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Abstract. The algorithm presented in this paper was developed to retrieve ice water content (IWC) profiles in cirrus clouds. It

is based on optimal estimation theory and combines ground-based visible lidar and thermal infrared (TIR) radiometer measure-

ments in a common retrieval framework to retrieve profiles of IWC together with a correction factor for the backscatter intensity

of cirrus cloud particles. In a first step, we introduce a method to retrieve extinction and IWC profiles in cirrus clouds from the

lidar measurements alone and demonstrate the shortcomings of this approach due to the backscatter-to-extinction ambiguity.5

In a second step, we show that TIR radiances constrain the backscattering of the ice crystals at the visible lidar wavelength

by constraining the ice water path (IWP) and hence the IWC which is linked to the optical properties of the ice crystals via a

realistic bulk ice microphysical model. The scattering phase function obtained from the microphysical model has a flat ending

without backscattering peak. We show that retrievals with the lidar only algorithm using this phase function in backscattering

direction to define the backscatter-to-extinction ratio of the ice crystals result in an overestimation of IWC which is inconsistent10

with the TIR radiometer measurements. Hence, a synergy algorithm was developed that combines the profiles of backscattering

measured by the lidar and the measurements of TIR radiances in a common optimal estimation framework to retrieve together

with the IWC profile a correction factor for the phase function of the bulk ice crystals in backscattering direction. We show

that this approach allows to simultaneously converge towards the measurements of two independent instruments and that the

first results of the retrieved lidar ratios for cirrus clouds agree with previous studies.15

1 Introduction

The importance of clouds for the climate system has been extensively discussed during the last decades (Stephens, 2005).

Although their essential role in the Earth’s radiative budget is unquestionable, they still remain a major source of uncertainty

in climate change estimates (Boucher et al., 2013). In particular, the important but complex impact of cirrus clouds has long

been recognized (Liou, 1986) but is still not well quantified nowadays. This is due to the large range of varying shapes and20

sizes of ice crystals composing the cloud which may interact in different ways with atmospheric radiation by scattering and

absorption processes. The net radiative effect of cirrus clouds is generally positive but can be negative as well (Zhang et al.,
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1999). It is determined on the one hand by its macrophysical properties, e.g. altitude, geometrical thickness, temperature and

the difference between the temperature of the cloud and the surface (e.g., Stephens and Webster, 1981). On the other hand it

depends on the optical properties of the cloud which are in turn governed by its microphysics, especially the size, shape and

number density of particles.

Recent advances in satellite observational systems, particularly the Cloud Profiling Radar (CPR; Stephens et al. (2002))5

aboard CloudSat and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; Winker et al. (2009, 2010)) aboard

CALIPSO as part of the international satellite constellation known as A-Train, have shown that the occurrence of cirrus clouds

in the atmosphere is much higher than previously presumed (Stubenrauch et al., 2013). Mace et al. (2009) quantified the global

occurrence frequencies to 40-60% whereas earlier estimates expected about 20-30% with a higher coverage of 60-70% in the

tropics (e.g., Liou, 1986; Wylie et al., 1994). This underlines the importance of studying the characteristics of cirrus clouds to10

estimate their influence on the radiation budget.

Lidar measurements have proven to be a powerful tool to study even the most tenuous cloud layers (e.g., Sassen, 1991). The

measured backscatter profiles provide information about the cloud base and top altitudes which can be related to temperature

by using atmospheric temperature profiles from model reanalysis or radiosounding. Furthermore, these measurements yield

the possibility to retrieve profiles of particle extinction and hence the optical depth of the cirrus cloud by making assumptions15

about the so-called backscatter-to-extinction ratio. However, there are more advanced lidar systems which do not require

such assumptions that introduce large errors on the estimated cloud optical depth. Raman lidars for example can provide

particle extinction directly since the inelastic Raman backscatter signal is only sensitive to extinction but not to backscattering

(Ansmann et al., 1990, 1992). High-spectral resolution lidars are also capable of measuring particle extinction directly with

the help of two channels: one that measures the backscatter originating from the entire atmosphere (molecular plus particle)20

and one that measures only the molecular contribution by removing with an absorption filter the central portion of the signal

which is associated with aerosol or cloud particles. From these two simultaneous measurements the particle extinction can

be derived from the change in the slope of the molecular signal relative to a clear sky atmosphere (Turner and Eloranta,

2008). Other lidars, e. g. CALIOP, include polarization measurements from which the cloud phase can be determined since ice

crystals tend to depolarize the incident visible radiation whereas for water droplets no such depolarization is observed (Sassen,25

1991). However, most ground-based lidars operated at present are simpler systems (Campbell et al., 2015). Thus, the algorithm

presented here was developed for the exploitation of data from a simple micro-pulse lidar although it might be applied to other

lidars in future studies. Nowadays, it is common to operate lidar systems from space as well as from the ground and our method

should be applicable to all types of lidar. Concerning cirrus clouds, there already exist a large number of lidar studies dealing

with their occurrence frequencies and characteristics, either based on satellite data (e.g., Berthier et al., 2008; Campbell et al.,30

2015), ground-based data (e.g., Ansmann et al., 1993; Keckhut et al., 2006; Giannakaki et al., 2007; Seifert et al., 2007; Liu

et al., 2015) or a combination of both (e.g., Pandit et al., 2015; Córdoba-Jabonero et al., 2017). Recently, Campbell et al.

(2016) went even further and characterized the daytime radiative forcing of cirrus clouds at the Top-of-the-Atmosphere from

ground-based lidar measurements at a mid-latitude site and underlined thereby the importance of ground-based measurements

for the estimation of the radiative effect of cirrus.35
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In spite of their undenied importance, lidar systems are not the only tool to study cirrus clouds. Another important source

of information are measurements from passive thermal infrared (TIR) radiometers which are also performed from space, e.g.

the Imaging Infrared Radiometer (IIR) aboard CALIPSO (Winker et al., 2003) or the MODerate resolution Imaging Spectro-

radiometer (MODIS) aboard Aqua/Terra (King et al., 1992, 2003), or from the ground. These measurements are sensitive to

the optical and integrated properties of the cloud, for example the ice water path (IWP). A well-known method using radiances5

in the TIR wavelength region is the split window technique (Inoue, 1985, 1987; Parol et al., 1991) which allows to retrieve the

cloud top temperature and the effective emissivity of semi-transparent cirrus clouds from two channels centered around 11µm

and 12µm, respectively. The method is based on the fact that the Brightness Temperature Difference (BTD) of these channels

is always more important for thin cirrus clouds than for thick clouds or under clear sky conditions. In addition, the BTD is

sensitive to the radiative and microphysical properties of the cloud. Dubuisson et al. (2008) showed by conducting radiative10

transfer calculations with different ice crystal models that it is possible to retrieve microphysical properties of cirrus clouds

from passive TIR radiometer measurements alone.

However, in recent years synergistic approaches using independent sets of measurements in a common retrieval framework

have become more and more popular. Examples that could be cited here are the raDAR/liDAR (DARDAR) algorithm to

retrieve ice cloud properties from the synergy of the CPR and CALIOP measurements (Delanoë and Hogan, 2008, 2010) or15

the multilayer algorithm to retrieve ice and liquid water cloud properties simultaneously from three TIR radiances measured

by the IIR and two MODIS reflectances measured at 0.85µm and 2.13µm (Sourdeval et al., 2015, 2016). There are also a

couple of methods combining lidar and TIR radiometer measurements that have been developed in the past. The Lidar and

Infrared Radiometric (LIRAD) method introduced by Platt (1973, 1979) was the first method that combined lidar and infrared

radiometer data to retrieve optical properties of cirrus clouds. It has been applied and further developed in several following20

studies (e.g., Platt et al., 1987; Comstock and Sassen, 2001; Platt et al., 2002). In this approach the lidar backscatter coefficient

is related theoretically to the infrared volume absorption coefficient. The emissivity of the cloud is then derived in an iterative

process by calculating a theoretical cloud radiance which is compared to the infrared radiometer measurement and adjusting the

backscatter-to-extinction ratio until the theoretical and measured radiances converge. Other studies focused on the combination

of lidar measurements and the split-window technique to improve the retrievals of cloud properties from passive sensors alone25

by integrating the information provided by the active lidar measurements in the radiative transfer calculations. Chiriaco et al.

(2004) showed the theoretical potential of this approach to improve the particle size retrieval from the instruments aboard

CALIPSO, i.e. the IIR and CALIOP, and Garnier et al. (2012, 2013) developed an algorithm based on this idea to retrieve the

effective emissivity, optical depth, effective diameter and IWP from CALIPSO measurements. Nevertheless, in their approach

the retrieval is based on the split-window technique where information from the lidar such as scene identification and cloud30

altitude have been integrated. Saito et al. (2017) recently demonstrated a method to infer simultaneously the IWP, the cloud

effective radius, the surface temperature and two morphological parameters, namely the fraction of plates and the surface

roughness of ice crystal aggregates, from a synergistic approach based on optimal estimation. They used the layer-integrated

total attenuated backscatter and the depolarization ratio at 532 nm from CALIOP as well as the brightness temperatures at

8.65, 10.6 and 12.0 µm from the IIR in a common retrieval framework to obtain the parameters cited above.35
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The algorithm proposed in this paper also establishes a synergy between lidar and TIR radiometer measurements although

our lidar is a simple micro-pulse lidar and does not dispose of depolarization channels. In contrast to Saito et al. (2017), we use

the whole backscattering profile measured by the lidar together with two TIR radiances in the measurement vector to retrieve

profiles of particle extinction and ice water content (IWC). This allows to include the profile information from the active lidar

measurements in the radiative transfer calculations in the TIR which is an improvement since common retrieval algorithms5

often use plane-parallel and homogeneous assumptions. In a first step, we developed an algorithm to retrieve extinction and

IWC profiles in thin cirrus clouds from ground-based lidar measurements alone. This algorithm is based on the method of

Stephens et al. (2001) who used an optimal estimation approach to invert the lidar equation to retrieve profiles of particle

extinction from space-borne data collected during the Lidar in Space Technology Experiment (LITE, McCormick et al. (1993)).

