
Author response 
 
Please find below our responses to Referees 1 and 2. Referee comments are indicated in italic, 
followed by our reply indicating also the changes made to the manuscript. Our response to referees 
is followed by a marked-up version of the manuscript. 
 
Kindly note that to answer Referee 1 first major comment we had to include data from another 
instrument at the Finokalia measurement site. Consequently, one more author is included in the 
manuscript. 
 
 
 
 
 
 
Response to Anonymous Referee 1 
 
Referee comments are indicated in italic, followed by our reply. 
 
 
The paper presents a new background correction method for the HALO Photonics Streamline 
Doppler lidar, but it can also be applied to other Doppler lidar systems. The paper is a well 
structured and the algorithm description is presented in detail. My overall impression of the paper 
is good and it should be published in AMT if the authors take into account the following points: 
 
We would like to thank the referee for the valuable comments, which have improved the 
manuscript. 
 
Major issues: 
 
- The method is actually quite powerful and significantly lifts the performance of the Doppler lidar 
systems. It comes even close to the sensitivity of more powerful Raman lidar systems. In page 8 line 
27 such collocated measurements with a Raman lidar are mentioned. It would be nice to a) show 
attenuated backscatter data of this Raman lidar system together with the improved signals in Fig. 
8b. b) show profiles of att. backscatter of Raman and Doppler lidars to prove that there is no 
remaining trend with height in the corrected data. Such an analysis would give additional value to 
the paper and help the reader to perceive the performance of this post-processing algorithm. 
 
Thank you for the suggestion. We have added Raman lidar SNR and attenuated backscatter profiles 
as a new Fig. 9. Fig 9 includes also a comparison of Raman and Doppler lidar SNR profiles at 21 
UTC. We have added a short description of the Raman system in Section 2 and modified text on 
page 8, line 26-27 as: 
 
“These aerosol layers were also observed with a co-located multi-wavelength Raman lidar PollyXT 
(Baars et al., 2016; Engelman et al., 2016). A comparison of lidar 53 and the Raman lidar 
measurements at 1064 nm wavelength are presented in Fig. 9. Considering the wavelength 
difference, the agreement between the two systems is reasonably good.” 
 
 



 
Figure 9: (a) Vertical profiles of SNR from PollyXT at 1064nm wavelength and SNR2 from lidar 53 at Finokalia 
on 8 July 2014. Both profiles are obtained at 21 UTC; integration time of lidar 53 profile is 350s and integration 
time of PollyXT profile is 360s. (b) Time series of PollyXT SNR at 1064nm wavelength with 360s integration time 
at Finokalia on 8 July 2014. (c) Time series of PollyXT attenuated backscatter at 1064nm wavelength with 360s 
integration time at Finokalia on 8 July 2014. 
 
 
- Such work should reflect back on the next versions of the lidar systems and/or the on-board 
processing software. The algorithm should even be included in the data acquisition itself. Please 
comment if there are any plans for that. 
 
To our knowledge there are no plans to incorporate this algorithm in the on-board software at the 
moment. In our opinion this is not a severe limitation, as most (if not all) lidar systems require some 
post-processing for optimal data quality.  
 
- Is the software available somewhere? It would be really useful to point to a repository of any kind. 
 
A Matlab implementation of the algorithm presented here is available at 
https://github.com/manninenaj/HALO_lidar_toolbox. We have added a note on this in Conclusion 
and a reference to the toolbox in the references. 
 
 
- Page 9 line 17: "With enhanced SNR, the instrumental contribution to radial velocity variance can 
be estimated with better accuracy". The method discussed in the paper is only applied to the SNR. 
How does improvement of radial velocity work in this context? Is the improvement maybe based on 
a better selection of radial velocity values? This is not fully clear, yet very interesting and should be 
demonstrated in the paper. Please provide plots of enhanced radial velocity together with Fig. 5, 7 
or 8. 
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This method does not affect radial velocity values from the Doppler lidar, but only SNR.  
 
As discussed in the manuscript on page 3, lines 17-20, instrumental uncertainty in radial velocity is 
a function of SNR (see also Fig. 3b). Variance calculated from a set of observed radial velocities 
will have contributions from both instrumental uncertainty and atmospheric turbulence. By 
improving the accuracy of SNR, this method enables more accurate determination of the 
instrumental contribution, which can be substantial under low signal conditions. This will result in 
more accurate retrieval of turbulent parameters when instrumental noise contribution is subtracted 
from the observed radial velocity variance. 
 
We have tried to clarify this sentence as 
“With enhanced SNR, the instrumental noise contribution to radial velocity variance can be 
estimated with better accuracy, which will improve the quality of turbulent parameter retrievals.” 
 
 
Minor issues: 
 
- Would temperature stabilization of the Stream Line / Stream Line Pro instruments help to reduce 
noise? 
 
Temperature stabilisation would help to ensure that the shape of Pamp is known well (c.f. Fig. 2b). 
However, temperature dependency of Pamp is a relatively small source of noise in the SNR, in the 
order of magnitude 10-5 x (SNR+1). We have added a note to this effect on page 5, line 23: 
 
“For optimal data quality, additional temperature stabilisation could be applied to ensure that Pamp is 
always in the well-characterised temperature range.” 
 
- The authors present an algorithm that is applied to the evaluated profiles of SNR. Would it make 
sense to apply it to the raw spectra. 
 
If SNR is calculated from the raw spectra, this algorithm will be needed to determine the actual 
noise floor. We have added a note to this effect in conclusions on page 9, line 16. 
 
- Concerning the alternation of the emitter of lidar 146: Is it a fault of the individual system or is it 
found for all systems? 
 
We have observed this behaviour on the two systems with the new, more sensitive amplifier that we 
have access to at the moment. We consider it likely that this alternation will be present in all 
systems with the XR-amplifier. This is easy to check from the saved background files by the lidar 
operator, though. 
 



Technical issues: 
 
- Table 1 could be condensed. Stream Line and Stream Line Pro seem to be identical and the only 
difference to the Stream Line XR seems to be pulse repetition rate and maximum range. 
 
Table 1 has been condensed: 
 
Table 1 Specifications for Halo Doppler lidars utilised in this study. 

Lidar number and version 46, Stream Line 

53, Stream Line Pro 

146, Stream Line XR 

Wavelength 1.5 m 

Pulse repetition rate 15 kHz (46 and 53) or 

10 kHz (146) 

Nyquist velocity 20 m s-1 

Sampling frequency 50 MHz 

Velocity resolution 0.038 m s-1 

Points per range gate 10 

Range resolution 30 m 

Maximum range 9600 m (46 and 53) or 

12000 m (146) 

Pulse duration 0.2 s 

Lens diameter 8 cm 

Lens divergence 33 rad 

Telescope monostatic optic-fibre 

coupled 

 

 
 
- Figure 2: Using red and black both in (a) and (c) is a bit confusing in this context. 
Please use alternative colors in (c). 
 
