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Abstract. The anisotropy of the Earth’s surface reflection has implications for satellite-based re-

trieval algorithms that utilize climatological surface reflectivity databases that do not depend upon

the observation geometry. This is the case for most of the current ultraviolet and visible (UV/Vis)

cloud, aerosol, and trace-gas algorithms. The illumination-observation dependence of surface reflec-

tion is described by the bidirectional reflectance distribution function (BRDF). To account for the5

BRDF effect, we use the concept of geometry-dependent surface Lambertian-equivalent reflectiv-

ity (GLER), which is derived from the top-of-atmosphere (TOA) radiance computed with Rayleigh

scattering and surface BRDF for the exact geometry of a satellite-based pixel. We present details

on the implementation of land and water surface BRDF models, and evaluate our GLER product

over land surfaces using observed sun-normalized radiances at 466 nm. The input surface BRDF10

parameters for computing TOA radiance are derived from MODerate-resolution Imaging Spectro-

radiometer (MODIS) satellite observations. The observed TOA radiance for comparison is from

the Ozone Monitoring Instrument (OMI). The comparison shows good agreement between observed

and calculated OMI reflectivity in 2006 in typical geographical regions, with correlation coefficients

greater than 0.8 for some regions. Seasonal variations of clear-sky OMI reflectivity (i.e., with min-15

imum clouds and aerosols) closely follow those computed using MODIS-derived GLER over land.

GLER also captures the cross-track dependence of OMI-derived LER, though the latter is slightly

higher than the former presumably owing to residual cloud and aerosol (non-absorbing) contamina-

tion, particularly over dark surfaces (heavily vegetated regions such as mixed forest, croplands and

grasslands). Calibration differences between OMI and MODIS may also be responsible for some20

of this bias. The standard OMI climatological surface reflectivity database predicts higher radiances
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than GLER and OMI observations with different seasonal variation over most regions and does not

have any angular-dependent variation. Overall, our evaluation demonstrates that the GLER product

adequately accounts for surface BRDF effects while at the same time simplifies the surface BRDF

implementation within the existing OMI retrieval infrastructure; use of our GLER product requires

changes only to the input surface reflectivity database.5

1 Introduction

It is well-known that reflection of the incident sunlight by the Earth’s surface is generally anisotropic

in the optical wavelength range (Rencz and Ryerson, 1999). Rough surfaces (vegetated landscapes,

urban and built-up, bare soils, etc) usually exhibit marked backward scattering, whereas smooth

surfaces (e.g., water, snow/ice) tend to have a strong forward scattering peak (specular reflection).10

Two well-known phenomena related to surface reflection anisotropy are the hot-spot effect over land

and the sunglint over ocean. The hot-spot effect occurs when the viewing direction coincides with

the illumination direction, such that all shadows are invisible. This results in a reflectance peak

in backward scattering directions (e.g., Qin et al., 1996). Sunglint, however, is a peak in forward

scattering caused by Fresnel reflection over a smooth surface such as calm water, when sunlight15

reflects off the surface at the same angle that the surface is viewed (e.g., Kay et al., 2009).

The dependence of surface reflection on illumination and observation directions is mathematically

described by the bidirectional reflectance distribution function (BRDF), an intrinsic property of the

surface (Nicodemus, 1965; Martonchik et al., 2000; Schaepman-Strub et al., 2006). Since BRDF

is defined in terms of differential solid angles, in theory it cannot be measured (Nicodemus, 1977).20

Therefore, another quantity which can be retrieved from remote sensing data, the bidirectional re-

flectance factor (BRF), has been widely used ever since. BRF is defined as the ratio of the reflected

radiance from the surface to that from a perfect Lambertian surface under the same geometry (illu-

mination and observation) and ambient conditions. Since an ideal diffuse surface reflects the same

radiance in all viewing directions, the BRDF for a Lambertian surface is 1/π. Because of this, the25

BRF for any surface is equal to its BRDF times π. However, unlike the BRDF, BRF is a unitless

quantity.

The effect of surface anisotropy on satellite-observed radiances in the visible is notable and neglect

of it in retrievals can produce complex errors. The influence of surface anisotropy on the top of the

atmosphere (TOA) radiance increases with wavelength for a Rayleigh atmosphere (no aerosols or30

clouds) because atmospheric transmittance increases with wavelength in the ultraviolet and visible

(UV/Vis) spectral regions. The radiation incident on the surface consists of a direct component

(non-scattered radiation) and a diffuse component scattered by the atmosphere (gases, aerosols, and

clouds). The magnitude and spectral distribution of the diffuse irradiance depends on atmospheric

conditions. Over a clear sky, the diffuse component originates from Rayleigh scattered sunlight that35
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follows a λ−4 dependence, where λ is wavelength. As a result, the surface anisotropy’s impact on

TOA radiance is strong at visible or longer wavelengths because the atmosphere is more transparent

than in the UV where Rayleigh scattered light is more prominent and therefore smooths and reduces

the surface BRDF effect at UV wavelengths. Obviously, the longer the wavelength, the stronger the

effects, as shown in Lorente et al. (2018) when comparing surface anisotropy effects in the near-5

infrared (NIR) with that in the visible.

The surface reflectance anisotropy has implications for UV/Vis satellite retrievals of aerosols,

clouds, and trace gases such as nitrogen dioxide (NO2). Currently, most satellite-based UV/Vis al-

gorithms (e.g., Krotkov et al., 2017) use surface reflectivity climatologies, typically gridded monthly

Lambertian-equivalent reflectivities (LERs) that have been derived from satellite observations, for10

example, Herman and Celarier (1997) from the Total Ozone Mapping Spectrometer (TOMS) at 340

and 380 nm, Koelemeijer et al. (2001) from the Global Ozone Monitoring Experiment (GOME)

in 11 wavelengths between 335-772 nm, Kleipool et al. (2008) from OMI in 23 wavelengths at

328-499 nm, and more recently Tilstra et al. (2017) from GOME-2 in 21 wavelengths between 335-

772 nm as well as from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartogra-15

phy (SCIAMACHY) in 29 wavelengths from 335-1670 nm. These climatologies are constructed by

computing statistical values representative of multiple years of observations made with different sun

and viewing geometries. In order to minimize cloud contamination, they may be based on a lower

percentile (e.g., Herman and Celarier, 1997) and/or the mode of the LER histogram depending on

surface type (e.g., Koelemeijer et al., 2001; Kleipool et al., 2008; Tilstra et al., 2017). As pointed20

out recently by Lorente et al. (2018), such climatologies tend to pick up the lowest values among the

measurements of a scene, typically corresponding with forward (backward) scattering geometries

over land (water).

An example of the impact of LER climatologies on cloud fraction retrievals is the presence of

considerable cross-track biases. This has been shown for satellite retrievals in the O2-A band (Wang25

et al., 2008) as well as for the 477 nm O2−O2 band (Veefkind et al., 2016). This happens because

the LER climatologies tend to underestimate the actual LER in the backward scattering directions

over land since the hot-spot phenomenon is not represented properly and the retrieval compensates

for this by overestimating cloud fractions in order to match the observed TOA reflectance. Over

ocean, such overestimation of cloud fraction would occur in the forward scattering direction due to30

neglect of sun glint.

To account for surface anisotropy in existing cloud and trace gas algorithms that use LER, we

implement the concept of geometry-dependent LER (GLER), which was introduced by Vasilkov

et al. (2017). GLER is derived from simulated TOA radiance of a Rayleigh atmosphere over a

non-Lambertian surface for the specific geometry of a satellite pixel. Here “geometry-dependent” is35

emphasized to distinguish the GLER product (which considers the angular dependence of surface re-

flection) from other LER-related products or climatologies that have no dependence on sun/satellite
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geometries. Our GLER approach does not require major changes to existing trace gas and cloud al-

gorithms that rely on an estimate of LER (Vasilkov et al., 2017); the main revision to the algorithms

requires replacement of the existing static LER climatologies with GLER calculated for specific

fields-of-view (FOVs) and Sun-satellite geometries. GLER can be applied to any satellite retrieval

algorithm that uses LER.5

The main goal of this paper is to evaluate our GLER product over land surfaces using visible mea-

surements from the satellite-borne Ozone Monitoring Instrument (OMI). In the current version, the

GLER is based on BRDF parameters derived from MODerate-resolution Imaging Spectroradiome-

ter (MODIS) satellite observations over land; we plan to cover the ocean results in a separate paper.

