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Abstract: 12 
 13 
CO2 emission estimates from urban areas can be obtained with a network of in-situ instruments 14 
measuring atmospheric CO2 combined with high-resolution (inverse) transport modeling. Because 15 
the distribution of CO2 emissions is highly heterogeneous in space and variable in time in urban 16 
areas, gradients of atmospheric CO2 (here, dry air mole fractions) need to be measured by 17 
numerous instruments placed at multiple locations around and possibly within these urban areas. 18 
This calls for the development of lower-cost medium precision sensors to allow a deployment at 19 
required densities.  20 

Medium precision is here set to be a random error (uncertainty) on hourly measurements of ±1 21 
ppm or less, a precision requirement based on previous studies of network design in urban areas. 22 
Here we present tests of newly developed NDIR sensors manufactured by Senseair AB performed 23 
in the laboratory and at actual field stations, the latter for CO2 dry air mole fractions in the Paris 24 
area. The lower-cost medium precision sensors are shown to be sensitive to atmospheric pressure 25 
and temperature conditions. The sensors respond linearly to CO2 when measuring calibration 26 
tanks, but the regression slope between measured and assigned CO2 differs between individual 27 
sensors and changes with time. In addition to pressure and temperature variations, humidity 28 
impacts the measurement of CO2, all of these factors resulting in systematic errors. In the field, 29 
an empirical calibration strategy is proposed based on parallel measurements with the lower-cost 30 
medium precision sensors and a high-precision instrument cavity ring-down instrument during 6 31 
months. The empirical calibration method consists of using a multivariable regression approach, 32 
based on predictors of air temperature, pressure and humidity. This error model shows good 33 
performances to explain the observed drifts of the lower-cost medium precision sensors on time 34 
scales of up to 1-2 months when trained against 1-2 weeks of high-precision instrument time 35 
series. Residual errors are contained within the ±1 ppm target. showing the feasibility to use 36 
networks of HPP3 instruments for urban CO2 networks, Provided that they could be regularly 37 
calibrated against one anchor reference high-precision instrument these sensors could thus 38 
provide CO2 (dry air) mole fraction data required as for top-down CO2 flux estimates. 39 

 40 

1. Introduction 41 
  42 
Urban areas cover only a small portion (< 3 %) of the land surface but account for about 70% of 43 
fossil fuel CO2 emissions (Liu et al. 2014, Seto et al. 2014). Uncertainties of fossil fuel CO2 44 
emissions from inventories based on statistics of fuel amounts and/or energy consumption are on 45 
the order of 5% for OECD countries and up to 20% in other countries (Andres et al. 2014) but they 46 
are larger in the case of cities (Breon et al. 2015, Wu et al. 2016). Further, in many cities of the 47 
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world, there are no emission inventories available. The need for more reliable information on 48 
emissions and emission trends has prompted research projects seeking to provide estimates of 49 
GHG budget cities, power plants and industrial sites. These are often based on in situ 50 
measurements made at surface stations (Staufer et al. 2016, Lauvaux et al. 2016, Verhulstet al. 51 
2017), aircraft campaigns around emitting locations (Mays et al. 2009, Cambaliza et al. 2014) and 52 
satellite imagery (Broquet et al. 2017, Nassar et al. 2017). Although sampling strategies and 53 
measurement accuracies differ between these approaches, the commonly used principle is to 54 
measure atmospheric CO2 dry air mole fraction gradients at stations between the upwind and 55 
downwind vicinity of an emitting area and infer the emissions that are consistent with those CO2 56 
gradients and their uncertainties, using an atmospheric transport model. This approach is known 57 
as atmospheric CO2 inversion or as a “top-down” estimate. 58 
Inversion studies from Paris, France attempting to constrain CO2 emissions from measurements 59 
of CO2 dry air mole fractions at stations located around the city along the dominant wind direction, 60 
have pointed out that the fast mixing by the atmosphere and the complex structure of urban CO2 61 
emissions requires high resolution atmospheric transport models, and continuous measurements 62 
of the atmosphere to select gradients induced by emission plumes (Broquet et al. 2015, Wu et al. 63 
2016) that can be captured at the scale of the model. 64 
With the existing three stations, the CO2 emissions from the Paris megacity could be retrieved 65 
with an accuracy of ≈20% on monthly budgets (Staufer et al. 2016). A denser network of stations 66 
would help to obtain more information on the spatial details of CO2 emissions. A network design 67 
study by Wu et al. 2016 for the retrieval of CO2 emissions per sector for the Paris Megacity has 68 
shown that with 10 stations measuring CO2 with 1 ppm accuracy on hourly time-steps, the error 69 
of the annual emission budget could be reduced down to a 10% uncertainty. Wu et al. 2016 70 
furthermore found that for a more detailed separation of emissions into different sectors, more 71 
stations were needed, on the order of 70 stations to be able to separate road transport from 72 
residential CO2 emissions. This inversion based on pseudo-data allowed estimating total CO2 73 
emissions with a better accuracy than 10% and emissions of most major source sectors (building, 74 
road energy) with an accuracy better than 20%. Another urban network design study over the San 75 
Francisco Bay area reached a similar conclusion, i.e. that in-situ CO2 measurements from 34 76 
stations with 1 ppm accuracy at an hourly resolution could estimate weekly CO2 emissions from 77 
the city area with less than 5 % error (Turner et al. 2016). 78 
In the studies from Wu et al. 2016 and Turner et al. 2016, the additional number of atmospheric 79 
CO2 measurement stations rather than the individual accuracy of each measurement helped to 80 
constrain emissions, provided that CO2 observation errors have random errors of less than 1 ppm 81 
on hourly measurements, uncorrelated in time and in space between stations. Therefore, we will 82 
adopt here a 1 ppm uncertainty on hourly CO2 data as the target performance for new urban lower-83 
cost medium precision CO2 sensors. 84 
Today, the continuous CO2 gas analyzers used for continental scale observing systems like ICOS 85 
(https://www.icos-ri.eu/), NOAA (https://www.esrl.noaa.gov/gmd/) or ECCC 86 
(https://www.canada.ca/en/environment-climate-change.html) follow the WMO/GAW guidelines 87 
and are at least ten times more precise than our target of 1 ppm, but are also quite expensive. For 88 
urban inversion-based flux estimates for Paris, Wu et al. 2016 found that the number of 89 
instruments is more important than their individual precision. Furthermore, Turner et al. (2016) 90 
reported that weekly urban CO2 fluxes in the Bay Area (California, USA) can be estimated at a 91 
precision of 5% when deploying a dense network of sensors (ca. every 2km) with an assumed 92 
mismatch error of 1ppm. This underlines that significant expansion of urban networks is desirable 93 
and could be achieved at an acceptable cost if low-cost sensors could be produced with the 94 
specifications of 1 ppm random error (i.e. bias free long-term repeatability). . 95 
Recently, inexpensive sensors, measuring trace gases, particulate matter, as well as traditional 96 
meteorological variables, using various technologies and accuracy have become commercially 97 
available. Evaluation and implementation of these sensors is quite promising (Eugster and Kling 98 
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2012, Holstius et al. 2014, Piedrahita et al. 2014, Young et al. 2014, Wang et al. 2015). With the 99 
advent of low cost mid-IR light sources and detectors, different non-dispersive infrared (NDIR) 100 
CO2 sensors have become commercially available and were tested for their suitability for CO2 101 
monitoring (e.g. Martin et al. 2017, Kunz et al. 2017) or for CO2 in combination  with air pollutants 102 
(e.g. Shusterman et al. 2016, Zimmerman et al. 2018).  103 
In this study, we present the development and stability tests of a low-cost sensor (HPP3, SenseAir 104 
AB, Sweden) to measure the mole fraction of CO2 of ambient air (Hummelgard et al. 2015). 105 
Throughout the manuscript we will use {CO2} to signify the mole fraction and/or dry air mole 106 
fraction of CO2 in air. To improve performance and eventually derive dry air mole fractions, 107 
additional parameters are measured in ambient air and the sensor is integrated into a platform, 108 
which we will refer to as instrument. . Then, the instrument linearity is evaluated against a suite of 109 
CO2 reference gases with CO2 dry air mole fractions from 330 to 1000 ppm. The instrument’s 110 
sensitivities to ambient air temperature, pressure and water vapor content are assessed in 111 
laboratory experiments and climate chambers tests. The calibrated low-cost medium precision 112 
(LCMP) instruments are then compared to highly precise CRDS instruments (G2401, Picarro Inc, 113 
Santa Clara, USA).  114 
Lastly, we present the time series of ambient air CO2 measurements in the Paris region. The time 115 
series are compared to measurements by co-located cavity ring down spectroscopy (CRDS) 116 
analyzers, and an empirical corrections and calibration scheme to the HPP3-based instrument are 117 
proposed based on measured CO2 dry mole air fractions and meteorological variables. These 118 
corrections and calibrations are established during a period of 1 or 2 weeks are used to estimate 119 
the drift of the HPP3-instrument on time scales of up to a month and a half. 120 
   121 

