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1 General

Many thanks to both reviewers for their careful consideration of the paper. Their support for the aim and presentation of the

paper is much appreciated. The suggestions they made are valuable and will improve the paper.

In slightly different ways, both referees ask for some discussion of the determination and application of active site density,5

ns(T )1, compared with K(T ). This is a valid point, as many recent publications have included use of this metric to evaluate

results. The correspondence between ns(T ) and the cumulative spectrum is already mentioned in the last paragraph of Section

2 of the first version of the paper. There has been no use made so far in the literature of the site density metric that corresponds

to the differential concentration. Thus, impulsed by the referee comments, the revised manuscript has a brief section added

to discuss this, and to mention some of the factors that need to be considered for valid application of active site density as a10

measure of INP potency.

Other comments and suggested changes are taken up individually, as listed below.

In addition to the changes prompted by the reviews, I added to the manuscript a short paragraph and a new figure to show

that the spread in the cumulative spectra from the simulation is much less than for the differntial spectrum. This is useful

to illustrate that even with modest numbers of drops error range of only about factors of 3-5 can be expected. The figure in15

question is reproduced here.

2 Referee #1 comments

Referee: ”... ns requires the specific surface area, which, e.g. in the case of soluble, macromolecular INP cannot be determined.”

Also in the cumulative functions there can be an impact, when the normalization factor X is chosen, which can be normalization

1Symbols are defined in Table 4 of the manuscript
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Figure 1. Cumulative spectra for 100 simulations for which differential spectra are shown in Fig. 7.

to unit volume, unit mass or unit surface of INP. The latter should be clarified and examples could be given, such as cellulose,20

which is even changing its freezing behavior from one freeze-thawing cycle to another, probably related with a change of

specific surface area (water-cellulose interface).”

Response: I have attempted to clarify in the new section under what conditions can ns be validly determined. Experiments

with cellulose INPs raise additional issues regarding the stability of the particle surface once interaction with water starts. I

have no experience with this system, so cannot add more specific recommendations beyond those included in the preceding5

section. Actually, this is just one of the many systems which undergo changes with time and for which ns or any other measure

of activity is a function of time, Changes even during the course of a single experiment can occur and make any quantitative

description of the activity of questionable value.

Referee: ”In figure 6, in the corrected differential spectrum a signal between -10◦C and -17◦C arises, which is probably related

to the biological material in soil.”10

Response: The origin of the INPs active at the higher temperatures in that analysis were not determined. The referee’s

view is probably correct as very few materials are known to produce nucleation at those temperatures. However, since no

independent determination was made of the INP composition, a claim of biological origin has only inferential support. Also,

it is a coincidence that in the example chosen to demonstrate the background subtraction there is a well-defined peak in the

differential spectrum and the minimum on the left of this peak occurs just where the subtraction becomes significant. This is15

not expected to be the general case. I’ll mention this in the revised manuscript.

Referee: ”P3, l.1-2: In practice, several runs with the same sample may be combined to accumulate a sufficiently large sample

size No for useful statistical validity of the results.? Add explanation. Repeated measurements might cause problems (see

cellulose, comments above).”
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Response: Correct. Combination of several runs is not an option if the sample is unstable. Text to emphasize this has been

added to the manuscript.

Referee:”P4, l.15: ”Eqs. (1) of (2)” should be ”Eq. (1) instead of (2)” ”

Response:Meant to say Eqs. (1) or (2), since the question of choice of ∆(T ) is relevant to both expressions.

3 Referee #2 comments5

Referee: ”Page 2, line 2: These spectra also provide measurements of INP concentrations versus T.”

Response: Thanks. Made that sentence more complete.

Referee: ”Page 2, line 15: It would be good to also discuss the roles that droplet size and particle concentration play in the

ability to retrieve information on INPs active at colder Ts.”

Response: Added a paragraph about this. ”From and experimental perspective, quantitation of ice nucleating ability depends10

on a successful choice of the drop sizes and of the amount of suspended INPs. Because ice nucleating ability in general is a

strong function of temperature, small drop volumes and low amounts of particle content result in freezing temperatures at low

temperatures. On the contrary, with large drop volumes and high particle loading, most drops will freeze at roughly the same

temperature. The range of usable drop volumes is often defined by the design of the apparatus, but, for laboratory preparations,

particle concentration is controlled by the experimenter. For water samples obtained with indigenous INPs (rain, river water,15

etc.) particle concentrations can be altered by dilution and partial evaporation. The functions defined in the following section

are useful only when the data to be analyzed describe a substantial spread of observed freezing temperatures.”

Referee: ”3/7: This is an interesting and important point that I think is often overlooked by the growing number of groups using

droplet freezing assays. It would be useful to elaborate more or this and further justify the notion that the approximation of

one INP per droplet being responsible for the freezing event is valid when small delta-T values and large values of N are used.20

Please cite any key references here so more information on this can be readily found.” and ”3/12: 10% error in what quantity?”

Response: The difference between containing at least one active INP or having exactly one is indeed easily overlooked. The

higher the average concentration is the less likely it is that precisely one INP would be found per drop. The statements made in

the cited paragraph derive from the properties of the Poisson distribution. The derivations given in V71 account for this. The

reference was added.25

Referee: ”4/20: Should mention that delta T is not just the temperature interval between successive droplet images, as might

be commonly and erroneously thought. It appears to be a free parameter that must be adjusted for each dataset, as discussed

further in the manuscript.”

Response: Indeed, this is a point of potential source of errors worth mentioning along with the other unadvisable choices for

∆T given in Section 4 of the paper. Added the sentence:”The choice is made, principally, on the basis of sample size (number30

of drops in the experiment) and not based on instrumental variables, such as the recording interval of freezing events.”
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Referee: ”Section 7: It seems ... common ... to compare the freezing properties of one particle sample with others ... The use

of confidence intervals applied to the k(T) differential analysis would seem to provide a quantitative way to determine if one

particle sample distributed amongst an array or droplets has a freezing spectrum that is statistically similar or different from

another. ... please add a paragraph or more of discussion on these topics ... "

