoothly varying transition across the terminators is the expected 

behavior.  However, ensuring that the scale factors are continuous across the terminators (e.g., as shown in Figure 16) does 10 

not guarantee that the desired outcome actually occurs: the 532 nm calibration coefficients must also be continuous.  The 

substantial changes made in the daytime 532 nm calibration algorithm (Getzewich et al., 2018) are thus an essential 

precondition for achieving the required continuity at 1064 nm. 

 

Figure 20: Zonal mean 1064 nm calibration coefficients for March 2015; (a) shows V3 calibration coefficients (units = km–3 sr J–1), 15 
while (b) shows the V4 coefficients (units = km–3 sr J–1 count).  In both panels, nighttime values are shown in blue and daytime 
values in yellow.  Error bars represent 1 standard deviation about the mean. 

5.3 Seasonal-to-yearly changes 

The seasonal and annual changes between the V3 and V4 nighttime granule-averaged estimates of C1064 are illustrated in the 

5-year time histories (2013–2017) shown in Figure 21.  The V3 calibration coefficients show a strong and persistent seasonal 20 

oscillation, with lower values in the boreal summer months and higher values in the boreal winter.  Though not eliminated 

entirely, this oscillatory behavior is markedly reduced in the V4 time history.  Figure 22 demonstrates that the magnitude of 

the V3 oscillations is significantly amplified by the data averaging strategy implemented in V3 calibration procedure.  The 

left panel of this figure shows the daily mean latitude centroid, 

(a) (b) 



29 

n

n

N

n V3
n 1

Nlatitude

V3
n 1

latitude
=

=

×
=
∑

∑

f
C

f
, (16) 

computed over all nighttime scale factors for each calendar day for which there were CALIOP measurements during 2013–

2017.  This quantity represents the characteristic latitude associated with the daily mean value of fV3.  The seasonal 

oscillations of Clatitude reflect changes in the occurrence frequencies of strongly scattering ( )532R 50′ > convective ice 

clouds.  As seen in Figure 22b, fV3 is a decreasing function of latitude, and the scale factors measured in the southern 5 

hemisphere are systematically higher than those in the northern hemisphere.  The seasonal shifting of Clatitude thus introduces 

seasonal oscillations in fV3 (green line in Figure 22a), which in turn are reflected in the seasonal oscillations seen in the V3 

calibration coefficients. 

 
Figure 21: granule-mean calibration coefficients (scaled by 10–9, with units = km–3 sr J–1 count) for V3 and V4 from January 1, 10 
2013 through December 31, 2017.  The large data gap from 28 January 2016 through 14 March 2016 is due to a GPS anomaly that 
interrupted the timekeeping services normally provided by the satellite.  Adverse space weather is responsible for the smaller gap 
from 5 September 2017 through 15 September 2017. 

   
Figure 22: (a) V3 daily mean latitude centroids (orange circles) measured during 2013–2017.  The dark red line shows a 21-day 15 
running average.  The green line (associated with the right y-axis) shows a 21-day running average of the daily mean V3 
calibration scale factors (i.e., as in Eq. (2)).  (b) the latitudinal variation of the mean scale factors during the same time period.  

(a) (b) 
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The gray shaded area represents the 4-year mean ± one standard deviations, with individual lines showing monthly means for 
January (red diamonds), April (green circles), July (blue squares), and October (orange circles). 

6 Comparisons to other techniques and measurements 

While CALIOP uses cirrus clouds to calibrate its 1064 nm measurements, other calibration targets are also available.  SNR 

limitations rule out molecular normalization as an option.  However, water clouds and ocean surfaces offer potentially 5 

attractive alternatives; both are typically measured with very high SNR, and their spectral differences in backscatter are well-

characterized by theory. In this section we explore the relative merits of using water clouds and/or ocean surfaces as 

calibration targets.  1064 nm calibration algorithms for both targets are briefly described, and the calibration coefficients 

derived using these algorithms are compared to the standard values reported in the CALIOP level 1 data products.  In 

addition, we compare CALIOP’s 1064 nm attenuated backscatter profiles to coincident attenuated backscatter profiles 10 

acquired independently by the airborne high spectral resolution lidar (HSRL) developed at NASA’s Langley Research 

Center (LaRC).  The results of these studies will allow us to estimate an upper bound on the bias errors in the CALIOP 1064 

nm calibration coefficients. 

6.1 Lidar calibration using ocean surfaces 

Ocean surfaces have long been proposed as calibration targets for airborne and space-based lidars (Bufton et al., 1983; 15 

Menzies et al., 1998; Josset et al., 2010).  In particular, Menzies et al. (1998) described a technique for using lidar 

backscatter measurements of the ocean surface to derive estimates of 1064 nm calibration coefficients relative to known 532 

nm calibration coefficients.  Leveraging the ocean surface scattering equations in Venkata and Reagan (2016), we develop a 

Menzies-like approach to obtain estimates of the CALIOP 1064 nm calibration coefficients from the following relationship: 

( )
( )
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. (17) 20 

In computing these values, the signals are integrated over the time duration of the ocean surface backscatter pulses (i.e., from 

topsurfacet  to 
basesurfacet ), which are broadened over multiple time intervals (i.e., range bins) by third-order low-pass Bessel filters 

in the CALIOP receiver electronics (Hu et al., 2007d; Venkata and Reagan, 2016).  The Rf terms are the Fresnel reflectance 

coefficients of seawater, which we take to be 0.0213 at 532 nm and 0.0202 at 1064 nm (Quan and Fry, 1995), and the T2 

terms represent the two-way attenuation of the signal due to clouds and/or aerosols between the lidar and the ocean surface.  25 

By calibrating relative to the 532 nm channel, we eliminate the need for accurate estimates of wind speeds, wave slope 
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variances, and whitecap frequencies that would otherwise be required to directly calibrate the 1064 nm channel using ocean 

surface measurements (Lancaster et al., 2005). 

