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Response to Anonymous Referee #1 1 
 2 
Comment:  This study represents a credible attempt at a new way to infer surface PM2.5 levels 3 
from CALIOP data, on a regional, two-year average basis. An advantage of CALIOP over passive 4 
sensors for this sort of analysis is the fact that it measures vertical profiles of backscatter and 5 
depolarisation, so bypasses a limitation inherent with imager data in partitioning between total 6 
column and near-surface aerosol loadings. In contrast, an acknowledged limitation is the curtain 7 
sampling of CALIOP vs. the broad-swath sampling of MODIS, etc. The authors introduce their 8 
technique and explain the relevant assumptions, and show results over the USA, evaluated with 9 
EPA monitors. This is a sensible, strong first step in this direction. The topic is important and 10 
relevant to AMT.  I have a number of comments (below) but on the whole recommend that the 11 
paper can be accepted after minor revisions. Hopefully this will be a springboard for further studies 12 
refining the technique and expanding to other regions and time periods.  13 
 14 
Response:  We thank the reviewer for his/her comments and encouragement.  15 
 16 
Comment:  As a general comment, much of the quantitative evaluation is presented as scatter plots 17 
with linear regression fits, and the discussion is often framed in terms of r2 and slope. I’m not sure 18 
that this is the right thing to do here. One reason is that my understanding is that there can be non-19 
negligible uncertainties on the PM data. Indeed, Ayers (2001, 20 
https://www.sciencedirect.com/science/article/pii/S1352231000005276 ) recommends using 21 
reduced major axis (RMA) regression instead of ordinary least squares when comparing PM 22 
monitors, for that reason. But also, the analysis in section 3 indicates that the CALIOP-derived 23 
estimates seem to have PM-dependence on their uncertainties too, so standard RMA may not be 24 
right either (as that assumes independent identically-distributed errors). For this reason I’d 25 
recommend Deming regression as a reasonable alternative 26 
(https://en.wikipedia.org/wiki/Deming_regression ) when trying to compute the best-fit line. This 27 
should be more appropriate for this case, has packages in standard programming languages (and 28 
is not hard to code anyway), and is not hard to interpret. So this should be a pretty straightforward 29 
change to make which would improve the rigor of the manuscript. I recommend this is done 30 
throughout. Or, alternatively, don’t fit a line but report something like mean ratio and RMS across 31 
certain ranges by binning the data.  32 

I think it is important that appropriate statistical methods be used; continued publication using 33 
techniques we know to be deficient for our analyses just normalizes and encourages bad practice 34 
in the future. There isn’t really a good justification for not fixing this.  35 

Response: Thank you for the comments and suggestions.  As recommended, Deming regression 36 
best-fit lines were added to the scatterplots of Figs. 1, 3, 4, 8, and 9, and the slopes computed from 37 
the Deming regression analyses were added to Tables 2, 3, and 4.  Corresponding changes in regard 38 
to these figures and tables were made to the narrative, and the following was added to the end of 39 
Section 2 to describe Deming regression: “Lastly, we note that most of the results are shown in the 40 
form of scatter plots with fits from Deming regression (Deming, 1943).  Due to uncertainties in 41 
PM2.5 data, we show slopes computed from Deming regression analyses instead of those from 42 
simple linear regression.  Deming regression in particular is appropriate here, as it accounts for 43 
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errors in both the independent and dependent variables (Deming, 1943), and has been used in past 44 
PM2.5 related studies (e.g., Huang et al., 2014).”     45 

Comment: My remaining comments are given as PXX, LYYY referring to page and line numbers 46 
respectively.  47 

P1L21: I suggest replacing “sizes” with “diameters”, as that is my understanding of the definition, 48 
but the remote sensing community often refers to radius instead when discussing size.  49 

Response:  Thank you for this suggestion.  We have made the recommended changes. 50 