To overcome the backscatter-to-extinction ambiguity arising from the combination of scattering and absorption processes10

when regarding the lidar measurements alone, Stephens et al. (2001) introduced an optical depth constraint in form of an

additional measurement. In contrast to this approach, we developed in a second step the synergy algorithm that integrates

actual measurements of TIR radiances in the optimal estimation framework. We will show that these radiances constrain the

backscattering of the ice crystals at the visible lidar wavelength by constraining the IWP and hence the IWC which is linked to

the optical properties of the ice crystals via the microphysical ice cloud model of Baran et al. (2001, 2014a, b) and Vidot et al.15

(2015).

The paper is organized as follows: Section 2 briefly introduces the instruments and data used in this study. Section 3 presents

our approach to the lidar retrieval problem and describes the algorithm for the retrieval of extinction and IWC profiles from

lidar measurements as well as the underlying microphysical model for cirrus clouds. In this section we also discuss the above-

mentioned backscatter-to-extinction ambiguity before the ability of TIR radiances to constrain the backscatter-to-extinction20

ratio is outlined. Section 4 presents the new algorithm using the synergy of lidar and TIR radiances which has been developed

on the basis of the lidar only algorithm. Finally, Sect. 5 concludes this study.

2 Instrumentation and data

The data used in this study is originating from the measurement platform of the Laboratoire d’Optique Atmosphérique (LOA)

situated on the campus of the University of Lille in northern France. This platform is equipped, amongst other instruments,25

with a micro-pulse lidar with elastic backscatter and a TIR radiometer.

The lidar is a Cloud and Aerosol Microlidar type CAML-CE370 (Pelon et al., 2008) developed by the company CIMEL

Electronique. It is an eye-safe lidar system which operates at a single wavelength of 532 nm and does not include depolarization.

The system is automated and has been operated continuously since 2007, hence a large archive of data is available for the LOA

measurement site. The type of laser integrated in the instrument is a Nd:YAG II laser. The pulse duration is 100 ns and the30

repetition rate 4.7 kHz which results in a vertical resolution of 15 m defined by 100ns · c/2 where c is the speed of light. The

lidar profiles used in this study are averaged over one minute.
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The radiometer is called Conveyable Low-Noise Infrared Radiometer for Measurements of Atmosphere and Ground Surface

Targets (CLIMAT) (Sicard et al., 1999; Legrand et al., 2000; Brogniez et al., 2003). It was developed to measure radiances in

the TIR wavelength region in three different spectral bands centered at 8.7 µm, 10.8 µm and 12.0 µm. The full width at half

maximum (FWHM) of each of these channels is 1 µm. In the following, we will call them C09, C11 and C12, respectively.

There are two different versions of the instrument: one was designed for ground-based measurements and the other one for5

airborne measurements. The main components of the instrument are the same for the two different types although there are

several differences. The ground-based version has a larger field of view (FOV) compared to the airborne version. Furthermore,

it contains a rotating filter wheel to measure the radiances of the three different filters one after another whereas the airborne

instrument measures the three channels simultaneously. The CLIMAT instrument currently installed on the LOA measurement

platform is of aircraft type. It consists of two main parts: the optical head containing the optical elements and the detector,10

and the control unit containing the electronics and the memory. The main optic consists of two germanium lenses: the objec-

tive which is a standard convex-plane lens, and the condenser which is a "best-shaped" meniscus designed to minimize the

geometrical aberrations (Legrand et al., 2000). The condenser is situated in the focal plane of the objective. The optical head

is constructed respecting the so-called Köhler design which means that the detector is located in the conjugate plane of the

objective with respect to the condenser. The radiation is measured by a thermopile where the hot junction is heated by the15

incident radiation and the temperature of the cold junction is determined by the ambient temperature of the cavity. In contrast

to the lidar system, the CLIMAT instrument is operated manually depending on the weather conditions.

3 Lidar Only algorithm

The algorithm presented here was developed to retrieve profiles of particle extinction and IWC from measured lidar backscat-

tering profiles. We propose a method to retrieve simultaneously a profile of aerosol extinction in the layers close to the ground20

and a profile of IWC inside cirrus layers. However, our main focus is the characterization of the microphysical properties of

cirrus clouds. There are many techniques to invert the lidar equation including the classical Klett-Fernald method (Klett, 1981,

1985; Fernald, 1984). Our algorithm closely follows the method described by Stephens et al. (2001) which is based on optimal

estimation theory introduced by Rodgers (1976, 1990, 2000) which is nowadays a common approach for the inversion of re-

mote sensing data. One advantage of this approach is that it directly provides an estimation of the uncertainties together with25

the retrieved quantities. Furthermore, it facilitates the introduction of additional information in a common retrieval framework

to constrain the retrieved parameters. These additional information could be for example measurements of polarization or at

other lidar wavelengths, as well as TIR radiometer measurements as will be discussed in Sect. 4 of this paper. As a first step,

we focus in this section on the retrieval of extinction and IWC profiles from the lidar measurements alone.
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3.1 Lidar retrieval problem and microphysical assumptions

The relationship between the range-resolved backscattered power, P (r), and the atmospheric scattering and attenuation prop-

erties is described by the lidar equation and may be expressed as follows:

C ·P (r)r2 = (βm(r) +βp(r)) · exp
[
−2

r∫
0

(σm(r′) + ησp(r
′))dr′

]
, (1)

where C is a calibration constant depending on the lidar system and the atmospheric profile. β(r) and σ(r) represent the5

backscattering and extinction coefficients, respectively, and both contain a contribution arising from purely molecular backscat-

tering (βm(r)) or extinction (σm(r)) and a contribution arising from cloud or aerosol particles that may be present in the atmo-

sphere (βp(r) and σp(r), respectively). The factor η accounts for multiple scattering processes. For the remainder of this paper

we assume that η = 1 for aerosols and η = 0.75 for cirrus clouds. The value of 0.75 for cirrus clouds has been chosen based

on the PhD thesis of Nohra (2016) where the multiple scattering factor has been evaluated by comparing the optical depth re-10

trieved from measurements of the micro-pulse lidar in Lille to the optical depth retrieved from CALIOP and adjusting η to find

a coherent retrieval. The multiple scattering factor used for the CALIOP version 3 retrievals is η = 0.6 (Garnier et al., 2015).

For ground-based lidars the multiple scattering effect is less important since they have a much smaller FOV in combination

with a shorter distance to the cloud, although it should not be neglected because large ice crystals may considerably increase

the forward scattering of the laser beam (Donovan and van Lammeren, 2001). However, since our knowledge of this parameter15

is rather poor we assign a large error to it in our optimal estimation algorithm (see Sect. 3.2).

The retrieval of particle optical properties from elastic lidar measurements alone is challenging since there is an intrinsic

ambiguity between the effects of backscattering and extinction arising from the combination of scattering and absorption

processes in the atmosphere. In Eq. 1, the backscattering coefficient of aerosol or cloud particles, βp(r), can be replaced by

βp(r) = k(r) ·σp(r), (2)20

where k(r) represents the range-dependent backscatter-to-extinction ratio. Since we are using a simple micro-pulse lidar, we

need to introduce some assumptions for k(r) to retrieve profiles of extinction by aerosol and cloud particles. Unfortunately,

this parameter is highly variable and strongly depends on the type, size and shape of the atmospheric particles.

In this study we are focusing on the retrieval of cirrus cloud properties. Thus, the backscatter-to-extinction coefficient for

aerosols is assumed to be constant and is fixed to 64 sr. This value originates from the Optical Properties of Aerosols and25

Clouds (OPAC) database (Hess et al., 1998b) and corresponds to a water soluble urban aerosol. Since our measurement site

is located in an urban/industrial area, we used the optical properties for this aerosol type (for the visible lidar wavelength as

well as for the TIR as will be discussed in Sect. 4.1) from the OPAC database to test our new algorithm. This parameter needs

to be refined in future studies depending on the actual aerosol type present during the measurement obtained from additional

information. However, as discussed above for the multiple scattering factor, we also assign a large uncertainty to the lidar ratio30

of aerosols to account for our rather poor knowledge of it. Unfortunately, this reduces the quality of the information returned

by our algorithm.

6



Figure 1. The ensemble model of Baran and Labonnote (2007). (a) Hexagonal ice column which represents the smallest member, (b) Six-

branched bullet-rosette, (c) Three-branched ice crystal, (d) Five-branched ice crystal, (e) Eight-branched ice crystal, and (f) Ten-branched ice

crystal which represents the largest member (courtesy of A. Baran).

The backscatter-to-extinction ratio for cirrus clouds is calculated using the definition of Mishchenko et al. (1997):

k =$0 ·P11(π), (3)

where $0 is the particle single scattering albedo and P11(π) the phase function in the exact backscattering direction.