We also provide additional details on the GLER methodology, including the determination of the10

product components and key input model parameters. Specifically, surface BRDF models and at-

mospheric radiative transfer (RT) calculations as well as the MODIS BRDF product are introduced

in Section 2. We compare OMI-measured and simulated LER over typical geographical regions as

a function of cross-track position, season, and year in Section 3. Discussion and conclusions are

provided in the final two sections.15

2 Data and Methods

In this section, we describe data sets and methodologies used to estimate each component of GLER.

The implementation and validation process is summarized in Figure 1. In the following, we first

briefly introduce the surface BRDF models used for GLER computation.

2.1 Surface BRDF models20

The kernel-driven BRDF model from the MODIS BRDF/Albedo algorithm (Lucht et al., 2000) is

used in this study to describe land surface reflection anisotropy. This model is also known as the

Ross-Thick/Li-Sparse Reciprocal (RTLS). RTLS consists of a linear combination of the weighted

sum of an isotropic parameter and two kernels that characterize the scattering dependence on viewing

and illumination geometry (Roujean et al., 1992). The Ross-Thick kernel is derived from radiative25

transfer models (Ross, 1981) for volume scattering within a dense vegetation canopy, and the Li-

Sparse Reciprocal kernel is based on surface scattering and geometric shadow-casting with mutual

shadowing theory (Li and Strahler, 1992).

The mathematical expression for the kernel-driven RTLS to estimate surface BRF is as follows:

BRF(λ, θ, θ0, φ) = fiso(λ) + fvol(λ)kvol(θ, θ0, φ) + fgeo(λ)kgeo(θ, θ0, φ), (1)30

where θ is the viewing zenith angle (VZA), θ0 the solar zenith angle (SZA), and φ the relative az-

imuth angle (RAA). kvol and kgeo are the Ross-Thick and Li-Sparse Reciprocal kernels; fiso, fvol

and fgeo are the kernel weights (also called kernel coefficients or BRDF parameters) derived every 8
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Fig. 1: Flowchart of the GLER processes. Different colors stand for different data types/sources:

grey for ancillary data for both land and water, purple for preprocessed input parameters or atmo-

spheric input parameters, gold for sensor-dependent pixel-related inputs/output, and finally, blue

ovals for the physical models used. All input data are represented by the rounded rectangles and

output product is shown in the box rectangle. DEM denotes digital elevation model. RTLS de-

notes the Ross-Thick/Li-Sparse Reciprocal functions (see Section 2.1 for details). Also see Eq. 2 for

definitions of I0, T and Sb.

days by inverting the model against MODIS multi-angular observations (cloud-cleared, atmospheri-

cally corrected surface reflectances) collected for each location within a 16-day period. These kernel

coefficients only depend on wavelength but not on illumination or observation angles, and have been

provided globally in the MODIS gap-filled BRDF Collection 5 product MCD43GF (Schaaf et al.,

2002, 2011).5

Over water surfaces (including inland waters and oceans), light specularly reflected from a rough

water surface as well as diffuse light backscattered by bulk water and transmitted through the water

surface are considered. Reflection from the water surface is described by the Cox-Munk slope distri-

bution function as implemented in Mishchenko and Travis (1997). A Case 1 water model (Morel and

Gentili, 1996) that has chlorophyll concentration as a single input parameter is applied to account10

for water-leaving radiance (i.e., light backscattered by water column into the atmosphere) includ-

ing directionality of the underwater diffuse light. Chlorophyll concentration, wind speed, and wind

direction are the only model input parameters.

Since the focus of this paper is on evaluating the derived GLER over land surfaces (pixel land

fraction ≥ 0.99), the brief description of the ocean models here is only for completeness. Details on15

water BRDF models and input datasets for wind speed and direction as well as chlorophyll concen-
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tration will be provided in a separate paper for ocean GLER validation.

2.2 MODIS BRDF product for land surfaces

MODIS is a cross-track scanning radiometer and has 36 spectral bands ranging in wavelength from

0.4 µm to 14.4 µm. Two bands (1 and 2) have a nominal resolution of 250 m at nadir, with five

bands (3 to 7) at 500 m, and the remaining 29 bands at 1 km. MODIS views the entire Earth surface5

approximately daily via a two-side scan mirror that provides a swath of 2330 km cross track by 10

km along track (at nadir) each scan. The MODIS instruments are operated onboard the National

Aeronautics and Space Administration (NASA) Aqua and Terra satellites, which have 16-day repeat

cycles and provide measurements on a global basis every 1-2 days. MODIS data are used to study

the oceans, atmosphere and land (Justice et al., 1998). The calibration uncertainty for MODIS band10

3 is within 2% (Xiong et al., 2005). The MODIS Aqua solar reflective bands including band 3 were

corrected for a time-dependent drift in Collection 5 (Wu et al., 2013) but errors in MODIS Terra

of up to 5% across the scan developed approximately 5 years after launch and this error was not

sufficiently corrected in Collection 5 (Sun et al., 2014; Lyapustin et al., 2014).

To compute GLER, we use Collection 5 MODIS BRDF/Albedo Product MCD43 for land surfaces15

(Sun et al., 2017; Schaaf et al., 2002, 2011). The BRDF data in MCD43 is retrieved from surface

reflectance data in the MODIS Collection 5 MOD09 product. The atmospheric correction is applied

in the MOD09 product to cloud-free or partially cloud-contaminated pixels. The cloud mask also

reduces thin cirrus cloud contamination (Vermote and Kotchenova, 2008). The correction removes

the effects of gas and aerosol absorption, aerosol scattering, and corrects adjacency effects caused20

by variation of land cover, surface and atmosphere coupling effects (Vermote et al., 2002, 2007, and

2008). The algorithm uses tables constructed with the 6SV (Second Simulation of a Satellite Signal

in the Solar Spectrum Vector) radiative transfer code using key input parameters such as aerosol

properties (aerosol optical thickness, size distribution, refractive indices and vertical distribution),

atmospheric pressure, ozone amount and water vapor content. These input data are described in25

Holben et al. (1998); Remer et al., (2005); Gao and Kaufman (2017). The atmospheric correction

for MODIS band 3 used in this study has a theoretical error budget of about 0.005 reflectance units

(Vermote et al., 2008). We note that the atmospheric correction neglects surface anisotropy and

that Wang et al. (2010) and Franch et al. (2013) have found doing so can introduce a modest

negative bias in the corrected surface reflectance product. But despite this, Roman et al. (2013)30

found MODIS BRDF/Albedo products met the absolute accuracy requirement of 0.02 for spring and

summer months.

Since the morning overpass (Terra) and afternoon overpass (Aqua) view the same location with

different sun and viewing geometries, use of data from both satellites would double the angular sam-

ples during the 16-day repeat cycle, thus increasing the number of high quality, cloud-free observa-35

tions, and reducing the uncertainty and random noise amplification of kernel coefficients retrievals
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(Salomon et al., 2006; Schaaf et al., 2011). The absolute accuracy requirements for albedo for all

bands in MCD43 product is 0.02 in reflectance units or 10% of surface measured values (Jin et al.,

2003; Roman et al., 2013). Indeed, the majority of the extensive validation campaigns on differ-

ent platforms across different landscapes and seasonal cycles have demonstrated that the MCD43

product meets this requirement. These include comparisons with ground-based or airborne mea-5

surements (e.g., Wang et al., 2004 in the Tibetan Plateau; Coddington et al., 2008 over Mexico city;

Wang et al., 2012 in snow-covered tundra) as well as with space-borne data (e.g., Susaki et al., 2007

in paddy fields using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

and Enhanced Thematic Mapper Plus (ETM+) data; Roman et al., 2013 with Landsat and the Cloud

Absorption Radiometer (CAR) data; and Wang et al., 2014 using ETM+). However, there are a few10

cases where MODIS retrieved albedo are smaller than field measurements, e.g., a bias of -0.01 for

the visible broadband albedo (0.3-0.7µm) over FLUXNET tower sites (Cescatti et al., 2012; Wang

et al., 2010).