Equation (17) has the same general form as Eq. (1): that is, the 1064 nm calibration coefficient is obtained by multiplying a 

previously derived 532 nm calibration coefficient by a (possibly time-varying) scale factor computed based on the 

differences in backscatter signal magnitudes from some well-characterized target.  A one-month comparison of ocean 5 

surface scale factors to the cirrus cloud scale factors used to calibrate the V4 data products is shown in Figure 23.  The ocean 

data are derived for daytime measurements during the month of October 2010 between 60° N and 60° S.  The latitude limits 

were enforced to minimize possible sea ice contamination of the ocean surface samples.  To further reduce the possible 

inclusion of sea ice samples, the ocean surface depolarization ratios were constrained to lie between 0 and 0.15 (Lu et al., 

2017).  Ocean surface scale factors were computed at single-shot resolution using V4 level 1 profiles in which no clouds 10 

were detected in any of the CALIOP level 2 data products.  Aerosol loading was minimized by requiring the column 

integrated attenuated backscatters at 532 nm to lie between 0.0036 sr–1 and 0.0176 sr–1.  Estimates of the aerosol two-way 

transmittance ratio (i.e., T2
532/T2

1064) were obtained from collocated Moderate Resolution Imaging Spectroradiometer 

(MODIS) optical depth retrievals available in the CALTRACK data products distributed by the AERIS/ICARE Data and 

Services Center.  532 nm optical depths were interpolated from the MODIS aerosol optical depths reported at 470 nm and 15 

550 nm.  Similarly, 1064 nm optical depths were interpolated from MODIS retrievals at 860 nm and 1240 nm.  Only those 

MODIS retrievals for which the QC flags were greater than zero were used in the calculations.   

As seen in Figure 23, the agreement between the ocean surface and cirrus cloud scale factors is reasonably good, with the 

maximum difference between the median values at any latitude being less than ± 5 %.  The global scale factor ratio (ocean 

surface medians divided by cirrus cloud medians) over all latitudes is 1.008 ± 0.023.  Extending the calculations to include 20 

multiple months in different seasons and years (i.e., April 2012, July 2014, and January 2016) yields a global scale factor 

ratio of 1.021 ± 0.003.  While this degree of correspondence between the two techniques is highly encouraging, practical 

implementation of the ocean surface calibration method is limited to daytime measurements, when independent estimates of 

aerosol two-way transmittance ratios are available from MODIS. 
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Figure 23: median 1064 nm calibration scale factors computed using cirrus clouds (purple diamonds) and ocean surface 
measurements (green circles) for daytime measurements acquired between 60° S and 60° N during October 2010.  The pale purple 
filled region indicates ±1 median absolute distance (MAD) about the median cirrus cloud scale factors.  Likewise, the green bars 
indicate ±1 MAD about the median ocean surface scale factors. 5 

6.2 Lidar calibration using opaque water clouds 

Lidar calibration using opaque water clouds was initially proposed by O’Connor et al. (2004), who note that the lidar ratio 

(i.e., the extinction-to-backscatter ratio) for these clouds, Sc, is essentially constant over a large range of droplet size 

distributions (e.g., Sc = 18.8 ± 0.8 sr at 905 nm), and thus calibration coefficients at a given wavelength can be derived using 

Platt’s equation (Platt, 1973; Hu et al., 2007a); i.e., 10 
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Here γ′c is the integrated attenuated backscatter from cloud top to the apparent cloud base, ηc is the layer-effective multiple 

scattering factor within the cloud, and ( )( )p2
p topT 0, r zη   is the particulate two-way transmittance between the lidar and cloud 

top (or cloud base for an up-looking lidar).  Because the clouds are opaque, the two-way transmittance through the cloud is a 

known value (i.e., c2
cT 0η = ).  Similarly, Sc is also assumed to be known within small and well-defined error bounds.  In 15 

demonstrating their technique, O’Connor et al. use the multiple scattering model described in Eloranta (1998) to calculate the 

required estimates of ηc.  Assuming that in-cloud contributions from molecular backscattering can be neglected (a reasonable 

assumption at 1064 nm), integrating the range-corrected, uncalibrated signal from cloud top to the apparent cloud base yields 
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The dominant source of uncertainty in Eq. (19) is ηc, with uncertainties in the particulate attenuation between the lidar and 

cloud top being secondary.  Using model calculations to estimate ηc requires a priori knowledge of the droplet size 

distributions within the water clouds being used as calibration targets.  Presumably CALIOP could obtain droplet size 

information from collocated MODIS retrievals (e.g., as in Figure 26a).  However, validation studies indicate that the MODIS 

effective radius estimates can be biased high (Painemal and Zuidema, 2011; Min et al., 2012), and thus the resulting 5 

estimates of ηc would likewise be biased.  (Larger droplet sizes would generate increased multiple scattering in the model, 

leading to an underestimate of both the true ηc and the derived calibration coefficients.)   

Wu et al. (2011) used measurements from a multi-wavelength (355 nm, 532 nm, and 1064 nm), zenith-pointing, ground-

based lidar to compare 1064 nm calibration coefficients calculated using O’Connor’s water cloud method to those derived 

using the ice cloud technique with the assumption that χcirrus = 1.  Estimates of ηc required for the water cloud retrieval were 10 

obtained by applying the Eloranta multiple scattering model to cloud droplet size distributions reported in the MODIS data 

products.  The relative difference between these two calibration data sets was typically less than 15%, and these differences 

fell within the uncertainty bounds estimated using standard propagation of errors analyses (Wu et al., 2011).  When 

differences of 4% or more were found (5 of 7 comparisons), the water cloud calibration coefficients were uniformly lower, 

which may indicate an overestimate of droplet sizes in the MODIS data.  In general, the Wu et al. ice cloud calibration 15 

coefficients were slightly larger, less variable, and more temporally stable than those obtained using the water cloud 

technique. 