Comment: P4L95: I am curious as to why, with over 10 years of data, the two-year period 2008- 51 
2009 is used here? If sampling is a limiting factor in some areas, surely adding a few more years 52 
would help with this? Is there something special about these two years, or some a priori reason 53 
why two years provides sufficient sampling? I realize that running the whole mission is probably 54 
not feasible at this stage. But I would imaging that in the time between this comment being posted 55 
and the close of Open Discussion, there wouid be sufficient time to download and analyze an 56 
additional few years of data. This should mostly be a matter of storage and CPU time, since the 57 
code is already written (and since the first author is at Langley where CALIPSO is based, I doubt 58 
computational concerns would be significant here).  59 

Response: The two-year period of 2008-2009 was chosen because we wanted to be consistent with 60 
the temporal domain of our previous PM2.5 study (Toth et al., 2014).  An explanation is included 61 
in Section 2.  We agree that adding more years would increase sampling, but we feel this is more 62 
appropriate for a future paper, as the purpose of this manuscript is to provide an initial 63 
demonstration of the concept.  An extended analysis is planned for a forthcoming paper.  64 
 65 
Comment: P6L123: somewhere in this initial paragraph, I’d ideally like some more discussion of 66 
the EPA data. For example, what are the uncertainties, is there any significant difference in these 67 
between the TEOM and BAM methods, and is there a difference in the siting of these two 68 
instrument types? If they’re super-accurate and precise and equivalent, that’s important to know. 69 
But if one is better than the other, and there’s some spatial/temporal clustering in when TEOM vs. 70 
BAM is employed, that is also important to know. Recently, Kiss et al (2017, https://www.atmos-71 
meas-tech.net/10/2477/2017/ ) published an analysis showing biases in hourly PM10 72 
measurements. Is that relevant here? It might be, especially since that some daily averages in the 73 
EPA data correspond to a single sample. These are examples of things I’d like to see covered in 74 
the opening part of this section.  75 
 76 
Response: Thank you for the comment.  As for the Kiss et al. (2017) study, PM data with a lower 77 
temporal resolution (like 24-hour, “daily” data) are less biased compared to hourly data.  Still, 78 
uncertainties in hourly data are likely to impact daily data that are averaged from hourly data.  To 79 
fully quantify this issue would deserve a paper of its own.  Here, as suggested by the reviewer, we 80 
have edited the discussion in this section to incorporate uncertainties of the various PM2.5 81 
measurements and spatial representativeness of the different instruments/methods.  The following 82 
was added to the text:   83 
 84 
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“Note that uncertainties have been reported for hourly PM measurements (Kiss et al., 2017). 85 
Examples of some uncertainties in these PM2.5 measurements depend upon the instrument/method 86 
used: gravimetric (e.g., transport to the lab/human error and volatization of PM during the drying 87 
process; Patashnick et al., 2001), TEOM (e.g., errors due to improper inlet tube temperature; 88 
Eatough et al., 2003), and beta attenuation monitors (e.g., changes in the sample flow rate due to 89 
variations in temperature and moisture; Spagnolo, 1989).  Also, it has been found that beta 90 
attenuation monitors may be more accurate than TEOM, as TEOM can underestimate PM2.5 at low 91 
temperatures (e.g., Chung et al., 2001).  Still, as suggested by Kiss et al. (2017), PM data collected 92 
over a longer period of time are much less likely to be biased.  Thus, we expect lower uncertainties 93 
from data collected over 24-hours, then daily data generated by averaging hourly observations.  94 
Fully quantifying the differences from the two different PM observing methods, however, is a 95 
subject for a future study.” 96 

Comment: P8L189-190: This assumption (negligible mass above 10 micron size) is probably 97 
reasonable. But it would be fairly easy to try and quantify with AERONET. Take the inversion 98 
product from a half-dozen AERONET sites and count the fraction of the volume size distribution 99 
above 10 microns (and note here that the AERONET retrievals report size in terms of radius, while 100 
PM definitions are in diameter). You have to make some assumption about the density of particles 101 
being the same across the size range, but otherwise that gives a first order estimate at how big the 102 
effect might be, which could be compared to the other parts of the uncertainty analysis in section 103 
3.2. I think AERONET dust radius peaks somewhere like 2.5 microns so in the western US, it 104 
might be that there’s some dust contribution from the tail of the distribution which is being 105 
systematically missed here and would lead to an overestimate in the CALIOP-derived PM levels. 106 
Maybe it is negligible, but it would be fairly easy to show that it is negligible, and the authors have 107 
not.  108 