2. Sensor integration 122 
 123 
2.1. HPP3 sensor 124 
 125 
The HPP (High-Performance Platform) NDIR (Non-Dispersive InfraRed) CO2 sensor from 126 
SenseAir AB (Delsbo, Sweden) is a commercially available lower-cost system (Hummelgard et al. 127 
2015). The main components of this sensor are an infrared source (lamp), a sample chamber (ca. 128 
1 m optical path length), a light filter and an infrared detector. The gas in the sample chamber 129 
causes absorption of specific wavelengths (Hummelgard et al. 2015) according to the Beer–130 
Lambert law, and the attenuation of light at these wavelengths is measured by a detector to 131 
determine the gas mole fraction. The detector has an optical filter in front of it that eliminates all 132 
light except the wavelength that the selected gas molecules can absorb. The HPP has a factory 133 
pre-calibrated CO2 measurement range of 0 to 1000 ppm. The HPP sensor itself uses ca. 0.6 W 134 
and requires an operating voltage of 12 V direct currentand has a life expectancy superior to 15 135 
years according to the manufacturer.  136 
Three generation of HPP sensors were built by SenseAir AB (Delsbo, Sweden). In this manuscript 137 
we only report on the tests carried out on the latest generation (HPP3) being the most performant 138 
among the HPP sensors family. Previous HPP generations were used for more short-term 139 
airborne measurements, for example in the COCAP system (Kunz et al. 2017) and were found to 140 
have an accuracy of 1-1.2 ppm during short-term mobile campaigns.A number of technical 141 
improvements have been made for the new HPP3 generation described here: 142 

 Simple interface through USB connection and the development of a new software made 143 
data transfer easier, quicker and more efficient 144 

 Improved temperature stability due to 6 independent heaters dispatched inside the unit.  145 
 To reduce long-term drift the sensor is equipped with new electronics and the IR sources 146 

were preconditioned prior to shipment. 147 
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 The improved second version of HPP3 (HPP3.2) sensors was equipped with a pressure 148 
sensor (LPS331AP - ST Microelectronics, Switzerland) to allow real-time corrections. The 149 
high resolution mode of the LPS331AP has a pressure range of 263 to 1277 hPa and a 150 
Root Mean Square (RMS) of 0.02 hPa can be achieved with a low power consumption (i.e. 151 
30 µA). 152 

 The impact of leaks on the measurements are reduced  since the third generation sensor 153 
works in a high pressure mode. A pump is thus needed upstream of the sensor inlet in 154 
order to create a high pressure in the measurement cell. 155 