Response: Thanks for the suggestion. The following text was added in the revised manuscript: ”The examples shown above5

illustrate one possible way to assess the confidence limits of k(T ). The simulation approach is a realistic and readily envisioned

method. Similar results for the confidence ranges could be obtained from tables of Poisson distribution using the observed

number of events in some experiment as λ for each temperature interval. The standard deviation, λ0.5, is another way to

measure variability. However, it cannot be used in the way it would be for normally distributed values because, for example,

the lower limit of the 95% range at (λ− 2.14 ∗λ0.5) can be negative for small λ and therefore not a physically realistic10

value for expected δN . The main point is that confidence limits can be delineated and with that the meaning of derived k(T )

spectra quantitatively assessed. The results shown here also demonstrate the need for large sample sizes in order to reduce the

variability of the derived spectra. ”

”Once sample variability has been estimated, statistical methods are available for comparisons of two samples by testing,

for example, the equivalence of means (e.g. Ch 20 in Blank (1980)). Performing that type of test interval by interval, as done in15

the foregoing, would test for activity in specific temperature regions. That may indeed be very useful in certain cases but will

definitely require large sample sizes. More complex methods will need to be considered to make broader overall comparisons

of different samples. Combining data from larger temperature segments – those of greatest interest – could be helpful, but the

strong temperature dependence of activity may be difficult to weigh adequately. Again, sample sizes will likely pose the most

serious limitation to reaching statistical significance in such tests.”20

4 Corrections

Minor corrections in figure labels and in wording will be made as suggested by the referees.
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Abstract. The differential nucleus concentration defined in Vali (1971) is re-examined and methods are given for its applica-

tion. The purpose of this document is to facilitate the use of the differential spectra in describing the results of drop freezing, or

similar, experiments and to, thereby, provide additional insights into the significance of the measurements. The additive nature

of differential concentrations is used to show how the background contribution can be accounted for in the measurements. A5

method is presented to evaluate the confidence limits of the spectra derived from given sets of measurements.

1 Introduction

Ice nucleation, more specifically freezing nucleation, remains a topic of interest in a variety of disciplines. Experiments with

multiple, externally identical, sample units have demonstrated the range of activities present in most samples, both for known

materials added to the water or for water derived from precipitation, lakes, rivers, or other sources. Freezing experiments are10

important sources of information about ice nucleating particles (INPs) and hence are in fairly widespread use. This paper

addresses the calculation and utilization of the differential nucleus spectrum1 derived from data obtained in drop freezing

experiments and denoted as k(T ). The closely related cumulative spectrum has been widely used already because of its direct

connection to the readily obtained fraction frozen. These functions were originally defined in Vali (1971; V71) and their link to

different forms, namely the differential and integral site density functions, is described in Vali (2014; V14). All these different15

forms represent quantitative descriptions of the abundance and activity of ice nucleating particles (INPs) present in water

samples as functions of temperature. The abundance (concentration) is defined either with respect to the volume of water in

which the INPs are suspended or to the mass or total surface area of the INPs themselves. These functions are empirical results

that represent the most relevant characteristics (activity described in terms of the characteristic temperature) of the INPs based

on the singular model of freezing nucleation. This model is time-independent and is justified by the much greater influence of20

1Strictly speaking the quantity of interest is the differential nucleus concentration. The differential spectrum is the graphical representation of the concen-

tration. However, it is convenient to refer to both as spectra.
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temperature than of time in the activity of INPs. Justification for this manner of describing INP activity, as well as the degree

to which time-dependence may alter the singular description, are presented in more detail in V14.

The spectra defined in the preceding paragraph are useful for quantitative definitions of activity as a function of temperature

for given INPs, and to distinguish different INP populations by their activity. They also provide measures of ice formation

in clouds, deduced from tests with precipitation samples. In the following, the differential spectrum is given most emphasis,5

partly because it is less well known, and more importantly because it is perhaps the most effective definition of INP activity

in a sample. All impacts of INPs depend on temperature; the specific activity expected at some temperature, quantitatively

expressed, is the information most relevant to the impact being studied2. Perhaps most important is the fundamental perspective

that motivates these studies. We would like to have clearer understanding of the surface and kinetic factors that determine ice

nucleation activity and of the temperature dependence of those factors. The abundance of nucleating sites of different activities10

(characteristic temperatures) for given substances is the key information which need to be explained in terms of structural and

compositional features of the surfaces. This is the empirical input needed to formulating theories of ice nucleation.

There are many analogs in physics to the differential concentration information here discussed. The most prominent is

perhaps the spectral intensity of light. More mundane is the population distribution by age group. In these examples, each

segment of the spectrum, or age group can be directly observed and quantified. However, this is not the case in freezing15

experiments, because freezing of a drop at some temperature forecloses getting information about other potential INPs active

at colder temperatures. These INPs not directly detectable have to be accounted for in order to get a meaningful result. Thus, it

is necessary to obtain data with many drops in order to arrive at measures of the population at all temperatures. This problem

is treated in the derivation of k(T ) in V71.

From and experimental perspective, quantitation of ice nucleating ability depends on a successful choice of the drop sizes20

and of the amount of suspended INPs. Because ice nucleating ability in general is a strong function of temperature, small drop

volumes and low amounts of particle content result in freezing temperatures at low temperatures. On the contrary, with large

drop volumes and high particle loading, most drops will freeze at roughly the same temperature. The range of usable drop

volumes is often defined by the design of the apparatus, but, for laboratory preparations, particle concentration is controlled

by the experimenter. For water samples obtained with indigenous INPs (rain, river water, etc.) particle concentrations can be25

altered by dilution and partial evaporation. The functions defined in the following section are useful only when the data to be

analyzed describe a substantial spread of observed freezing temperatures.

2The dominant role of temperature in determining activity is dimmed somewhat by the fact that gradual cooling from above 0◦C is usually involved before

reaching the specific temperature of activity. This introduces a combination of influences from the whole sequence of temperatures. Gradual cooling is the

case for laboratory experiments with previously prepared samples and also in clouds if the majority of INPs get incorporated into cloud droplets before cooling

to sub-zero temperatures. In some experiments and in some cloud situations, INPs enter into the water droplets (samples) at the supercooled temperature of

interest, but in these cases observed freezing events may include effects often referred to as contact nucleation. This complication is set aside in this paper, so

the nucleus spectra have to be viewed with that caveat in mind. This simplification is of relatively minor magnitude, as argued in Vali (2008) and in references

quoted there.
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Because the differential spectra are additive, i.e. represent the sum at each temperature of the contributions from all sources

of the INPs in a given water sample, the differential spectra provide a way to correct for background noise in drop freezing

experiments. This correction is detailed in Vali (2018) and in Section 6 of the paper. Another advantage of the differential

spectrum is that confidence limits can be calculated for each point of the spectrum over the temperatures covered by the

measurements. This is detailed in Section 7.5

2 Definitions

The INP3 spectra are derived from drop freezing experiments. The term drop freezing experiment is used here to represent the

class of experiments in which freezing is observed with multiple subunits drawn from a sample of water containing dispersed

ice nucleating particles (INPs). The experiments involve steady cooling of a number,No, of drops and the freezing temperature

of each drop, Ti, is recorded. In practice, several runs with the same sample may be combined to accumulate a sufficiently large10

sample size No for useful statistical validity of the results. Such a step, as practically all what is treated in this paper, assumes

that the sample is stable, that is unaltered in any way during the time the measurements are performed.