MCD43 provides three kernel coefficients (fiso, fvol, and fgeo in Eq. 1) for 7 MODIS bands

for snow-free land and permanent snow and ice cover every 8 days. Though recent improvements15

in the MODIS Collection 6 MCD43 BRDF data (Wang et al., 2018) may enable the use of the

MCD43 data for seasonal and variable short-term snow cover in GLER product, the first version

of the GLER product uses the gap filled (GF) Collection 5 product (MCD43GF) which is intended

to provide BRDF parameters using the RTLS model for land surfaces free of seasonal snow and

those covered by permanent snow or ice. Other snow and ice BRDF models also exist. In fact, the20

calibration of the OMI instrument, described in Section 2.4, is based partly on an alternate model

to describe reflectance from Antarctic ice (Jaross and Warner, 2008). Because validation of snow

and ice reflectances is challenging and involves different issues than those of snow-free land, we

plan to carefully evaluate the GLER product over snow and ice separately in a follow-on study using

various sources of BRDF information. Until that time, the GLER product over snow and ice should25

be considered less mature than the BRDF over snow and ice free land, whether the snow and ice are

permanent (using MCD43GF), or seasonal (using OMI-derived LER) as described in Section 3.

To obtain kernel coefficients for a given OMI pixel, the collocated MCD43GF points within

an OMI pixel FOV are averaged (see Appendix A1 for details). Since kernel coefficients depend

on wavelength, for the present study we selected MODIS band 3, the shortest wavelength in the30

MCD43GF product, with a center wavelength of 470 nm (ranging from 459 to 479 nm) to represent

466 nm, which is the wavelength used in our cloud algorithm to retrieve effective cloud fraction

(ECF) (Vasilkov et al., 2017). Observations at this wavelength are relatively free of atmospheric

rotational-Raman scattering (RRS) and trace gas absorption.
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2.3 Pixel land areal fraction

The areal fraction of land (or water) for each OMI pixel is a critical parameter in TOA radiance

calculation for pixels mixed with land and water (see Eq. 3). However, it cannot be estimated from

OMI L1b pixel surface category flags because these binary flags do not provide information on

mixed pixels. Therefore, a binary land/water classification method is developed to estimate pixel5

land fraction from the high resolution (30 ′′, same as MCD43) static land-water mask map provided

with MCD43.

Fig. 2: Pixel water fractions (color bar) estimated in GLER (right) with MODIS 30′′ land-water

map (left) with OMI pixel polygons on the top. The color legend denotes surface categories defined

in the original MODIS data. Top panel: region of Lakes Superior and Michigan; Bottom panel:

Chesapeake Bay.

First, we convert the eight surface categories from MCD43 into a binary land-water flag, merging

all shorelines and ephemeral water at the MODIS spatial resolution into the land class and classifying
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all other water sub-categories as water. The areal fraction of land (or water) for each OMI pixel

is then computed from the counts of land and water points within the OMI FOV. Typical results

are shown in Figure 2. Accurate estimation of pixel land fraction is also very important because

BRDF models for land and water surfaces are quite different (strong backward scattering over land

vs strong forward scattering over water) with different wavelength dependence. In contrast with5

previous studies (e.g., Zhou et al., 2010), we apply the ocean models described in Section 2.1 to

coastal zones and inland waters instead of using MODIS data, because the MODIS kernel-driven

BRDF model is not applicable for water surfaces.

2.4 OMI data and selection criteria

OMI, launched onboard the NASA Aura satellite in July 2004, is a Dutch-Finnish hyper-spectral10

passive imager measuring in the 270-500 nm wavelength range with two CCD detectors (UV and

Vis). It was designed to provide information about trace-gases, such as O3, NO2, SO2, HCHO, as

well as absorbing aerosols. OMI has an instantaneous FOV of 0.8◦ in the flight direction (along-

track) and 115◦ in the swath direction (cross-track), which yields an overall ground coverage of

about 13 km by 2600 km at an altitude of 700 km. OMI measurements nominally provide daily15

global coverage with a 13 km × 24 km resolution in the nadir position.

OMI collection 3 data are used in this study. Specifically, we use LER retrieved from TOA

radiances at 466 nm that are computed by normalizing the OMI radiances to the OMI day-1 so-

lar irradiance spectrum measured on 21 December 2004 along with a correction for the Earth-Sun

distance when calculating OMI-derived LER. The GLER product is designed to characterize the20

magnitude and the angular variability of the Earth’s surface reflectance in a Rayleigh atmosphere, so

in the context of GLER product validation, absolute radiometric response and consistency across the

measurement swath are the two most critical aspects of instrument calibration to consider. For this

study we ignore spectral dependence in the calibration, because our focus is strictly on the 466 nm

channel. Spectral calibration will be important for validation of future versions of the GLER product25

that are planned to report data at several other wavelengths.

Dobber et al. (2008) estimated that the uncertainty in viewing angle dependence of OMI collec-

tion 3 sun-normalized radiances is less than 2% and the radiometric calibration uncertainty is 2%.

Schenkeveld et al. (2017) evaluated long-term changes in the absolute radiometric response of the

OMI instrument and estimated degradation of approximately 1-1.5% over the lifetime of the mission30

in the wavelength region used in this study.

Since only clear sky measurements are used for our comparison, we apply the UV aerosol in-

dex (AI) from OMAERUV product (Torres et al., 2007) to detect and screen out absorbing aerosol

contaminated OMI measurements. This aerosol index is defined as the ratio of radiances measured

at 354 and 388 nm compared to the ratio calculated for a pure Rayleigh-scattering atmosphere. It35

is sensitive to the presence of absorbing aerosols that reduce LER retrieved from OMI data. To
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screen out cloud contaminated pixels in the OMI measurements, we use ECF from the oxygen dimer

(O2−O2) cloud algorithm described in Vasilkov et al. (2018). For this analysis, |AI| < 0.5 and ECF

< 0.04 are used for cloud and aerosol screening (see Appendix C for more details on cloud screen

selection). Data with SZA greater than 70◦ are not included in this analysis as the MCD43 product

does not recommend the use of data beyond 70◦ SZA.5

2.5 Ancillary data sets

In order to produce the pixel-level GLER product, we need first to collocate and average ancil-

lary data that have different spatial resolutions over the OMI FOV for the physical models that we

use. Table 1 summarizes the ancillary data used in terrestrial GLER production along with their

spatio-temporal resolutions. This includes digital elevation model (DEM) data (ETOPO2v2) from10

the National Oceanic and Atmospheric Administration (NOAA). The ancillary data with higher spa-

tial resolution than OMI are first collocated with the OMI pixel using the so-called point-in-polygon

methodology described by Haines (1994) and applied by Fisher et al. (2014) in the development of

a merged OMI-MODIS cloud product. Details regarding the collocation and averaging of ancillary

data sets are given in Appendix A1.

Table 1: Spatial and temporal resolutions of ancillary data used for land GLER calculation

Name Source Spatial Temporal

DEM ETOPO2v2/NOAA 2′ N/A

Land-water flag MODIS 30′′ N/A

Land BRDF parameters MCD43GF/MODIS 30′′ 8 days

15

2.6 GLER computation

Given all necessary input parameters, TOA radiances (Icomp) are computed with the Vector Lin-

earized Discrete Ordinate Radiative Transfer (VLIDORT) model. VLIDORT is a vector multiple

scattering radiative transfer model that can simulate Stokes 4-vectors at any level in the atmosphere

and for any scattering geometry with a Lambertian or non-Lambertian underlying surface (Spurr,20

2006). In this study, VLIDORT computations are carried out using the pseudo-spherical correction,

i.e. for both multiple and single scattering calculations, solar beam attenuation (before scattering)

is treated for a spherical non-refractive atmosphere. Multiple scatter calculations are done for a

plane-parallel medium. However, in the single scattering treatment, both solar-beam and line-of-

sight attenuations are computed for a spherical-shell atmosphere. These “sphericity corrections” are25

necessary to obtain the most accurate results for geometrical configurations with large solar zenith

angles, and also for wide-angle viewing scenarios. VLIDORT is executed in vector mode for our

calculations, since neglect of polarization can lead to considerable errors for modeling backscattered
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spectra in the UV/Vis wavelength range.