 156 
Different sensors from two versions of HPP were tested and used in this study, that is, three 157 
sensors from a first version (HPP3.1) named S1.1, S1.2 and S1.3, and three others from the 158 
second version (HPP3.2) named S2.1, S2.2 and S2.3. For the HPP3.1 sensors, an internal 159 
pressure compensation does not exist, but the HPP3.2 series includes a pressure sensor together 160 
with a compensation algorithm, which normalizes measured CO2 dry air mole fractions according 161 
to ambient pressure (Gaynullin et al. 2016). 162 
 163 
 164 
2.2. Portable integrated instrument 165 
  166 
The HPP3 sensors were integrated into a custom-built portable unit, which we will refer to as 167 
instrument. This instrument should be suitable to perform in-situ CO2 measurements on ambient 168 
air. The instrument is composed of the HPP3 CO2 sensor, temperature (T) and relative humidity 169 
(RH) sensors. To be able to continuously flush the measurement cell a diaphragm micro pump 170 
with a built-in potentiometer (GardnerDenverThomas, USA, Model 1410VD/1.5/E/BLDC/12V) was 171 
added upstream of the HPP3’s optical cell. Temperature and RH were measured at the exterior 172 
of the optical cell were gas is released into the surrounding enclosure. . For these humidity and 173 
temperature, a DHT22 sensor kit (Adafruit, USA) was added and connected through an I2C 174 
interface. The accuracy of the sensor is ±2-5% RH and ±0.5°C. Its range is 0-100 %RH and -40 175 
to +80°C, respectively. The response time for all sensors was less than one minute (which is the 176 
time-step to which data was integrated). 177 
A Raspberry Pi3 (RPi3) (Raspberry Pi Foundation, 2015) is used to collect the data of all sensors. 178 
The RPi3 is a small (85x56 mm2) single-bard computer running Rasbian OS , an open-source 179 
GNU/Linux distribution. The HPP3 sensors were connected via USB.A 7’’ touch screen monitor is 180 
connected via an adapter board which handles power and signal conversion.. The package is 181 
powered by a switching power supply providing 12V, but can also be run on a 12V battery pack. 182 
An image of the components of the portable instrument package is available in Figure1.  183 
 184 
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 185 
Figure 1: Components of the portable instrument on the top of its box. 186 
 187 
3. Methods  188 
 189 
NDIR sensors are sensitive to IR light absorption by CO2 molecules in the air contained in their 190 
optical cell, but the retrieval of CO2 dry air mole fraction to the desired uncertainty of 1 ppm is 191 
made difficult by sensitivities to temperature, pressure and humidity. Therefore, these parameters 192 
should be controlled as much as possible, and their sensitivities characterized, to correct and 193 
calibrate reported {CO2}. A series of tests were carried out to characterize the HPP3.1 (S1.1, S1.2, 194 
S1.3) and HPP3.2 (S2.1, S2.2, S2.3) performances and sensitivities to {CO2}, T, P and RH. Firstly, 195 
temperature, pressure and {CO2} sensitivities were determined in laboratory experiments. Then, 196 
field measurements were conducted with an accurate CRDS instrument (Picarro, USA, G2401) 197 
measuring the same air as the HPP3 sensors. The CRDS  short-term repeatability is estimated to 198 
be below 0.02 ppm and the long-term repeatability to be below 0.03 ppm (Yver-Kwok et al. 2015). 199 
Table 1 summarizes all laboratory tests and field test measurements, which are presented in this 200 
section.  201 
 202 

Name Purpose Location Air 
measured 

Parameter Range of T (°C) 
and P (atm) 

Range of [CO2] 
in ambient air 
(ppm) 

Range of 
[CO2] in Cal. 
Cylinders 
(ppm) 

Duratio
n 
(days) 

Sensors 
tested 

PT1 Correlation 
between 
[CO2] and 
P,T 

Laboratory 
(Saclay) 

Calibration 
cylinders 

T, p 16-32 
and 
0.965-1.025 

N/A 420 to 450 3 S1.1, S1.2, 
S1.3 

PT2 Correlation 
between 
[CO2] and 
P,T 

PIT climate 
chamber 
(Guyancourt) 

Calibration 
cylinders 

T, p -2 to 35 
and 
0.75 to 0.95 

N/A 420 to 450 5 S2.1, S2,2, 
S2.3 
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DA1 Test 
calibration 
frequency  

Laboratory 
(Saclay) 

Calibration 
cylinders 
and dried 
ambient air 

T , P, RH, 
{CO2} from 
CRDS 

24 to 31 
and 
0.996 to 1.010 

417 to 575 330 to 1000 48 S1.1, S1.2, 
S1.3 

WA2-1 Test  
calibration 
frequency  

Field station 
(Saclay) 

Ambient 
air 

T, p, RH, 
{CO2} from 
CRDS 

25 to 27 
and 
0.999 to 1.008 

389  to 508 N/A 45 S2.2, S2.3 

WA2-2 Test 
calibration 
frequency 

Field station 
(Jussieu) 

Ambient 
air 

T, p, RH, 
{CO2} from 
CRDS 

29 to 31 
and 
0.993 to 1.021 

393 to 521 N/A 60 S2.1 

Table 1: Summary of all laboratory tests.  203 
 204 
3.1. Laboratory tests 205 
 206 
All laboratory tests used the same fundamental setup shown in Figure 2 with only slight 207 
modifications.  A diaphragm pump (KNF Lab, Germany, Model N86KN.18) was used to pump air 208 
from either an ambient air line or calibration cylinders to a Nafion dryer (PermaPure, USA, MD-209 
070 series) was used to eliminate H2O traces in the gas line.  A flow controller (Bronkhorst, France, 210 
El-Flow series) was used to regulate the airflow distributed with a manifold to the HPP3 211 
instruments at 500 mL min-1 to ensure stable experimental conditions while a CRDS instrument 212 
could also be connected through a gas split to measure the same air.  213 