6.3 CALIOP calibration using opaque water clouds 

For CALIOP and other lidars that directly measure linear depolarization, multiple scattering models are not required.  For 

these systems, accurate estimates of ηc for opaque water clouds can be derived from layer-integrated volume depolarization 20 

measurements, δv, using 
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λ

 − δ
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  (20) 

(Hu et al., 2007b; Roy and Cao, 2010).  However, while CALIOP makes dual-polarization measurements at 532 nm, the 

1064 nm channel measures only the total backscattered energy, and not the separate parallel and perpendicular components.  

To obtain estimates of the 1064 nm multiple scattering factors, we employ an empirical relationship developed by Hu et al. 25 

(2007c) that expresses the mean extinction coefficient and effective droplet radius at the top of opaque water clouds as a 

function of layer-integrated volume depolarization ratio; i.e., 
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X , (21) 



34 

where σwc is the volume extinction coefficient at cloud top and δv is obtained as in Eq. (13).  Xwc is the Mie scattering size 

parameter of the mean droplet radius at cloud top; i.e., Xwc = 2 π Rwc / λ, where Rwc is the mean droplet radius at cloud top 

and λ is the measurement wavelength.  This relationship was derived from extensive Monte Carlo simulations of Mie 

scattering in opaque water clouds and was developed specifically for the analysis of CALIOP 532 nm daytime data, for 

which direct measurements δv are readily available (Hu et al., 2007c).   5 

Repurposing Eq. (21) to retrieve estimates of CALIOP δv at 1064 requires  

(a) recognizing that the Mie scattering size parameter for 1064 nm measurements is half of the 532 nm value, so that 

Xwc,1064 = ½ × Xwc,532; and 

(b) assuming the Mie scattering extinction efficiencies at 532 nm and 1064 nm are both 2.  As this assumption is very well 

founded for particle radii greater than ~ 3 μm, we further assume that σwc,1064 = σwc,532. 10 

Adopting these assumptions, defining 

v,
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D 1

λ
λ

λ

δ= + δ , (22) 

and dividing Eq. (21) evaluated at 1064 nm by Eq. (21) evaluated at 532 nm yields 
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from which we subsequently derive 15 
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This transform produces 1064 nm multiple scattering factors that, on average, are smaller than those at 532 nm by ~ 19 % 

(i.e., η532 / η1064 = 1.190 ± 0.046), indicating that the multiple scattering contributions to the total 1064 nm backscatter signals 

are relatively higher than the contributions at 532 nm. 

Substituting Eq. (24) into Eq. (19) and evaluating at 1064 nm yields 20 
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Dividing both sides of Eq. (25) by the 1064 nm calibration coefficients computed in the V4 level 1 data products allows us to 

replace g1064 with γ′1064, and thus readily evaluate the right-hand side using the layer properties reported in the CALIOP V4 

L2 5 km cloud layer products (Vaughan et al., 2018); i.e., 
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After the division, the left-hand side becomes the relative calibration coefficient; i.e., the ratio between the calibration 

coefficients computed using water clouds (in the numerator) and cirrus clouds (the denominator).   

Using S1064 = 18.2 sr (Pinnick et al., 1983), we derived the water cloud-to-ice cloud relative calibration coefficients for all of 

2015 using the following data selection criteria.  The analysis was first limited to opaque water clouds detected over oceans 

at CALIOP’s standard 5 km horizontal averaging resolution.  We further required that 10 

a) only one layer was detected in each 5 km column, and that same layer was also detected in each single shot profile that 

comprised the 5 km average (i.e., the layer was spatially homogeneous and robust throughout); 

b) the 532 nm integrated attenuated backscatter above cloud top was within ± 2 standard deviations of the value that would 

be expected for pristine air; given that the mean cloud top is above 1.5 km (i.e., comfortably above a typical marine 

boundary layer height of 0.5 km), enforcing this condition allows us to assume that ( )p,10642
p,1064 topT 0,z 1η ≈   (but note: due to 15 

very large differences in background noise, the magnitudes of the standard deviations differ markedly for nighttime and 

daytime measurements); and 

c) the 5 km layer cloud-aerosol discrimintation (CAD) score was greater than 90 and less than or equal to 100 (Liu et al., 

2018) and the ice-water phase confidence assessment was “high” (Avery et al., 2018), thus guaranteeing the highest 

possible classification confidence in both feature type and cloud phase.   20 

To further ensure that only liquid water clouds were included, the mid-layer temperature was required to be above 0 °C.   

Potential outliers were eliminated by removing all candidate clouds for which either the integrated attenuated backscatter at 

532 nm or 1064 nm or the 532 nm integrated volume depolarization ratio fell outside the limits established by the median 

population values plus or minus two median absolute deviations (MAD).  This final filtering step reduced the total number of 

layers considered by ~ 14 %. 25 
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Distributions of these water-to-ice relative calibration coefficients are shown in Figure 24 and summarized in Table 3.  