These two parameters are obtained for each cloud layer from the ensemble model for cirrus introduced by Baran and Labon-

note (2007). The idea of this model is to represent the distribution of ice crystal sizes and shapes inside a cirrus cloud by5

assuming a distribution of some idealized shapes rather than assuming just a single geometrical form throughout the whole

size spectrum. Observed ice crystal shapes in cirrus clouds range from simple pristine particles such as hexagonal ice columns

and bullet-rosettes (associated with small particles) over aggregates of these particles to aggregate chains while the complexity

of the crystal tends to increase with increasing size. The ensemble model of Baran and Labonnote (2007) attempts to reproduce

these observations by using the six members shown in Fig. 1. The smallest ice crystals are represented by the first two members,10

which are simple hexagonal ice columns and bullet-rosettes. The following members represent larger and more complex ice

crystals by arbitrarily attaching up to ten hexagonal elements to create chain-like structures. The calculation of the bulk optical

properties is fully described in Baran and Labonnote (2007) and will not be repeated here. However, it is important to notice

that the ensemble model single-scattering properties are integrated over a particle size distribution (PSD) parametrized after

7



Field et al. (2005, 2007). This parametrization is independent of assumptions about ice crystal shape and is based on a large

number of in situ measured PSDs. It does not include measurements of ice crystal size less than 100 µm due to the shattering

problem (Strapp et al., 2001; Field et al., 2003). For particles smaller than 100 µm an exponential PSD is assumed. Field et al.

(2005, 2007) found that ice crystal PSDs can be described by a single underlying PSD from which the initial PSD can be

generated with the help of two moments. They linked the second moment, which is the IWC, to any other moment via polyno-5

mial fits to the in-cloud temperature. As a consequence, the PSD can be obtained from the IWC and the in-cloud temperature

alone. Baran et al. (2011, 2014a, b) constructed a large database that combines the ensemble model and the Field et al. (2005,

2007) parametrization. Based on a total number of 20662 in situ measurements of IWC and in-cloud temperature from different

aircraft-based field campaigns located in the tropics and in the mid-latitudes, the PSDs were generated and for each PSD the

single scattering properties were calculated for 145 wavelengths between 0.2 and 120 µm. This ice optical property database10

was tested by Vidot et al. (2015) who developed a new ice cloud parametrization that predicts the bulk extinction and scattering

coefficients as well as the asymmetry parameter as a function of in-cloud temperature and IWC without the need of a priori in-

formation on the shape and the effective diameter of the ice crystals. The single scattering albedo is then defined as the ratio of

the scattering to the extinction coefficient, and the scattering phase function is generated from the asymmetry parameter using

the analytic phase function of Baran et al. (2001) which is a linear piecewise parametrization of the Henyey-Greenstein phase15

function depending only on the asymmetry parameter. It is kept smooth and featureless since atmospheric ice crystals may be

distorted, roughened or contain inclusions of air or aerosols. All these processes would remove or reduce the optical features of

the phase function like the halos at 22◦ or 46◦ and the backscattering peak (e.g., Macke et al., 1996; Labonnote et al., 2001). It

has been demonstrated by the authors that the Baran et al. (2001) parametrization reproduces short-wave multi-angle satellite

and aicraft observations, and Baran and Francis (2004) showed a good agreement with high-resolution infrared observations20

between 3 and 18 µm. It has also been tested and shown to be in good agreement against the backscattering features observed

from POLarization and Directionality of the Earth’s Reflectances (POLDER) measurements (Baran and Labonnote, 2007).

The scattering phase function, especially in the exact backscattering direction, is a crucial parameter in our algorithm since it

defines the lidar backscatter-to-extinction ratio. It will be discussed in more detail in Sect. 3.3.1.

For cirrus cloud layers, our algorithm seeks to retrieve the IWC. Thus, before the lidar equation (Eq. 1) can be applied, the25

IWC has to be transformed into an extinction. For this purpose, the microphysical model described above is used. The ice cloud

parametrization of Vidot et al. (2015) provides the link between the desired parameter (IWC) and the quantities required for the

inversion of the lidar equation which are the extinction coefficient, the single scattering albedo and the asymmetry parameter

from which the phase function is generated using the parametrization of Baran et al. (2001). For the remainder of this paper, we

will call this microphysical model BV2015. The necessary temperature information is obtained from the European Centre for30

Medium-Range Weather Forecasts (ECMWF) reanalysis by matching atmospheric temperature profiles to the corresponding

cirrus cloud altitude.

8



3.2 Inversion method

As mentioned above, we apply an optimal estimation method to invert the lidar equation following Stephens et al. (2001).

Optimal estimation is based on a bayesian approach which uses probability density functions to link the measurement space to

the state space accounting for their uncertainties (Rodgers, 2000). This approach allows to find the most likely solution which

is consistent with both the measurement and any given prior knowledge of the state within the range of their uncertainties. In5

general, the measurement vector y can be related to the state vector x via the forward model F by

y = F(x) + ε, (4)

where ε represents the uncertainties arising from the measurements and the forward model. The aim of every inversion method

is to invert the connection between the state vector and the measurement vector given by the forward model in order to retrieve

the elements of the state vector using the information provided by the measurement vector.10

Following Rodgers (2000), the best estimation of the state vector can be obtained by minimizing the following cost function

Φ = [y−F(x)]TS−1
ε [y−F(x)] + [x−xa]TS−1

a [x−xa]. (5)

There are two contributions in this cost function: the first term on the right-hand side of Eq. 5 represents the contribution

arising from the forward model and the measurement where Sε is the sum of the variance-covariance matrices of the forward15

model and the measurement, and the second term represents the contribution from the so-called a priori which contains the

prior knowledge of the state vector before the measurement has been performed. Sa is the variance-covariance matrix of the a

priori which, in our case, was chosen sufficiently large to reduce the influence of the a priori on the final retrieval.

To find the best estimate of the state vector x̂ that minimizes the cost function Φ, an iterative method is applied following the

approach of Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) which is described in detail by Rodgers (2000). This20

approach is based on the Newton-Gauss method to which the parameter γ is added that regulates the size of each iteration step

in order to diminish the cost function compared to the previous step. The equation for this iteration may be expressed by

xi+1 = xi + [(1 + γ)S−1
a + KT

i S−1
ε Ki]

−1{KT
i S−1

ε [y−F(xi)]−S−1
a [xi−xa]}, (6)

where K is the Jacobian containing the sensitivities of each of the parameters of the state vector to each individual measurement.

K acts as a matrix of weights in Eq. 6 and may also be referred to as Weighting Matrix or Kernel. When convergence is reached,25

the variance-covariance matrix of the retrieved state vector x̂ is given by

Sx̂ = (S−1
a + KTS−1

ε K)−1, (7)

where K and Sε correspond to the last iteration. The matrix Sx̂ allows to identify the error on each retrieved parameter.

Convergence is obtained when the following convergence test is true

[y−F(x̂)]TS−1
ε [y−F(x̂)]� N, (8)30
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where N is the number of elements in the measurement vector.

The application of this theoretical framework to the lidar retrieval problem requires the definition of all necessary elements

described above. The state vector x contains the desired quantities to be retrieved. These are in our case a profile of extinction

(denoted by σp) outside the cirrus cloud and a profile of IWC inside the cloud layer,

x= [σp(r1), σp(r2), . . . , σp(rj_bot−1), IWC(rj_bot), . . . , IWC(rj_top), σp(rj_top+1), . . . , σp(rN ) ]T , (9)5

where the subscripts j_bot and j_top denote the range index of the bottom cloud layer and the top cloud layer, respectively.

The measurement vector y consists of the logarithm of the calibrated range-corrected lidar signal,

y = [ ln(C ·P (r1)r2
1), ln(C ·P (r2)r2

2), . . . , ln(C ·P (rN )r2
N ) ]T . (10)

As mentioned in Sect. 2, the measurements provide an information about the backscattering particles every 15 m and the same

constant vertical resolution is used in the state vector.10

Following Stephens et al. (2001), the forward model F is given by the lidar equation in its logarithmic and discretized form:

F(xj , bj) = ln(βm(rj) + k(rj)σp(rj))− 2

j∑
l=1

[
σ̄m,l + ησ̄p,l

]
∆R, (11)

defined at each range rj where j = 2, ...,N . The overline indicates layer mean values. As discussed in Sect. 3.1, the multiple

scattering factor η is set to unity for aerosols and 0.75 for cirrus clouds, and ∆R is the range resolution of 15 m of the lidar

system. The state vector x defined in Eq. 9 contains the IWC inside the cloud, hence the extinction σp(rj) which is required15

in Eq. 11 is calculated as a function of IWC, σp(IWC(rj)), for all rj inside the cloud layer with the BV2015 microphysical

model described in Sect. 3.1. Vector b in Eq. 11 represents the non-retrieved parameters and is defined below (see Eqs. 16 to

18).

The Jacobian K contains the sensitivities of the forward model to each element of the state vector,

K =



∂F1

∂σp,1
. . . ∂F1

∂σp,j_bot−1

∂F1

∂IWCj_bot
. . . ∂F1

∂IWCj_top

∂F1

∂σp,j_top+1
. . . ∂F1

∂σp,N

∂F2

∂σp,1
. . . ∂F2

∂σp,j_bot−1

∂F2

∂IWCj_bot
. . . ∂F2

∂IWCj_top

∂F2

∂σp,j_top+1
. . . ∂F2

∂σp,N

... . . .
...