 214 
 215 
Figure 2: Test setup 216 
 217 
 218 
3.1.1. Sensitivity to temperature and pressure variations 219 
  220 
To   assess the linearity of the response of each sensor to {CO2} for different pressure and 221 
temperature conditions, two series of temperature and pressure sensitivity tests (PT1, PT2) were 222 
realized in a closed chamber with controlled T and p for the HPP3.1 and HPP3.2 sensors No drier 223 
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was necessary as dried air from high-pressure cylinders was used. The CRDS instrument (Picarro, 224 
G2401, serial number 2125) was not connected during these tests  225 
In test PT1 (table1), three HPP3.1 sensors were put in a simple plastic chamber and exposed to 226 
pressure changes ranging from 977.8 to 1038.6 hPa, and temperature ranges of 16 to 32 °C, while 227 
measuring gas from a calibration cylinder. Pressure and temperature were measured by a high-228 
precision pressure sensor (Keller, Germany, Series 33x, 0.2hPa and 0.05K precision). 229 
In test PT2, to test wider ranges for pressure and temperature, that might be experienced during 230 
field measurements, three HPP3.2 sensors were placed inside a dedicated temperatures and 231 
pressure chamber at the Plateforme d’Integration et de Tests (PIT) at OVSQ Guyancourt, France 232 
where a much larger range of T and p variations could be applied. During each T, p test, four 233 
calibration cylinders with dry air CO2 dry air mole fractions from 420 to 450 ppm were measured 234 
by all the HPP3.2 sensors for a period of approximately 120 hours for each cylinder. In the PIT 235 
chamber, temperature was varied from -2 to 35 °C with a constant rate of change of 1 °C/h keeping 236 
pressure constant at a value of 1013.25 hPa. During pressure tests the chamber pressure was 237 
varied from 1013.25to 759.94 hPa with a decrement of 50.66 hPa, being regulated with a primary 238 
pump, with temperature fixed at 15°C. 239 
 240 
3.1.2. Correction and calibration of CO2 measurements for dry and wet air 241 
 242 
These experiments were performed to evaluate the response of HPP3 sensors to {CO2} changes 243 
in ambient air. Corrections were established to allow compensating for unintended instrument 244 
behavior and sensitivities, while calibrations are applied to translate the instruments readings to 245 
an official CO2 scale (here, XCO2 2007). Both steps are combined into one procedure. Two modes 246 
of operation for the HPP3 sensors have been tested i.e. using  a dried or an undried gas stream, 247 
as those are two common modes of operation in greenhouse gas measurements in different local, 248 
regional and global networks (GAW report 242). 249 
 250 

Dry air experiments 251 
 252 
Water vapor is known to interfere with CO2 measurements, in particular for NDIR sensors. It is 253 
thus important to determine the response of the sensors to {CO2} under the best possible 254 
conditions, that is, dry air. The experimental setup  shown in Figure 2 was used. In test DA1 (Table 255 
2) different HPP3 sensors were flushed with the same dry ambient air, passed through a Nafion 256 
dryer. CRDS measurement were used to monitor and confirm that H2O was reduced to trace 257 
amounts, i.e. 0.05 ±0.05 % H2O. HPP3.1 sensors S1.1, S1.2, S1.3 were tested extensively during 258 
45 days, and HPP3.2 sensors S2.1, S2.2 were tested during 12 days.  259 
Additionally, for a period of 45 days during spring 2016, S1.1, S1.2 and S1.3 measurements of 260 
dry ambient air in parallel with a co-deployed CRDS instrument (Picarro, USA, G2401) were 261 
conducted at the Saclay field site (see section 3.3.1) There ambient air was pumped from a 262 
sampling line fixed on the roof of the building (ca. 4 m above ground level) to flush the setup 263 
described in Fig. 2. Four dry-air calibration cylinders (330 ppm, 375 ppm, 445 ppm and 1000 ppm 264 
of {CO2}) were measured once every 13 hours they were sampled successively each for 30 265 
minutes (Figure 3). As the HPP3 responses can be slow and in order to remove memory effects, 266 
only the last 15 minutes of each measurement period were used.  267 
 268 
Undried (wet) air experiments 269 
 270 
As drying is impractical for some applications, we also measured the HPP3’s sensitivities to water 271 
vapor in undried ambient air and calibration cylinders. If these sensitivities were stable over time, 272 
they could be used to correct reported {CO2} for the H2O interference. For WA2-1 and WA2-2 273 



8 
 

tests, the Nafion dryer was removed from the setup. The only modification of the experiment was 274 
the removal of the Nafion drier.  275 

276 
Figure 3: (a) CO2 dry air mole fractions measured by S1.1 (blue) and the Picarro CRDS analyzer 277 
(black). (b) Calibrated dry air mole fractions of S1.1 (red) compared to the raw values (blue). 278 
(c)Four reference gases (assigned values are 367 ppm, 413 ppm, 487 ppm and 997 ppm of 279 
{CO2}), are used for the calibration. No saturation effects are observed within our CO2 dry air mole 280 
fraction range. 281 
   282 
3.2. Instrument correction and calibration procedure 283 
 284 