Response: It is a nice idea but we think it might be difficult to apply the proposed idea for the US 109 
for a few reasons.  Firstly, reliable AERONET volume size distributions are obtained from 110 
inversions that are performed when the 440 nm AOD is larger than 0.4 (Dubovik et al., 2006).  In 111 
this study, we emphasize studying 2-year means over the US, which rarely exhibit averaged 440 112 
nm AODs larger than 0.4.  Secondly, we are only concerned with near surface (100-1000 m) 113 
aerosols for this study, but AERONET would provide values for the entire column, making such 114 
a comparison difficult.  We argue that our assumption of negligible mass above 10 microns is 115 
reasonable because dust has been excluded from the analysis, and sea salt represents a small 116 
fraction of aerosols in the 100-1000 m atmospheric layer over the US for the 2008-2009 time 117 
period (i.e., < 2%).  Thus, we did not implement this change as suggested. 118 

Comment: P13L299: An alternative to this (whether for the sensitivity analysis or the analysis as 119 
a whole) might be to look at the whole boundary layer (determining on a case by case basis) rather 120 
than testing different height ranges. Assuming that boundary layer depth is included as part of the 121 
MERRA2 meteorology being used here? This would go from assuming “the surface level of PM 122 
is represented well by the atmospheric layer from 0.1-1 km” to assuming “the boundary layer is 123 
well-mixed so represents the surface PM well”, which is subtly different and might work better. I 124 
do agree that it seems reasonable to exclude the lowest 100 m, though.  125 
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Response:  Thank you for this suggestion.  Unfortunately, boundary layer depth is not included in 126 
the MERRA-2 meteorological profiles used for this analysis.  MERRA-2 relative humidity was 127 
chosen for the paper because it was already collocated with the CALIOP aerosol profiles.  A 128 
boundary layer depth analysis would not be a straightforward task, and we believe a thorough 129 
study into this important topic is best left for another paper during which our method can be further 130 
refined.         131 
 132 
Comment: P14L323: This section made me wonder why the authors do not estimate PM10 from 133 
CALIOP, and evaluate that, in addition to PM2.5? This would remove the need for an assumption 134 
of the ratio (taken as 0.6 here), and line 326 notes that there are 409 EPA stations providing both 135 
data on a daily basis. Given that this ratio seems to be one of the more uncertain parts of the error 136 
budget, it might be that there is more skill in predicting PM10 from CALIOP. Or it might go the 137 
other way. That would also be a worthwhile result, since right now we don’t know.  138 
 139 
Response:  We did not estimate PM10 from CALIOP because coarse mode aerosols exhibit vastly 140 
different mass extinction efficiency values than those of fine mode aerosols.  We have included an 141 
initial look into an analysis of coarse mode aerosols, like dust and sea salt, in Table 4, the results 142 
of which suggest that large uncertainties would arise for CALIOP-derived PM values assuming 143 
coarse mode aerosols as fine mode aerosols.  In order to tackle this subject, a more thorough 144 
investigation into CALIOP/ground-based aerosol typing is necessary, and we believe this topic is 145 
outside the general scope of this paper. 146 

Comment: P17L382: No particular comment here other than to say I am glad that the authors 147 
included this specific analysis. It’s a point well-made that CALIOP uncertainties propagate 148 
downwards so, while CALIOP can see through thin clouds, that does not mean that the data quality 149 
is the same as for cloud-free columns.  150 