Considered globally, the daytime 1064 nm water cloud calibration shows essentially no bias: the mean 1064 nm relative 

calibration is 1.004 ± 0.121.  But the nighttime results are not so reassuring, as the nighttime mean 1064 nm relative 

calibration is 1.073 ± 0.112.  The same pattern of day-night differences is seen when water clouds are used to compute 

relative calibration coefficients at 532 nm.  Using S532 = 18.6 sr (O’Connor et al., 2004), the daytime mean shows a relatively 5 

small bias, at 1.017 ± 0.116, that is consistent with the daytime 532 nm attenuated backscatter coefficient biases (1.0 % ± 3.5 

%) established via validation studies using LaRC HSRL measurements (Getzewich et al., 2018).  However, the nighttime 

mean (1.126 ± 0.095) shows a bias that is approximately seven times higher than in the daytime (0.126 vs. 0.017) and is 

substantially larger than the bias that would be expected based on HSRL validation studies (1.6 % ± 2.4 %; see Kar et al., 

2018).  While the exact cause for these day-night differences has not yet been definitively ascertained, at present the most 10 

likely culprit is thought to be the non-ideal detector response at 532 nm (Hunt et al., 2009).  The behavior of the 532 nm 

photomultipliers is well-described by McGill et al., 2007: “Following a strong impulse signal, such as from the Earth’s 

surface or a dense cloud, the signal initially falls off as expected but at some point begins decaying at a slower rate that is 

approximately exponential with respect to time (distance).”  This exponential decay artificially broadens the vertical extent 

of dense water clouds measured at 532 nm.   15 

The design of the CALIOP layer detection scheme also contributes to the biases introduced into the data products by this 

non-ideal response.  For any layer detected, the initial estimate of layer base is continually lowered so long as the slope of 

the backscatter signal remains negative with respect to range from the lidar (Vaughan et al., 2009).  The high background 

noise characteristic of daytime measurements of dense (and very bright) water clouds largely prevents excessive lowering of 

layer base altitudes.  However, no such inhibitions are present in the nighttime data, and as a result the opaque water clouds 20 

in this study show large day vs. night differences in geometric thickness (medians of 0.509 ± 0.184 km daytime vs. 0.838 ± 

0.174 km nighttime), γ′532 (day-night median values of 0.0636 sr –1 and 0.0761 sr –1, respectively), γ′1064 (day-night medians 

of 0.0761 sr –1 and 0.0893 sr –1), and δv (day-night medians of 0.2098 and 0.2287).  While the 1064 nm detector does not 

exhibit the same non-ideal response shown by the 532 nm detectors, the day vs. night differences in γ′1064 appear because at 

the 5 km horizontal averaging resolution the CALIOP layer detection algorithm searches only the 532 nm measurements to 25 

establish layer base and top altitudes.  On-going algorithm and data product development is expected to minimize artifacts 

introduced by non-ideal detector response in future data releases. 
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Figure 24: occurrence frequencies of the 1064 nm relative calibration coefficients (water cloud technique / ice cloud technique) for 
opaque water clouds detected over global oceans during all of 2015.  Daytime results are shown in orange and nighttime results in 
dark red. 

Table 3: descriptive statistics for the relative calibration coefficients computed at both wavelengths for opaque water clouds 5 
detected over global oceans during all of 2015; values at 1064 nm report water cloud calibration coefficients divided by cirrus 
cloud calibration coefficients, whereas values at 532 nm report water cloud calibration coefficients divided by the 532 nm 
calibration coefficients computed using molecular normalization (Kar et al., 2018; Getzewich et al., 2018). 

 532 day 532 night 
1064 day 
(Eq. (26)) 

1064 night 
(Eq. (26)) 

Min 0.445 0.597 0.511 0.511 

Max 1.520 1.514 1.547 1.526 

Median 1.009 1.116 0.999 1.067 

MAD 0.092 0.075 0.099 0.091 

Mean 1.017 1.126 1.004 1.073 

St. Dev. 0.116 0.095 0.121 0.112 

Samples 406,058 234,441 406,058 234,441 

6.4 Color ratios of opaque water clouds 

Accurate estimates of layer-integrated attenuated color ratios (i.e., χ′layer = γ′1064 / γ′532) are critically important for the 10 

CALIOP cloud-aerosol discrimination algorithm, which relies on spectral differences in attenuated backscatter as one of the 

fundamental measurements that can reliably distinguish clouds from aerosols (Liu et al., 2018; Zeng et al., 2018).  

Furthermore, having accurate estimates of χ′layer for opaque water clouds now enables reliable retrievals of Ångström 

exponents and 1064 nm lidar ratios for aerosol layers lying above these clouds (Chand et al., 2008; Vaughan et al., 2015), 

and thus provides opportunities to mine new types of information from the CALIOP measurements.  As would be expected, 15 

the large changes made in the V4 1064 nm calibration coefficients have had a pronounced effect on both the magnitude and 

the consistency of the χ′layer values reported in the CALIOP L2 data products.  This is illustrated in Figure 25, which shows 

zonal mean χ′layer for opaque water clouds measured both daytime and nighttime in V3 and V4.  These clouds are all detected 

using 5 km horizontal averaging.  To minimize the influence of overlying cloud and/or aerosol layers on the χ′layer 



38 

measurements, these layers are also the only layers detected within each column.  The nighttime V3 data and the daytime V3 

data south of 45° N show distinct negative slopes as a function of latitude, with values in the southern hemisphere being 15 – 

25 % larger than those in the northern hemisphere.  For V3, χ′layer is reasonably consistent (albeit not constant) for both 

daytime and nighttime between 45° S and 45° N, but poleward of those latitudes the day and night values diverge 

substantially.  On the other hand, the V4 measurements remain reasonably constant as a function of latitude during both 5 

daytime and nighttime, although there is a consistent difference in magnitude of ~ 3 % on average (daytime higher). 

 

Figure 25: layer-integrated attenuated color ratio (χ′layer = γ′1064 / γ′532) for opaque water clouds measured during October 2011.  
V3 values are plotted using blue circles, while V4 values are shown by green diamonds. 