The differential nucleus concentration, k(T ) is defined in Eq. (11) of V71 as

k(T ) =− 1

X ∗∆T
∗ ln(1− ∆N

N(T )
) (1)

where T stands for temperature in oC, N is the number of drops not frozen, ∆N is the number of freezing events observed15

between T and (T −∆T ) i.e. drops for which (T −∆T )< Ti < T and X is the normalization to unit volume of water, unit

mass or surface of INPs, or else, of the INPs. It is to be remembered that this expression is the result of considering that a

freezing event in the interval ∆T is the result of a drop containing at least one INP active in that temperature interval (cf.

V71). For relatively small ∆T -values and for large N this approximation to having a single INP per drop responsible for the

observed freezing event is very good (and can be quantified from the properties of the Poisson distribution).20

For experiments with adequate number of drops, the value of ∆N/N(T ) is going to be small, so that an approximate

expression is valid with negligible error, except for the lowest temperatures observed, when N(T ) also becomes small. The

error in k(T ) (deviation from the exact equation Eq. 1) reaches 10% when ∆N/N(T ) exceeds 0.2. This estimate is based on

the fact that for a Poisson distribution the standard deviation is equal to the square root of the mean (cf. Ch. 9 in Blank

(1980)). The approximate relationship is:25

k(T ) =
1

X ∗N(T )
∗ ∆N

∆T
; for

∆N

N(T )
→ 0. (2)

3In all of the following the terminology given in Vali et al. (2015; V15) is followed
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The cumulative concentration, the integral of k(T ) over temperature, is given by Eq. (13) in V71 as:

K(T ) =
1

X
∗ [lnNo− lnN(T )] (3)

which can be re-written in terms of the fraction of drops frozen f(T ) as

K(T ) =− 1

X
∗ ln[1− f(T )] (4)

Because f(T ) is readily obtained in most experiments, this direct link to K(T ) is used in a number of publication (e.g.5

DeMott et al., 2017; Hader et al, 2014; Häusler et al. 2018; Harrison et al. 2018; Kumar et al. 2014; Pomeranov et al, 2018;

Tarn et al, 2018, Whale et al., 2015 ) to represent the results in terms of K(T ).

A third alternative to obtaining K(T ) is to do a numerical integration of k(T ), remembering that the k(T ) values here are at

discreet T values, not a function:

K(T ) ==

T∑
0

k(T ) ·∆T . (5)10

For normalization of k(T ) or K(T ) to unit volume of the water X = V where V is the volume of the drops, assuming drops

of uniform sizes. For normalization to unit surface area of material dispersed in the drops X =A with A denoting the average

surface area of particles in each drop. In this case, many authors replace K(T ) by ns(T ) where ns stands for the site density.

See Section 8 for further discussion of the determination of active site density.

Mention has been made already that sample stability is assumed for valid representations of nucleating activity in any15

quantitative way. Since most INPs are insoluble solid materials they can be considered stable. Many different potential site

configurations, such as crystal steps, dislocations, cracks, voids, inclusions, adsorbed substances are likely to be stable. How-

ever, since ice nucleation takes place on the substrate surface, stability of the surface is required and that is much more diffucult

to be assured of. The stability requirement is clearly not fulfilled by samples such as cellulose because they undergo changes

when introduced into water. In general, the applicability of active site density may not be known a priori, but can be assessed20

by testing for consistency with different particle loadings, treatments or other methods.

A great advantage of quantitating ice nucleating ability in terms of the spectra defined here is the simplicity of these quan-

tities. No assumptions are needed about intrinsic particle properties, as for example contact angle, and neither are the results

interpreted in terms of quantities not readily determined independently. While presentation of empirical results as counts of

INPs may seem overly simple, the spectra are good measures of expected ice nucleation in the water samples tested and, for25
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prepared suspensions of known materials, k(T ) and K(T ) can readily be used as the basis of refinements in terms of differ-

ent models of material properties and site configurations. The first step in that direction is the active site density description

discussed in Section 8.

3 Sample data

Data from an experiment with a SnomaxTM sample is used here4 for demonstrating the manner of calculating the differential5

concentration. Observed freezing temperatures for 507 drops are listed in Table 1. The observations were made with steady

cooling of the drops. Freezing events spread over the temperature range from near −4◦C to near −35◦C. Freezing events

are most frequent in two temperature regions, one near −8◦C and the other at the lowest temperatures. As can be seen,

some temperature values occur more than once due to the finite resolution of the detection and recording system used. These

characteristics of this data make it useful to demonstrate various points about the calculations.10

4 Choice of temperature interval

The main decision in applying either Eq. (1) or (2) to experimental results is what numerical values to use for ∆T , taking into

account constrains arising from the resolution of the temperature measurements and from finite sample sizes. While all other

quantities in Eqs. (1) to (3) are directly measured, ∆T is not an empirical value but is one chosen in analysis for desirable

representation of the observations. For the assumptions involved in the derivation of k(T ), as described in V71, infinitesimally15

small intervals δT should be applied, but this would necessitate infinite, or very large, sample sizes No in order to avoid a

large number of intervals without any events. Thus a finite ∆T is required. It will be argued that a uniform ∆T over the entire

temperature range of an experiment is the simplest and most effective choice. The choice is made, principally, on the basis

of sample size (number of drops in the experiment) and not based on instrumental variables, such as the recording interval of

freezing events.20

One possible solution for calculating k(T ) with high resolution would be to use ∆N = 1 and with the temperature intervals

between freezing individual events as ∆T . This would yield as many points on the spectrum plot as the number of drops.