... . . .
...

... . . .
...

∂Fj_bot−1

∂σp,1
. . .

∂Fj_bot−1

∂σp,j_bot−1

∂Fj_bot−1

∂IWCj_bot
. . .

∂Fj_bot−1

∂IWCj_top

∂Fj_bot−1

∂σp,j_top+1
. . .

∂Fj_bot−1

∂σp,N

∂Fj_bot
∂σp,1

. . .
∂Fj_bot

∂σp,j_bot−1

∂Fj_bot
∂IWCj_bot

. . .
∂Fj_bot
∂IWCj_top

∂Fj_bot
∂σp,j_top+1

. . .
∂Fj_bot
∂σp,N

... . . .
...

... . . .
...

... . . .
...

∂Fj_top

∂σp,1
. . .

∂Fj_top

∂σp,j_bot−1

∂Fj_top

∂IWCj_bot
. . .

∂Fj_top

∂IWCj_top

∂Fj_top

∂σp,j_top+1
. . .

∂Fj_top

∂σp,N

∂Fj_top+1

∂σp,1
. . .

∂Fj_top+1

∂σp,j_bot−1

∂Fj_top+1

∂IWCj_bot
. . .

∂Fj_top+1

∂IWCj_top

∂Fj_top+1

∂σp,j_top+1
. . .

∂Fj_top+1

∂σp,N

... . . .
...

... . . .
...

... . . .
...

∂FN

∂σp,1
. . . ∂FN

∂σp,j_bot−1

∂FN

∂IWCj_bot
. . . ∂FN

∂IWCj_top

∂FN

∂σp,j_top+1
. . . ∂FN

∂σp,N



, (12)20

where the terms F(xj , bj), σp(rj) and IWC(rj) have been shortened to Fj , σp,j and IWCj , respectively, to increase the read-

ability. This short notation will be used for all variables which are a function of range for the remainder of this article. Inside
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cirrus cloud layers, the partial derivatives are expressed by

Kij =
∂Fi

∂IWCj
=

∂Fi
∂σp,j

∂σp,j
∂IWCj

, (13)

and can be obtained from the BV2015 parametrization. The partial derivatives with respect to extinction are calculated by

differentiating Eq. 11 with respect to σp:

Kij =


0 for i < j

−2η∆R for i > j

ki
βm,i+kiσp,i

− 2η∆R for i= j

. (14)5

Following Stephens et al. (2001), all variance-covariance matrices are assumed to be diagonal. Hence, the variance-covariance

matrix of the a priori can be defined by

Sa,ii = σ2
a,i, (15)

where σa,i are the variances of each of the elements of the a priori state vector. In this study, we have assigned sufficiently large

variances to the a priori in order to only rely on the information contained in the measurement vector.10

As mentioned above, vector b in Eq. 11 represents the non-retrieved parameters which are each a function of altitude,

b1 = {βm,j ;j = 1, . . .N}, (16)

b2 = {kj ;j = 1, . . .N}, (17)

b3 = {ηj ;j = 1, . . .N}. (18)

The molecular extinction σm does not need to be considered as a non-retrieved parameter because it can be obtained from βm15

by multiplication with the constant molecular backscatter-to-extinction ratio of 3/8π (Fernald, 1984). The variance-covariance

matrix of the forward model and the measurement is then defined by

Sε,ii = σ2
y,i +σ2

b1,i +σ2
b2,i +σ2

b3,i, (19)

where σy,i represents the measurement error and σb1,i, σb2,i and σb3,i represent the errors on the non-retrieved parameters in

the forward model calculated via20

σb1,i =
pβ(%) ·βm,i
βm,i + kiσp,i

, (20)

σb2,i =
pk(%) · kiσp,i
βm,i + kiσp,i

, (21)

σb3,i = pη(%) · (−2η∆R), (22)

where pβ(%), pk(%) and pη(%) represent the percentage errors assumed for the molecular backscattering profile, the backscatter-

to-extinction ratio and the multiple scattering factor, respectively. As discussed in Sect. 3.1, we chose large errors on the mul-25

tiple scattering factor for ice clouds and the backscatter-to-extinction ratio for aerosols and quantified them to pη(%) = 25%
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Figure 2. Forward model of the (a) a priori, and (b) after the last iteration step (represented by the black lines) for the lidar profile measured

on November 30, 2016 at 18.18 UTC. The red lines represent the measurement, the horizontal blue lines indicate the defined cloud base and

top altitudes. (c) Relative difference between the forward model and the measurement after convergence.

and pk,aer(%) = 25%, respectively. The same error has been attributed to the backscatter-to-extinction ratio for ice clouds

since the knowledge of the phase function in the exact backscattering direction which is used in Eq. 3 is rather poor as well

(pk,ice(%) = 25%). The error on the molecular backscattering profile, which is obtained from the empiric equation of Flamant

et al. (2008) using the atmospheric temperature and pressure profiles from ECMWF reanalysis, is set to pβ(%) = 2%. The

error on the lidar measurement depends on the altitude since the measurement noise increases with increasing altitude. It is5

calculated as standard deviation around the mean over a vertically sliding window of 20 gates.

3.3 Results and discussion

3.3.1 Influence of the backscatter-to-extinction ratio on the retrieved IWC

To start the iteration, a first guess is required and in this study we chose to use the a priori as first guess. In order to reach faster

convergence of the algorithm, the a priori for the layers close to the ground where aerosols are present is calculated from a one10

step solution of the lidar equation following the approach of Stephens et al. (2001),

σp,a,i =
{

exp
[
yi + 2

i−1∑
l=1

(σm,l + ησp,a,l)∆R
]
−βm,i

}
/ki. (23)

For the layers above the boundary layer, the algorithm converges fast enough when the molecular signal is used as a priori. For

ice cloud layers the iteration is started from a small IWC of 0.001 g m−3.

Figure 2 shows an example of a measured lidar profile (represented by the red lines) containing a cirrus cloud in altitudes15

between 8865 and 10200 m measured on November 30, 2016 at 18.18 UTC. The black lines show the calculated forward model,
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Figure 3. (a) Retrieved IWC profile, and (b) retrieved extinction profile for the lidar profile measured on November 30, 2016 at 18.18 UTC.

Shaded areas represent the total error on the retrieved quantities.

in Fig. 2a for the a priori and in Fig. 2b after the last iteration step. Figure 2c shows the relative difference (in %) between

the forward model and the measurement after the last iteration. Since the a priori for the lowest layers has been pre-calculated

based on the lidar equation, the forward model of the a priori is already close to the measurement for the layers close to the

ground. After the last iteration the forward model and the measured lidar signal overlay each other almost perfectly and the

difference between the forward model and the measurement is less than 1% for all altitudes. This indicates that the retrieval was5

successful and that the cost function has been reduced by reducing the difference between the measurement and the forward

model.

Figure 3 presents the corresponding retrieved IWC (Fig. 3a) and extinction (Fig. 3b) profiles. As explained in Sect. 3.2,

we retrieve the IWC for the layers containing a cirrus cloud and the particle extinction for the rest of the profile. Hence,

the extinction profile inside the cloud in Fig. 3b is not retrieved directly but recalculated from the IWC using the BV201510

parametrization. In the layers close to the ground an enhanced extinction due to aerosols can be observed. Above these layers

in the middle portion of the profile the particle extinction is close to zero because there were no or very few particles present

in this zone. In the ice cloud an important increase of extinction due to the ice crystals can be observed.

The retrieval results for the whole afternoon of November 30, 2016, are shown in Fig. 4. Figure 4a shows the measured lidar

signal. As a first step in our analysis, the cloud base and top altitudes are defined based on the threshold method described15

by Platt et al. (1994). In this approach, the cloud-base is defined as altitude where the lidar signal increases above the clear

background level and this increase is larger than n times the standard deviation of the background fluctuations. As a second
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condition it is required that the signal continues to increase for m following altitude gates to assure that sudden maxima in the

signal due to measurement noise are not misinterpreted as clouds. We chose values of 4 and 5 for n and m, respectively, which

seem to produce reasonable results for our lidar system. The cloud-top is found in the same way but by starting the search from

the far end of the measurement range (about 15 km) and moving downwards.

Figure 4b shows the retrieved extinction, recalculated in the cirrus cloud from the retrieved IWC (shown in Fig. 4c) with5

the BV2015 parametrization. The height limit up to which the retrieval is performed depends on the profile. Since the signal

above the cloud becomes noisy due to attenuation by the cloud particles, the height limit for the retrieval is defined for each

profile as retrieved cloud top altitude plus 500 m. In Fig. 4d the Cloud Optical Thickness (COT) calculated from the retrieved

extinction profile is compared to the COT derived from the transmission method of Chen et al. (2002), that means from the

shift of the signal below and above the cloud due to the extinction of the cloud. There are phases when the COT from both10

methods coincides quite well, e.g. between 16.6 and 18.2 UTC. However, during this period the retrieved COT is very small.