We have changed the colors in Fig. 2c to blue and black:  
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Figure 2: (a) Lidar 46 Pbkg,res averaged from 20 August 2016 to 14 June 2017 (7193 background checks). Lidar 53 
Pbkg,res averaged from 1 January 2014 to 30 November 2015 (16802 background checks). Pamp is plotted for both 
systems. (b) First 100 range gates of lidar 46 Pamp calculated for different ranges of T. (c) Lidar 146 Pbkg,res 
averaged from 12 January 2018 to 31 May 2018. Pbkg,res is averaged separately for high Pbkg mode (1375 
background checks) and for low Pbkg mode (1623 background checks). Pamp is plotted for both modes. 



Response to Anonymous Referee 2 
 
Referee comments are indicated in italic, followed by our reply. 
 
 
General: 
The authors present an algorithm to improve the accuracy of the instrumental noise of Halo 
Photonics Doppler lidars. Therefore, longer integration times become possible; enabling to obtain 
signals down to -32 dB. This is particularly useful under conditions with low aerosol load. 
The algorithm combines two background correction methods. The first method corrects for a 
variable offset in SNR at each range gate, visible as horizontal stripes in the time-height cross-
sections of retrieved backscatter. The description of the source of this error in SNR as well as its 
correction is novel. The second method corrects for an error in scaling of the raw signal, which can 
result in vertical stripes in the time-height cross-sections of retrieved backscatter. The second 
correction method has already been published in AMT (Manninen et al., 2016). The authors show 
that combining both methods gives added value to the retrieval of atmospheric turbulence 
properties as well as aerosol observations. Additionally, the “novel post-processing” algorithm 
could be used in other Doppler lidars and other lidar systems. 
Overall, the paper is well written and the description of the algorithm is logical and well-
structured. However, the authors should include a more detailed discussion of SNR statistics. 
Therefore, the given paper presents a valuable contribution to the field of lidar-based remote 
sensing. I recommend it for publication in AMT after considering the following comments. 
 
We would like to thank the referee for the valuable comments, which have improved the 
manuscript. 
 
Major comments: 
 
1) Does applying the horizontal stripe correction prior to the Manninen correction influence the 
performance of the cloud screening, which included in the latter? 
 
Applying the horizontal stripe correction makes it easier to perform cloud screening, as it is easier 
to discern thin clouds and aerosol layers. We have added a sentence on page 6, line 3: 
 
“Note that typically cloud and aerosol signal is easier to discern in SNR1 than in SNR0 and thus 
cloud screening is applied after Equation 5.” 
 
 
2) In Figures 6, 7 and 8 the reader can visually see the improvements in SNR looking at SNR0 to 
SNR2, but it is essential to quantify the improvement, e.g. with a figure along the line of Figures 8 
or 9 in Manninen et al. (2016). Such a statistical analysis of the SNR would present a more detailed 
picture of the algorithms performance. It would also help to answer comment 1). 
 
In our opinion the major advantage of this algorithm is that it enables averaging SNR to utilise very 
weak signals, which is illustrated in Fig. 4d. However, to give more detailed picture of the 
algorithm’s performance we have added histograms of SNR0 and SNR2 in cloud and aerosol free 
regime for the four cases studies as an Appendix to the manuscript. The new Fig. A1 is below. 
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 (a)

SNR0, mean -1.3e-04 [1.5e-03]

     median -1.3e-04 [-1.2e-03,9.0e-04]
SNR2, mean 4.1e-08 [1.1e-03]

     median 9.8e-07 [-7.2e-04,7.2e-04]

SNR0, mean -2.0e-03 [3.1e-03]

     median -1.4e-03 [-3.8e-03,2.0e-04]
SNR2, mean 4.8e-07 [9.8e-04]

     median -1.6e-06 [-6.6e-04,6.6e-04]

SNR0, mean -5.0e-04 [1.6e-03]

     median -4.8e-04 [-1.6e-03,5.9e-04]
SNR2, mean -5.2e-05 [9.9e-04]

     median -5.4e-05 [-7.2e-04,6.1e-04]

SNR0, mean -1.1e-04 [2.0e-03]

     median -1.1e-04 [-1.5e-03,1.3e-03]
SNR2, mean -4.4e-06 [1.4e-03]

     median -4.9e-06 [-9.3e-04,9.2e-04]

 
Figure A1. Histograms of SNR0 and SNR2 in cloud and aerosol free regime for the four case studies considered in 
Section 4. For each case, mean [standard deviation] and median [25th, 75th percentile] of SNR0 and SNR2 are 
included. (a) Welgegund on 6 September 2016, 00-24 h UTC, 4800-9000 m a.g.l.. (b) Kumpula on 1 May 2018, 02-
24 h UTC, 6000-12000 m a.g.l.. (c) Kumpula on 6 May 2018, 00-12 h UTC, 4000-7000 m a.g.l.. (d) Finokalia on 8 
July 2014, 00-24 h UTC, 5000-96000 m a.g.l.. 
 
 
 
3) p.2 l. 18: “as uncertainty : : : wind retrievals: : :” + p.9 l.17-21: “With enhanced SNR,: : :” 
On the one hand, the introduction refers not only to turbulence but also to wind retrievals. 
On the other, the conclusion only states turbulence retrievals. Methods, such as velocity azimuth 
display utilize the SNR to determine reliable radial velocity measurements. Therefore, the 
correction algorithm increases the data availability and probably decreases the uncertainty in the 
retrieval. 
The paper would gain more attention if this is aspect is included in the discussion; either by 
actually showing that the novel post-processing improves the retrieved winds or by including a 
paragraph on the expected benefit for wind retrievals. 
 
Thank you for bringing this up. Wind retrieval methods should be able to discard outliers (e.g. 
Päschke et al., 2015), so we do not expect that the retrieved wind speed and direction would be 
affected. However, as a lower SNR-threshold can be applied after the new post-processing, the data 
availability will increase. How large this effect is depends on atmospheric conditions. We have 
added following discussion in Section 4.1, where also vertical winds are discussed: 
 
“Lower noise floor enables also wind retrievals with a lower SNR-threshold, which increases the 
data availability. The effect on data availability depends on atmospheric conditions, though. In this 



case for instance (Welgegund, 6 September 2016) a 75° elevation angle velocity azimuth display 
(VAD) scan was utilised for horizontal wind retrieval every 15 minutes. With the new post-
processing algorithm the SNR-threshold for wind retrieval could be decreased from 0.0045 to 
0.0032. This decrease in SNR-threshold enabled wind retrieval for 2-13 range gates more from each 
VAD scan; on average, winds could be determined from 7.5 additional range gates per VAD scan. 
That is, vertical coverage of wind retrievals increased on average by 200 m with the new post-
processing. 
 
Wind retrievals at lower SNR will have higher uncertainty due to higher instrumental noise in radial 
velocity measurement, yet enhanced SNR will enable more accurate determination of the 
instrumental uncertainty in wind retrievals. However, as a major fraction of the uncertainty in 
retrieved winds arises in atmospheric turbulence (Newsom et al., 2017) the more accurate SNR will 
have only a limited effect on the overall uncertainty in the wind retrieval. Therefore, the uncertainty 
in each wind retrieval should be evaluated e.g. with the methodology of Newsom et al. (2017) 
before the wind retrievals are disseminated.“ 
 
We have added a note on improved data coverage for horizontal wind also in the Conclusion. 
 