However, this approach would have variable ∆T -values which in turn leads to variations in the calculated k(T ) values. The

magnitude of each point would depend on the temperature interval between successive freezing events. A given freezing event

would correspond to a k(T ) value whose magnitude is changed depending on the previous freezing event in the sample. In25

effect, the quantitive significance of the results would be negated. To see this for the Snomax data, the temperature gaps, the

differences between the freezing temperatures for successive events are shown in Fig. 1. Each point corresponds to one drop

and is plotted at the freezing temperature of that drop. The large number of points at zero gap size indicate coincidences in

the recorded temperatures for several drops due to the finite resolution of the recording system. Another grouping of points

just below 0.1 is due to the temperature change during the time intervals with which the number of frozen drops was recorded.30

4These data are from work described in Polen et al. (2018) and are used here with kind permission by Dr. Ryan Sullivan of Carnegie Mellon University.
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Table 1. Observed freezing temperatures for 507 drops of a sample of SnomaxTM dispersed in purified water. Freezing temperatures are

listed in decreasing order. Multiple values are due to time steps of the detection system used. These data are from work described in Polen et

al. (2018).

-4.42 -6.34 -6.63 -6.71 -6.79 -6.84 -6.84 -6.92 -6.92 -6.92 -7.01 -7.01 -7.01

-7.01 -7.01 -7.05 -7.14 -7.14 -7.14 -7.14 -7.14 -7.14 -7.14 -7.21 -7.21 -7.21

-7.21 -7.29 -7.29 -7.29 -7.29 -7.29 -7.34 -7.34 -7.34 -7.43 -7.43 -7.43 -7.43

-7.50 -7.50 -7.50 -7.50 -7.57 -7.57 -7.57 -7.57 -7.57 -7.57 -7.57 -7.57 -7.57

-7.57 -7.57 -7.63 -7.63 -7.63 -7.63 -7.63 -7.63 -7.63 -7.63 -7.71 -7.71 -7.71

-7.71 -7.71 -7.71 -7.71 -7.71 -7.71 -7.71 -7.79 -7.79 -7.79 -7.79 -7.79 -7.79

-7.79 -7.86 -7.86 -7.86 -7.86 -7.86 -7.86 -7.93 -7.93 -7.93 -7.93 -7.93 -7.93

-7.93 -7.93 -7.98 -7.98 -7.98 -7.98 -8.05 -8.05 -8.05 -8.05 -8.05 -8.05 -8.05

-8.05 -8.05 -8.05 -8.11 -8.11 -8.11 -8.21 -8.21 -8.21 -8.21 -8.21 -8.21 -8.21

-8.27 -8.27 -8.27 -8.27 -8.27 -8.27 -8.27 -8.34 -8.34 -8.40 -8.40 -8.40 -8.40

-8.40 -8.40 -8.50 -8.50 -8.55 -8.55 -8.55 -8.55 -8.55 -8.55 -8.63 -8.63 -8.70

-8.70 -8.77 -8.77 -8.77 -8.84 -8.84 -8.84 -8.84 -8.92 -8.99 -8.99 -8.99 -8.99

-9.06 -9.06 -9.06 -9.06 -9.06 -9.12 -9.21 -9.21 -9.26 -9.35 -9.50 -9.55 -9.55

-9.71 -9.79 -9.93 -10.00 -10.00 -10.08 -10.13 -10.29 -10.34 -10.57 -10.57 -10.64 -10.71

-11.29 -11.29 -11.36 -11.94 -11.94 -11.94 -12.02 -12.16 -12.69 -12.69 -12.92 -13.28 -13.48

-13.56 -13.99 -14.42 -14.94 -15.30 -15.67 -16.03 -16.82 -16.82 -17.19 -17.32 -17.54 -19.30

-20.40 -20.85 -21.13 -21.13 -21.87 -22.66 -23.73 -23.73 -24.12 -24.17 -24.26 -25.06 -25.34

-25.42 -25.77 -25.84 -26.07 -26.29 -26.36 -26.51 -26.56 -26.65 -26.93 -27.07 -27.07 -27.30

-27.65 -27.81 -27.87 -27.94 -28.08 -28.31 -28.36 -28.47 -28.52 -28.60 -28.60 -28.68 -28.80

-28.89 -28.89 -29.04 -29.16 -29.25 -29.31 -29.46 -29.46 -29.55 -29.69 -29.91 -30.05 -30.05

-30.21 -30.48 -30.48 -30.48 -30.70 -30.78 -30.78 -30.85 -30.93 -31.00 -31.06 -31.16 -31.16

-31.32 -31.32 -31.32 -31.32 -31.41 -31.56 -31.63 -31.77 -31.77 -31.83 -31.92 -31.92 -31.92

-31.97 -32.22 -32.22 -32.28 -32.28 -32.28 -32.33 -32.42 -32.49 -32.49 -32.64 -32.64 -32.70

-32.78 -32.86 -32.86 -32.86 -32.86 -32.94 -32.94 -32.94 -33.00 -33.00 -33.00 -33.06 -33.06

-33.14 -33.14 -33.23 -33.23 -33.29 -33.29 -33.29 -33.35 -33.35 -33.35 -33.43 -33.43 -33.43

-33.43 -33.43 -33.43 -33.49 -33.49 -33.49 -33.49 -33.49 -33.49 -33.59 -33.59 -33.59 -33.59

-33.59 -33.59 -33.59 -33.59 -33.59 -33.59 -33.65 -33.65 -33.65 -33.65 -33.65 -33.65 -33.65

-33.65 -33.65 -33.65 -33.71 -33.71 -33.71 -33.71 -33.71 -33.71 -33.71 -33.71 -33.79 -33.79

-33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79 -33.79

-33.79 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86 -33.86

-33.86 -33.86 -33.86 -33.86 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92

-33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92

-33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -33.92 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01

-34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01 -34.01

-34.01 -34.01 -34.01 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07

-34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.07 -34.13 -34.13 -34.13

-34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.13 -34.23 -34.23

-34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23 -34.23

Both the zeroes and these minimum non-zero values are most numerous near −8◦C and near −33◦C where there are high
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Figure 1. Temperature gaps between successive freezing events in the data given in Table 1. Fewer events in the middle range of temperatures

produce fewer and larger gaps.

numbers of freezing occurrences. Larger gaps become more frequent in the temperature range between the two groups due to

the sparsity of freezing events. These large and irregular gaps would scramble the k(T ) values.