When the cloud becomes geometrically and optically thicker, our algorithm tends to overestimate the COT compared to the

transmission method, e.g. between 16.1 and 16.6 UTC. At the end of the presented period between 19.4 and 20 UTC, the

lidar signal increases importantly and for this cloud the convergence of our algorithm is less good. Figure 4e shows the cost

function after the iteration (normalized by the size of the measurement vector) which indicates the quality of the retrieval. For15

the above-mentioned period the cost function is large (Φ� 1) which means that the algorithm did not converge. This is partly

due to the strong attenuation of the signal because of the optically thick cloud that was present during this period, but we will

show in the following that this is also related to an insufficient description of the microphysical properties of the ice crystals,

in particular the phase function in backscattering direction.

Our retrievals strongly depend on the phase function in backscattering direction which defines the backscatter-to-extinction20

ratio. As explained in Sect. 3.1, we calculate the backscatter-to-extinction ratio for cirrus clouds from Eq. 3 and hence our

retrievals strongly depend on the single scattering albedo, $0, and the phase function in the exact backscattering direction,

P11(π), which are obtained from the BV2015 microphysical model. The single scattering albedo is considered to be represented

sufficiently exact in this model. On the contrary, the phase function, especially in the exact backscattering direction, is much

more uncertain.25

Figure 5 shows examples of phase functions of ice crystals computed from the ensemble model and the BV2015 parametriza-

tion (see Sect. 3.1), for a thin cirrus cloud with a small IWC and a temperature of 250 K. The existence of a backscattering

peak strongly depends on the characteristics of the considered particles, especially their heterogeneity represented respectively

by their surface roughness and/or by the presence of spherical inclusions (Hess et al., 1998a; Labonnote et al., 2001; Baran

and Labonnote, 2006). The black line represents a phase function obtained from the ensemble model, for a bulk ice com-30

posed of smooth ice particles (e.g. smooth surface with no heterogeneity), and in this case the phase function shows a strong

increase in backscattering direction. Introducing particle heterogeneities, e. g. surface roughness and air bubbles, leads to the

disappearance of the backscattering peak (blue and green lines in Fig. 5, computed from the same model and bulk ice but by

considering moderately and severely heterogeneous particles, respectively). However, real ice clouds may consist of a mixture

of smooth and rough particles and different particle sizes, and their phase functions in backscattering direction have not yet35
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Figure 4. Retrieval results for November 30, 2016, 15 to 20 UTC. (a) Logarithm of the measured range-corrected lidar signal. (b) Retrieved

extinction profiles (recalculated from the IWC with the BV2015 parametrization inside the cirrus cloud). (c) Retrieved IWC profiles. (d)

Cloud Optical Thickness (COT) calculated from the retrieved extinction profile (blue) compared to the COT derived from the transmission

method of Chen et al. (2002) (red). (e) Cost function after the last iteration step normalized by the size of the measurement vector. The

vertical lines indicate the profiles at 16.33 UTC and 18.18 UTC which are discussed in more detail.

15
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Figure 5. Examples of phase functions for different degrees of particle heterogeneity. Black line: phase function for a bulk ice crystal with a

smooth surface, blue line: introduction of some heterogeneity, green line: maximum degree of heterogeneity (particle roughness, air bubbles).

The red line represents the phase function obtained from the parametrization of Baran et al. (2001).

been characterized sufficiently exact. The analytic phase function of Baran et al. (2001) (represented by the red line in Fig. 5)

which is implemented in our algorithm does not include enhanced backscattering but was shown to fairly well represent side

scattering features of ice particles from POLDER measurements (Baran et al., 2001). However, for scattering angles larger

than 95 ◦ the parametrization assumes a constant value. Recent publications of Zhou and Yang (2015) and Ding et al. (2016)

suggest that this assumption is not exact enough to realistically represent the phase function of ice crystals, even for highly5

heterogeneous particles. They found that a narrow backscattering peak also exists for ice particles with rough surfaces and that

the backscattering is generally underestimated. Zhou and Yang (2015) showed that the phase function of real bulk ice crystals

at 180 ◦ should be 1.5 to 2.0 times larger than the phase function at 175◦, which is clearly not the case for the analytical phase

function used in this study.

Having that in mind, we tested the influence of the backscatter-to-extinction ratio in our algorithm. Figure 6 shows the10

retrieved IWC profiles for the lidar profiles measured on November 30, 2016 at 16.33 UTC (Fig. 6a) and 18.18 UTC (Fig. 6b)

for different backscatter-to-extinction ratios k′, where k′ = κ · k with k the original backscatter-to-extinction ratio computed

from Eq. 3. The blue line represents the retrieval result for a factor of κ= 1.0, the red and green lines for modified backscatter-

to-extinction ratios by factors of κ= 1.5 and κ= 2.0, respectively. When the backscatter-to-extinction ratio is enhanced, the

retrieved IWC decreases evidently. However, the effect of modifying the backscatter-to-extinction ratio is rather strong and15

16



Figure 6. Dependence of the retrieved IWC on the backscatter-to-extinction ratio for (a) the lidar profile measured on November 30, 2016 at

16.33 UTC and (b) the lidar profile measured on November 30, 2016 at 18.18 UTC. Shaded zones represent the retrieval errors.

integrating the IWC over the whole cloud results for the profile measured at 18.18 UTC in an IWP of 4.22± 1.01 g m−2 for

the backscatter-to-extinction ratio modified by a factor of κ= 2.0 and 5.98± 1.43 g m−2 for a factor of κ= 1.5, compared

to 10.32± 2.47 g m−2 with the backscatter-to-extinction ratio calculated directly from the BV2015 microphysical model. For

the geometrically thick cloud measured at 16.33 UTC, the use of the backscatter-to-extinction ratio computed directly from

Eq. 3 results in a strongly increasing IWC towards the cloud top which seems to be unrealistic. This peak of IWC at the5

cloud top is reduced importantly for retrievals performed with the modified backscatter-to-extinction ratios. Furthermore, the

resulting IWP is reduced by a factor of 4 between the retrievals assuming κ= 1.0 (IWP = 32.21± 8.93 g m−2) and κ= 2.0

(IWP = 8.58± 2.25 g m−2).

As discussed above, the challenge of inverting the lidar equation is to find ways to constrain the backscatter-to-extinction

ratio which is the major source of uncertainty in the lidar retrieval problem. Stephens et al. (2001) included a visible optical10

depth in form of an additional measurement in the optimal estimation framework to retrieve both the backscatter-to-extinction

ratio and the extinction profile together. Instead of relying on a retrieval product, such as optical depth, and because the

backscatter-to-extinction ratio seems to strongly depend on the integrated amount of ice, we are proposing to use TIR radiome-

ter measurements to constrain the backscatter-to-extinction ratio of cirrus clouds.
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3.3.2 Use of TIR radiances to constrain the backscatter-to-extinction ratio

Since TIR radiances are sensitive to the integrated properties of the cloud, in particular the IWP, we can use them to constrain

the amount of ice in the cloud and hence the backscatter-to-extinction ratio. CLIMAT radiometer measurements (see Sect. 2)

in its three channels are available on November 30, 2016. To simulate these measurements, the Linearized Discrete Ordinate

Radiative Transfer model (LIDORT) (Spurr et al., 2001) is used. This model requires as inputs, profiles of atmospheric tem-5

perature, pressure and gases, especially water vapor, which are obtained from ECMWF reanalysis. Furthermore, the optical

properties of aerosol and cloud particles deduced from the retrieved IWC and extinction profiles are used in the simulations.

From these profiles an optical thickness for the lidar wavelength for each model layer is calculated which is linked via Mie

theory for aerosols and via the BV2015 parametrization for ice cloud to the optical thickness for the wavelengths in the TIR.

Other necessary inputs are the single scattering albedo and the phase function coefficient of the development in the Legendre10

polynomial. As mentioned above, the aerosol characteristics are obtained from the OPAC database (Hess et al., 1998b) for the

urban aerosol type. Hence, the aerosol model between the lidar and the TIR wavelengths is coherent.

The normalized radiance (emitted by a source of brightness temperature Tb) received in channel Ci of the radiometer is

characterized by the spectral response fi(λ) of the channel and can be expressed by

Li =

∫
∆λi

Bλ(Tb)fi(λ)dλ∫
∆λi

fi(λ)dλ
, (24)15

where λ is the wavelength, Bλ(Tb) the Planck function and ∆λi the spectral bandpass of channel Ci.

Figure 7 shows the normalized radiances measured with CLIMAT in its three channels on November 30, 2016, between 15

and 20 UTC. The black lines represent the simulation with LIDORT for a cloud-free atmosphere taking into account the aerosol

extinction in the layers below the cloud deduced from the lidar measurements and considering water vapor and temperature

profiles from an ECMWF reanalysis at 12 UTC. All three channels show an increase of the signal due to the clouds present20

between 16 and 18.5 UTC as well as after 19.2 UTC. However, the signal for the first cloudy period is much smaller than for

the second period because of the smaller COT in combination with a higher and hence colder cloud base altitude compared to

the second period. Furthermore, Fig. 7 shows that the simulated radiances for the cloud-free atmosphere fall within the error-

range of the measured radiances under cloud-free conditions (between 15 and 16 UTC as well as around 19 UTC) for channels

C11 and C12. On the contrary, the measured radiance for channel C09 is not reproduced by the radiative transfer simulations25

which may be due to an insufficient knowledge of the spectral response function (fi(λ) in Eq. 24) for this channel resulting in

a convergence issue of our retrieval algorithm. We therefore decided to not take this channel into account for the remainder of

this paper.