In order to correct the reported {CO2} we have to define a function that allows to correct for 285 
unintended instrument sensitivities i.e. to p, T, H2O as well as to correct {CO2} measurements to 286 
an official scale should they show any offset or non-linear behavior. 287 
 288 
Linearity of instrument response 289 
 290 
For dry air measurements in test DA1, a linear calibration curve was found to be appropriate. panel 291 
C  of Figure 3 shows that the response of the HPP3 instruments to CO2 dry air mole fraction is 292 
linear (R2 = 0.95) from 330 to 1000 ppm. No saturation effects are observed within this CO2 dry 293 
air mole fraction range since residuals are included in the ±1 ppm range. Therefore, a linear 294 
response to {CO2} is assumed further on.    295 
 296 
Multivariable correction and calibration 297 
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Due to the high correlation of air temperature and water vapor content, which were both found to 298 
be linear (see section 4), we suggest a multivariable regression method, which includes all 299 
environmental variables. Indeed, if variables are corrected one at a time, an overcorrection of one 300 
of the correlated variables may occur. 301 
Multivariable regression is a generalization of linear regression by considering more than one 302 
variable. We used a multivariable linear regression of the form: 303 
 304 
{CO2}calibrated, corrected = b + aCO2{CO2}HPP3 + app + aTT + awW + add               (1) 305 
  306 
{CO2}calibrated, corrected corresponds to the measured {CO2} by the reference instrument (CRDS) 307 
calibrated on the WMO CO2 X2007 scale.. C is the {CO2}HPP3 reported by the HPP3 instrument, 308 
with additional factors to capture the influence of the pressure p, the temperature T, the water 309 
mixing ratio W (as calculated from our T, p and RH measurements), the baseline drift d and a 310 
baseline offset b. All instrument specific coefficients for the multivariable linear regression are 311 
determined using measurements of the parameters during several days. 312 
 313 
3.3. Field tests with urban air measurements 314 
  315 
To assess their real-world performance, we conducted additional tests for the HPP3 sensors 316 
measuring ambient air at two field sites under typical conditions for urban air monitoring. After the 317 
sensors were fully integrated into instruments as described in section 2.2. Three HPP3.1 318 
instruments (S1.1, S1.2, S1.3) and two HPP3.2 instruments (S2.2, S2.3) were installed Saclay 319 
field site (48.7120N, 2.1462E) to measure ambient air on top of the building roof. Saclay is located 320 
20 kilometers south of the center of Paris in a low-urbanized area. In addition, one HPP3.2 321 
instrument (S2.1) was installed to measure air at the Jussie field site on the Jussieu University 322 
campus in the center of Paris (48.8464N, 2.3566E). 323 
 324 
3.3.1. Saclay field Site 325 
 326 
The sampling line, a 5 meter Dekabon tube with an inner tube diameter of 0.6 cm, was fixed on 327 
the rooftop of the building at about 4 meters above the ground, which was connected to a setup 328 
that was a copy of the laboratory tests. However, up to five HPP3 instruments were connected  329 
and a pump of the same built as in the previous experiments was used to regulate the air-flow 330 
distributed with a manifold to the HPP3 instruments at 500 mL min-1 to ensure stable experimental 331 
conditions. The field site is equipped with a cooling/heating unit that was turned off most of the 332 
time so that room temperature varied between 24 and 31 °C.During the test of  HPP3.2 were 333 
tested for 45 days. Four reference gas cylinders (330ppm, 375ppm, 445ppm and 1000 ppm of 334 
CO2) were used and each HPP3 was flushed every 12 hours for 30 minutes per cylinder during 335 
the dry air experiment. No calibration cylinders were used during the undried air experiment, since 336 
the calibration was based on the co-located high precision measurement with the CRDS analyzer. 337 
The mean dry air mole fraction of ambient CO2 was 420 ppm and varied between 388 ppm and 338 
575 ppm during dry air experiments and a mean of 409 ppm and variations between 389 ppm and 339 
509 ppm were found during the undried air experiments.  340 
 341 
3.3.2. Jussieu field site 342 

The measurements were conducted at the OCAPI (Observatoire de la Composition de l’Air de 343 
Paris a l’IPSL) field station. The measurements from the HPP3.2 instrument (S2.1) in Jussieu 344 
were compared with those of a co-located CRDS analyzer (Picarro, USA, G2401). Two 345 
independent sampling lines (about 5 meter Dekabon tube with an inner tube of 0.6 cm) were used 346 
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for the CRDS and the S2.1 instrument. The air-flow into S2.1 was regulated by the micro pump 347 
(see section 2.2) and set to 500 mL min-1 using a potentiometer. At this location neither calibration 348 
cylinders nor a drying system were deployed for S2.1, but used to calibrate the CRDS. The 349 
measurement period was 60 days and the mean ambient CO2 dry air mole fraction was 410 ppm 350 
and minute averages varied between 393 ppm and 521 ppm. Room temperature varied between 351 
28 and 31 °C during the observation period.  352 

 353 

4. Results 354 
  355 
4.1. Sensitivity to temperature and pressure variations using dried air 356 
  357 
4.1.1. HPP3.1 instruments tested in the simple chamber (PT1) 358 
 359 
Linear relationships are observed between reported CO2 dry air mole fractions and p, T (R2 =0.99 360 
with p and R2 = 0.92 with T) in the simple chamber (see Figure 4 and 5). Due to the limitation of 361 
experimental conditions in these simple plastic chambers, only a narrow pressure range of 977.78 362 
to 1033.52hPa and a temperature range of 16 °C to 32 °C could be tested for these instruments. 363 
Different slopes and intercepts are found for each instrument as reported in Table 2. This indicates 364 
that there is no single universal p and T calibration curve that could be determined for one 365 
instrument and used for others. 366 
  367 
4.1.2. HPP3.2 instruments tested in the PIT chamber (PT2) 368 
 369 
The PT2 tests results with pressure changes from 1013.25 to 759.94 hPa with an increment of 370 
50.66hPa are shown in Figure 4. The top panel of the Figure 4 shows the variations of CO2 dry air 371 
mole fractions due to p changes (from 0.0049 to 0.0177 ppm per hPa). Despite the built-in 372 
pressure compensation algorithm developed for HPP3.2, reported {CO2} and p can still co-vary 373 
with a positive (S2.1 and S2.2) or a negative (S2.3) correlation, indicating that an additional 374 
correction is required when aiming to achieve the best possible results (see also Figure S1. 375 
Consequently, we applied a linear fit between CO2} (differences between the assigned dry air 376 
mole fraction in the cylinder and the dry air mole fraction reported by HPP3.2 instruments) and 377 
pressure (Figure 6). The slope and intercept obtained are then used to determine the offset due 378 
to p variations that has to be added on {CO2} reported by the HPP3.2 instruments. The corrected 379 
{CO2} values have a root mean square deviation from the assigned dry air mole fraction in the 380 
calibration cylinder (428.6 ppm) of less than 0.02 ppm for all three HPP3.2 (see also Figure S2). 381 
 382 
Figure 5 shows the effect of temperature variations in the PIT chamber going from -2 to 35 °C 383 
(see section 3.1) on reported CO2 dry air mole fraction of the HPP3.2 instruments. For the three 384 
HPP3.2, {CO2} is negatively correlated to T. As for the tests in the simple chamber with the HPP3.1 385 
instruments, different linear T slopes and intercepts are observed for each HPP3.1 instrument 386 
(Figure 5) in the PIT chamber. After correction for temperature variations, we obtain corrected 387 
{CO2} values with a root mean square deviation which does not exceed 0.01 ppm from the 388 
assigned value of the cylinder (444 ppm) for the three HPP3.2 instruments (see also Figure S3). 389 
 390 
    391 
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 392 