 
4) Manninen et al. (2016) give the code as well as an example as supporting information. 
This paper’s algorithm could spread a lot faster, if the authors also include the code in the 
supporting information or point to a repository, e.g. on github. 
 
A Matlab implementation of the algorithm presented here is available at 
https://github.com/manninenaj/HALO_lidar_toolbox. We have added a note on this in Conclusion 
and a reference to the toolbox in the references. 
 
 
Minor comments: 
 
1) Figure 1b shows the temperature dependency of the background profiles. Between 20_C and ca. 
27_C the increase seems linear with only a small spread. Above 27_C the increase appears linear 
with a steeper slope and wider spread of values. Is it possible that part of this change (especially 
the wider spread) is due to the switch on of the active cooling unit of the Halo Streamline? The 
cooling would insert vibration and additional electronic noise into the lidar system which could 
alter the background measurement. 
 
It is quite possible that this change coincides with the switching on of the fans. However, we did not 
find temperature dependency in the actual measurement noise (measured as the variance of SNR for 
cloud and aerosol free range gates). The only temperature effect we found is in Pamp (Fig. 2b), 
which becomes relevant only when integration time is several minutes or longer. 
 
2) Figure 2 and the corresponding discussion on page 5 show that even if the technical 
specifications of two Doppler lidars are the same (see Table 1), their performance can be different 
due to instrumental characteristics. This presents an additional finding of this paper which is 
especially important when operating multiple Doppler lidars. The users should be aware of the 
possible differences in instruments of the same type. Hence, this finding deserves more attention 
and should be mentioned in the conclusion. 
 



Indeed, each lidar system needs to be individually characterised by the lidar operator. We have 
added following paragraph in conclusion: 
 
“Our analysis shows that even if the technical specifications of two Doppler lidar systems are 
identical, their instrumental noise characteristics can be quite different (Fig. 2). Therefore, the lidar 
operator should inspect each system individually to ensure highest data quality. Note that this 
algorithm or similar processing is needed to define the instrumental noise level even if raw spectra 
are utilised instead of the processed in data. The algorithm presented here can be applied in semi-
operational use as long as at least 300 background checks (acquired in two weeks of measurements 
with typical configuration) are available for characterising the amplifier response to the transmitted 
pulse. A Matlab implementation of this algorithm is available through Github (Manninen, 2019).” 
 
Reference: 
 
Manninen, A: HALO lidar toolbox, GitHub, https://github.com/manninenaj/HALO_lidar_toolbox, 
2019. 
 
3) Concerning the high and low mode in the XR lidar: Do the authors know by now, why there are 
two modes? Halo lidars can be equipped with a depolarization channel. Is instrument number 146 
such an instrument and can the authors exclude that the seemingly random shifts in modes are due 
to switching between co- and cross-polarization? 
 
All instruments utilised in this study are equipped with a depolarization channel. However, the 
software is configured to do background check always in the co-polar mode. Our understanding is 
that this is a feature of the amplifier. However, whether these two modes are present in a system is 
easy to check by the lidar operator from the background files. Note also that some systems are 
configured with 10kHz pulse repetition frequency, but use the non-XR amplifier. 
 
4) Could methods similar to the horizontal stripe correction be applied to other lidar systems such 
as ceilometers? 
 
This kind of method can be applied to any lidar system that defines noise level from a finite 
duration background check (c.f. page 9, line 8-10). However, ceilometers do not routinely carry out 
such background measurement – in ceilometers the most important source of noise is solar 
background, which requires its own processing. 
 
5) Some readers could be interested in using Doppler lidars semi-operationally, e.g. for a seasonal 
campaign or even 24/7. Which parts of the algorithm are applicable operationally? How long does 
the data set have to be in order to successfully apply the post-processing? What about longer data 
gaps? The publication would benefit from a remark to operational applicability. 
 
The algorithm is not computationally heavy and can be utilised semi-operationally with time delay 
of a few minutes from measurement to post-processed data. As pointed out on page 5, line 19-20, 
approximately 300 background checks are needed to obtain a reliable estimate of Pamp. This 
corresponds to two weeks of measurements with hourly background checks. Such short record does 
not facilitate accounting for temperature dependency of Pamp, but that is a minor effect compared to 
other sources of uncertainty in the noise level. 
 
As long as a continuous record of background checks are available, data gaps are not an issue for 
this post-processing algorithm.  



 
6) The introduction starts by mentioning “turbulent mixing” and “mixing layer height”, but the 
paper presents no estimate of the MLH in one of the Figures 4 through 8. Including the MLH as a 
line plot in Figure 4 or elsewhere would round up the discussion that started in the introduction. 
 
We have added MLH as a line in Fig. 5. 
 
7) p.5 l. 11: “t”elescope. 
 
Corrected on page 3, line 11. 
 
8) Table 1 seems to long and could be shortened by mentioning redundant information only once 
 
Table 1 has been condensed: 
 
Table 2 Specifications for Halo Doppler lidars utilised in this study. 

Lidar number and version 46, Stream Line 

53, Stream Line Pro 

146, Stream Line XR 

Wavelength 1.5 m 

Pulse repetition rate 15 kHz (46 and 53) or 

10 kHz (146) 

Nyquist velocity 20 m s-1 

Sampling frequency 50 MHz 

Velocity resolution 0.038 m s-1 

Points per range gate 10 

Range resolution 30 m 

Maximum range 9600 m (46 and 53) or 

12000 m (146) 

Pulse duration 0.2 s 

Lens diameter 8 cm 

Lens divergence 33 rad 

Telescope monostatic optic-fibre 

coupled 
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Correspondence to: Ville Vakkari (ville.vakkari@fmi.fi) 

Abstract. Commercially available Doppler lidars have now been proven to be efficient tools for studying winds and 

turbulence in the planetary boundary layer. However, in many cases low signal-to-noise ratio is still a limiting factor for 15 

utilising measurements by these devices. Here, we present a novel post-processing algorithm for Halo Streamline Doppler 

lidars, which enables an improvement in sensitivity of a factor of five or more. This algorithm is based on improving the 

accuracy of the instrumental noise floor and it enables using longer integration times or averaging of high temporal 

resolution data to obtain signals down to -32dB. While this algorithm does not affect the measured radial velocity, it 

improves the accuracy of radial velocity uncertainty estimates and consequently the accuracy of retrieved turbulent 20 

properties. Field measurements with three different Halo Doppler lidars deployed in Finland, Greece and South Africa 

demonstrate how the new post-processing algorithm increases data availability for turbulent retrievals in the planetary 

boundary layer, improves detection of high-altitude cirrus clouds, and enables the observation of elevated aerosol layers. 