The idea of our method is to use these TIR radiances to constrain the backscatter-to-extinction ratio correction factor (κ) and

hence the phase function in backscattering direction. In the following, we aim to show the potentiality of such an approach.30

Figure 8a shows the simulated normalized radiances (in W m−2 sr−1 µm−1) for the lidar profile measured on November 30,

2016 at 18.18 UTC as a function of the correction factor κ for the two CLIMAT channels C11 (represented in blue) and C12

(green). The dashed lines indicate the measurements and the shaded zones around it the measurement error. Figure 8b presents
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Figure 7. (a) Logarithm of the measured range-corrected lidar signal for November 30, 2016, 15 to 20 UTC. (b) TIR radiometer measure-

ments for channel C09, (c) for channel C11, and (d) for channel C12. Shaded zones represent the error range of the measurement. The black

lines in (b) to (d) represent the simulation with LIDORT for the three channels under cloud-free conditions taking into account the aerosol

extinction in the lowest layers obtained from the lidar and water vapor and temperature profiles from an ECMWF reanalysis at 12 UTC.

the corresponding COT computed from the retrieved extinction profile (red crosses), while the black line represents the COT

derived from the transmission method with its according error range (shaded grey zone). With increasing correction factor for

the backscatter-to-extinction ratio, which is related to a correction factor for the phase function in backscattering direction,

the COT decreases and with it the simulated radiances. Furthermore, one can see from Fig. 8a that the simulated radiances

for channel C12 are within the error range of the measurements for a correction factor between κ= 1.1 and κ= 1.5 whereas5

for channel C11 this is the case for correction factors larger than κ= 1.4. This allows the conclusion that for this profile the

correction factor for the backscatter-to-extinction ratio should range between 1.4 and 1.5 to find a retrieval of the IWC profile

that would allow both lidar and TIR forward model to converge towards the corresponding measurements. Additionally, the

COT computed from the retrieved extinction profile (see Sect. 3.3.1) agrees well with the COT derived from the transmission
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Figure 8. (a) Dependence of the simulated normalized radiances on a factor for the backscatter-to-extinction ratio ranging from 1.0 to 3.0

for the lidar profile measured on November 30, 2016 at 18.18 UTC. The CLIMAT measurements of channels C11 and C12 are represented

by the dashed lines, shaded zones indicate the measurement error. (b) Corresponding COT. The black line represents the COT derived from

the transmission method and the shaded grey zone its error range.

method for this range of correction factors (see Fig. 8b). These results indicate that the TIR radiances can help to refine the

phase function in backscattering direction and that the analytic phase function of Baran et al. (2001) may not be exact enough

to represent the phase function of real ice crystals in the exact backscattering direction.

Figure 9 shows the same analysis for the lidar profile measured at 16.33 UTC. The COT from the optimal estimation method

largely overestimates the COT from the transmission method for this profile when the retrieval is performed with a correction5

factor of κ= 1.0. Moreover, Fig. 6a showed a seemingly unrealistic increase of IWC at the cloud top discussed above for this

case. Figure 9a suggests that the correction factor constrained by the TIR radiances should range between κ= 2.0 and κ= 2.3.

A correction factor from this range reduces the retrieved COT considerably and slightly underestimates the COT from the

transmission method.

However, the curves shown in Figs. 8 and 9 underline the importance of the quality of the measurements in the TIR since10

small changes in the radiances may lead to very different microphysics. Furthermore, Dubuisson et al. (2008) showed that

20



Figure 9. Same as Fig. 8 for the lidar profile measured on November 30, 2016 at 16.33 UTC.

the atmosphere, especially the water vapor, has a very important influence on ground-based TIR measurements and that the

sensitivity of these measurements to cloud properties is weaker for moist atmospheres. However, the ECMWF reanalysis profile

of water vapor indicates a rather dry atmosphere for this day with a total amount of 0.62 g m−2 in the atmospheric column, so

the water vapor as well as the low aerosol optical depth seem to have a rather small influence on the TIR radiances measured

during this case study.5

The results presented in this section show that the ensemble of measurements should be used to find a retrieval that cor-

responds best to all available information. As mentioned above, the optimal estimation method is a well-adapted tool to use

different kinds of measurements in a common retrieval framework. The results shown here confirm that the TIR radiances

provide an additional constraint for the amount of ice inside the cloud which strongly depends on the backscatter-to-extinction

ratio. Therefore, the phase function in backscattering direction can be constrained by the TIR measurements under the assump-10

tion that the single scattering albedo is known sufficiently exact (see Eq. 3). As a consequence, we included the TIR radiometer

measurements in the optimal estimation framework of the lidar only algorithm to retrieve in addition to the IWC/extinction
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profiles the correction factor κ for the phase function in backscattering direction. This newly developed synergistic algorithm

is presented in the following section.

4 Synergy algorithm lidar - TIR

4.1 Integration of the TIR radiances in the optimal estimation framework

The synergy algorithm is an expansion of the lidar only algorithm which integrates the TIR radiometer measurements in the5

optimal estimation method. The new state vector contains in addition to the elements of the previous state vector given by Eq.

9 the correction factor κ for the phase function in the exact backscattering direction:

x= [σp(r1), σp(r2), . . . , σp(rj_bot−1), IWC(rj_bot), . . . , IWC(rj_top), σp(rj_top+1), . . . , σp(rN ), κ ]T , (25)

where the new phase function P ′11(π) in backscattering direction is related to the previous one via P ′11(π) = κ ·P11(π).

The measurement vector, initially containing the logarithm of the calibrated range-corrected lidar signal, is expanded by the10

measured radiances from the two channels of the CLIMAT instrument discussed above:

y = [ ln(C ·P (r1)r2
1), ln(C ·P (r2)r2

2), . . . , ln(C ·P (rN )r2
N ), LC11, LC12 ]T . (26)

The forward model for the lidar is the same as for the lidar only algorithm, given by the lidar equation in form of Eq. 11,

with the only modification that the backscatter-to-extinction ratio for ice cloud layers is now calculated by

k′ =$0 ·P ′11(π) =$0 ·κ ·P11(π). (27)15

The forward model for the TIR radiances is the above-mentioned radiative transfer model LIDORT (Spurr et al., 2001).

The advantage of this model is that it provides not only radiances but also weighting functions for atmospheric and surface

parameters. That means the Jacobians for surface parameters such as emissivity or temperature, profiles of Jacobians for the

temperature, atmospheric gas or IWC profiles, as well as column Jacobians for the integrated quantities, for example the

(Jacobian about the) integrated water vapor in the whole atmospheric column, can be obtained together with the radiances20

from one single simulation. Therefore the use of this model considerably reduces the computation time of the algorithm in

comparison to finite difference calculations to obtain Jacobians. This numerical efficiency allows to use a fine vertical resolution

in the radiative transfer calculations without exceeding reasonable computation times. Hence, the radiative transfer calculations

can be realized on a vertical grid corresponding to the lidar resolution inside the cirrus cloud (outside the cloud the vertical

resolution is defined by the ECMWF reanalysis profiles on 137 levels). That means for the radiative transfer calculations in our25

algorithm, the extinction profile inside the cirrus cloud is calculated with the BV2015 microphysical model from the IWC given

on the lidar resolution. As a consequence, thanks to the synergy with the lidar measurements and to the numerical efficiency of

the radiative transfer model, our algorithm does not have to assume a homogeneous cloud like most inversion algorithms for

cloud properties do nowadays.
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The Jacobian of the synergistic algorithm contains in addition to the Jacobian of the lidar only algorithm two new rows for

the sensitivity of the TIR forward model to each state vector parameter and one new column for the sensitivity of the forward

model to the new state vector element κ:

K =



∂F1

∂σp,1
. . . ∂F1

∂σp,j_bot−1

∂F1

∂IWCj_bot
. . . ∂F1

∂IWCj_top

∂F1

∂σp,j_top+1
. . . ∂F1

∂σp,N

∂F1

∂κ

∂F2

∂σp,1
. . . ∂F2

∂σp,j_bot−1

∂F2

∂IWCj_bot
. . . ∂F2

∂IWCj_top

∂F2

∂σp,j_top+1
. . . ∂F2

∂σp,N

∂F2

∂κ

... . . .
...

... . . .
...

... . . .
...

...
∂Fj_bot−1

∂σp,1
. . .

∂Fj_bot−1

∂σp,j_bot−1

∂Fj_bot−1

∂IWCj_bot
. . .

∂Fj_bot−1

∂IWCj_top

∂Fj_bot−1

∂σp,j_top+1
. . .

∂Fj_bot−1

∂σp,N

∂Fj_bot−1

∂κ

∂Fj_bot
∂σp,1

. . .
∂Fj_bot

∂σp,j_bot−1

∂Fj_bot
∂IWCj_bot

. . .
∂Fj_bot
∂IWCj_top

∂Fj_bot
∂σp,j_top+1

. . .
∂Fj_bot
∂σp,N

∂Fj_bot
∂κ

... . . .
...

... . . .
...

... . . .
...

...
∂Fj_top

∂σp,1
. . .

∂Fj_top

∂σp,j_bot−1

∂Fj_top

∂IWCj_bot
. . .

∂Fj_top

∂IWCj_top

∂Fj_top

∂σp,j_top+1
. . .

∂Fj_top

∂σp,N

∂Fj_top

∂κ
∂Fj_top+1

∂σp,1
. . .

∂Fj_top+1

∂σp,j_bot−1

∂Fj_top+1

∂IWCj_bot
. . .