Response:  Thank you for your thoughts on this topic. 151 

Comment: P19L424: This isn’t really an uncertainty analysis, so I suggest promoting it from a 152 
section 3.2.9 to a section 3.3 by itself. I also have a few suggestions for expansion of this section. 153 
It’s good to know the correlation lengths across the western vs. eastern USA, but there’s a lot of 154 
scatter in the plots. Some of this is probably due to limited sampling but some is probably also due 155 
to real changes in correlation length. So I wonder if the authors can pull out data from one or two 156 
large cities, and one or two remote areas, and highlight the correlation lengths for these (as well as 157 
the more general case of east vs. west). This would provide a bit more context about typical 158 
correlation lengths in these conditions, which would be helpful for future research built around 159 
this analysis.  160 

Response:  We agree that Section 3.2.9 is not an uncertainty analysis, and it has been changed to 161 
Section 3.3.  Concerning the other suggestions, each data point on the plot represents the distance 162 
of the given two locations as well as the corresponding PM correlation computed using 163 
observations from the two locations.  Thus, the datasets are rather discrete and not continuous, as 164 
the correlations can only be computed with any two locations with PM observations.  Thus, 165 
correlation lengths may not be derived reliably using only one or two cities.  Still, we emphasize 166 
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here that this section is not the focus of the study, and can be explored in a more careful manner 167 
in a later paper.        168 
 169 
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Response to Anonymous Referee #2 209 

Comment: The scope of the submitted work is to investigate the potential exploitation of CALIOP 210 
extinction profiles in order to derive near-surface concentrations of particles with aerodynamic 211 
diameter less than 2.5 µm (PM2.5). The assessment of the applied methodology is made through 212 
the evaluation of the CALIOP derived PM concentrations against corresponding daily ground-213 
based measurements obtained at numerous EPA stations, over the period 2008-2009, distributed 214 
across CONUS, which is the area of interest. A powerful element of using vertically resolved 215 
retrievals is that the altitude range can be constrained (i.e., near surface where the PM 216 
concentrations are measured from the ground) in contrast to passive sensors which are 217 
representative for the whole atmospheric column. To my opinion, the issues addressed by the 218 
authors fit well to the scientific objectives of AMT and therefore I recommend the submitted 219 
manuscript to be published. Nevertheless, I believe that several points must be modified making 220 
the text acceptable for publication. My major and minor comments are listed below.  221 

Response:  Thank you for your thoughts and encouraging comments.  222 

Comment: The authors have used only 2-year satellite data thus making the robustness of the 223 
obtained outcomes questionable taking into account CALIOP’s low sampling frequency and 224 
narrow footprint. In order to overcome this drawback, you have to repeat the analysis for the full 225 
dataset.  226 

Response: We agree that overcoming this sampling drawback can be achieved through extending 227 
the analysis for more than two years.  However, this would be computationally expensive and is a 228 
non-trivial task.  We envisioned this manuscript as a proof-of-concept study, the purpose of which 229 
is to provide an initial demonstration of the feasibility of our method.  Adding other years to the 230 
analysis will be one of the focuses of forthcoming CALIOP/PM2.5 papers.    231 

Comment: According to the applied methodology, all the aerosol extinctions assigned as dust in 232 
the CALIOP retrieval algorithm are masked out since focus is given on the small size particles 233 
(Lines 198-200). However, which is the treatment for the other aerosol subtypes consisting of 234 
coarse particles (i.e., marine, dusty marine)? Moreover, what is happening when the aerosol 235 
subtype is clean continental? I would suggest to repeat the aerosol type analysis (Section 3.2.8) 236 
but considering only the CALIOP aerosol subtypes which are not associated with large size 237 
particles (i.e., dust, marine, marine dust) and are relevant to pollution. Keep in mind that 238 
appropriate modifications, depending on aerosol types, may be needed in equations 1, 2 and 3 (i.e., 239 
mass scattering and absorption efficiencies, hygroscopic growth factor).  240 