1 Introduction 

Turbulent mixing in the planetary boundary layer (PBL) is one of the most important processes for air quality, weather and 25 

climate (e.g. Garratt, 1994; Baklanov et al., 2011; Ryan, 2016). Mixing layer height (MLH), i.e. the height of the layer that is 

connected with the surface on timescales of less than 1 hour, is a central parameter describing PBL turbulence (e.g. Seibert et 

al., 2000). Continuous measurement of MLH with good temporal resolution is not trivial, though. For instance, aerosol 

backscatter profiles have been commonly used to estimate MLH (Seibert et al., 2000, Pal et al., 2013). The benefit being that 

aerosol backscatter profiles can be obtained routinely with high temporal resolution (e.g. Emeis et al., 2008), but as this 30 

method is not a direct measure of turbulent mixing it is prone to erroneous interpretation especially during morning and 

evening transition periods of convective PBL (Schween et al., 2014). 
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Development of fibre-optic Doppler lidar systems during the last 5 to 10 years has enabled direct, long-term observation of 

MLH with temporal resolutions of typically a few minutes or better (e.g. Tucker et al., 2009; O'Connor et al., 2010; Pearson 

et al., 2010; Schween et al., 2014; Vakkari et al., 2015; Smalikho and Banakh 2017; Bonin et al., 2017, 2018). Long-range 

Doppler lidar systems typically have a blind range with a minimum usable distance of 50-100 m, hence scanning Doppler 

lidar is the only realistic option for covering the full range of MLH from close to ground level up to a few kilometres with 5 

good temporal resolution (Vakkari et al., 2015).  

In addition to MLH, fibre-optic Doppler lidar systems have enabled also long-term monitoring of horizontal wind profiles 

within PBL (Hirsikko et al., 2014; Päschke et al., 2015; Newsom et al., 2017; Marke et al., 2018). Together with vertical 

profiles of higher moments of the velocity distribution (Lothon et al, 2009),  e.g vertical wind speed variance and skewness, 

as well as turbulent kinetic energy dissipation rate, Doppler lidar measurements enable the diagnosis of the sources of 10 

turbulence within PBL (Hogan et al, 2009; Harvey et al., 2013; Tuononen et al., 2017; Manninen et al., 2018). 

Velocity measurements with fibre-optic Doppler lidar systems operating at 1.5 µm wavelength depend on light scattering 

from aerosol particles and cloud droplets as these are small enough to behave as tracers of atmospheric motion. In very clean 

atmospheric environments, the lack of scattering particles becomes a limiting factor for utilising these systems (e.g. 

Manninen et al., 2016). Development of new, more powerful yet eye-safe Doppler lidar systems has helped to overcome this 15 

limitation to a large degree (e.g. Bonin et al., 2018), yet decreasing the instrumental noise level through post-processing of 

the data allows the utilisation of weaker signals and can lead to major improvements in data coverage (Manninen et al., 

2016). The post-processing algorithm by Manninen et al. (2016) has the added benefit of improving the accuracy of the 

signal-to-noise ratio (SNR), which leads to more accurate uncertainty estimates of the measured radial velocity (Rye and 

Hardesty, 1993; Pearson et al., 2009). This is especially important for the retrieval of turbulent properties under weak signal 20 

conditions, as uncertainty in instrumental noise level propagates into turbulent properties and wind retrievals (O’Connor et 

al., 2010; Vakkari et al., 2015; Newsom et al., 2017). Naturally, post-processing methods can be applied to historical data 

sets as well. 

Here we present an improved post-processing algorithm for Halo Photonics Streamline Doppler lidars, which are currently 

widely-used for PBL research (O'Connor et al., 2010; Pearson et al., 2010; Harvey et al., 2013; Hirsikko et al., 2014; 25 

Schween et al., 2014; Päschke et al., 2015; Vakkari et al., 2015; Banakh and Smalikho 2016; Tuononen et al., 2017; Bonin et 

al., 2018). Building on the work by Manninen et al. (2016), we show that, by changing the way instrumental noise level is 

determined during periodic background checks, the sensitivity can be improved by as much as a factor of 5; by averaging 

high time resolution data, signal with an SNR as low as -32dB can be utilised. Case studies from different environments in 

Finland, Greece and South Africa are presented to demonstrate how the new post-processing algorithm increases data 30 

availability for turbulent retrievals in PBL, improves detection of high-altitude cirrus clouds and enables observation of 

elevated aerosol layers at 2 to 4 km above ground level.  
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Next, in Section 2 we introduce the Halo Photonics Streamline, Streamline Pro and Streamline XR lidars used in this study. 

Section 3 describes the improved SNR post-processing algorithm and in Section 4 the three case studies are presented, 

followed by concluding remarks.  

2 Instrumentation and measurements 

In this study we utilise data from three different versions of Halo Photonics scanning Doppler lidars (Pearson et al., 2009): 5 

lidar 46 is a Stream Line system, lidar 53 is a Stream Line Pro system and lidar 146 is a Stream Line XR system. All Halo 

Photonics Stream Line versions are 1.5 µm pulsed Doppler lidars with a heterodyne detector that can switch between co- and 

cross-polar channels (Pearson et al., 2009). The Stream Line and the more powerful Stream Line XR lidars are capable of 

full hemispheric scanning and the scanning patterns are user-configurable. The Streamline Pro version is designed for 

harsher environmental conditions with no exterior moving parts, which limits the scanning to within a cone of 20 degrees 10 

from vertical. In this study, however, we utilise only vertically pointing measurements in co-polar mode and thus there is no 

practical difference between the limited and fully scanning versions.  

The minimum range for all instruments is 90 m and standard operating specifications for the different versions are given in 

Table 1. The telescope focus of the Stream Line and Stream Line Pro lidars is user-configurable between 300 m and infinity, 

whereas the Stream Line XR focus cannot be changed. Integration time per ray is user adjustable and can be optimised 15 

between high sensitivity (long integration time) and high temporal resolution (short integration time) depending on the 

environmental conditions and research questions. In the measurements utilised in this study, 7s integration time is used for 

lidars 46 and 53, while lidar 146 is operated with 10s integration time. 

In measurement mode the Halo Doppler lidars provide three parameters along the beam direction: radial Doppler velocity 

(vr), SNR, and attenuated backscatter ( ), which is calculated from SNR taking into account the telescope focus. As part of 20 

post-processing, we calculate the measurement uncertainty in vr ( vr) from SNR according to O’Connor et al. (2010). As 

discussed earlier, in calculating turbulent parameters from Doppler lidar observations accurate vr is needed to differentiate 

turbulence from instrumental noise (e.g. O’Connor et al., 2010; Vakkari et al., 2015; Newsom et al., 2017).  

We present case studies of Halo Doppler lidar measurements at three different locations with three different instruments. 

Lidar 53 was deployed at Finokalia, Crete, Greece (35.34°N, 25.67°E) on 8 July 2014. Lidar 46 was deployed at Welgegund, 25 

South Africa (26.57°S, 26.94°E) on 6 September 2016 and lidar 146 was deployed at Helsinki, Finland (60.20° N, 24.96° E) 

on 1 and 6 May 2018. 