We simulate clear sky TOA radiance (Icomp) over a non-Lambertian surface by coupling VLI-

DORT with the MODIS kernel-driven BRDF function (Eq. 1) from the group of analytical BRDF

models available in the VLIDORT BRDF supplement to account for the surface BRDF effect on

TOA radiance over land surfaces. Then GLER (or simply R) is defined and derived by inverting5

Icomp(λ, θ, θ0, φ, Ps,BRFs) = I0(λ, θ, θ0, φ, Ps) +
RT (λ, θ, θ0, Ps)

1−RSb(λ, Ps)
, (2)

where Ps is the pressure at the reflecting surface, I0 is the path scattering radiance by the atmosphere,

calculated as the TOA radiance for a black surface, T is the transmitted radiance, i.e., incident total

(direct + diffuse) irradiance multiplying by transmittance from TOA to the reflecting surface along

the incoming solar beam as well as that from the surface to TOA along the satellite view direction,10

and Sb is the diffuse flux reflectivity of the atmosphere, i.e., the fraction of upward radiance from

the surface scattered back to the surface by the atmosphere (Dave, 1978). All angles are defined as

in Eq. 1. The input surface BRF (i.e., BRFs) to VLIDORT is simulated either with Eq. 1 over land

or with models described in Section 2.1 over water.

We also computed I0, T and Sb with VLIDORT by calculating TOA radiances for three values of15

R, and then solving three linear equations in the form of Eq. 2 to derive the three terms. To speed up

computations, however, we created lookup tables of the quantities I0, T and Sb for different sun and

viewing geometries and for a number of surface pressure levels (see Appendix B for details). Note

that Eq. 2 can also be used to derive LER directly from satellite observations by simply replacing

the computed TOA radiance (Icomp) with observed TOA radiance (Iobs). This approach is used in20

Section 3, where we compute and compare OMI-derived LER to VLIDORT-simulated GLER for

validation.

To make the simulated TOA radiance more realistic to a given pixel geolocation, we construct dy-

namical atmospheric optical property profiles using the surface (terrain) pressure, temperature and

their profiles pixel by pixel. The pressure profile is then generated following Lagrangian control vol-25

ume (LCV) coordinate system starting from the surface pressure (see discussion in Appendix A2).

The temperature profile is based on the Global Modeling Initiative (GMI, see Rienecker et al. (2011))

monthly climatological temperature profiles. Finally, we calculate the layer total optical thickness

and single scattering albedo following Bodhaine et al. (1999) for Rayleigh cross-section calculation.

Compared with the static profiles used previously (e.g., Vasilkov et al., 2017), these dynamic atmo-30

spheric profiles better represent the actual Rayleigh atmosphere above the OMI pixel and result in

a more accurate TOA radiance simulation. This dynamic profiles only apply to online calculations,

whereas for this work the static profiles approach is used for look-up table (LUT) construction.

For uniform surface pixels (either 100% land or water), we calculate TOA radiance by coupling the

surface anisotropy models specified in Section 2.1 with VLIDORT. For heterogeneous surface pixels35

(i.e., mixed with land and water), the TOA radiance (Icomp) is estimated following the independent

11



pixel approximation, i.e., using the area-weighted radiance from both land (Iland) and water (Iwater)

contributions within an OMI FOV as follows.

ITOA
comp = fLI

TOA
land + (1− fL)ITOA

water, (3)

where fL is the pixel land fraction, estimated as described in Section 2.3. Figure 3 shows examples

of ITOA
land , ITOA

water and ITOA
comp.
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Fig. 3: Pixel-based simulated TOA radiance over land (left) when the pixel land fraction is larger

than 5%, water (middle) when the pixel water fraction is larger than 5%, and the merged scene using

Eq. 3 (right). Top panel: North America; Bottom panel: SE Asia.

5
It should be noted that aerosols are not included in the computation of the GLER. Scattering by

aerosols in the atmosphere reduces the BRDF effects (Noguchi et al., 2014). Therefore, the use

of the GLER may result in overestimation of the BRDF effects in the presence of aerosol and thin

clouds. Our use of a retrieved ECF that implicitly accounts for the effects of non-absorbing aerosol

will help to alleviate this problem (Boersma et al., 2011; Lorente et al., 2018; Vasilkov et al., 2018).10

We plan to examine aerosol effects on GLER in a future work.

3 Results

First, we examine the overall performance of GLER by comparison with the OMI-derived LER,

which is calculated by solving for R in Eq. 2, replacing the left term Icomp with OMI-measured

TOA radiance at 466 nm. We accounted for the small O2-O2 and O3 absorption at 466 nm when15

12



computing the quantities I0, T and Sb. When computing GLER, this was not necessary because these

gases were not included in the simulation of the TOA radiances or the LUTs used to derive GLER.

These I0, T , and Sb LUTs are interpolated with the sun and viewing geometry and surface pressure

of a given pixel when calculating OMI-derived LER. Then we carry out an in-depth evaluation over

nine typical landscapes (see Table 2 and Figure 4) covering seasonal, interannual, and cross-track5

variations.
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Fig. 4: Locations of selected geographical regions as specified in Table 2

.

Table 2: Selected geographical regions for analysis

Region Land Type Longitude Range Latitude Range

central Canada Boreal Forest 120W-90W 55N-60N

central United States Cropland/Grassland 105W-95W 40N-50N

southern Brazil Cropland 60W-45W 25S-12S

Spain/France Cropland/Forest 10W-10E 37N-52N

Arabian Desert Barren 40E-60E 15N-25N

southern Africa Open Shrubland 10E-27E 30S-18S

southern India Crop Mosaic 72E-85E 5N-20N

Mongolia Barren/Desert 100E-118E 42N-47N

western Australia Open Shrubland 110E-135E 30S-18S

13



3.1 Overall performance

Figure 5 shows comparisons of GLER with clear-sky OMI-derived LER at 466 nm across various

geographical regions for 2006. The absolute LER varies greatly between the geographic regions;

for example, forested regions exhibit LER less than 0.05 while the LER of the deserts reach nearly

0.30. Overall, the OMI-derived LER is generally higher compared with the calculated GLER, as the5

distribution of data fall below the 1:1 line. While this bias does seem fairly consistent from region

to region, there is some small change in the magnitude.
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Fig. 5: Comparison of aerosol and cloud cleared OMI-derived LER at 466 nm and GLER for 2006

across various geographical regions. In the color-bar legend, N is the number of comparisons.

Despite this small bias, we note that r2 is greater than 0.8 for several of the regions, with the

poorest agreement in darker regions such as southern Brazil and central Canada. It is possible that in
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Table 3: Seasonal Analysis of GLER

DJF MAM JJA SON

Region Diff r2 Diff r2 Diff r2 Diff r2 Total Count

C. Canada N/A N/A -0.015 0.61 -0.015 0.40 -0.017 0.56 20,865

C. United States -0.019 0.40 -0.022 0.78 -0.019 0.79 -0.017 0.71 91,293

S. Brazil -0.020 0.43 -0.014 0.34 -0.013 0.50 -0.014 0.54 197,732

Spain/France -0.020 0.75 -0.017 0.71 -0.014 0.84 -0.019 0.83 131,959

Arabian Desert -0.009 0.90 -0.007 0.88 -0.007 0.85 -0.009 0.91 299,860

S. Africa -0.012 0.86 -0.010 0.87 -0.010 0.81 -0.011 0.82 379,898

S. India -0.016 0.66 -0.019 0.67 -0.022 0.72 -0.022 0.60 78,156

Mongolia -0.016 0.87 -0.012 0.83 -0.014 0.89 -0.013 0.85 142,770

W. Australia -0.011 0.61 -0.009 0.67 -0.009 0.75 -0.007 0.66 161,123

these darker regions where the agreement worsens, the darkness of the surface maximizes the impact

of residual aerosols and clouds that were not completely removed from the OMI measurements. As

seen in Table 3, the agreement varies the most through the year in regions with large changes in

vegetation, such as in southern Brazil where r2 varies from 0.34 to 0.54. The desert regions such

as the Arabian Desert show little to no change with season with r2 only varying between 0.85-0.91.5