∂Fj_top+1

∂IWCj_top

∂Fj_top+1

∂σp,j_top+1
. . .

∂Fj_top+1

∂σp,N

∂Fj_top+1

∂κ

... . . .
...

... . . .
...

... . . .
...

...
∂FN

∂σp,1
. . . ∂FN

∂σp,j_bot−1

∂FN

∂IWCj_bot
. . . ∂FN

∂IWCj_top

∂FN

∂σp,j_top+1
. . . ∂FN

∂σp,N

∂FN

∂κ

∂FC11
∂σp,1

. . . ∂FC11
∂σp,j_bot−1

∂FC11
∂IWCj_bot

. . . ∂FC11
∂IWCj_top

∂FC11
∂σp,j_top+1

. . . ∂FC11
∂σp,N

∂FC11
∂κ

∂FC12
∂σp,1

. . . ∂FC12
∂σp,j_bot−1

∂FC12
∂IWCj_bot

. . . ∂FC12
∂IWCj_top

∂FC12
∂σp,j_top+1

. . . ∂FC12
∂σp,N

∂FC12
∂κ



. (28)

The sensitivities of the TIR radiances to the extinction profile outside the cloud are set to zero since they are assumed to5

be small. The correction factor κ does not have a direct influence on the TIR radiances, thus the last two elements in the last

column of the Jacobian matrix (K) are also set to zero (see Eq. 28). The sensitivities of the TIR radiances to the IWC profile

inside the cloud are calculated directly in LIDORT. Finally, the partial derivatives of the lidar forward model with respect to κ

are set to zero outside the cloud and calculated analytically as derivation of the forward model (Eq. 11) for the ice cloud layers,

10

∂Fj
∂κ

=
$0 ·P11(π) ·σp,j

βm,j +$0 ·P11(π) ·κ ·σp,j
, (29)

where the layer extinction σp,j is calculated from the IWC with the BV2015 parametrization.

As in the lidar only algorithm, the variance-covariance matrices in the synergy algorithm are also considered to be diagonal.

Concerning the lidar, they are defined in the same way as in the lidar only algorithm (see Sect. 3.2) with the only difference

that the error for the backscatter-to-extinction ratio in ice cloud layers is no longer considered since we retrieve with the new15

algorithm a correction factor for the phase function in backscattering direction which is directly related to the backscatter-

to-extinction ratio. Instead, an error of 1% on the single scattering albedo is integrated (compare Eq. 27). For the variance-

covariance matrix of the TIR forward model the considered non-retrieved parameters (and the errors attributed to them) are the

following: surface emissivity (2%), surface temperature (1 K) and the profiles of atmospheric temperature (1 K for each layer),

water vapor (10% for each layer) and ozone (2% for each layer). The standard deviations are calculated via20

σbj =
∂F
∂bj
· bj ·

pbj (%)

100
, (30)
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Table 1. TIR forward model and measured normalized radiances (Wm−2 sr−1 µm−1) for November 30, 2016 at 18.18 UTC.

C11 C12

TIR forward model of the a priori 0.3173 0.6889

TIR forward model after convergence 0.4853± 0.0209 0.8548± 0.0393

Measurement 0.3885± 0.0897 0.9054± 0.0534

where bj represents the considered non-retrieved parameter, pbj (%) its error in percent and ∂F
∂bj

the sensitivity of the forward

model to this parameter. As mentioned above, the latter can be calculated directly in LIDORT for all desired parameters (for

a detailed description of the calculation of Jacobians in LIDORT the reader is referred to the LIDORT User’s Guide, (Spurr,

2012)). The elements of the diagonal variance-covariance matrix are then given by

Sε,iiTIR = σ2
y,iTIR

+
∑
j

σ2
bj ,iTIR

, (31)5

where σ2
y,iTIR

represents the measurement errors for each of the two channels of the TIR radiometer. This error depends on the

calibration procedure and on the temperature of the instrument during the measurement because its sensitivity is a function

of temperature. The calibration of the instrument is performed in the laboratory at room temperature. Unfortunately, our in-

strument does not have a thermal enclosure system and during field measurements it is exposed to atmospheric temperature

influences. On November 30, 2016, the atmospheric temperature was low. Due to the poor knowledge of a coefficient to correct10

for the instrument’s temperature, the assumed errors on the measured radiances are rather large. Especially, for channel C11

the error arising from this temperature correction ranges between 15 and 30 % depending on the value of the radiance. For

small normalized radiances in combination with a cold instrument temperature, the largest error percentages are reached. The

radiances measured by channel C12 are larger and hence the error on the measurements of this channel is smaller and ranges

between 5 and 8 %.15

4.2 Preliminary results

This section presents some preliminary results of our new algorithm. Figure 10 shows the same example as given in Fig. 2 but

obtained from the synergy algorithm. The a priori used for the extinction/IWC profiles in the synergy algorithm is the same as

in the lidar only algorithm (see Sect. 3.3). Figure 10b shows that once the algorithm converged, the lidar forward model and

the measured lidar signal overlay each other almost perfectly. As in the lidar only algorithm, the relative difference between20

the forward model and the measurement is smaller than 1% for all layers. Thus, the good convergence found in the lidar only

algorithm is confirmed in the synergy algorithm. Table 1 summarizes the radiometer measurements and the TIR forward model

(LIDORT) corresponding to this profile before and after the algorithm’s convergence (expressed in normalized radiances in

W m−2 sr−1 µm−1). Since the values of the TIR forward model after the iteration process are comprised within the error range

of the measurements, it can be concluded that the algorithm converged in the TIR as well.25
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Figure 10. Lidar forward model of the (a) a priori, and (b) after the last iteration step (represented by the black lines) from the synergy

algorithm for the lidar profile measured on November 30, 2016 at 18.18 UTC. The red lines represent the measurement, the horizontal blue

lines indicate the defined cloud base and top altitudes. (c) Relative difference between the forward model and the measurement after the

iteration.

The retrieved value for the correction factor κ for the phase function in backscattering direction is 1.48± 0.33 which is close

to the range of 1.5 to 2.0 found in the literature (Zhou and Yang, 2015) and confirms the result shown in Fig. 8. The correspond-

ing retrieved IWC and extinction profiles are shown in Fig. 11. By comparing them to the result of the lidar only algorithm (Fig.

3), it is obvious that the IWC and the extinction are smaller for the synergy algorithm because the backscatter-to-extinction

ratio in the ice cloud is larger. The resulting IWP is 6.13± 2.19 g m−2 compared to the initial IWP of 10.32± 2.47g m−2 from5

the lidar only algorithm. As a consequence, the COT is also considerably reduced to a value of 0.239± 0.085 compared to

0.402± 0.096 from the lidar only algorithm and is in good agreement with the COT of 0.267± 0.126 derived from the trans-

mission method considering the error ranges. This indicates that the result of the synergy algorithm is more coherent than the

result of the lidar only algorithm because the backscatter-to-extinction ratio has been characterized more realistically.

The application of the synergy algorithm to the profile measured at 16.33 UTC on November 30, 2016 results in a factor κ10

of 2.15± 0.33. Similarly as for the profile at 18.18 UTC, this value for the correction factor corresponds to the region where

the simulated TIR radiances converge to the measurements in Fig. 9. Table 2 shows the radiometer measurements and the

TIR forward model after the iteration. As for the profile at 18.18 UTC, the values of the TIR forward model after the iteration

process are comprised within the error range of the measurements. Thus, it can be concluded that the algorithm managed to find

a solution allowing both the lidar and the TIR forward model to converge towards the corresponding measurements. For the15

retrieved correction factor, the large IWC peak at the cloud top observed from the lidar only algorithm for a correction factor of

κ= 1.0 is considerably reduced which results in a more realistic shape of the IWC profile. The IWP obtained from the synergy

algorithm is 7.79± 2.54 g m−2 compared to the above-mentioned value of 32.21± 8.93 g m−2 from the lidar only algorithm.

25



Figure 11. (a) Retrieved IWC profile, and (b) retrieved extinction profile from the synergy algorithm for the lidar profile measured on

November 30, 2016 at 18.18 UTC. Shaded areas represent the total error on the retrieved quantities.

Table 2. TIR forward model and measured normalized radiances (Wm−2 sr−1 µm−1) for November 30, 2016 at 16.33 UTC.

C11 C12

TIR forward model of the a priori 0.4012 0.7730

TIR forward model after convergence 0.5508± 0.0214 0.9220± 0.0395

Measurement 0.4925± 0.0793 0.9567± 0.0492

Hence, the retrieval with the synergy algorithm results in an important decrease of IWP. However, the COT of 0.304± 0.099

obtained from the synergy algorithm underestimates the COT of 0.608± 0.186 obtained from the transmission method.