Response: All aerosol subtypes not classified as dust are considered for our method (e.g., marine, 241 
dusty marine, clean continental, etc.).  We have already excluded dust, and most areas of the 242 
CONUS are not dominated by sea salt aerosols.  Indeed, a statistical analysis showed that CALIOP 243 
100-1000 m aerosol layers consisting entirely of marine (dusty marine) subtypes represent only 244 
~2% (~1%) of all subtypes.  Thus, the impact of including these aerosols should be minor.  We do 245 
note, however, that one of the areas of focus for future studies of CALIOP-derived estimates is a 246 
more thorough investigation into aerosol typing.     247 
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Comment: Could you please comment why the quality assurance criteria applied here are different 248 
than those suggested by Tacket et al. (2018; https://www.atmos-meas-tech.net/11/4129/2018/)?  249 

Response: The QA criteria applied for this paper are the same as those of our previous CALIOP 250 
papers (e.g., Toth et al. 2014; 2016; 2018), and we wanted to be consistent with these studies.  The 251 
QA scheme employed here was developed from Kittaka et al. (2011) and Campbell et al. (2012), 252 
both of which provide detailed justifications for the QA choices made.  Toth et al. (2016) provides 253 
comparisons of aerosol extinction profiles using our QA scheme and those from the CALIPSO 254 
Level 3 aerosol profile product.  While some differences were found, these were mostly attributed 255 
to differences in averaging, treatment of clouds and fill values, and our vertical regridding from 256 
60 m to 100 m.    257 
 258 
Comment: Page 7 – Lines 157-160: The inclusion of different PM measurements techniques (filter-259 
based or averages from hourly samples) how can affect the intercomparison results?  260 
 261 
Response: As suggested by Kiss et al. (2017), large uncertainties exist in hourly PM data, while 262 
less biases are expected for PM data collected over a longer period of time.  Thus, there are likely 263 
differences in the two methods for collecting PM data.  Still, to fully explore this issue requires a 264 
study of its own, and thus we have added the following discussions in the text: 265 
 266 
“Note that uncertainties have been reported for hourly PM measurements (Kiss et al., 2017). 267 
Examples of some uncertainties in these PM2.5 measurements depend upon the instrument/method 268 
used: gravimetric (e.g., transport to the lab/human error and volatization of PM during the drying 269 
process; Patashnick et al., 2001), TEOM (e.g., errors due to improper inlet tube temperature; 270 
Eatough et al., 2003), and beta attenuation monitors (e.g., changes in the sample flow rate due to 271 
variations in temperature and moisture; Spagnolo, 1989).  Also, it has been found that beta 272 
attenuation monitors may be more accurate than TEOM, as TEOM can underestimate PM2.5 at low 273 
temperatures (e.g., Chung et al., 2001).  Still, as suggested by Kiss et al. (2017), PM data collected 274 
over a longer period of time are much less likely to be biased.  Thus, we expect lower uncertainties 275 
from data collected over 24-hours, then daily data generated by averaging hourly observations.  276 
Fully quantifying the differences from the two different PM observing methods, however, is the 277 
subject for a future study.” 278 

Comment: Page 4 – Lines 97-102: How much reliable are the scatterplot metrics when MODIS 279 
provides daylight AODs while PM concentrations are daily averages? Have you noticed any 280 
variation both in spatial and temporal terms?  281 

Response: In this paper, we have not looked into the spatial/temporal variations of MODIS AOD 282 
versus PM2.5.  This, however, was the subject of one of our past studies (Toth et al., 2014), for 283 
which MODIS AOD was compared to both daily (within 1x1 deg.) and hourly (within 40 km) 284 
PM2.5 measurements.  While larger correlation coefficients were found for the hourly analysis, 285 
they still remained low.  The purpose of Fig. 1 in this paper was to simply illustrate the limitation 286 
of using column-integrated AOD from passive sensors to estimate PM2.5 concentrations near the 287 
surface.  288 
 289 
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Comment: Page 9 – Line 202: A couple of citations are needed here in order to support this 290 
argument.  291 
 292 
Response:  We have added two citations (Nessler et al., 2005 and Lynch et al., 2016), as requested.  293 
 294 
Comment: Page 10 – Lines 236-238: It will be useful to provide a map with the number of days 295 
participating for the calculation of the average maps illustrated in Figure 3. Moreover, it is required 296 
a geographical distribution providing the average number of profiles considered for the derivation 297 
of 1° x 1° grid cells (i.e. an indicator of spatial representativeness within the 1deg grid cell).  298 