Overall we note that GLER is biased low when compared to OMI-derived LER by 0.01-0.02, with

the largest bias over darker regions where we believe residual aerosols and clouds may play a larger

role in brightening the OMI measurements. As mentioned in Appendix C, the mean of the GLER

and OMI-derived LER difference may include some contribution from residual aerosol and cloud

given the ECF screen used for the analysis.10

3.2 Seasonal variations

Surface BRDF or albedo change is small on a day-to-day basis, with the exception of extreme events

such as fires and floods which may not be captured with the 16 day MODIS dataset (Schaaf et

al., 2011). There is, however, noticeable variability in BRDF and albedo between seasons due to

land cover changes throughout the year. Since the MODIS BRDF model parameters are calculated15

every 8 days, they can capture the BRF and albedo changes from season to season over various land

cover types. Figure 6 shows the seasonal variability of GLER, Kleipool Climatology, and OMI-

derived LER for various land cover types in 2006 that have been screened for clouds and aerosols.

Comparisons of OMI reflectivity data with GLER show little data across central Canada in the winter

months due to the presence of seasonal snow cover, while in the southern India region, missing data20

occur due to persistent cloud cover during the monsoon season in the summer months.

Throughout the year, both GLER and OMI-derived LER vary as much as 0.03-0.04 at 466 nm

due to changes in vegetation. The GLER follows a similar seasonal variation as compared with

15
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logical LER (dashed grey), Kleipool et al. (2008) minimum climatological LER (dashed blue) and

OMI-derived LER (solid black) at 466 nm.

the OMI-derived LER with an absolute difference of 0.01-0.02. We note that while the bias varies

by region, there is little to no variation of the bias through the year in each individual region. The

greatest agreement between GLER and the OMI-derived LER appears to be in the Arabian region

possibly because the background aerosols in this high reflectance region have less impact than in

other regions. The Kleipool et al. (2008) LER data exhibit the general seasonal variations seen in the5

OMI-derived LER but to a smaller magnitude. This is seen well in the southern Africa region where

the Kleipool data show a yearly minimum in March, whereas the OMI-derived LER and GLER show

the yearly minimum LER occurring closer to May. This could be due to the fact that the Kleipool

data do not capture the variability that could occur year to year due to drought or anomalous rainy

periods. In the winter months across the Central US, the Kleipool et al. (2008) data agree less well10

with the OMI-derived LER, possibly due to the presence of contamination from seasonal snow or

clouds in the climatological dataset.
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3.3 Interannual variations

When comparing results of calculated GLER against OMI-derived LER, it is important to compare

data from multiple years in order to determine whether factors such as land type changes or satel-

lite calibration drifts have an impact on the evaluation. After 2007, OMI radiances in some rows

or cross-track positions are affected by an anomaly that occurred outside the instrument, producing5

a blockage of the intended FOV and/or scattered sunlight from outside the FOV for some rows of

the CCD detectors. This is known as the OMI row anomaly, and it affects all wavelengths to some

degree (see http://projects.knmi.nl/omi/research/product/rowanomaly-background.php for more in-

formation). We therefore limit the year-to-year analysis to rows 1-20 that are not impacted by the

row anomaly. We also greatly minimize the impact of snow and ice misclassification and sub-pixel10

contamination by restricting our comparison to land surfaces below latitudes of 60◦. January and

July calculated GLER is compared with OMI-derived LER for 2006 and 2015 in Figure 7. Similarly

to Figure 5, the GLER values are generally biased low compared with the OMI-derived LER with

a y-intercept of around -0.015 in Figure 7. There are some outliers where GLER is significantly

higher than the OMI-derived LER. These data are from the Salar de Uyuni salt lake in southwest15

Bolivia and Lake Frome in southern Australia which only fills up during heavy rain events. These

lake basins typically retain water for short periods of time and likely would not be captured in the

16 day MODIS BRDF data (Schaaf et al., 2011). The agreement of GLER and OMI-derived LER is

quite similar for 2006 and 2015 with only a small increase of the slope for July 2015 as compared to

July 2006.20

Figure 8 shows a fairly constant bias between GLER and the OMI-derived LER, with the excep-

tion being at lower LER’s where the bias decreases possibly due to the darkening of OMI LER from

to shadowing from large clouds at high latitudes (Zhu et al., 2012). The differences in the July data

between 2006 and 2015, though a little bit larger than those in the January data, are still within the

calibration uncertainties. Given the magnitude of the difference, while it could be caused by some25

satellite degradation, it is possible that it could be attributed to sampling differences due to aerosol

or cloud variability.

3.4 Cross-track dependence

Figure 9 shows LER dependence on the cross-track position across several regions with varying

land types. There are two main factors that contribute to the cross-track anisotropy of LER. First and30

foremost is the BRDF effect. The second factor is the spatial heterogeneity of land coverage within

a selected region (box) that causes a nonuniform distribution of the surface reflectivity. This effect

is exaggerated for much larger pixels at the swath edges, as compared with those nearer to the nadir.

We try to minimize the second effect by selecting the most uniform regions with sufficient numbers

of pixels.35
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Fig. 7: Scatterplots comparing GLER with OMI-derived LER at 466 nm in January and July in 2006

and 2015, limited to rows 1-20 to exclude OMI data affected by the row anomaly. Latitudes are

restricted to those below 60◦ to avoid introducing complications of snow/ice mis-classification in

the comparison.
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Kleipool et al. (2008) climatological LER (dashed line) for June-August 2006 (December-February

2006 in southern India) across various geographical regions screened for clouds and aerosols. Posi-

tive (negative) VZAs denote forward (backward) scattering directions.

However, as one can see from Figure 9, even the Kleipool et al. (2008) climatology, which has

no dependence on viewing geometry, shows variations with cross-track position due to spatial non-

uniformity of the surface reflectivity for some regions such as Spain/France, Mongolia, and the

central US. Due to the BRDF effects, OMI-derived LER is generally larger further off nadir, in

backward scattering directions. The GLER data exhibit a similar dependence, with highest values5

at the largest VZAs. We note that the regions that include strong absorbing dust aerosols such as

the Arabian Desert and Western Australia compare well with the OMI-derived LER at nadir but

there is a bias further off nadir. This could possibly be the BRDF affect from the aerosols in these

regions which are not modeled with GLER since it is assumed that there is an aerosol free Rayleigh

atmosphere. The darker and more forested regions such as central Canada do not exhibit the same10

structure in the the bias as a function of cross-track.

19



3.5 Sub-region case study

To further assess the anisotropy in GLER, we performed a small case study on a sub-region in west-

ern Australia (see Figure 10) with very homogeneous land type and elevation. Figure 11b shows

that for this sub-region fiso, which is a measure of the surface albedo, is very consistent for all rows

due to the homogeneity of the surface. Figure 11a confirms the homogeneity of this region as the5

Kleipool et al. (2008) climatological LER is nearly constant for all cross-track positions. We note

that fvol ∗ kvol, which is a measure of the scattering of leaves and background soil/sand particu-

lates in the scene, increases towards the edge of the swath due to increased multiple-scattering. The

shadowing effect (i.e., fgeo ∗ kgeo) has similar cross-track dependence in backward scattering di-

rections, although somewhat smaller. As seen in Figure 11a, there is a similar pattern in the other10

regions (Figure 9). In this case study, we note that the bias becomes larger towards the edge of

the swath, possibly due to the longer path length allowing for a greater impact from isolated clouds

or background aerosols. Nevertheless, the overall cross-track pattern is very similar between the

OMI-derived LER and the calculated GLER.

120°E

30°S

20°S

Fig. 10: Map of sub-region in western Australia with homogeneous land type used in a case study.