Finally, Fig. 12 presents the temporal evolution of the retrieval results from the synergy algorithm for the time period from

15 to 20 UTC on November 30, 2016. Figure 12a recalls the measured lidar signal already shown in Fig. 4a, Fig. 12b shows

the retrieved IWC profiles, and Fig. 12c the retrieved correction factor κ for the phase function in backscattering direction5

(blue) and the according lidar ratio in sr (red) which might be easier to interpret. Figure 12d shows the comparison of the COT

obtained from the synergy algorithm (blue) and the transmission method (red) and Fig. 12e presents the TIR measurements

and forward model after convergence for channel C12 in green and channel C11 in blue where the darker colors represent the

measurements and the lighter colors the forward model together with their respective uncertainties. This plot indicates that the

majority of retrievals converges well in the TIR. Furthermore, retrieval results are only shown in the other plots of this panel if10
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Figure 12. Retrieval results of the synergy algorithm for November 30, 2016, 15 to 20 UTC. (a) Logarithm of the measured range-corrected

lidar signal. (b) Retrieved IWC profiles. (c) Retrieved factor κ (right axis, represented by blue crosses) and the corresponding lidar ratio in

sr (left axis, represented by red crosses). (d) COT from synergy algorithm (blue) and from transmission method (red). (e) Thermal infrared

radiometer measurements (C11 M and C12 M) and the forward model after the iteration (C11 F and C12 F), expressed as normalized

radiances.
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the normalized cost function is much smaller than unity. Hence, the large number of results shown in this figure also indicates

the overall good convergence of our algorithm. The only retrievals that did not converge correspond to either optically very

thin clouds or to clouds which are thick enough to attenuate the lidar signal completely (e.g. around 19.8 UTC). Nevertheless,

compared to the lidar only algorithm the synergy algorithm converged for more profiles between 19.4 and 20 UTC and the

retrieved COT compares well to the COT from the transmission method during this period. Hence, the TIR helped to constrain5

the backscatter-to-extinction ratio through the IWP, allowing a better coherence between the visible and the TIR forward model.

However, between 16 and 18.3 UTC the COT obtained from the synergy algorithm underestimates the COT derived from

the transmission method for most of the retrievals (except around 18.2 UTC). It should be noted that the COT obtained

from the transmission method is an effective COT ? and that the real COT depends on the multiple scattering factor where

COT? = η · COT. Hence, the COT from the transmission method reported in Fig. 12c has been divided by the assumed mul-10

tiple scattering factor for ice clouds of η = 0.75 in order to be consistent with the retrievals from the synergy algorithm which

have been performed for η = 0.75 as well. As a consequence, the COT derived from the transmission method strongly depends

on this assumption for the multiple scattering factor and applying a larger value of η would reduce it. On the contrary, the

COT retrieved with the synergy algorithm is constrained by the TIR radiometer measurements and remains constant when

applying another multiple scattering factor. In the synergy algorithm, the retrieval of the correction factor κ for the phase func-15

tion in backscattering direction would change and hence the microphysics of the cirrus cloud. The influence of the multiple

scattering factor on the retrievals of our synergy algorithm has to be further investigated in future studies in order to draw

more sophisticated conclusions and the retrievals shown here should be understood as a first test to show the potential of the

algorithm.

Despite of these limitations, the retrievals of the lidar ratio shown in Fig. 12d are promising. For the geometrically and20

optically thicker cloud between 16 and 17.2 UTC where a considerable increase in the measured TIR radiances was observed

(see Fig. 7), the average value of the retrieved lidar ratio is 35.6± 4.5 sr which is in agreement with the lidar ratios for cirrus

clouds reported in the literature ranging between 20 and 40 sr (e.g., Chen et al., 2002; Giannakaki et al., 2007; Josset et al.,

2012; Garnier et al., 2015). Between 17.2 and 18.2 UTC the retrieved lidar ratios are much higher (on average 52.2± 17.0 sr)

but the cloud observed during this period is optically very thin and the signal in the TIR radiances very small, so it is not25

surprising that our algorithm reaches its limit here. For the optically thicker cloud between 19.2 and 20 UTC the average of

the retrieved lidar ratio is 35.8± 9.1 sr, corresponding to the literature again. However, as discussed above, the retrievals of the

correction factor κ and thus the lidar ratio depend on the assumed multiple scattering factor.

Nevertheless, this new synergistic algorithm suggests that using information from both, active in the visible part of the

electromagnetic spectrum and passive in the TIR part, allows to obtain new information on bulk ice optical properties, espe-30

cially on the amount of ice and its capability to backscatter the visible light. Moreover, it allows to test existing microphysical

models, particularly the BV2015 model and its original representation of bulk optical properties as a function of the in-cloud

temperature and IWC. The results of this study point out the overall good coherence of the BV2015 model but also its limi-

tations in representing all the different measured profiles, especially due to the poor representation of the exact backscattering

characteristics of the bulk ice.35
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5 Conclusions

In this paper a method to retrieve IWC profiles of cirrus clouds from the synergy of ground-based lidar and TIR radiometer

measurements has been presented. The algorithm is based on optimal estimation theory and combines the visible lidar and TIR

radiometer measurements in a common retrieval framework to retrieve profiles of IWC together with a correction factor for the

backscatter intensity of bulk ice cloud particles.5

In a first step, an algorithm to retrieve IWC and extinction profiles (outside the cloud) from the lidar measurements alone was

developed. Due to the backscatter-to-extinction ambiguity arising from the combination of scattering and absorption processes

in the atmosphere, assumptions are required for the backscatter-to-extinction ratio and the retrieval results strongly depend on

these assumptions. As a consequence, the challenge is to find ways to reduce the uncertainties in the retrieval arising from an

insufficient knowledge of the backscatter-to-extinction ratio.10

To overcome the backscatter-to-extinction ambiguity, we showed in a second step that it is possible to use TIR radiances

to constrain the backscatter-to-extinction ratio defined as the product of the single scattering albedo and the phase function in

backscattering direction. The latter has not been yet fully characterized and is associated with large uncertainties. Moreover,

it strongly depends on the characteristics of the particles composing the cloud. However, the BV2015 microphysical model

links the optical properties of cirrus directly to the IWC without the need for assumptions about the particle shape and PSD.15

It allows to obtain the single scattering albedo and the asymmetry parameter (from which the phase function is parametrized)

as a function of IWC and in-cloud temperature alone. Our algorithm benefits from the fact that TIR radiances are sensitive to

the integrated IWC over the whole atmospheric column (IWP) and that the IWC of each layer governs the optical properties

via the microphysical model. That means the backscatter intensity of the ice crystals is constrained by the TIR radiances under

the assumption that the single scattering albedo is represented sufficiently exact in the microphysical model. Consequently, our20

synergy algorithm retrieves a profile of IWC together with a correction factor for the phase function of the ice crystals in the

exact backscattering direction which is assumed to be constant over the entire cloud profile. Hence, the integration of the TIR

radiances into the optimal estimation framework allows to retrieve the lidar ratio although we are using backscattering profiles

from a simple micro-pulse lidar.

Another achievement of our algorithm is the integration of information from the whole atmospheric profile, accessible thanks25

to the active lidar measurements, in the forward modelling of the TIR radiances. Most common retrieval algorithms for passive

sensors assume a homogeneous cloud and include only information about the cloud altitude from active measurements in the

radiative transfer calculations. The synergy between the lidar and the TIR radiometer measurements established in this paper

allows to account for the profile of IWC in the radiative transfer model. Furthermore, the extinction of aerosols which may be

present in the atmosphere is included in the TIR forward model although further information on the aerosol type is required.30

In this study, the aerosol optical properties were fixed to a predefined aerosol model and an improvement of our method would

be to better characterize the properties of the aerosols which are actually present during the measurement. It is worth noting

that the high vertical resolution of the radiative transfer calculations in the TIR is possible thanks to the numerical efficiency
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of the radiative transfer model LIDORT discussed in Sect. 4.1 which allows to obtain the radiances and Jacobians for different

atmospheric parameters from a single simulation.

The results for the case study discussed in Sect. 4.2 show for certain periods a quite good agreement of the retrieved lidar

ratios from our synergy algorithm with the literature. When the cloud is optically very thin, the signal in the TIR measurements

is very small resulting in a large uncertainty of the retrieval which seems to be rather logical. However, it is important to recall5

that the results depend on several factors. All retrievals shown in this study were performed for a multiple scattering factor

for ice clouds of η = 0.75 and the backscatter-to-extinction ratio for aerosols was fixed to the value for an urban water soluble

aerosol from the OPAC database. Changing those values may change the retrievals and further sensitivity studies with our

algorithm are necessary to evaluate the effects of (1) a varying multiple scattering factor and (2) using other aerosol models.

Furthermore, when regarding ground-based TIR radiometer measurements, a good characterization of the surrounding atmo-10

sphere, especially the water vapor profile, is crucial since the TIR radiances are very sensitive to water vapor which is spatially

and temporally highly variable. Hence, the ECMWF reanalysis profiles used in this study which are available for four time

steps at 0, 6, 12 and 18 UTC and have a spatial resolution of 1◦ may not be sufficiently exact to characterize the local water

vapor profile at our measurement site during the measurement. It is certain that a better characterization of the water vapor

profile, e.g. from micro-wave radiometer measurements, would help to reduce the uncertainties of our retrievals.15

Finally, the quality of the measured TIR radiances plays an important role. For the case study presented here, the temperature

correction of the sensitivity of the instrument results in a quite large uncertainty because of a large temperature difference

between the temperatures during the measurement and the calibration. It was shown in Sect. 3.3.2 that it was not possible

to simulate the clear sky radiances measured with channel C09. Hence, this channel was not included in the analysis. This

might be due to a bad characterization of the spectral response function of the instrument as mentioned above and/or to20

an insufficient temperature correction. Thus, another improvement of our method would be to isolate the instrument from

atmospheric temperature influences.

Nevertheless, the first results obtained from this algorithm are promising and we showed that our method allows to converge

at the same time towards the measurements of two very different instruments. However, these results have to be confirmed in

future studies for other measurement periods and measurement sites.25
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