Response:  Thank you for this suggestion.  We have added the requested maps as a figure in an 299 
appendix.  Also, the following description was added to the text in Section 3.1: “Note that, for 300 
context, maps of the number of days and CALIOP Level 2 5 km aerosol profiles used in the 301 
creation of Fig. 3a-d are shown in Appendix Fig. 1.” 302 

Comment: Page 12 – Lines 270-279: I don’t agree with the collocation criteria applied here. The 303 
horizontal distance (100 km) between CALIOP and PM station probably is too long since the 304 
analysis focuses on PM2.5 originating from pollution. Under these cases it is expected that the 305 
horizontal variability will be very strong and the concentrations will decrease rapidly for increasing 306 
distance from the source. As it concerns the temporal collocation, the optimum solution would be 307 
to use PM measurements available at the finest temporal resolution thus making feasible an 308 
appropriate matching with the CALIOP near-surface profiles. On the contrary, if the ground-based 309 
data are provided only as daily averages then you cannot consider that a satellite overpass and a 310 
daily average are temporally collocated. In the former data you have an instantaneous observation 311 
while in the latter one the diurnal variation is included. In case where the EPA data are given only 312 
on a daily basis, then it is more convenient to compare “daily” CALIOP profiles (considering dates 313 
where both the daytime and nighttime satellite retrievals are available) against the corresponding 314 
surface PM10 concentrations. For this reason, I believe that Figures 3-e and 3-f as well as the 315 
relevant parts of the text must be removed. Please consider this comment throughout your analysis.  316 

Response: Thanks for the suggestion.  We agree that “daily” averaged CALIOP profiles may be 317 
used for comparing with daily averaged surface PM observations.  However, with a narrow swath 318 
of ~70 m and a repeat cycle of 16 days, very few data points would be available within 100 km of 319 
a particular EPA site for both daytime and nighttime CALIOP aerosol profiles.  For the spatial 320 
collocation, the +/- 100 km collocation distance is used here, as we considered the spread of 321 
aerosols within 24 hours.  For example, for a 10 km/hour wind speed, aerosol particles may travel 322 
200 km (or +/- 100 km) within 24 hours.  Also, as suggested from this paper, the averaged e-323 
folding correlation length for PM2.5 concentrations over the CONUS is ~600 km, and thus we 324 
believe 100 km is a reasonable collocation range. 325 
 326 
Also, analysis using finer temporal resolution PM2.5 data may produce better results under some 327 
conditions, but comes with its own issues.  For example, there are insufficient collocated CALIOP 328 
profiles and hourly PM2.5 data over a two-year period for the CONUS, so the temporal domain 329 
would need to be greatly expanded.  Secondly, this type of study would take careful analysis of 330 
the CALIOP data, as individual CALIOP aerosol extinction profiles could be subject to higher 331 
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uncertainties (e.g., rather than using a two-year mean).  These research topics will be examined in 332 
detail in future studies.   333 

Comment: Section 3.2.1: Considering my previous comment, the analysis should be presented 334 
only for the “daily” CALIOP – PM pairs and not separately for daytime and nighttime. Likewise, 335 
the CALIOP derived PM2.5 ranges (x axis in Figure 5) should be equally sampled and not grouped 336 
based on user-defined bins of PM concentrations. In addition, the authors are stating in Lines 314-337 
316 that the computations have not been done for PM concentrations ≥ 25 µg m-3 due to the limited 338 
number of concurrent annual means. However, according to Figure 5, the number of samples for 339 
the lowest bin (< 5 µg m-3) during daytime is almost zero (the same is valid for the highest bins, 340 
particularly for the nighttime retrievals). Is that correct? Can we trust the calculated RMSEs 341 
resulting from a very small number of samples?  342 