4 Discussion15

Vasilkov et al. (2018) reported that values of cloud fractions derived using GLER in place of cli-

matological LER are about 0.02 larger on average, and using GLER can significantly enhance tro-

pospheric NO2 vertical columns in polluted regions through reduction of the tropospheric air-mass

factor (AMF). The results presented in Section 3 are therefore important as they demonstrate that the

GLER concept as implemented with MODIS data is able to capture reliably the complex angular,20
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Fig. 11: Case study of cross-track (or VZA) dependence for a sub-region in western Australia in

June-August 2006. 466 nm LER (top); BRF components from MODIS data (bottom). Positive

(negative) VZAs denote forward (backward) scattering directions.

seasonal, and inter-annual variations in OMI reflectances over different regions on the Earth with

diverse land cover types.

A significant issue related to the GLER evaluation is the presence of thin clouds and non-absorbing

aerosols over land surfaces. Both effectively result in the OMI-retrieved LER being larger than

the calculated GLER, since neither was included in the radiative transfer simulations. Here, we5

excluded data with elevated cloud fractions to mitigate cloud and aerosol effects. However, the

fact that OMI-derived LER is consistently biased high by 0.01-0.02 relative to GLER suggests that

a certain amount of contamination is unavoidable. The effects of aerosols are partially accounted

for indirectly through the current cloud algorithms that do not distinguish between clouds and non-

absorbing aerosol. It is therefore important that the same approach to account of surface effects,10

whether it be the use of climatological LER or GLER, be used for both cloud and trace-gas retrievals.

In addition to background non-absorbing aerosol and/or residual cloud contamination, it is impor-

tant to consider that the GLER-LER bias may be due in part to differences in the MODIS and OMI

radiance calibration. Sensitivity analysis of Eq. 2 used to compute LER and GLER shows that a 1%

error in TOA radiances will produce errors in LER of up to 0.003 in surface reflectivity. A bias of15
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0.01 between GLER and LER requires a difference in MODIS and OMI TOA radiance of at least

3% for brighter land scenes (LER ≥ 0.2), and differences of 10% for darker land scenes (LER ≤
0.05). MODIS TOA radiances would thus have to be 3-6% low relative to OMI to explain the bias

seen in GLER-LER for bright scenes, and 10-20% low for dark scenes.

Jaross and Warner (2008) compared TOA reflectances from OMI and MODIS with radiative trans-5

fer model simulations over Antarctica, accounting for the BRDF of the snow surface. By indirect

comparison, OMI Collection 3 and MODIS Collection 5 agreed to within 1% at the start of the

OMI mission. They estimated the uncertainty of their technique is 2%. This level of disagreement is

smaller than needed to explain all of the 0.01-0.02 bias of GLER over dark scenes. We therefore con-

clude that only some of the bias can be attributed to calibration differences. Additional information10

about the relative calibration of OMI and MODIS is provided in Appendix D.

Relative sensor drift is also a concern in comparing the GLER product using the MODIS cali-

bration with LER from OMI. Aqua MODIS appears to be well corrected in Collection 5 but the

MCD43 product also uses data from the Terra instrument, which has degraded appreciably over the

lifetime of the mission. However, we find no evidence of time dependent change in Collection 515

MODIS BRDF data. We suspect the time-dependent and scan angle-dependent error in the Collec-

tion 5 MODIS Terra calibration data have somehow been avoided. Since OMI drift has not been

fully corrected, and the MODIS drift has been removed (or avoided in the case of Terra, apparently)

the slight decrease of OMI LER relative to GLER between 2006 and 2015 in Figure 8 may be due

to the 1-1.5% calibration drift in OMI radiances.20

Despite these factors that introduce uncertainty into our evaluation, we conclude that the GLER

product agrees remarkably well with the OMI measurements in largely clear-sky conditions. Our

results suggest that GLER may be used with confidence in OMI trace gas retrievals, many of which

presently utilize climatological OMI LER data. However, it should also be understood that use of

GLER calculated from aerosol-corrected MODIS BRDF data removes the effects of non-absorbing25

aerosols that are known to exist in the climatological LER data derived from UV/Vis sensors; this is

supported by the slightly elevated OMI-derived LER we find compared with GLER.

There are other issues to be considered with the MODIS BRDF model and the Collection 5 gap-

filled BRDF parameters (MCD43GF) over seasonal snow cover or permanent ice. The fact that

MCD43GF only provides snow-free land BRDF parameters usually leads to either data gaps or too30

small GLER values for snow-covered OMI pixels. The current temporary fix to this issue is to use

OMI-derived LER but capped by a constant snow albedo of 0.6 as suggested in the KNMI’s daily

OMI NO2 (DOMINO) product (Boersma et al., 2011; McLinden et al., 2014) based on the Near-

real-time Ice and Snow Extent (NISE) flags (Nolin et al., 2005) in the OMI L1b data set. The second

issue is that the current MODIS kernel model lacks a mechanism to deal with strong forward reflec-35

tion over snow/ice. Finally, since the shortest wavelength in the MODIS BRDF product MCD43GF

is 466 nm, it does not cover the shorter range of OMI blue and UV wavelengths. We plan to explore
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other BRDF products in the future that have more wavelengths and fewer data gaps. A good can-

didate is the Multi-Angle Implementation of Atmospheric Correction (MAIAC) data (Lyapustin et

al., 2012). Compared to MCD43GF, MAIAC includes a shorter wavelength (412 nm) and provides

pixel snow fraction that can be used for snow and ice covered regions.

We have focused here on evaluation of land GLER, because the GLER product is primarily tar-5

geted towards improvement of retrievals of trace gas pollutants such as NO2 that are concentrated

over land. We recognize that our evaluation in this paper excludes several important land types,

such as compact and dense urban areas, land that is close to water, and a combination of the two.

It can be a challenge to collect substantial amounts of data over cities, due to their relatively small

size in comparison to the large regions that are the subject of this study. Particulate pollution is also10

common in urban regions, where non-absorbing sulfate aerosols can interfere with the derivation of

LERs, thus making it difficult to validate GLERs with satellite data. These regions require further

careful study using data from days when these regions are exceptionally clear. Given the importance

of understanding the influence of surface reflectance on AMF calculations in highly polluted regions,

we believe this work should be carried out in the future.15

The validation results reported in this study apply to OMI and other sensors in similar low-Earth

orbits that collect measurements with similar geometries, such as TROPOMI, which has higher

spatial resolution than OMI (7 km at nadir). In theory, the smaller pixel size of TROPOMI and other

future sensors should enhance the ability to validate the GLER approach by enabling more complete

cloud and aerosol clearing for regions with widespread but broken clouds that were specifically20

avoided in the present work.

Since MCD43 product is not recommended for solar zenith angles beyond 70◦ (Schaaf et al.,

2011), it may not be applicable for some geostationary (GEO) satellite observations, for which such

high solar angles will certainly occur. Instead, GEO instruments such as the Geostationary Oper-

ational Environmental Satellite (GOES) imagers may be needed to provide BRDF coefficients that25

apply to the different range of observing conditions relevant to the planned GEO UV/Vis spectrom-

eters.

5 Conclusion

The GLER product has been developed to account for surface BRDF effects on the ultraviolet and

visible cloud, trace-gas, and aerosol algorithms. In this paper, we have evaluated the GLER product30

over land using OMI measurements for a range of land cover types. We described the atmospheric

RT and surface BRDF models as well as the sources of data used in those models to produce our

GLER product. Over land, the GLER product uses gap-filled Ross-Thick, Li-Sparse kernel BRDF

parameters MCD43GF derived from MODIS measurements to capture the directional reflectance

properties of the land surface.35
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We evaluated the GLER product over land by comparing it with OMI-derived LER over several

typical geographical regions focusing on three aspects: seasonal variations, interannual changes, and

cross-track dependence. After data are screened to remove the effects of aerosol and cloud contam-

ination, the MODIS-based GLER show very good agreement with OMI-derived LER, with correla-

tion coefficients larger than 0.8 for some of the selected regions. GLER also captures the seasonal5

variations and cross-track dependence of the OMI-derived LER. We attribute a small negative-bias

of GLER data relative to OMI LER in most regions to remaining effects of non-absorbing aerosol

and/or cloud contamination and to small differences in MODIS and OMI calibration. Our evalua-

tion has demonstrated that the GLER concept can reliably and efficiently account for surface BRDF

effects within UV-Vis cloud and trace-gas retrieval algorithms. In addition, GLER can be easily10

incorporated into the existing algorithms.