To assess the expected latitudinal changes of χ′layer we appeal to a combination of Mie scattering calculations and the droplet 10 

size distributions for oceanic water clouds derived from MODIS measurements.  Figure 26a shows the zonal mean effective 

radii retrieved from daytime MODIS measurements of opaque water clouds along the CALIPSO orbit track during October 

2011.  (Because the effective radius retrieval requires input from the visible channels, MODIS does not retrieve effective 

radius for nighttime measurements.)  The MODIS estimates of effective radii are seen to vary as a function of latitude, with 

values of 9–14 μm poleward of ~ 45° N and ~ 55° S, mid-range values of 14–18 μm at mid-latitudes, and maximum values 15 

of up to ~ 20 μm in the tropics.  Figure 26b shows Mie calculations (Liu et al., 2015) of the particulate backscatter color ratio 

(1064 nm / 532 nm) derived for the size distributions measured in-situ for various marine water clouds (Miles et al., 2000).  

These backscatter color ratios remain remarkably stable, with a mean value of 1.034 ± 0.034 for mean droplet radii ranging 

between ~ 4.5 μm and ~ 13 μm, which is similar to size range occupied by the MODIS-derived effective radii poleward of ~ 

45° N and ~ 55° S (Figure 26a).  Consequently, despite the possible high bias in the MODIS effective radii (15–20 % 20 

according to Painemal and Zuidema (2011)), we should expect that χ′layer would likewise remain similarly stable in this 

region.  However, with the possible exception of the nighttime data poleward of ~ 55° S, the CALIOP V3 χ′layer values shown 

in Figure 25 are not constant, but instead change substantially as a function of latitude, and diverge in different directions for 

daytime and nighttime measurements.   
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Figure 26: (a) MODIS retrievals of effective radius for opaque water clouds measured along the CALIPSO orbit track during 
daytime; (b) Mie calculations of backscatter color ratio (1064 nm / 532 nm) computed for in-situ measurements of marine water 
clouds as a function of cloud mean droplet radius. 

Due to multiple scattering differences at 532 nm and 1064 nm, the magnitudes of the layer-integrated attenuated color ratios 5 

are not expected to be identical to the magnitudes of the unattenuated particulate backscatter color ratios.  By using Platt’s 

equation together with the relationship between multiple scattering factors at 532 nm and 1064 nm established in Sect. 6.2.1 

and our previous assumptions on S532 and S1064, we obtain an expected value of χ′layer in the neighborhood of

( )
( ) ( )532 532

1064 1064

S 18.61.19 1.21618.2S
η × ≈ × =η × .  This value is very close to the V4 measured daytime global mean of 

1.200 ± 0.075, and only slightly higher (~ 4 %) than the V4 nighttime global mean of 1.169 ± 0.062.  Furthermore, assuming 10 

the extinction coefficients are identical at 532 nm and 1064 nm (i.e., as in Sect. 6.3), the ratio of assumed lidar ratios 

(18.6/18.2 = 1.022) is entirely consistent with the ratio of particulate backscatter coefficients retrieved from earlier Mie 

calculations (1.034 ± 0.034).  Consequently, our expectation is that, poleward of ~ 45° N and ~ 55° S, the latitudinal 

variations of χ′layer and the ratio of particulate backscatter coefficients should be largely identical.  And while this holds true 

for the V4 χ′layer data, it is decidedly not so for the V3 χ′layer data.   15 

6.5 Availability of 1064 nm calibration targets 

The foregoing sections suggest that, at least for daytime measurements, CALIOP has three reasonable choices for a 1064 nm 

calibration target: ice clouds, water clouds, and ocean surfaces.  This appearance of choice, however, is largely illusory when 

the availability of the three different targets is considered.  Figure 27 plots the zonal frequencies for which ice clouds (blue 

circles), water clouds (green diamonds), ocean surfaces (magenta squares), and aerosol layers (orange line) occur as the 20 

uppermost layer detected in a CALIOP 5 km averaged profile as a function of latitude of all data acquired during 2015.  Ice 

clouds are the uppermost layer detected in 38.2 % of the global measurements.  Perhaps surprisingly, aerosols have the next 

highest frequency of occurrence, and are the uppermost layer detected 30.3 % of the time, while the occurrence frequencies 

for water clouds and liquid ocean surfaces are 18.9 % and 1.1 %, respectively.  Sea ice (1 %), land surfaces (6.3 %), and 

clouds of unknown phase (4.3 %) account for the remainder of the cases.  Fully capturing the intra-orbit variability 25 

(a) (b) 
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demonstrated by the scale factors and 1064 nm calibration coefficients (e.g., as seen in Figure 5 and Figure 20) strongly 

argues for the use of the most frequently observed calibration target.  Ice clouds are the clear choice in this regard, as they 

are detected as the uppermost layer twice as often as water clouds and ~ 35 times more often than the ocean surface.   

 

Figure 27: occurrence frequencies for the uppermost feature detected at 5 km horizontal resolution as a function of latitude for all 5 
CALIOP measurements acquired during 2015 

6.6 Comparisons to LaRC HSRL measurements 

Since launch, the CALIPSO project has partnered with the LaRC HSRL team to conduct a mission-long series of validation 

under-flights specifically designed to assess CALIOP’s calibration accuracy and monitor long-term trends (Rogers et al., 

2011).  The airborne HSRL’s high SNR, downlooking viewing geometry, and ability to measure the same along-track 10 

vertical swath as CALIOP yield highly reliable validation measurements in which systematic errors due to aerosol variability 

are largely eliminated (Gimmestad et al., 2017). 