Additionally, we utilise collocated Raman lidar measurements at Finokalia. These measurements were carried out with the 

OCEANET PollyXT multiwavelength Raman/polarization lidar system of the Leibniz Institute for Tropospheric Research 

(TROPOS). A detailed description of the instrument and its measurements are provided in Engelmann et al. (2016) and 30 

Baars et al. (2016), respectively. In brief, PollyXT operates using a Nd:YAG laser that emits light pulses at 1064 nm with a 

repetition frequency of 20 Hz. The radiation frequency is doubled and tripled, resulting to a simultaneous emitting of 355, 
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532 and 1064 nm in the atmosphere. The receiver features 12 channels that enable measurements of elastically (three 

channels) and Raman scattered light (387 and 607 channels for aerosols, 407 for water vapour) as well as depolarization state 

of the incoming light (355 and 532 nm) and near-range measurements (two elastic and two aerosol Raman channels). In this 

study, the measurements at 1064 nm are used. The lidar measurements at Finokalia were collected during the 2014 

“CHARacterization of Aerosol mixtures of Dust and Marine origin Experiment” (CHARADMExp) on the northern coast of 5 

Crete, Greece. 

3 Improved background check handling algorithm 

3.1 Signal-to-noise ratio in Halo Doppler lidars 

Halo Doppler lidars measure the noise level during periodic background checks, typically once an hour, where the scanner is 

set to point to an internal (limited-scan) or external target mounted on the instrument itself (hemispheric scan) so that no 10 

atmospheric signal is recorded. The raw signal from the amplifier during the background check (Pbkg) is saved as a profile in 

ASCII files (“Background_ddmmyy-HHMMSS.txt”) with the range resolution configured for the normal measurement 

mode. For most Stream Line and Stream Line Pro firmware versions, Pbkg is written on one line with a fixed precision of six 

decimals, but varying field width for each range gate. In Stream Line XR firmware, the Pbkg value at each range gate is 

written on its own line.  15 

In most Stream Line and Stream Line Pro instruments, the profile Pbkg(z) is flat (constant with range) or presents a small 

linear increase with increasing distance z from the lidar (Fig. 1a); Pbkg(z) following a second-order polynomial can also occur 

(Manninen et al., 2016). For Stream Line XR instruments, Pbkg(z) can vary between a linear and an inverse exponential shape 

(Fig. 1a), for which the inverse exponential Pbkg(z) can be represented as 

(z) =
( )

 ,            (1) 20 

where b1, b2, and b3 are scalars and can be determined from a least-squares fit.  

In Stream Line and Stream Line Pro lidars, the magnitude of Pbkg increases non-linearly with instrument internal temperature 

(T) (Fig. 1b). For Stream Line XR lidars, which use a different amplifier, the mean Pbkg does not depend on T, however, the 

amplifier alternates randomly between a high mode (Pbkg  3.6 108 for lidar 146) and a low mode (Pbkg  3.2 108 for lidar 

146) as seen in Fig. 1c. Furthermore, it appears that the inverse exponential Pbkg shape occurs only in the low mode, but not 25 

all low mode Pbkg profiles follow Equation 1. 

The Halo Doppler lidar firmware accounts for changes in Pbkg level by calculating SNR as 

= ( )
( )

1 ,            (2) 
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where P0(z) is the raw signal from the amplifier during each measurement, Pbkg(z) has been obtained during the previous 

background check, and scalar scaling factors A0 and Abkg are determined on-line for each P0 and Pbkg profile. Here, we denote 

the unprocessed SNR output by the instrument as SNR0. Note that A0 and Abkg are not saved by the firmware, which means 

that the high and low mode in Stream Line XR lidars cannot be identified in the SNR0 time series. 

Equation (2) is straightforward to determine on-line as there are no assumptions about the shape of Pbkg and  it  gives  a  5 

reasonably good first estimate of SNR. However, Equation (2) is vulnerable to inaccuracy in determining A0 and Abkg as well 

as to any deviation from the actual noise level during measurement of Pbkg. An offset in A0 inflicts a constant offset in SNR0 

in a single profile, while an offset in Abkg does the same for all profiles between two background checks (c.f. Manninen et al., 

2016). The magnitude of typical offset in A0 and Abkg varies from instrument to instrument; in some cases they can have a 

major effect on data coverage (Manninen et al., 2016).  10 

In all Halo Doppler lidars Pbkg contains a small but varying offset from the actual noise level at each range gate because of 

the finite duration of the background check. These offsets appear as a small constant offset in SNR0 at each range gate 

between two background checks. To minimise the effect of offset in Pbkg, the integration time of background check 

measurement was originally designed to be 6 times as long as the integration time in measurement mode. The duration of the 

background check is user-configurable, however, for long integration times of up to 6 minutes considered in this manuscript 15 

such long background checks are not a viable option. In the next section we present an improved algorithm to correct SNR0 

for inaccuracies in A0, Abkg and Pbkg. 

3.2 Improved SNR post-processing algorithm 

Whether Pbkg(z) is linear or follows some other functional form is readily determined by fitting expected functions to it (c.f. 

Manninen et al., 2016). For Stream Line and Stream Line Pro lidars we consider second order polynomial to represent Pbkg(z) 20 

better than a linear fit if it has at least 10 % lower root-mean-squared (RMS) error than the linear fit to Pbkg(z). For Stream 

Line XR we consider Equation (1) to represent Pbkg(z) better  if  it  has  at  least  5  %  lower  RMS  error  than  the  linear  fit  to  

Pbkg(z). Furthermore, knowing the typical noise level of a certain instrument, a RMS threshold can be applied to discard bad 

fits and to flag periods of increased uncertainty.  

Denoting the selected fit to Pbkg(z) as Pfit(z), the residual is 25 

, (z) = (z) (z) .           (3) 

Averaging Pbkg,res(z) over a large number of Pbkg(z) profiles reveals a persistent structure in the residual (Fig. 2a). This part of 

Pbkg,res(z) originates in the amplifier response to the transmitted pulse, denoted here as Pamp(z), and it is the main reason for 

using the gate-by-gate defined Pbkg(z) profile in SNR calculation by the manufacturer. However, Pamp(z) stays reasonably 

constant over time and can be obtained from a long enough data set of Pbkg(z). Here, we used a discrete wavelet transform 30 

with Symmlet order 8 wavelet as a low-pass filter to de-noise the averaged Pbkg,res(z).  As  shown  in  Fig.  2a,  Pamp(z) is 

instrument-specific and needs to be determined individually for each device.  
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In Stream Line and Stream Line Pro lidars, T has a small effect on Pamp(z) as seen in Fig.2b. However, this can be addressed 

based on a suitably long T data set and Pbkg,res(z) by determining Pamp(z) as a function of the internal temperature. In practice, 

at least 300 Pbkg(z) profiles are required to obtain a reliable estimate of Pamp(z). Consequently, for an 11-month measurement 

campaign at Welgegund, we could determine Pamp as a function of T at 1°C resolution from 25 to 31 °C (Fig. 2b). For 

T<23°C or T>35°C we could only determine aggregate Pamp profiles, but then these temperature ranges comprise only 9 % 5 

of the measurements in this data set. For optimal data quality, additional temperature stabilisation could be applied to ensure 

that Pamp is always in the well-characterised temperature range. 