Appendix A Ancillary data preprocessing

A1 Ancillary data collocation

The collocation methodology is shown schematically in Figure 12. The OMI pixel is first defined

from the four ground pixel corner points provided in the OMPIXCOR data product as a 4-sided poly-15

gon. A sample space is then constructed along constant latitudinal boundaries, with the corner points

tangent to the boundaries of the sample space as shown. All pixels from the MODIS BRDF/Albedo

product and ancillary data sets inside the sample space are tested using the point-in-polygon method

(Haines, 1994). For this application, we used the corner points for the VIS channel, corresponding

to 75% of the energy in the along-track field of view. This definition assumes the pixels across the20

track share boundaries with their two adjacent neighbors (except for the pixels at the far edge of the

swath), while the pixels along the track of the satellite overlap (reference to OMPIXCOR Readme).

de Graaf et al. (2016) showed the actual shape of the OMI pixel is not exactly a rectangular poly-

gon but rather is best represented by a super Gaussian. They also showed that the optimal overlap

function between OMI and MODIS depends on the scene and the time difference between the satel-25

lites. We do not consider these factors as critical to this application because the GLER is based on

MCD43GF, an 8-day gridded MODIS BRDF product from Terra and Aqua. Small errors in the pixel

shape should only have a minimal impact on our results.

A2 Pixel averaged terrain height and pressure

In order to estimate the pixel-based surface pressure, a critical input parameter to the air mass factor30

in the NO2 algorithm as well as to total optical depth of the Rayleigh atmosphere, terrain height de-

rived from high resolution DEM data averaged over OMI pixel FOV is required. In the GLER prod-

uct, we derived pixel average terrain height from surface topographic data (ETOPO2v2), 2 ′ gridded

global relief data with the vertical precision of 1 m from the NOAA National Centers for Envi-
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Fig. 12: An illustration of collocating the high resolution MODIS BRDF data with an OMI pixel

FOV. Sample space is defined as the MODIS data space that encloses the entire OMI pixel polygon.

Nin is the number of MODIS data points within the OMI pixel (red dots). Numbers at each pixel

corner indicate its geolocation (longitude, latitude). Two pixels are selected: cross-track position 03

(near the edge of swath) and cross-track position 30 (near nadir) for orbit 12399 with along-track

position 1000.

ronmental Information (NCEI) Marine Geology and Geophysics (https://www.ngdc.noaa.gov/mgg/

global/etopo2.html), in which positive values represent altitude above sea level while negative values

represent depth below sea level. To derive the correct terrain height, we need first to determine the

surface type for each ETOPO2v2 cell. This can be done by preprocessing the ETOPO2v2 data with

the 30 ′′ MODIS land-water flag map described in Section 2.3. If the cell’s surface type is land or5

inland water, we keep both positive and negative values; if it is ocean, we zero out negative values.

Then we average the preprocessed ETOPO2v2 data within the OMI FOV. This approach produces a

less noisy result for terrain height than the original OMI L1b terrain height which is the value at the

center of the pixel (see Figure 13).

Given the pixel average terrain height (z), the terrain pressure (Ps) for the OMI pixel is calculated10

as

Ps = Ps(GMI) exp
(
−z − z(GMI)

H

)
, (A1)
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Fig. 13: Pixel average terrain height for region of the Tibetan plateau from ETOPO2v2 used in

GLER (left), and OMI L1b terrain height at the center of the pixel (right).

H = (kT )/(Mg) (A2)

where Ps(GMI) is the surface pressure monthly climatology (1◦ latitude by 1.25◦ longitude spa-

tial resolution) taken from the Global Modeling Initiative (GMI) chemistry transport model driven

by fields from the NASA GMAO Goddard Earth Observing System 5 (GEOS-5) global data as-

similation system (Rienecker et al., 2011), z(GMI) is the terrain height at the GMI resolution of5

1◦ × 1.25◦, k is Boltzmann constant, T is the GMI air temperature at the surface, M is the mean

molecular weight of air, and g is the acceleration due to gravity.

Appendix B Look-up tables

From an operational point of view, it is impractical to process OMI and similar satellite data with on-

line radiative transfer calculations. For example, for OMI there are more than 14 years of global data,10

and there will be a much larger data turn-round for the recently launched TROPOspheric Monitoring

Instrument (TROPOMI) and the upcoming TEMPO mission (Tropospheric Emissions: Monitoring

of Pollution). Since our goal is to create a global GLER product for generic satellite missions, a

look-up-table (LUT) approach is adopted to calculate variables in Eq. 2 such as Icomp, I0, T and

Sb at different surface pressure levels (see Table 4 for details). These LUTs have sufficient nodes15

to cover all possible OMI geometries (SZA, VZA and RAA) and model input parameters, such as

three surface BRDF kernel coefficients (fiso, fvol, and fgeo) for land and chlorophyll concentration,

wind speed and direction for waters. The LUT approach has been validated with online VLIDORT

calculations; this shows a satisfactory results of better than 0.5% relative differences between online

calculations and interpolated TOA radiances.20

26



Table 4: LUT structures for input parameters

Parameter Number of nodes Step(s) Range

Pressure 11 20-110 411-1100 hPa

SZA 45 2 0-86◦

VZA 41 2 0-80◦

RAA 48 2-5 0-180◦

fiso 25 0.01-0.04 0.01-0.999

fvol 16 0.01-0.1 0-0.5

fgeo 12 0.005-0.02 0-0.1

Chlorophyll 24 0.003-3.0 0.01-10 mg/m3

Wind speed 23 0.2-5.0 0.001-50 m/s

Wind direction 36 10 0-360◦

Appendix C Cloud screen selection

An important consideration for the method of evaluating the GLER data is properly removing cloudy

scenes from the analysis. For this work, the O2-O2 product ECF was used for the removal of cloudy

OMI scenes because this ECF will be used in NO2 retrievals that the GLER product aims to improve.

Since the O2-O2 ECF depends on the GLER and OMI TOA Radiances, care was taken into analyzing5

the distribution of the GLER and OMI-derived LER difference for various cloud fraction cutoffs.

Figure 14 shows the distribution of the difference between GLER and OMI-derived LER across

various geographical regions for five different possible ECF cutoffs. The mode of the distribution

likely represents the majority of cloud free scenes and can be thought of as a representation of the

bias between the calculated GLER and measured OMI-derived LER. We note that on the right side10

of the distribution there is a small tail where OMI-derived LER is less than GLER. This could be

caused either by the uncertainty of the MODIS measurements or absorbing aerosols that are not

being completely removed with the AI screen. To capture both the mode of the distribution as well

as possible noise in the measurements which could be within the right tail of the distribution, the

ECF cutoff of 4% is used for the evaluation. We note that this cutoff may leave some residual15

clouds in regions such as western Australia where the left tail is larger than the right tail, but have

decided to use a consistent cloud screen for all regions and note that the extra number of possible

cloud contaminated data in the left tail are much less than the number of data within the mode of the

distribution.

While these histograms suggest that the mode of the GLER - OMI-derived LER difference is likely20

most representative of the cloud free OMI scenes, in this work we present the mean of the difference.

In the evaluation we examine regions such as that include month with extreme cloudiness or constant

snow cover. For these months, since the number of available data are limited for evaluation, the
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Fig. 14: Histograms showing the distribution of the difference between GLER and OMI-derived

LER for various O2-O2 ECF screenings across different geographical regions in 2006. While no

cloud screening was performed, aerosols were removed and OMI scenes with land fraction < 99%

were not included. The vertical grey line represents the mean of the difference between GLER and

OMI-derived LER for the various regions. The dark black line representing ECF < 0.04 was the

cloud screen implemented in the evaluation of GLER for this paper.

distribution of the data becomes quite flat making the mode difficult to determine. As shown in

Figure 14 the mean of the difference is nearly identical to the mode in regions such as the Arabian

Desert and Central United States, while in other regions such as southern Brazil and southern Africa

the mean of the difference is lower than the mode difference by nearly 0.01. This possibly suggests

that the mean of the difference is more influenced by the residual cloud and aerosol than the mode5

of the difference. For this reason, it is possible that the bias between the calculated and measured

LER is slightly smaller than the mean difference presented in this work.