Conversely, using a constant value across the range of temperatures covered by the data assures that all points are on the

same scale. If the observed freezing temperatures are close to each other varying the interval width would be compensated by

the inclusion of more or fewer events, so the results would be acceptable, but there is no practical reason for doing that. So, it5

is recommended to select a suitable value for ∆T and use it for the whole data set.

In the majority of experiments, Ti is irregularly distributed over the range of all freezing events for a given sample. Thus,

if ∆T is chosen too small there will be intervals with zeros and ones only. That would result in an almost meaningless

representation of the results as k(T ) would also consist of zeros and a uniform small value. The density of points along the

T axis would show some pattern but only in a qualitative way. The value chosen for ∆T is a compromise between what’s10

ideal and what’s practical. The latter perspective of course involves judgements over several factors. Most importantly, these

factors are the sample size and associated statistical validity, the precision with which Ti-values are determined, and the detail

in the final spectrum that is believed to hold meaningful information. In view of these conflicting influences, there is no single

recipe for setting ∆T , but the variations that result in the specific choice do not diminish the objective value of the derived k(T)

spectrum if normalized to unit temperature interval.15

For the sake of simplicity and generality, equal drop volumes are assumed in the calculations here, X is set to unity, and the

differential concentrations are presented with units of ◦C−1. Depending on the choice for X , (drop volume, particle surface

area per drop, mass of particles per drop) the units of k(T ) will be different, such as, for example ◦C−1cm−3, or ◦C−1µm−2,

or ◦C−1g−1.
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Figure 2. Plots of k(T ) for 0.2◦C and 0.5◦C bin sizes for the data from Table 1. The right-hand scale is shifted down slightly to allow the

two plots to be clearly seen. Zero values are indicated for the 0.5◦C graph with values below the range covered by the ordinate. The ordinate

values are for X = 1 of unspecified dimension, and thus the units are given as [x−1◦C−1].

To illustrate the impacts of the choice of ∆T , Fig.2 shows the spectra for the Snomax sample with two different values.

The data shown in Table 1 was binned using ∆T = 0.2◦C and ∆T = 0.5◦C. For ∆T = 0.2◦C there are 51 empty bins (zeroes)

between −6 and −34◦C. For ∆T = 0.5◦C there are only 8 zeroes in the same temperature range. Eq. (2) was then used to

obtain k(T ). Plots of k(T ) shown in Fig. 2 differ, principally, in the degree of noisiness of the data points. Because of the

large range of values covered, plots of k(T ) almost always use logarithmic ordinate scale. This eliminates the possibility to5

include zero values, and special steps need to be taken for the plots to show these values. For one of the plots in Fig.2 the zeroes

were replaced by a low value well below the range covered by actual data in order to indicate the presence of the zero values.

Without this, the presence of zeroes, or empty bins, is seen as gaps between points, and as horizontal lines. This matters in

judging the significance of the points surrounding the zeroes. Clearly, the dip in k(T ) between -26◦C and -17◦C is perceived

to be much deeper when the zeroes are indicated.10

5 Calculation of k(T ) and K(T ).

Once the interval width has been decided, calculation of the differential concentration is a straightforward matter, resulting in

a value of k(T ) for each temperature interval. The cumulative concentration is then also calculated for the same temperatures

if it is done by summation of the differential values. This is not a requirement; the cumulative spectrum can be also calculated

without binning of the data and for as many temperatures as wanted.15

Based on the comparison presented in Fig. 2 and in the text associated with it, calculations for the Snomax sample are

processed here with ∆T = 0.5◦C. The result of that binning of Ti-values is shown in Fig. 3 as a histogram. After binning,

values of N(T ) were calculated by stepwise addition of the ∆N values from the lowest to the highest temperature, ending up

8



Table 2. Differential and cumulative spectra for the Snomax sample with 0.5◦C intervals, as discussed in Section 5.

[1] [2] [3] [4] [5] [6] [7]

temperature number of events number unfrozen number frozen fraction frozen differential cumulative

interval center in interval at beginning of interval at end of interval at end of interval per ◦C at end of interval

T ∆N N Nf f(T ) k(T ) K(T )

-3.75 0 507 0 0.000 0.000 0.000

-4.25 1 507 1 0.002 0.004 0.002

-4.75 0 506 1 0.002 0.000 0.002

-5.25 0 506 1 0.002 0.000 0.002

-5.75 0 506 1 0.002 0.000 0.002

-6.25 1 506 2 0.004 0.004 0.004

-6.75 8 505 10 0.020 0.032 0.020

-7.25 29 497 39 0.077 0.120 0.080

-7.75 58 468 97 0.191 0.265 0.212

-8.25 35 410 132 0.260 0.178 0.302

-8.75 24 375 156 0.308 0.132 0.368

-9.25 10 351 166 0.327 0.058 0.397

-9.75 6 341 172 0.339 0.036 0.414

-10.25 6 335 178 0.351 0.036 0.432

-10.75 4 329 182 0.359 0.024 0.445

-11.25 3 325 185 0.365 0.019 0.454

-11.75 3 322 188 0.371 0.019 0.463

-12.25 2 319 190 0.375 0.013 0.470

..... ..... ..... ..... ..... .....

..... ..... ..... ..... ..... .....

-28.75 7 265 249 0.491 0.054 0.676

-29.25 6 258 255 0.503 0.047 0.699

-29.75 3 252 258 0.509 0.024 0.711

-30.25 6 249 264 0.521 0.049 0.735

-30.75 5 243 269 0.531 0.042 0.756

-31.25 9 238 278 0.548 0.077 0.795

-31.75 9 229 287 0.566 0.080 0.835

-32.25 9 220 296 0.584 0.084 0.877

-32.75 11 211 307 0.606 0.107 0.930

-33.25 27 200 334 0.659 0.290 1.075

-33.75 89 173 423 0.834 1.445 1.798

-34.25 84 84 507 1.000 0.000 1.798

-34.75 0 0 507 1.000 0.000 1.798

-35.25 0 0 507 1.000 0.000 1.798

-35.75 0 0 507 1.000 0.000 1.798

with No for the first interval with non-zero ∆N . Doing the accumulation of ∆N from lowest to highest temperature produces
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Figure 3. Histogram of freezing temperatures and a plot of the fraction of drops frozen for the data from Table 1 (Snowmax suspension).