In Stream Line XR lidars, Pamp does not depend on T, however, Pamp has to be determined separately for the high and low 

mode of Pbkg (cf. Fig. 1c). For lidar 146, we define Pbkg high mode as mean Pbkg > 3.4 108 and Pbkg low mode as mean Pbkg < 

3.4 108, respectively. As seen in Fig. 2c, Pamp for these two modes differ substantially. 10 

We consider the sum of Pfit(z) and Pamp(z) as the best estimate for the actual instrumental noise level during a background 

check, 

(z) = (z) + (z) .           (4) 

Using Equation (2), we can move from a Pbkg-based SNR (i.e. SNR0) to a Pnoise-based, corrected SNR (denoted here as SNR1) 

simply as 15 

(z) = ( (z) + 1)
( )

( )
1 ,          (5) 

Next, we utilise the Manninen et al. (2016) algorithm to identify any possible bias in the A0 to Abkg ratio. In short, Manninen 

et al. (2016) cloud and aerosol screening is applied first to time series of SNR1. Note that typically cloud and aerosol signal is 

easier to discern in SNR1 than in SNR0 and thus cloud screening is applied after Equation 5. Then, first and second order 

polynomial fits are calculated for each cloud-screened profile of SNR1(z) and a RMS threshold is used to select the 20 

appropriate fit, similar to determining Pfit(z). Denoting the selected fit to cloud and aerosol free measurements as SNRfit(z) we 

obtain 

(z) = ( )
( ) 1 ,          (6) 

which is our final corrected SNR.  

Note  that  to  correct  only  for  the  bias  in  the  A0 to Abkg ratio, a scalar denominator in Equation (6) would be sufficient. 25 

However, using the fitted profile SNRfit(z) as the denominator accounts for possible changes in the slope of Pnoise since the 

last background check.  
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3.2.1 Implications for Stream Line XR lidars 

The calculation of SNR2 with Equation (6) relies on the fitting to cloud and aerosol free measurements. For Stream Line and 

Stream Line Pro lidars, which do not exhibit the inverse exponential Pbkg shape, SNRfit(z) will capture the shape of the actual 

noise level in nearly all cases. However, for Stream Line XR lidars the randomly occurring inverse exponential Pbkg(z) shape 

(Fig. 1a) is almost always masked by aerosol and/or cloud signal during measurement. Thus, it is not possible to correct for 5 

changes in shape of Pnoise(z) with SNRfit(z) during post-processing. However, the magnitude of uncertainty in Pnoise(z) can be 

estimated from the average depth of the inverse exponential dip in Pbkg(z) during background checks (c.f. Fig. 3a). 

Now as A0 is not saved, it is not possible to tell whether the amplifier was operating in high or low mode during 

measurement. Consequently, the difference in Pamp for the amplifier high and low modes also adds to the uncertainty in SNR 

for Stream Line XR systems, but, compared to the effect of the inverse exponential shape of Pbkg(z),  the  effect  of  Pamp is 10 

approximately 10 times smaller. However, any possible bias in the A0 to Abkg ratio can be corrected and this is readily done 

by applying a linear fit to SNR1(z) at range gates 100-400 (where SNR is not affected by inverse exponential Pbkg) and using 

this as SNRfit(z) in Equation (6). 

In practice, there are two options for SNR post-processing for Stream Line XR lidars. The first option is to accept the fitted 

Equation (1) for Pfit(z) when it describes Pbkg(z) better. With this approach SNR2 may overestimate the actual SNR if the 15 

shape of Pnoise changes from Equation (1) to linear after the background check. Correspondingly, a change from a linear Pnoise 

to the inverse exponential shape during measurement results in SNR2 underestimating the actual SNR. 

The second option for Stream Line XR SNR post-processing is to calculate a linear fit to Pbkg(z) based on range gates 100-

400 and always use this for Pfit(z). In this case, we use only high mode Pamp(z) in calculating the noise level (Equation 4) and 

denote it as P’noise(z). Consequently SNR’2 is the lower limit of the actual SNR, which can be useful if SNR-threshold is used 20 

to determine usable signal for further analysis. For lidar 146 background checks from 12 January 2018 to 31 May 2018, the 

underestimation was on average 0.5% of SNR+1 at the first usable range gate and decreased rapidly with increasing range 

(Fig. 3a). In the worst case, the underestimation at the first usable range gate was 3% of SNR+1. 

Uncertainty in SNR leads to uncertainty in vr,  as  vr is  mostly  a  function  of  SNR  (Pearson  et  al.,  2009).  However,  vr 

decreases rapidly with increasing SNR (Fig. 3b). Therefore, even the worst-case underestimation in SNR has only a limited 25 

effect on vr if SNR is even moderately high (> 0.03, -15.2 dB). On the other hand, for observations > 2000 m away from the 

lidar,  where  signals  are  typically  low,  the  uncertainty  in  SNR is  also  low (Fig.  3a).  In  the  end,  uncertainty  in  SNR and its  

effects in  and vr need to be evaluated individually for each profile in Stream Line XR lidars. 
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4 Case studies 

4.1 Welgegund 6 September 2016 

On 6 September 2016 lidar 46 was operating at Welgegund, South Africa and a time series of SNR in vertically-pointing 

measurement mode for this day is presented in Figure 4. In this case, SNR0 is very close to 0 when there are no clouds or 

aerosol present (Fig. 4a), indicating that the on-line calculation of A0 and Abkg is quite successful. However, the presence of 5 

small but varying offsets in Pbkg(z) is apparent in Fig. 4a as horizontal stripes in SNR0 time series between the background 

checks conducted on the hour.  

In the SNR1 time series (Fig. 4b) the horizontal stripes have been removed by applying the smooth Pnoise-based background 

with Equation 5. At the same time, the elevated aerosol layer at 2000 – 4000 m above ground level (a.g.l.) becomes easily 

discernible. Small biases in the A0 to Abkg ratio become visible as vertical stripes, for instance between 5-6 UTC in Fig. 4b, 10 

which are then corrected for in the time series of SNR2 (Fig. 4c). 

Comparing the standard deviation of SNR ( SNR) for cloud and aerosol free range gates shows a clear improvement in the 

noise level with the new post-processing algorithm (Fig. 4d). The main advantage of the new post-processing algorithm is 

that it enables averaging SNR; for SNR0 any offsets in Pbkg(z) become the limiting factor. This is clearly seen in Fig. 4d, 

where SNR for SNR2 decreases with increasing integration time per profile following closely /  rule as expected, but 15 

increasing integration time has little effect on SNR for SNR0. 

Figure 5 demonstrates how the lower noise floor with the new post-processing algorithm allows determining vertical wind 

speed variance ( 2
w) up to 2000 m a.g.l. (i.e. up to the top of the mixed layer) on this day. Furthermore, by averaging the 

originally 7s data to 168s integration time per profile and applying the new post-processing algorithm, the SNR threshold at 

the 3 -level (c.f. Fig. 4d) can be decreased from 0.0032 (-25dB) for SNR0 to 0.00065 (-32dB) for SNR2. Consequently,  can 20 

be  retrieved  for  the  elevated  aerosol  layer  at  2000  –  4000  m  a.g.l.  (Fig.  5c,d).  Note  that  the  offsets  in  Pbkg(z) result in 

horizontal stripes in the 168s integration time  calculated from SNR0 in Fig. 5c. 