Appendix D Relative calibration of OMI and MODIS

Jaross and Warner (2008) compared 2004-2005 radiances from OMI and MODIS to TOA radiance

predicted using a radiative transfer model over Antarctica. We use these results to indirectly compare10

the calibration of OMI and MODIS radiances. Figure 9a of Jaross and Warner, reproduced here as

Figure 15, shows that MODIS band 3 reflectances near 470 nm in Collection 4 data were around
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1% high relative to the model at nadir, and OMI Collection 2 L1B data were approximately 2.5%

lower than the model for similar viewing conditions. Based on this result, the OMI calibration

team applied a +2.5% time-independent, wavelength-independent calibration adjustment to OMI

Collection 3 radiances to bring the L1B into agreement with the model (Dobber et al., 2008; Jaross

and Warner, 2008). The MODIS radiance calibration was unchanged between Collections 4 and 55

for the period Jaross and Warner examined, therefore the MODIS Collection 5 radiances are higher

than OMI Collection 3 radiances by approximately 1%. This is within the 2% uncertainty estimated

for the model. The agreement is also within the theoretical combined uncertainty calculated from

model also agrees well with the data in an absolute sense up
to qo = 70!. At qo = 82!, like most other sensors, the TOA
reflectances in the nadir view are less than predicted.
However, the measurements increase to more or less
expected values when viewing off-nadir both toward and
away from the Sun, something not predicted by a simple
shadowing model or the observed [Warren et al., 1998]
effect of perpendicular sastrugi. In particular, the measured
reflectances are substantially more than GS model predic-
tions where shadowing should most depress signals, at
positive view angles.
[44] We conclude from the MISR results that shadowing

and surface roughness may cause some of the errors in
modeled TOA reflectances, but most of the errors seem to
result from a model that underpredicts forward and back-
ward reflections at large solar and view zenith angles. We
note that the original parameterization of reflectance anisot-
ropy in the forward direction is systematically lower than
the measured data for the qo = 80!, qv = 50! case [Warren et
al., 1998, Figure 10d]. This could explain the MISR versus
model comparison. However, the anisotropy parameteriza-
tion is larger than the measurements in the backward
direction, which is inconsistent with the MISR results.

6. OMI Validation Results
6.1. Nadir-View Results

[45] As discussed in the previous section, model errors in
the nadir view appear to be within ±1% for solar zenith
angles less than 70!. This is consistent with our earlier
observation that errors arising from uncertainty in the
surface BRDF are minimal near qo = 50!. The time period
selected for our OMI evaluation, 7 December 2004 through
4 January 2005, maximizes the amount of low solar zenith
angle data over the eastern Antarctic plateau. Because of the
local equator crossing time of the Aura spacecraft, OMI
measurements at the far right swath position all have qo >
60! in our sample area. In order to maintain consistency

across the OMI swath for subsequent evaluations of the
sensor swath dependence, we limited our analysis to 62! !
qo ! 68!. The resulting data sample is composed of
approximately 16,000 individual observations at each wave-
length within 2! of nadir.
[46] OMI level 1b data, which contain the measured

radiances and irradiances, were evaluated using the data
collection known as ECS2. The ECS2 collection, as it
pertains to TOA reflectances, is derived from the prelaunch
sensor calibrations [Dobber et al., 2008]. A comparison of
OMI nadir (center 2 swath positions) reflectances from
ECS2 with model predictions is shown in Figures 7 and
9. The result at each wavelength in Figure 9 is the average
ratio for the full time period and solar zenith angle range.
Since the model predictions are smooth functions of wave-
lengths, the residual spectral structure comes from the OMI
measurements, probably a slight mismatch between radi-

Figure 9. Mean of the OMI TOA reflectances at qv = 0!
obtained during the 2004 solstice period divided by our
model predictions. (a) Mean OMI (solid line) and MODIS
470 nm (bars) ratios for the interval 62! ! qo ! 68! and
TOMS/Earth Probe (asterisks) ratios from 1996 for the
interval 47! ! qo ! 52!. (b) OMI ratios for the interval
83! ! qo ! 86!. Uncertainties of several percent are
estimated for MODIS data other than band 3 (470 nm)
because of the large solar zenith angles at which those data
were obtained.

Figure 8. TOA reflectance measurements from the MISR/
Terra blue band (430–456 nm) divided by our model
prediction. These data were obtained during 1 week
surrounding the December 2004 solstice and are in the f =
25!, "155! reflection plane. Positive view zenith angles
correspond to the f = 25! scattering direction, and negative
angles correspond to f = "155!.
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Fig. 15: The mean ratios of TOA satellite reflectances to a model used over Antarctica for valida-

tion during the 2004 solstice; OMI (solid line), MODIS (red bars), and TOMS/Earth Probe (aster-

isks). Data shown are for the interval 62◦ ≤ θ0 ≤ 68◦ (47◦ ≤ θ0 ≤ 52◦ for TOMS/Earth Probe).

Uncertainties on MODIS bands other than band 3 (470 nm) are estimated to be several percent.

Reproduced from Figure 9a of Jaross and Warner (2008) .

the uncertainties reported for each instrument independently in the literature. The error in OMI

radiometric calibration at nadir is 2%, uncertainty in swath dependence is also within 2% (Dobber10

et al., 2008), so we estimate the combined calibration uncertainty of OMI is 2-3%. The MODIS

total uncertainty is 2% (Xiong et al., 2005), therefore the theoretical combined uncertainty in the

difference between OMI and MODIS is 3-4%. In order to explain the bias in GLER - OMI LER

of 0.01 to 0.02, the MODIS radiances would have to be biased 3-6% low relative to OMI, so it is

unlikely that calibration difference is the main cause of the bias in our GLER comparisons. The15

bias is most likely due to a combination of the relative calibration differences and the presence of

residual cloud and aerosol contamination that increase the measured OMI radiances relative to those

we simulate with GLER.

Time dependent degradation of the instruments is also a factor to consider when comparing the

relative instrument calibration. Jaross and Warner performed their analysis with the first few years of20
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overlap in the OMI and MODIS data and did not examine long-term instrument drift. Schenkeveld

et al. (2017) estimated that the long-term degradation of OMI reflectances at 466 nm is 1-1.5%

from 2004 to present. This drift has not been corrected in the Collection 3 L1B radiance or the

GLER products. The MODIS Aqua solar reflective bands including band 3 were corrected for time-

dependent drift in Collection 5 (Wu et al., 2013), but errors in MODIS Terra due to anomalous5

degradation of up to 5% across the scan appeared around 2007, and this error was not sufficiently

corrected in Collection 5 (Lyapustin et al., 2014). We see no evidence of the impact of such a drift

on the GLER product or the BRDF itself, so we suspect that poor quality MODIS Terra data were

excluded when the MCD43GF product was generated.

Data availability. GLER is available at https://aura.gesdisc.eosdis.nasa.gov/data/Aura OMI Level2/.10

The MODIS gap-filled BRDF Collection 5 product MCD43GF used for calculation of GLER in this

paper is available at ftp://rsftp.eeos.umb.edu/data02/Gapfilled/ (last access: 11 March 2019). The

OMI Level 1 data used for calculations of GLER are available at https://aura.gesdisc.eosdis.nasa.gov/

data/Aura OMI Level1/ (last access: 11 April 2019). The OMI Level 2 Collection 3 data that in-

clude NO2 and OMI pixel corner products are available at https://aura.gesdisc.eosdis.nasa.gov/data/15

Aura OMI Level2/ (last access: 11 April 2019). OMI O2−O2 Cloud product can be provided upon

request of the co-authors.
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