At 532 nm, the HSRL systems use a set of internal calibration procedures to accurately characterize the filter transmittances 

and detector gain ratios necessary to retrieve aerosol backscatter and extinction coefficients from multiple data channels 

(Hair et al., 2008).  These data have been used extensively to validate the CALIOP 532 nm attenuated backscatter 15 

measurements (Rogers et al., 2011; Kar et al., 2018; Getzewich et al., 2018).  Here we present an initial comparison of the 

CALIOP and HSRL attenuated backscatter measurements at 1064 nm.  While the LaRC HSRL systems acquire high spectral 

resolution data at 532 nm, and at 355 nm on HSRL-2 (Burton et al., 2018), at 1064 nm they make elastic backscatter 

measurements that are calibrated using a variant of the molecular normalization technique.  Because the ratio of the 

calibrated 532 nm HSRL signals provides a direct measurement of the aerosol scattering ratio at 532 nm, regions of 20 

minimum aerosol loading are readily identified in the 532 nm profiles.  The aerosol scattering ratios at 1064 nm in these 

minimum loading regions are then estimated using an assumed aerosol backscatter color ratio of βa(1064) / βa(532) = 0.4.  

1064 nm calibration coefficients are subsequently derived by normalizing the measured 1064 nm signals in the minimum 
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loading regions to a molecular model that incorporates contributions from the estimated 1064 nm aerosol scattering ratios 

(Hair et al., 2008). 

Figure 28 shows some representative comparisons of collocated 1064 nm attenuated backscatter profiles measured by HSRL 

(in black) and CALIOP (in red).  The left and right panels show daytime data, while the middle panel shows nighttime data.  

All three cases show regions of relatively clear air above aerosol layers of varying backscatter intensity.  In the right-hand 5 

panel, signals from dense water clouds are seen beginning at just above 1 km.  Visually, the agreement in the “clear air” 

portions of the profiles appears quite close, whereas the differences in the aerosol-laden regions are generally more 

pronounced, especially for the daytime cases.  The SNR differences between the two sets of measurements are immediately 

apparent and quite large: the CALIOP data are much noisier than the HSRL data.  In part, this difference is due to the 

amount of data averaged.  For the validation flights, HSRL flies directly along the CALIPSO ground track, so the data 10 

averaged for each profile covers the same along-track distance.  However, the data acquisition times are drastically different.  

When flying aboard the NASA Langley B-200 aircraft, the typical ground speed for the airborne HSRL is ~ 110 m/s (Rogers 

et al., 2011).  Because CALIPSO moves at ~ 7500 m/s, in just under 53 seconds CALIOP travels the same along-track 

distance that HSRL would cover in 1 hour.  Because the meteorology can change rapidly, these differences in data 

acquisition times can translate directly into differences in the composition of the scenes observed by the two instruments.  In 15 

particular, heating of the planetary boundary layer (PBL) and convection is likely to be more active during the daytime, 

which means that comparisons of the daytime measurements are more likely to show fine scale differences arising from 

natural variability. 

 
Figure 28: comparisons of collocated HSRL and V4 CALIOP profiles of 1064 nm attenuated backscatter from (a) the ARCTAS2 20 
field campaign in Fairbanks, Alaska during the summer of 2008; (b) the DISCOVER-AQ field campaign in the San Joaquin 
Valley of California during the spring of 2011; and (c) the ORACLES field campaign operated out of Walvis Bay, Namibia during 
the fall of 2016. CALIOP granule name identifiers are given in the plot titles.   

To derive quantitative comparisons of the CALIOP and HSRL 1064 nm measurements, we restricted the data from both 

instruments to cloud-cleared profiles only, and these cloud-cleared profiles were averaged over the full extent of the 25 

coincident flight paths.  The HSRL profiles are cloud-cleared using a hybrid approach that combines edge enhancement 

(a) (b) (c) 
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using Haar wavelets with a more traditional thresholding technique (Burton et al., 2010).  Cloud-clearing of the CALIOP L1 

profiles is accomplished by inspecting the V4 L2 5 km merged layer products.  These products report all cloud and aerosol 

layers detected at CALIOP’s standard 5 km, 20 km and 80 km averaging resolutions, and also contain a complete record of 

all layers detected at single shot resolution (Vaughan et al., 2018).  All profiles in which clouds or aerosols were detected 

above the HSRL data acquisition altitude were excluded from the CALIOP averages.  Doing this eliminates uncertainties 5 

that would otherwise be introduced by the attenuation corrections that would need to be applied to the CALIOP data 

acquired beneath the HSRL.  Those CALIOP profiles in which clouds were detected between the HSRL flight altitude and 

the Earth’s surface were also excluded from the data averaging process.  Note that the aerosol-laden profiles shown in the 

right panel of Figure 28 were acquired while flying over an extended and continuous stratus cloud deck, and thus these data 

were excluded from the comparisons. 10 

The effects of this aggressive cloud-clearing strategy on the quality of the CALIOP averaged 1064 nm profiles are illustrated 

in Figure 29.  Figure 29(a) shows the CALIOP 1064 nm attenuated backscatter measurements for a nighttime validation 

flight departing from Saint George’s, Bermuda (32.36° N, 64.68° W) on 16 June 2014.  Intermittent and occasionally opaque 

cirrus clouds are seen at and above the ~ 9 km HSRL flight altitude.  A substantial cluster of midlevel clouds is also seen at ~ 

33° N in the CALIOP image.  The presence of these clouds is reflected in the segments of completely missing data that 15 

appear centered near ~ 32° N in the HSRL image shown in Figure 29(c).  Additional cloud-obscured regions of ‘missing 

data’ extend down to the surface from between ~ 3.5 km to ~ 2.5 km over most of the second half of the HSRL flight.  