Lower noise floor enables also wind retrievals with a lower SNR-threshold, which increases the data availability. The effect 

on data availability depends on atmospheric conditions, though. In this case for instance (Welgegund, 6 September 2016) a 

75° elevation angle velocity azimuth display (VAD) scan was utilised for horizontal wind retrieval every 15 minutes. With 25 

the new post-processing algorithm the SNR-threshold for wind retrieval could be decreased from 0.0045 to 0.0032. This 

decrease in SNR-threshold enabled wind retrieval for 2-13 range gates more from each VAD scan; on average, winds could 

be determined from 7.5 additional range gates per VAD scan. That is, vertical coverage of wind retrievals increased on 

average by 200 m with the new post-processing. 

Wind retrievals at lower SNR will have higher uncertainty due to higher instrumental noise in radial velocity measurement, 30 

yet enhanced SNR will enable more accurate determination of the instrumental uncertainty in wind retrievals. However, as a 

major fraction of the uncertainty in retrieved winds arises in atmospheric turbulence (Newsom et al., 2017) the more accurate 
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SNR will have only a limited effect on the overall uncertainty in the wind retrieval. Therefore, the uncertainty in each wind 

retrieval should be evaluated e.g. with the methodology of Newsom et al. (2017) before the wind retrievals are disseminated. 

4.2 Helsinki 1 and 6 May 2018 

Measurements with lidar 146 at Helsinki, Finland, on 6 May 2018 (Fig. 6) present all the issues with a Stream Line XR lidar 

at its worst. In Fig. 6a, SNR0 is negative e.g. from 1 to 5 UTC, 6 to 10 UTC and 12 to 13 UTC because of an erroneous Abkg 5 

coefficient. On the other hand, the individual profiles with unrealistically high SNR0 around 11 UTC, 14 to 15 UTC and 20 to 

21 UTC indicate errors in the A0 coefficient. Additionally, horizontal stripes in SNR0 time series similar to lidar 46 (Fig. 4a) 

indicate offsets in Pbkg(z). The reason for poor determination of A0 and Abkg for lidar 146 seems to be that Pbkg(z) is frequently 

non-linear, unlike for lidar 46 for example. 

The new post-processing algorithm corrects the errors in A0 and Abkg as well as the stripes due to offsets in Pbkg(z) as seen in 10 

Fig.  6c.  However,  Fig.  6c  shows that  Pbkg(z) changing between the inverse exponential and linear shape causes over- and 

underestimation of SNR2 in the lowest 1500 m a.g.l.. For instance, positive SNR2 in the lowest 1000 m at 12 to 13 UTC and 

negative SNR2 in the lowest 1000 m at 14 to 15 UTC are due to noise level shape changes between background check and 

measurement modes. During these periods, the lidar signal is fully attenuated by a cloud within the lowest 200 m, and 

consequently SNR2 in the 200-1000 m range should be zero. In Fig. 6d, SNR’2 is calculated using a linear fit only to Pbkg(z) as 15 

discussed in Section 3.2.1. This removes the overestimate of SNR at 12-13 UTC, but cannot correct the underestimates. 

Measurements with lidar 146 on 1 May 2018 at Helsinki present much less noisy SNR0 than on 6 May 2018 as seen in Fig. 

7a. On this day there are cirrus clouds present at 8000-12000 m a.g.l., but the stripes due to offsets in Pbkg(z) make it difficult 

to distinguish the clouds from noise in SNR0. Applying the new post-processing algorithm and increasing integration time 

from 10s to 60s for this day enables the SNR threshold at 3 -level to be lowered from 0.0035 (-24.5dB) for SNR0 to 0.0012 20 

(-29dB) for SNR2. This results in a significant increase in data coverage for the cirrus clouds as shown in Figs. 7c and 7d.  

4.3 Finokalia 8 July 2014 

Time series  of  SNR in  vertically-pointing  measurement  with  lidar  53  on  8  July  2014 at  Finokalia,  Greece,  is  presented  in  

Fig. 8. On this day, SNR0 is close to 0 for 4000-9600 m a.g.l. elevation (Fig. 8a), indicating that the on-line calculation of A0 

and Abkg is quite successful. Only at 0-1 UTC and 20-21 UTC is SNR0 negative indicating a small offset in Abkg. However, 25 

horizontal stripes in the SNR0 time series between the background checks are apparent in Fig. 8a, indicating the presence of 

small but varying offsets in Pbkg(z). 

After SNR post-processing (Fig. 8b), elevated aerosol layers at 1000-4000 m a.g.l. are clearly visible on this day. These 

aerosol layers were also observed with a co-located multi-wavelength Raman lidar Polly XT (Althausen et al., 2009).(Baars 

et al., 2016; Engelman et al., 2016). A comparison of lidar 53 and the Raman lidar measurements at 1064 nm wavelength are 30 

presented in Fig. 9. Considering the wavelength difference, the agreement between the two systems is reasonably good. 

Further averaging of SNR2, in this case up to 350s integration time, allows the determination of  for the elevated aerosol 
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layers. With this long integration time we can reach a 3  SNR threshold of 0.00059 (-32dB) for SNR2. For SNR0, offsets in 

Pbkg(z) are the limiting factor in determining the SNR threshold and at 3  level only 0.0044 (-24dB) can be achieved.  

5 Conclusion 

In this paper we have presented an improved SNR post-processing algorithm for Halo Doppler lidars. For Stream Line and 

Stream Line Pro lidars this method enables accurate SNR and  retrievals from the first usable gate onwards. For Stream 5 

Line XR lidars we identified a previously unknown source of uncertainty in the near-range (<1500 m) SNR due to variations 

in the noise floor of these systems. We present a method to estimate the magnitude of this source of uncertainty, although it 

cannot be completely eliminated. 

We have shown that defining the noise floor on a point-by-point basis during periodic background checks results in a small, 

variable offset in SNR at each range gate. This offset is due to finite duration of the background check and becomes the 10 

limiting factor in retrieving weaker signals with Halo Doppler lidars, or with any system based on such a point-by-point 

defined noise floor. The improved SNR post-processing algorithm removes this source of error by introducing a more 

accurate, continuous noise floor. Independent of the noise floor, on-line scaling of raw signal from the amplifier by the 

firmware  fails  occasionally.  This  source  of  error  in  SNR  was  targeted  by  Manninen  et  al.  (2016)  and  their  algorithm  is  

adapted here as part of the improved SNR post-processing algorithm (Equation 6). Correcting for these two sources of error 15 

in SNR enables retrieving data at much lower SNR than before. Increasing integration time per profile to a few minutes, 

SNR down to 6 10-5 (-32 dB) can be utilised. 

Our analysis shows that even if the technical specifications of two Doppler lidar systems are identical, their instrumental 

noise characteristics can be quite different (Fig. 2). Therefore, the lidar operator should inspect each system individually to 

ensure highest data quality. Note that this algorithm or similar processing is needed to define the instrumental noise level 20 

even if raw spectra are utilised instead of the processed in data. The algorithm presented here can be applied in semi-

operational use as long as at least 300 background checks (acquired in two weeks of measurements with typical 

configuration) are available for characterising the amplifier response to the transmitted pulse. A Matlab implementation of 

this algorithm is available through Github (Manninen, 2019). 