393 
Figure 4: Linear relationship experimentally found between reported {CO2} and p for S1.1, S1.2, 394 
S1.3 (la) and for the  instruments S2.1, S2.2, S2.3 (b). Note the different p range, going from 972.7 395 
to 1030hPa for the HPP3.1 instruments in the simple plastic chamber and 759.9 to 1013.25hPa 396 
for the HPP3.2 instruments in the PIT chamber. 397 

 398 
Figure 5: Linear relationships between reported {CO2} for S1.1 S1.1, S1.2 and S1.3 (la) at 399 
temperature values going from 17 to 30 °C in plastic chamber, and for S2.1, S2.2 and S2.3 at 400 
temperature values going from 5 to 35 °C in the PIT chamber (b). 401 
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Table 2 summarizes the results of the pressure and temperature tests for all instruments. These 403 
tests results show a sensor-specific response to p and T. A large difference of reported {CO2}  404 
sensitivity to pressure variations is observed between the two HPP3 versions. A sensitivity of 405 
0.564 to 0.744 ppm/hPa is found for the HPP3.1 sensors, whereas this sensitivity ranges from -406 
0.0045 up to 0.0174 ppm/hPa for the newer HPP3.2 sensors. The lower sensitivity among HPP3.2 407 
prototypes is due to the pressure compensation algorithm, which is included in this model. Since 408 
the pressure compensation algorithm does still not fully correct the reported {CO2} variations due 409 
to pressure changes, we found that it is necessary to apply a correction for pressure, and that this 410 
correction should be sensor specific. The {CO2} sensitivity to temperature variations are found to 411 
be in similar range for both sensor makes. Sensitivities of -0.3 to 0.1 ppm °C-1 and -0.2 to -0.7 412 
ppm °C-1 are found for HPP3.1 and HPP3.2 instruments, respectively.     413 
 414 

  Pressure  Temperature  

Slope (ppm/hPa) Intercept (ppm) R2 Slope (ppm/°C) Intercept (ppm) R2 

S1.1 0.664±0.004 -297.7 ±4.3 0.94 -0.124 ±0.003 391.34 ±0.07 0.85 

S1.2 0.744 ±0.001 -363.3 ±1.1 0.95 -0.29 ±0.01 408.1 ±0.2 0.80 

S1.3 0.564±0.001 -189.5 ±1.4 0.94 0.107 ±0.004 381.2 ±0.1 0.63 

S2.1 0.0174 ±0.0002 394. ±0.2 0.95 -0.5854 ±0.0004 435.530 ±0.01 0.99 

S2.2 0.0164 ±0.0.0001 392.4 ±0.2 0.97 -0.716 ±0.001 427.31 ±0.02 0.99 

S2.3 -0.0045 ±0.0002 429.0 ±0.0 0.75 -0.2453 ±0.0004 442.16 ±0.01 0.99 

Table 2: Slopes and intercept calculated for CO2 correction due to temperature and pressure. 415 
Sensor 1 to 3 are type HPP3.1, whereas Sensor 4 to 6 are HPP3.2. 416 
 417 

After applying our correction for temperature and pressure, no more correlations are observed 418 
between corrected {CO2} and pressure and temperature. Corrected CO2 mole fractions of HPP3.2 419 
are stable and standard errors do not exceed 0.3 ppm and 0.2 ppm for pressure and temperature 420 
corrections respectively, except for {CO2} after temperature correction for S2.2 which reaches a 421 
standard deviation (STD) of 0.5 ppm. However, we do not reach the same stability after pressure 422 
and temperature correction for HPP3.1 prototypes. Standard deviations of 0.9, 0.2 and 0.2 ppm 423 
are calculated for S1.1, S1.2 and S1.3 respectively after pressure correction, and Standard 424 
deviations of 1.3, 2.6 and 1.6 ppm are determined for S1.1, S1.2 and S1.3 respectively after 425 
temperature corrections. These differences between the results of the two HPP3 versions can be 426 
partly explained by the fact that HPP3.2 prototypes had the opportunity to be tested in a 427 
sophisticated climatic chamber which respects precise temperature and pressure set points for 428 
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more longer-term measurements and in which only one of the two variables are modified one at a 429 
time.     430 
 431 
4.2. Instrument calibration and stability during continuous measurements  432 
 433 
Our instrument described in this study is intended for use in field campaign studies and longer-434 
term monitoring, we assess their performance during continuous measurements. We also 435 
evaluate which calibration frequency is necessary to track the changes in the sensitivities to p and 436 
T found in section 4.1 and if the instruments can be calibrated when using an undried gas stream. 437 
Given that the instrument response to {CO2} is also affected by atmospheric water vapor, we 438 
present the results from dried and wet ambient air measurements separately. 439 
 440 
4.2.1. Measurements of dried ambient air (DA1) 441 
 442 
Four calibration cylinders were used in order to calibrate the three HPP3.1 instruments (see 443 
section 3.1). To assess the quality of this calibration, the mean and standard deviation (STD) of 444 
{CO2} (i.e. {CO2}HPP3-{CO2}CRDS) of 1-minute averaged data were calculated, and shown in Figure 445 
6. Although calibration cylinders were measured each 12 hours, by ignoring some calibration data, 446 
we processed the time series to re-compute calibrated {CO2} assuming a range of different time 447 
intervals between two calibrations. The results shown in figure 6 are for calibrations intervals of 448 
0.5, 6, 12, 19, 25, 31, 38 and 45 days. Each point in this Figure corresponds to the values 449 
calculated for the instruments S1.1, S1.2, S1.3. 450 
We find that the 1 ppm repeatability threshold is nearly met when measuring dried air for calibration 451 
intervals of 6 days. The STD {CO2} of the minute averages slowly increases with increasing 452 
calibration intervals but seems to stabilize between 3 and 4 ppm. We also see a marked difference 453 
between the performances of each sensor: S1.1 shows the best performance, followed by S1.3 454 
and S1.2. Besides an increased STD, we also see that the mean of CO2} increases significantly 455 
after not calibrating for 19 days. Surprisingly, one calibration each 45 days does not seem to 456 
deteriorate the mean of CO2} further. Infact, the mean CO2} seems to decrease over longer 457 
time periods.  458 