Figure 29(b) shows the average of the CALIOP 532 nm attenuated backscatter coefficient profiles taken over the full 

validation flight segment.  Except for a small gap at ~ 6.5 km, this flight segment is, on average, cloudy from 12 km down to 

the surface. 20 

Averages of the attenuated backscatter profiles that remained after application of the cloud clearing operations are shown in 

Figure 29(d) (CALIOP in red, HSRL in black).  Of the 1500 laser pulses emitted by CALIOP during this HSRL underflight, 

only 386 were found to be entirely cloud-free.  As a consequence, the SNR of the mean CALIOP profile is only ~ 1.3 times 

higher than would be typical for 80 km averaged profile acquired during nighttime operations.  Furthermore, one of the 

potential pitfalls of different data acquisition times and data averaging volumes is clearly illustrated by the differences in 25 

aerosol scattering magnitudes seen at ~ 0.4 km, where the CALIOP measurement is larger than HSRL by ~ 50 %. 



43 

 

Figure 29: nighttime CALIOP and HSRL measurements acquired 16 June 2014 over the Atlantic Ocean in the vicinity of 
Bermuda.  The CALIOP profiles in panel (a) are averaged to a 5 km horizontal resolution (15 laser pulses acquired over ~ 0.75 s).  
The HSRL profiles shown in panel (c) are averaged to a temporal resolution of 10 seconds.  The red lines at the bottom of panels a 
and c indicate coincident portions of the two data sets.  Panel (b) shows the average of all CALIOP 532 nm attenuated backscatter 5 
coefficient profiles acquired during full validation flight segment while panel (d) shows the average of the CALIOP 1064 nm 
attenuated backscatter coefficient profiles that were classified as being cloud-free (386 of 1500). 

To create comparable averages for both instruments over all flights, we corrected the CALIOP signal for the additional 

molecular attenuation incurred between CALIOP and the HSRL 1064 nm calibration altitude.  No correction was applied for 

the attenuation due to undetected cloud or aerosol layers that may have been present between the two sensors.  To date there 10 

have been 122 HSRL underflights of CALIPSO.  After eliminating obvious instrument and data processing artifacts (e.g., 

those flights in which the CALIOP automated layer detection algorithm failed to identify either weak clouds or partially 

filled footprints, as evidenced by excessively large scattering ratios at 1064 nm, or for which the HSRL failed to acquire 

1064 nm profile data), we obtained a data set consisting of 101 pairs of spatially collocated attenuated backscatter profiles.  

To compare these, we computed the ratios of the integrated attenuated backscatter coefficients (i.e., γ′1064,CALIOP / γ′1064,HSRL), 15 
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beginning at 6 km above mean sea level and extending downwards over successively larger altitude ranges of 2 km, 3 km, 4 

km, and 5 km.  Table 4 summarizes the results separately for nighttime and daytime measurements.  The mean ratios over 

the higher altitude ranges – i.e., 6 km to 4 km and 6 km to 3 km – agree to within ±2 %, although, as should be expected, the 

standard deviations about the means are relatively high.  As we proceed from these generally “clear air” regions deeper into 

the PBL, the quality of the agreement deteriorates.  From 6 km to 2 km, when the nighttime boundary layer is quiescent, the 5 

agreement between the two sets of measurements is still within ±2 %.  However, during the daytime, when the PBL becomes 

more turbulent, the agreement falls off to within 5 %.  Integrating from 6 km to 1 km produces the worst agreements: no 

closer than 11 % at night and 23 % during the day.  We attribute these increasing disparities to the increasing non-uniformity 

of the PBL, both vertically and horizontally, as we extend our measurement range closer to the Earth’s surface. 

Table 4: means (μ) and standard deviations (σ) of the ratios of integrated attenuated backscatters (CALIOP / HSRL) for 101 10 
HSRL underflights of CALIPSO.  Details about flight locations and dates can be found in Rogers et al., 2011 (day and night), Kar 
et al., 2018 (nighttime only), and Getzewich et al., 2018 (daytime only). 

range μ (night) σ (night) μ (day) σ (day) 

6 km to 4 km 0.981 0.307 0.988 0.541 

6 km to 3 km 0.990 0.310 1.000 0.439 

6 km to 2 km 1.018 0.355 1.052 0.402 

6 km to 1 km 1.111 0.657 1.233 0.371 

7 Discussion and concluding remarks 

In this paper we describe the new techniques implemented in the CALIPSO version 4 (V4) data release to more accurately 

calibrate the CALIOP 1064 nm measurements.  There are two major differences between the version 3 (V3) and V4 15 

calibration methods.  First, the new cloud selection criteria implemented in V4 identify a much more homogeneous 

population of cirrus, while simultaneously weeding out the water clouds and polar stratospheric clouds that occasionally 

contaminated the V3 calibration procedure.  Second, the data averaging scheme used to generate estimates of the calibration 

scale factors has been radically restructured.  In previous versions of the 1064 nm calibration algorithm, all scale factors 

accumulated over a full daytime or nighttime granule were averaged to create a single mean value that was applied 20 

everywhere within the granule.  In contrast, the V4 algorithm accumulates scale factors in discrete increments of granule-

elapsed time across multiple orbits.  Doing this accommodates the substantial intra-orbit changes that are now known to 

characterize the scale factor time series.  As a result of these changes, the calibration coefficients produced by the V4 

algorithm can vary by ± 25 % relative to the V3 values and show distinctly different geospatial patterns that more accurately 

reflect the continuously changing thermal environment onboard the satellite.   25 
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Despite the many significant differences, some critically important similarities remain between V3 and V4.  As in previous 

versions of the CALIOP 1064 nm calibration algorithm, the fundamental assumption on which the V4 scheme relies is that 

the 1064 nm-to-532 nm ratio of particulate backscatter coefficients (i.e., the backscatter color ratio) for a specific subset of 

cirrus clouds is 1.01 ± 0.25.  We assess the validity of this assumption and quantify the potential bias errors in the resulting 