N values at the upper end (warmer temperature) of each interval. The fraction frozen expressed with respect to the lower end

(colder temperature) of the interval is obtained as:

f(T ) = 1− N(T )−∆N

No
. (6)

The differential concentration was calculated from Eq. 1 and the cumulative from Eq. 3. Results are given in Table 2. The

table is given from highest to lowest temperature to make it match the way the data are obtained in the experiment with gradual5

cooling. The temperature in the first column is the mid-point of the interval over which the data were evaluated. As indicated

in the preceding paragraph, columns [4], [5], and [7] are shifted by one line with respect to the others in order that they refer to

the low end of the temperature interval. These distinctions of interval mid-point, high and low end are somewhat unnecessary

considering the magnitude of the interval width but are included here to avoid misinterpretation of the tabulated data. It is

also worth noting that at the initial part of the table, the cumulative concentration is smaller in magnitude than the differential10

because the differential is normalized to ◦C intervals, making the values, for ∆T = 0.5◦C used in this example, double of the

value without that normalization.

Plots of the differential and cumulative spectra are given in Fig. ??. In this graph, zero values are skipped over for giving

the graph a less cluttered appearance. By using the same ordinate for both plots, the cumulative curve starts lower than the

differential, as explained above. Normalization to per unit volume of the drops or to site density is a matter of applying the15

relevant multiplier to the ordinate values. In this example, and in most of this paper, plots of the spectra are shown with

individual points for each temperature interval. In some cases, it might be desirable to fit algebraic equations to the data.

The effectiveness of transmitting the results of analyses such as this, as mentioned, depends on the numerous factors already

discussed. From a purely data-processing perspective, the spectrum with lower resolution is better because it has fewer zero
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Figure 4. Differential and cumulative spectra for data discussed in Section 5 and displayed in different form in Figs. 2 and 3. Zeros in

the differential spectrum are seen in this plots by larger gaps between adjacent points. The left and right ordinate scales are identical. As

mentioned in the text, the cumulative curve starts at a lower value than the differential because of the differential is expressed with reference

to full degree intervals.

values. No claim is made that the ∆T = 0.5◦C choice is optimal. The resulting k(T ) spectrum still has considerable fluctuations

in the middle portion of the temperature range. On the other hand, the main peak is well resolved, as is its asymmetric shape.

There are many additional steps that can be considered for smoothing the data, either at the ∆N level or in k(T ).

From the point of view of showing what kind of INPs were contained in the sample, all the graphs clearly indicate peaks

in activity near −8◦C and near −33◦C. The first peak is of the greater interest because it is due to the INPs added to the5

sample, while the low-temperature activity is due to the background related to the supporting surface of the drops and to

impurities in the water used to suspend the active INPs. As a minor detail, it may be noted that he −8◦C peak has a broader

tail toward colder temperatures. This features is clearly seen in both of the graphs. Even finer details of the peak can be seen

if the data are processed at higher resolution but very little significance can be attached to such details in light of the sample

size, the temperature precision of the measurements and other instrumental factors. Nonetheless, it is important to note that the10

differential spectra can resolve distinct peaks and thus can provide the type of acute description of INP activity that is needed

in many studies.

6 Background correction

The differential concentration in a sample with various sources of INPs can be assumed to be the sum of the concentrations

due to each of the sources. This assumption of additive behavior is likely to hold for many cases and would be incorrect only15

if, for some reason, interactions are expected between INPs from the different sources. The most relevant example of additive
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Figure 5. Observed fractions of droplets frozen for the soil sample and for the distilled water control, as described in Section 6. Data are

from a single run with 103 drops of 0.01 cm3 volume.

behavior, applicable to essentially all experiments with laboratory preparations, is the addition of the background activity to

that of the material to be tested. The water used to prepare suspensions of INPs is never totally free of INPs, and there is

potential for further contributions to the ’background’ by the components of the apparatus used in the experiment. While

extreme care is taken in most cases to minimize the background, it is always present to greater or lesser extent. Determination

of the background is accomplished with control experiments.5

The usefulness of a quantitative assessment of the background activity is demonstrated with the following example5. A

suspension of soil particles in distilled water, and control measurements of the distilled water, yielded the fraction frozen

curves in Fig. 5. From these graphs it would appear that the soil sample data are not reliable much below about−18◦C because

of the appreciable level of activity in the control. When the differential spectra are computed and the control is subtracted

from the k(T )-values for the sample, the resulting plot shown in Fig. 6 reveals that only in a narrow region near −17◦C is the10

contribution from the distilled water comparable to the INP activity in the soil. Thus, the INP activity in the soil sample below

−18◦C can be judged in a more objective fashion. Just considering this result, it would not be baseless to conclude that the soil

sample contained two types of INPs, those producing the peak centered on−13◦C and those giving rise to high numbers of INP

below −18◦C. In practice, further tests with different amounts of soil in suspension would be useful to judge that conclusion.

5This is the same example as was used in Vali (2018)
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Figure 6. Differential spectra for the same data as shown in Fig. 5. Circle symbols are for the soil sample, diamond symbols are for the

control (blue). The spectra for the soil sample after correction for the distilled water background is shown with a line. The magnitude of the

correction is relatively minor in this case except in the temperature region between about −14◦C and −18◦C.

7 Confidence intervals

Several sources of error contribute to determining the confidence limits or uncertainty ranges of results derived from drop

freezing experiments. Temperature accuracy is a minor contribution in most cases. Acuity of the detection of freezing is a larger

concern. These and other error sources need to be evaluated specifically for each experimental setup. A general and demanding

problem is the evaluation of the statistical validity of results. That uncertainty, arising from sample sizes, is of special concern5

because of the usually large temperature range of the observations, and the consequent small number of freezing events at

each temperature. Uncertainty ranges specific to each temperature can be evaluated using the k(T ) spectra, as described in the

following.

Even with identical drop volumes and with all drops produced from the same bulk suspension, considerable spreads in

freezing temperatures are usually observed. As discussed earlier, variations in freezing temperatures are associated with specific10

differences in INPs so that the variations in freezing temperatures indicate a non-random distribution of the INPs of different

activities in the drops. Hence, basic statistical methods are not applicable to estimating the confidence interval of the k(T )

or K(T ) spectra derived to characterize the INP content. In the absence of many repetitions of the experiments to determine

variability, Monte Carlo simulations provide a possible solution. In V71, such simulations were applied to show how the spread

in k(T ) spectra is reduced by increasing sample size. Monte Carlo methods of slightly different configurations were also used15

in Wright and Petters (2013) and in Harrison et al. (2016).
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The differential concentration provides a convenient basis for simulations because values of k(T ) for given temperatures are

independent of the values at other temperatures. Use of the cumulative concentration derived from the fraction frozen would

be less transparent. The simplest basis for simulations is the number of freezing events observed in each temperature interval,

∆N(T ). Random variability expected about those values is the measure sought in the simulation. This can be viewed as if a

new set of drops were taken each time from the same bulk sample, or a new set of particles were dispersed into the volume5

each time, and then a freezing run performed. Simulation allows as many of these runs to be done as needed to reach a good

estimate of the variability.