459 
Figure 6: STD (a) and mean (b) values of one minute average of mean CO2}, during a 460 
measurement period of 48 days depending of the calibration frequency. 461 
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 463 

4.2.2. Saclay ambient air measurements (WA2-1) 464 
 465 
During this test (section 3.3, Saclay field site), all atmospheric variables in wet ambient air which 466 
affect the performance of the instruments, i.e. pressure, temperature, water vapor content and 467 
{CO2}, were measured from July 20th until August 8th. Our previous measurements already 468 
indicated that regular recalibration of the HPP3s is required because of sensitivities to T, p and 469 
water vapor that are instrument-specific and time dependent. We call the period during which the 470 
six calibration coefficients of Eq. (1) are calculated by using the CRDS {CO2} time series, the 471 
calibration period. Attempting to determine those calibration coefficients during a short calibration 472 
period e.g. of one week, leads to high mean CO2}, as can be seen in Figure 7. A calibration 473 
period of two weeks leads to significantly better results. We benchmark the instrument 474 
performance for both minute averages, the instruments typical temporal resolution, and hourly 475 
averages, as those are widely used in modelling studies and data assimilation systems. 476 
We also compared different calibration periods of the same length. As an example, considering a 477 
45 days experiment, we chose three different calibration periods of successive 15 days. We also 478 
tested the approach of using the first and last weeks of a 45 days period to create a non-479 
successive two weeks calibration period.  480 
Figure 7 (a,b) shows the STD and mean CO2} values considering 3 calibration periods (C1, C2, 481 
C3) of 15 days each. The regression coefficients of the multivariable model of Eq. (1) for C1, C2 482 
and C3 are calculated using the first, second and third consecutive 15 days of the experimental 483 
period. These coefficients are then used to predict corrected {CO2}HPP3 2 for the three cross-484 
validation periods of 15, 30 and 45 days. Also, calibration coefficients (W1, W6) were calculated 485 
using the first and sixth week of the 45 days period for calibration. Unsurprisingly, using C1 486 
coefficients gives the best results for the first 15 days used for training, and lead a higher bias for 487 
the last 15 days. Using C2 coefficients to correct adjacent 15 days from the calibration period 488 
gives comparable results (Considering the last calibration period, C3 coefficients show a mean 489 
bias of -2.5 ppm when calibration is from the first 15 days. One reason that can explain this 490 
behavior is the greater variability of CO2 dry air mole fraction during the last 15 days of the 491 
experiment. The interquartile range of CO2 dry air mole fraction is 10, 15 and 25 ppm respectively 492 
for the first, second and third period. The CO2 dry air mole fraction correction is accomplished 493 
mostly by correcting T, P, H2O and the instrument offset. A small variation of sensitivities may lead 494 
to a less appropriate correction for periods of smaller variability. Another reason for this difference 495 
is the drift component of the correction in Eq. 1. The linear drift of the instrument also varies with 496 
time. One method to better correct for the slow linear drift of the instrument is to combine the first 497 
and last week of the experiment into a calibration period instead of using two consecutive weeks. 498 
Figure 8 shows corrected CO2} of S2.2 during 45 days when using this approach. When using 499 
the first week (W1) and the last week (W6) for calibration, the instrument drift is not properly 500 
corrected and a residual slope of 0.14 and 0.28 ppm/week is shown in the black (W1) and the red 501 
(W6) curves of the figure, respectively. Nearly no drift (0.01 ppm/week) is observed when 502 
considering both W1 and W6 for the training (blue curve). On Figure 10, magenta stars show STD 503 
CO2} and mean CO2} values of the whole 45 day time series considering both W1 and W6 504 
as calibration periods. With this coefficient determination method, mean CO2 bias can be reduced 505 
to nearly 0 ppm. A comparison of corrected minute averages of {CO2} when using only one week 506 
for calibration (week 1 or week6) or the combined first and last week (week1 and week 6) can be 507 
seen in Figure S4. Finally, we should note that averaging the 1-minute data to hourly averages 508 
can further improve STD CO2} values up to 28%. As expected, mean values do not change for 509 
hourly averages. 510 
 511 
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 512 

 513 

Figure 7: STD {CO2} (a) and mean {CO2} (b) values considering 3 calibration periods of 15 514 
consecutive days for calibration each with C1, C2 and C3 correspond to first, second and third 15 515 
consecutive days of measurements at the Saclay field site, respectively. W1W6 corresponds to 516 
using the first and sixth week as calibration period. Mean CO2 calculated for the four calibration 517 
periods choices. STD {CO2} (c) and mean {CO2} (d) values considering 4 calibration periods of 518 
15 consecutive days for calibration each with C1, C2, C3, C4 correspond to first, second, third and 519 
fourth 15 consecutive days of measurements at the Jussieu field site, respectively. W1W6 520 
corresponds to using the first and eight week as calibration period. Hourly and minute values are 521 
represented in full and empty symbols respectively. 522 