calibration coefficients by comparing the scale factors and calibration coefficients derived using cirrus clouds to those to 5 

those retrieved using ocean surfaces and water clouds as alternative calibration targets.  These comparisons generally yield 

uniformly consistent results: the CALIOP calibration coefficients using the cirrus cloud technique typically lie within ~2 % 

or less of those derived using other calibration targets.  The sole exception is our attempt to use opaque water clouds to 

calibrate the CALIOP nighttime measurements.  The 1064 nm nighttime calibration coefficients derived using the water 

cloud calibration method are, on average, larger than the cirrus-derived calibration coefficients by ~ 7 %.  Furthermore, 10 

applying this same technique to nighttime 532 nm data produced 532 nm calibration coefficients that were ~ 13 % larger 

than the 532 nm calibration coefficients derived using the well-established molecular normalization method.  Since the 

accuracy of 532 nm nighttime calibration coefficients derived using the molecular normalization technique has been firmly 

established using collocated high spectral resolution lidar (HSRL) measurements, we conclude that the non-ideal detector 

response at 532 nm, when coupled with V4’s overly-aggressive layer base detection algorithm, currently eliminates opaque 15 

water clouds as suitable targets for direct calibration of the CALIOP nighttime measurements at both 532 nm and 1064 nm. 

The calibration comparison studies described in Sect. 6 demonstrate that the attenuated backscatter coefficients derived from 

the V4 CALIOP 1064 nm calibration procedures are both internally consistent and externally consistent.  To be internally 

consistent, the attenuated backscatter coefficients measured within layers other than cirrus clouds should very closely match 

theoretical expectations derived for other well-characterized atmospheric features.  Whenever possible, these expectations 20 

should be based on stable, intrinsic properties that depend on layer type only, and not on highly variable extrinsic properties 

such as backscatter intensity.  When the appropriate corrections for multiple scattering are made, we derive backscatter color 

ratios from calibrated measurements of opaque water clouds that very closely match the theoretically expected values (Sect. 

6.4), and thus solidly establish the internal consistency of the cirrus cloud calibration technique.  External consistency is best 

demonstrated by traditional lidar validation studies, wherein coincident measurements are compared to those obtained using 25 

a previously authenticated instrument.  We assess this by comparing the 1064 nm attenuated backscatter profiles reported in 

the V4 CALIOP level 1 data products to collocated, independently measured profiles of 1064 nm attenuated backscatter 

coefficients acquired by the NASA-LaRC HSRLs (Sect. 6.6), which currently provide the most reliable validation 

measurements available to space-based lidars.  For measurements acquired in stable atmospheric conditions, the CALIOP 

1064 nm attenuated backscatter coefficients lie typically within ~2% or less of those acquired by the LaRC HSRLs. 30 

Based on a full year of data, median random uncertainties in the individual V4 1064 nm calibration coefficients are estimated 

at 1.63 % with a spread (median absolute distance) of ± 0.29 % at night, and 1.77 % ± 0.41 % during the day (Sect. 4.3).  

When considering both random and bias errors, the accuracy of the CALIOP 1064 nm calibration is expected to be within 
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3% both daytime and nighttime for a large majority of the measurements.  This significant reduction in the CALIOP 1064 

nm calibration coefficient uncertainty yields greatly improved reliability in several important downstream CALIOP data 

analyses such as cloud-aerosol discrimination and the retrieval of 1064 nm aerosol optical depths. 

Data Availability:  The CALIPSO lidar data products are available at the Atmospheric Science Data Center at NASA LaRC 

(https://eosweb.larc.nasa.gov/project/calipso/calipso_table) and at the AERIS/ICARE Data and Services Center 5 

(http://www.icare.univ-lille1.fr).  The CALTRACK data are available via AERIS/ICARE.  HSRL data are available by 

request from the authors (John Hair at johnathan.w.hair@nasa.gov).  MODIS atmospheric data 

(doi:10.5067/MODIS/MYD04_L2.061) are distributed via the MODIS web site at https://modis-

atmos.gsfc.nasa.gov/MOD04_L2/index.html. This study made extensive use of the CALIPSO level 1 lidar profile product 

(Vaughan et al., 2018; NASA Langley Research Center Atmospheric Science Data Center; 10 

https://doi.org/10.5067/CALIOP/CALIPSO/LID_L1-Standard-V4-10; last access: 8 September 2018); the CALIPSO level 2 

5 km merged layer product (Vaughan et al., 2018; NASA Langley Research Center Atmospheric Science Data Center; 

https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05kmMLay-Standard-V4-10; last access: 8 September 2018); the 

CALIPSO level 2 5 km cloud profile product (Vaughan et al., 2018; NASA Langley Research Center Atmospheric Science 

Data Center; https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05kmCPro-Standard-V4-10; last access: 8 September 15 

2018); and the CALIPSO level 2 IIR track product (Vaughan et al., 2018; NASA Langley Research Center Atmospheric 

Science Data Center; https://doi.org/10.5067/IIR/CALIPSO/L2_Track-Beta-V3-30; last access: 8 September 2018).  MODIS 

parameters were extracted from the MODIS Atmosphere L2 Aerosol Product (Levy, R., Hsu, C., et al., 2015; NASA MODIS 

Adaptive Processing System, Goddard Space Flight Center, USA; http://dx.doi.org/10.5067/MODIS/MOD04_L2.006; last 

access: 8 September 2018).  All CALIPSO lidar and IIR data products are also available from the AERIS/ICARE Data and 20 

Services Center (http://www.icare.univ-lille1.fr, AERIS/ICARE; last access: 8 September 2018).  The CALTRACK data are 

likewise available via AERIS/ICARE.  HSRL data are available by request from the authors (John Hair at 

johnathan.w.hair@nasa.gov). 
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