The simulation is relatively simple. The number of events in any given temperature interval can be expected to follow

a Poisson distribution on repeated testing. This probability distribution fits the situation because the number of events per

interval is discrete, independent of other intervals, and the observed numbers can serve as the assumed true values. Hence,10

taking the observed values of ∆N(T ) as the expectation values λ(T ) and generating a large number, say p, Poisson-distributed

numbers for each temperature interval provides independent virtual realizations of the experiment. The mean value of the ∆Ni

... ∆Np numbers in each interval will equal λ for that interval, and the standard deviation will be λ0.5. However, the Poisson

distributions include zeros even for mean values greater than zero. The chance of this reduces as the mean increases; the number

of zero values is e−λ.15

For a first demonstration of the simulation, a data set with a modest number of 106 drops is used here. Measured numbers

of freeing events for ∆T = 0.5◦C intervals and the calculated values of k(T ) are given in Table 3. As can be seen, the number

of events per interval is small, and would contain many zeroes using a smaller ∆T . Values in the second column were taken as

λ and 100 new sets of ∆Ni-values generated using a Poisson distributed random number generator in IDL (Harris Geospatial

Solutions, Inc.). From those 100 new sets of values, 100 new N(T )-values were derived and k(T ) calculated using Eq. 1.20

The simulation results can be used in many different ways to represent the resulting uncertainties in the presentations of the

empirical results. The scatter in k(T ) values is an immediate way to show the results. Cumulative spectra K(T ) can also be

obtained, as can standard deviations, or other measures.

Simulated results in terms of k(T ) are shown in Fig. 7. At a few places above the temperature axis, the number of zero

values that occurred in the simulation for that interval are indicated. In this approach, the total number No for any given run25

is not constrained to
∑
λ; the actual number among the 100 simulated sets varied by 10%. This variation alters the simulated

k(T ) values at the low end of the temperature range to some degree but is insignificant at the high end. There seem to be little

reason to go to that extent or refinement, but the problem could be eliminated by adjusting λ for lower temperatures for each

choice of ∆Ni in successive steps. One point of assurance on this score is that the 50-percentile of the simulated k(T ) points

is only 3% off from those shown in Table 3.30

The spread of 10 to 90% of values at each interval are shown in Fig. 8. This example shows roughly a factor of four spread in

k(T ) over the whole range of temperatures; worse for those points with low k(T ) and hence also having zero values potentially
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Figure 7. Calculated k(T ) values for 100 iterations of random assignments of ∆N from a Poisson distribution with the λ values shown in

Table 3 for each interval. Numbers above the abscissa indicate the number of zero values in the simulation for selected temperatures.

Figure 8. The 10 to 90 percentile range of k(T ) for the results shown in Fig. 7. The green diamonds show the values of k(T ) from the

right-hand column of Table 3 for the observed sequence of freezing events. Points just above the abscissa are actually zero values.
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Table 3. Observed freezing data used as input to the Monte Carlo simulation described in Section 7.

temperature number of events k(T)

T ∆N = λ per ◦C

-6.25 3 0.057

-6.75 4 0.079

-7.25 6 0.125

-7.75 5 0.111

-8.25 9 0.216

-8.75 5 0.131

-9.25 4 0.111

-9.75 6 0.179

-10.25 3 0.096

-10.75 2 0.067

-11.25 2 0.069

-11.75 1 0.035

-12.25 2 0.073

-12.75 6 0.236

-13.25 1 0.042

-13.75 9 0.425

-14.25 12 0.759

-14.75 9 0.850

-15.25 13 2.894

expected in repetitions. As can be seen for this example, it clearly isn’t justified to attach too much significance to fine details

of the spectrum, but there is reasonably good definition of the broad peak of activity centered on −8◦C and of the rapid rise in

numbers below−12◦C. Should the observed data have been binned in larger temperature intervals, the confidence limits would

have become narrower at the cost of lower temperature resolution. In the case here presented, this would be a reasonable choice

even though the intuitive approach is to present the data with temperature resolution justified by measurement precision. The5

main limitation is from sample size.

As can be expected, the cumulative spectra are less sensitive to random variations in the number of freezing events per

temperature interval. To illustrate this point, K(T ) is plotted for the 100 simulations in Fig. 9. Spread here reduces going

toward lower temperatures and as values for more and more intervals are summed up. While at −6.25◦C there is a factpr 10

spread in values, near−15◦C the spread is about a factor of 2. This magnitude of error is for a sample of only 103 drops which10

is encouraging for experiments where larger drop numbers are not practical. Larger sample sizes can yield lower error ranges,

but because the slope of the spectrum also has an influence no general statements are possible.

As an illustration of the influence of sample size on the confidence intervals for k(T ), the Snomax sample for which data

were presented in Section 4 was also used in a Monte Carlo simulation. The input to the simulation was extracted from Table

1 for the region near the peak, where there are 30-50 events per bin. The simulation results for 100 iterations are shown in Fig.15
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Figure 9. Cumulative spectra for 100 simulations for which differential spectra are shown in Fig. 7.

Figure 10. The 10 to 90 percentile range of k(T ) in 100 simulation for a segment of the spectrum shown in Fig. 4. Points just above the

abscissa stand for zero values. In contrast with other figures, a linear ordinate scale is used because of the small range of values covered. A

value of X = 1 is used; actual drop volume of particle concentration is not accounted for.

10 and, as can be seen, the range of variation is less than a factor 2 at the peak. At the lower k(T ) values, the variability is

similar to what is seen in Fig. 10. Here too, zero values are plotted along an ordinate value of 10−2.