 523 
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Furthermore, we can investigate which of the six term multivariable linear regression is most 524 
important here. The offset and dry air mole fraction dependent corrections terms (b and 525 
acx{CO2}HPP3) are the most significant corrections among all 5 parameters and allow reducing the 526 
mean CO2 from 45 ppm to 0 ppm (see Table 3 and Figure S3). The other 4 parameters (pressure, 527 
temperature, water vapor and drift corrections) further reduce the difference between CRDS and 528 
HPP3.2 reducing the STD {CO2} of minute averages from 1.03 ppm to 0.67 ppm. Here, the 529 
temperature correction (d) and the water vapor correction (e) provide a correction of similar 530 
magnitude, keeping the same STD and improving mean CO2} only from 0.16 to 0.13 ppm. This 531 
is understandable since temperature and water vapor are correlated for this type of measurement. 532 
 533 

 

Reported 
(raw) 

Offset 
correction 

Pressure 
correction 

Temperature 
correction 

RH 
correction 

Drift 
correction  

STD 

{CO2} 
(ppm) 

1.11 1.03 1.00 0.97 0.97 0.67 

Mean 

{CO2} 
(ppm) 

45.33 1.0 10-3 8.6 10-4 0.16 0.13 -0.08 

Table 3: STD and mean values of one minute average CO2} data for each correction step. Note 534 
that corrections are cumulative from left to right. 535 
 536 
4.2.3. Urban site of Jussieu (WA2-2) 537 
  538 
To assess the further performance of the HPP3.2 instruments, additonal wet ambient air 539 
measurements at second field site in Jussieu were carried out for 60 consecutive days using 540 
instrument S2.1 alongside a CRDS. Figure 7 (c,d) shows STD CO2} and mean CO2} values 541 
calculated with four calibration periods of 15 consecutive days each and one calibration 542 
considering both first and last week of the experiment. Calibration coefficients for C1, C2, C3 and 543 
C4 are calculated considering calibration periods of first, second, third and fourth 15 consecutive 544 
days of the experiment respectively. W1W8 coefficients are calculated considering week one (W1) 545 
and week eight (W8) of the experiment. The results are qualitatively very similar to the 546 
measurements at the Saclay field site and combing the first and last week as calibration period 547 
also results allow achieving our target of STD CO2} >1ppm. 548 
 549 
 550 
5. Conclusion and perspective 551 
 552 
We integrated HPP3.1 and HPP3.2 NDIR sensors into a portable low-cost instrument with 553 
additional sensors and internal data acquisition. The laboratory tests reveal a strong sensitivity of 554 
reported CO2 dry air mole fractions to ambient air pressure for the HPP3.1 series and a 555 
significantly decreased, yet noticeable, sensitivity to pressure, for the upgraded HPP3.2 sensors 556 
equipped with the built-in manufacturer p-correction. To achieve the targeted stability (long-term 557 
repeatability) for urban observations of 1 ppm or better, instruments have to be corrected at regular 558 
intervals against data from a reference instrument (here: CRDS) to account for their cross-559 
sensitivities to T, p, W (H2O mixing ratio) changes and electronic drift, unless those parameters 560 
could be controlled externally in the future. We found that commercially available p, T and RH 561 
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sensors that are compatible with the chosen Raspberry Pi3 platform are sufficiently precise to use 562 
these parameters as predictors of the linear equation use to calibrate each HPP3 instrument 563 
against the reference instrument, which was calibrated to the official WMO CO2 X2007 CO2 scale. 564 
Two common modes of operation have been successfully tested i.e. using the HPP3 instruments 565 
for either dried or undried ambient air measurements. Our results indicate that using a dried gas 566 
stream does not improve measurement precision or stability compared to an undried gas streams 567 
provided that a multivariable regression model is used for calibration, which accounts for all cross-568 
sensitivities including to H2O mixing ratio changes.  569 
We furthermore find that sensor specific corrections are required and they should be considered 570 
time-dependent, e.g. by including a linear drift that only becomes more apparent for longer-term 571 
observations. Different calibration windows were tested for both the Saclay field site and Jussieu 572 
field site ambient air measurements and their results evaluated against CRDS data that were not 573 
used for calibration. Those sites exhibit the typical {CO2} levels in urban GHG monitoring networks 574 
were future low-cost medium precision instruments could be deployed. Regular (six weekly) re-575 
calibrations are found to be appropriate to capture sensor drifts and changes in relevant cross-576 
sensitivities, while not increasing the burden of performing calibration too often. A dedicated set 577 
of calibration gases was not necessary if the low cost instrument  was calibrated against {CO2} 578 
from a CRDS using the same air. Calibration periods of one week with parallel CRDS 579 
measurements before and after a 45 day deployment  was sufficient for the STD {CO2} data to 580 
be within 1 ppm of CRDS during that period (with near zero bias, i.e.{CO2} << 1 ppm) . This 581 
calibration approach can thus be an alternative to permanently deploying calibration gases for 582 
each individual sensor.. 583 
The field tests at the Saclay and Jussieu station are being continued to see if the instrument 584 
performance deteriorates over its lifetime. Since the start of the test in 2015 until now multiple 585 
HPP3.1 sensors have been in use for without significant performance loss. Other research groups 586 
have also started integrating HPP sensors into their low-cost GHG monitoring strategy (e.g. 587 
Carbosense, www.nano-tera.ch/projects/491.php, last access March 11th, 2019).  588 
Future improvements for the LCMP instruments will include the addition of batteries to allow their 589 
transport to the central calibration lab without power cut as well as using them in field campaigns, 590 
e.g. landfills when connected to solar panels or small wind turbines. During future tests at sites 591 
without reference instruments, small pressurized gas containers (12l, minican, Linde Gas) will be 592 
used to regularly inject target gas to track the performance during a deployment period. 593 
The overall operational cost of the new calibration scheme using a central laboratory and rotating 594 
the LCMP systems can also only be assessed after more extensive field deployment has been 595 
performed. 596 
 597 
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