We have demonstrated that the improved SNR post-processing can help retrieving turbulent properties up to the top of the 25 

mixed layer under low aerosol load. With enhanced SNR, the instrumental noise contribution to radial velocity variance can 

be estimated with better accuracy, which will improveing the quality of turbulent parameter retrievals. The reduced noise 

floor enables horizontal wind retrievals with a lower SNR-threshold and increases data availability, depending on 

atmospheric conditions. Furthermore, we have demonstrated that a combination of reduced noise floor and increased 

integration time allow detection of elevated aerosol layers with Stream Line and Stream Line Pro lidars. Even for the more 30 

powerful Stream Line XR lidars, the new SNR post-processing can increase data availability e.g. in case of high altitude 

cirrus clouds. In conclusion, the improved SNR post-processing introduced in this paper enhances the capabilities of Halo 
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Doppler lidars in studying atmospheric turbulence in weak signal conditions and opens up new possibilities for studying 

elevated aerosol layers, such as volcanic ash, Aeolian dust or biomass burning smoke. 

Appendix A: 

 

Figure A1. Histograms of SNR0 and SNR2 in cloud and aerosol free regime for the four case studies considered in Section 4. For 5 
each  case,  mean  [standard  deviation]  and  median  [25th,  75th  percentile]  of  SNR0 and SNR2 are included. (a) Welgegund on 6 
September 2016, 00-24 h UTC, 4800-9000 m a.g.l.. (b) Kumpula on 1 May 2018, 02-24 h UTC, 6000-12000 m a.g.l.. (c) Kumpula on 
6 May 2018, 00-12 h UTC, 4000-7000 m a.g.l.. (d) Finokalia on 8 July 2014, 00-24 h UTC, 5000-96000 m a.g.l.. 
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Table 1 Specifications for Halo Doppler lidars utilised in this study. 

Lidar number and version 46, Stream Line 
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53, Stream Line Pro 

146, Stream Line XR 

Wavelength 1.5 m 

Pulse repetition rate 15 kHz (46 and 53) or 

10 kHz (146) 

Nyquist velocity 20 m s-1 

Sampling frequency 50 MHz 

Velocity resolution 0.038 m s-1 

Points per range gate 10 

Range resolution 30 m 

Maximum range 9600 m (46 and 53) or 

12000 m (146) 

Pulse duration 0.2 s 

Lens diameter 8 cm 

Lens divergence 33 rad 

Telescope monostatic optic-fibre 

coupled 
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Figure 1: (a) Pbkg measured by lidar 46 on 6 September 2016 at 23h UTC and Pbkg measured by lidar 146 on 1 May 2018 at 10h 
UTC. Also Pfit is indicated for both systems. (b) 2D-histogram of mean Pbkg vs. T for lidar 46. (c) 2D-histogram of mean Pbkg vs. T 
for lidar 146. 
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Figure 2: (a) Lidar 46 Pbkg,res averaged from 20 August 2016 to 14 June 2017 (7193 background checks). Lidar 53 Pbkg,res averaged 
from 1 January 2014 to 30 November 2015 (16802 background checks). Pamp is plotted for both systems. (b) First 100 range gates 
of lidar 46 Pamp calculated for different ranges of T. (c) Lidar 146 Pbkg,res averaged from 12 January 2018 to 31 May 2018. Pbkg,res is 
averaged separately for high Pbkg mode (1375 background checks) and for low Pbkg mode (1623 background checks). Pamp is plotted 5 
for both modes. 
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Figure 3: (a) 2D-histogram of the ratio of Pnoise(z) (best estimate) to P’noise(z) (linear fit only) for lidar 146 background checks. 
Mean of the ratio is also indicated. (b) vr as a function of SNR for lidar 146. 
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Figure 4: Data from lidar 46 at Welgegund on 6 September 2016. (a) Time series of SNR0 profile in vertically-pointing mode. (b) 
Time series of SNR1 profile in vertically-pointing mode. (c) Time series of SNR2 profile in vertically-pointing mode. (d) SNR as a 
function of integration time per profile for SNR0 and SNR2 for range gates at 4800 – 9000 m a.g.l.. Also / , where  is SNR at 
integration time of 7s (original integration time per profile) and N is the number of averaged profiles, is included in (d). 5 
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Figure 5: Data from lidar 46 at Welgegund on 6 September 2016. (a) Time series of 2
w profile, where a threshold of 0.0031 (2 ) 

has been applied to SNR0. (b) Time series of 2
w profile, where a threshold of 0.0021 (2 ) has been applied to SNR2. In (a) and (b) 

the instrumental noise contribution to 2
w has been subtracted. (c) Time series of  obtained with 168s integration time from SNR0. 

 has been filtered with a threshold of 0.0032 (3 ) applied to SNR0. (d) Time series of  obtained with 168s integration time from 5 
SNR2.  has been filtered with a threshold of 0.00065 (3 ) applied to SNR2. Mixing layer height (MLH) determined from panels b 
and d is also indicated. 
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Figure 6: Data from lidar 146 at Helsinki on 6 May 2018. (a) Time series of SNR0 profile in vertically-pointing mode. (b) Time 
series of SNR1 profile in vertically-pointing mode. (c) Time series of SNR2 profile in vertically-pointing mode. (d) Time series of 
SNR’2 (based always on a linear fit to Pbkg(z)) profile in vertically-pointing mode. 
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Figure 7: Data from lidar 146 at Helsinki on 1 May 2018. (a) Time series of SNR0 profile in vertically-pointing mode. (b) Time 
series of SNR2 profile in vertically-pointing mode. (c) Time series of  obtained with 60s integration time from SNR0.  has been 
filtered with a threshold of 0.0035 (3 ) applied to SNR0. (d) Time series of  obtained with 60s integration time from SNR2.  has 
been filtered with a threshold of 0.0012 (3 ) applied to SNR2. 5 
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Figure 8: Data from lidar 53 at Finokalia on 8 July 2014. (a) Time series of SNR0 profile in vertically-pointing mode. (b) Time 
series of SNR2 profile in vertically-pointing mode. (c) Time series of  obtained with 350s integration time from SNR0.  has been 
filtered with a threshold of 0.0044 (3 ) applied to SNR0. (d) Time series of  obtained with 350s integration time from SNR2.  has 
been filtered with a threshold of 0.00059 (3 ) applied to SNR2. 5 
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Figure 9: (a) Vertical  profiles of SNR from PollyXT at 1064nm wavelength and SNR2 from lidar 53 at Finokalia on 8 July 2014. 
Both profiles are obtained at 21 UTC; integration time of lidar 53 profile is 350s and integration time of PollyXT profile is 360s. 
(b) Time series of PollyXT SNR at 1064nm wavelength with 360s integration time at Finokalia on 8 July 2014. (c) Time series of 
PollyXT attenuated backscatter at 1064nm wavelength with 360s integration time at Finokalia on 8 July 2014. 5 
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