The examples shown above illustrate one possible way to assess the confidence limits of k(T ). The simulation approach is

a realistic and readily envisioned method. Similar results for the confidence ranges could be obtained from tables of Poisson
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distribution using the observed number of events in some experiment as λ for each temperature interval. The standard deviation,

λ0.5, is another way to measure variability. However, it cannot be used in the way it would be for normally distributed values

because, for example, the lower limit of the 95% range at (λ− 2.14 ∗λ0.5) can be negative for small λ and therefore not

a physically realistic value for expected δN . The main point is that confidence limits can be delineated and with that the

meaning of derived k(T ) spectra quantitatively assessed. The results shown here also demonstrate the need for large sample5

sizes in order to reduce the variability of the derived spectra.

Once sample variability has been estimated, statistical methods are available for comparisons of two samples by testing, for

example, the equivalence of means (e.g. Ch 20 in Blank (1980)). Performing that type of test interval by interval, as done in

the foregoing, would test for activity in specific temperature regions. That may indeed be very useful in certain cases but will

definitely require large sample sizes. More complex methods will need to be considered to make broader overall comparisons10

of different samples. Combining data from larger temperature segments – those of greatest interest – could be helpful, but the

strong temperature dependence of activity may be difficult to weigh adequately. Again, sample sizes will likely pose the most

serious limitation to reaching statistical significance in such tests.

8 Active site density

Site density is defined in V15 as ”The number of sites causing nucleation per unit surface area of the INP, or equivalent,15

as functions of temperature or supersaturation; the quantitative measure of the abundance of sites of different ice nucleating

effectiveness.”. Frequently, for added emphasis, the term is given as active site density. As stated in Section 2, normalization of

the cumulative spectrum by particle surface area, using X =A in Eq. 4, leads to the active site density ns. This quantity that

has already seen extended use in the literature, most frequently in the inverted form

f(T ) = 1− exp(−A ∗ns(T )). (7)20

No use has been made in the literature of the concept of differential active site density, although that metric has equal validity

as the cumulative one, and is readily derived from Eq. 2 with the substitution of X =A.

Somewhat unfortunately, the active site density term was introduced in the literature in the cumulative form, i.e. activity

summed over all temperatures up to the test value. This happened because activity was generally understood to mean what is

more precisely defined as the cumulative activity. The distinction between cumulative and differential activity is less widely25

appreciated. Following the general definitions of the differential and cumulative spectra, k(T ) and K(T ), it is useful to define

differential and cumulative site density functions ks(T ) and Ks(T ) recognizing that Ks(T ) is exactly equivalent to ns(T ). If

it weren’t for the already established practice one could use the symbols ns(T ) and Ns(T ), but it seems better to avoid the

confusion that could result when comparing results from different publications.
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The two expressions for active site density are:

ks(T ) =− 1

A ∗∆T
∗ ln(1− ∆N

N(T )
) (8)

Ks(T ) =− 1

A
∗ ln[1− f(T )]. (9)

Use of A as average INP surface area included in each drop implies some important constraint on when that use is justified.

First of all, it implies that the particles are stable and the determination of A was carried out in the suspension, not in the dry5

state. The two determinations may differ, for example, if the particles contain some soluble material, or they take up water

and change in volume. Calculations of ks or Ks for macromolecule INPs is of questionable value; these materials are best

characterized with reference to the total mass of material or the number of individual macromolecules in suspension, not with

reference to surface area. As for all of the quantitative characterizations discussed in this paper, temporal stability is assumed,

at the minimum on the time scale of the experiment.10

In addition to the considerations of the previous paragraph, valid use of an average surface areaA also requires that deviations

from the mean value be reasonably small and not be the dominant source of error in the derived measures of activity. Special

attention is needed with respect to the larger particles in polydisperse samples as these contribute disproportionate fractions of

the total surface area. With sufficient knowledge of the particle size distributions error estimated can be derived for deviations

from the average. Since A appears in the pre-factor in the equations for both ks(T ) and Ks(T ) the derived error estimate is15

valid for all values of the spectrum.

Dependent on the material constituting the INPs, total surface area may be an inadequate parameter to use in the calculation

of the active site density. For example, if only a certain crystal face contains ice nucleating sites the surface area of that face

is the relevant measure to include. Knowledge of such morphological factors is the goal of many studies; obtaining ks(T ) or

Ks(T ) with variations in experimental parameters may provide useful insights. On the other hand, without sufficient knowledge20

about particle surface characteristics substantial caveats need to be recognized regarding active site density spectra.

9 Summary

The differential spectrum, k(T ), is a useful representation of INP activity in heterogeneous freezing. This article examined

some of the factors that need to be considered in derivations of k(T ) for experiments executed with gradual cooling of an array

of sample drops taken from the same bulk sample, and with the freezing of drops at different temperatures recorded. Freezing25

at a given temperature is taken to indicate the presence of INPs active at that temperature. In Section 4, the importance of

the choice of temperature interval for computing the spectra was elaborated. Methods of calculation and the relation to other
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Table 4. Nomenclature.

A Average particle surface area contained in drops; m−2

f(T ) Fraction of sample drops frozen at T

k(T ) Differential nucleus concentration; x−1 ◦C−1

ks(T ) Differential active site density; m−2 ◦C−1

K(T ) Cumulative concentration of INPs active at temperatures above T ; x−1

Ks(T ) Cumulative site density on the INPs active at temperatures above T ; m−2

ns(T ) Same as Ks(T )

N(T ) Number of drops not frozen at temperature T

∆N Number of freezing events per temperature interval

No Total number of sample drops

T Temperature in ◦C

Ti Freezing temperature of a drop

X Reference quantity for normalization to unit volume of water, particle surface area, etc., as the case may be. For

generality, corresponding units are indicated in k(T ) and K(T ) as x

λ Mean value of Poisson distribution, in the current context λ= ∆Nobserved

derived quantities were presented in Section 5. Two applications were discussed: Section 6 presents a method for correcting

empirical results for background effects. Correction for background is achieved by subtraction of the k(T )-values. In Section

7, a method was described for determination of confidence limits for k(T ) using Monte Carlo simulations. Sample size and

spectral shape determine the error ranges of k(T ). Lesser uncertainty is associated with the cumulative spectra. The background

correction and the determination of error ranges can significantly augment the value of information derived from laboratory5

freezing experiments and can improve model predictions of ice formation in clouds.

10 Data availability

Raw data of observed freezing temperatures for the three samples included in this paper will be archived on a server of the

University of Wyoming and a DOI for accessing the data will be included in the final version of the paper.
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