Response: As mentioned in another response, using only “daily” CALIOP-PM pairs is not feasible 343 
here for a robust analysis, due to the repeat cycle of the CALIPSO satellite.  Very few data points 344 
would be available within 100 km of a particular EPA site for both daytime and nighttime CALIOP 345 
aerosol profiles.  Thus, we leave daytime and nighttime separated for this figure.  As for the 346 
CALIOP derived PM2.5 ranges, we have adjusted them such that each bin is equally sampled 347 
based upon a cumulative histogram analysis.  Each point from left to right in the new Fig. 5 348 
represents the RMSE and mean PM2.5 concentration derived from CALIOP for 0-20%, 20-40%, 349 
40-60%, 60-80%, and 80-100% cumulative frequencies.  This addresses the other items in this 350 
comment, like those of few samples for the lowest and highest bins in the old Fig. 5.  Because they 351 
are now equally sampled, we have removed the secondary y-axis since the number of samples do 352 
not change as a function of CALIOP-derived PM2.5 concentration.  We have also revised the 353 
corresponding text in Section 3.2.1 as follows: “As a first step for the uncertainty analysis, we 354 
estimated the prognostic error of 2-year averaged PM2.5_CALIOP.  Figure 5 shows the root-mean-355 
square error (RMSE) of CALIOP-based PM2.5 concentrations against those from EPA stations as 356 
a function of CALIOP-based PM2.5 for the 2008-2009 period over the CONUS.  RMSEs were 357 
computed for five equally sampled bins, determined from a cumulative histogram analysis.  Each 358 
point in Fig. 5, from left to right, represents the RMSE and mean PM2.5 concentration derived from 359 
CALIOP for 0-20%, 20-40%, 40-60%, 60-80%, and 80-100% cumulative frequencies.  A mean 360 
combined daytime and nighttime RMSE of ~4 µg m-3 is found, with a mean value slightly greater 361 
for nighttime (~4.3 µg m-3) than daytime (~3.7 µg m-3).  While most bins exhibit larger nighttime 362 
RMSEs, daytime RMSEs are larger for the greatest mean CALIOP-derived PM2.5 concentrations.” 363 

Comment: Section 3.2.2: To my opinion this sensitivity study should be the first step of the analysis 364 
in order to define the most “representative” altitude range. According to the summary statistics 365 
presented in Table 2, it seems that it is better to restrict the upper bound at 600 – 700m.  366 

Response: While a surface layer up to about 600-700 m results in larger r2 values, much variability 367 
in the statistics exists between surface layer heights (as shown in Table 2).  Also, differences are 368 
found between daytime and nighttime for various layers.  One possible issue is a lower signal-to-369 
noise ratio if we restricted the surface layer to lower heights.  We stress that the purpose of this 370 
paper is an initial exploration of the topic, and wanted to include Table 2 as a first look at surface 371 
layer height sensitivity.  Another study is necessary to better evaluate this subject, especially as 372 
surface layer height changes regionally and diurnally.   373 
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Comment: Section 3.2.4: Which is the impact on the r2 values? 374 

Response: The r2 values are not impacted by varying the PM2.5/PM10 ratio.  This is because all 375 
of the CALIOP-derived PM2.5 points for each scenario shown in Table 3 are multiplied by a 376 
common ratio (see Equation 3), but the collocated EPA concentrations remain unchanged (thus 377 
not altering the correlation).  378 
 379 
Comment: Section 3.2.5: Instead of presenting daytime and nighttime CALIOP derived PM 380 
concentrations it is better to consider only the daily (computed from the concurrent daytime and 381 
nighttime profiles) ones (see comment 6). 382 

Response: Thank you for the suggestion.  We believe it is important to show the daytime and 383 
nighttime analyses separately, and an analysis using concurrent daytime and nighttime profiles 384 
collocated with a particular EPA site will not yield many samples due to the repeat cycle of the 385 
CALIPSO satellite.  Thus we didn’t make the change. 386 

Comment: Page 19 – Lines 448-450: This means that the CALIOP derived PM concentrations are 387 
not reliable in coastal (contamination by sea-salt particles) or dust affected regions? 388 

Response: The large uncertainties are because mass extinction efficiencies are drastically different 389 
for coarse and fine mode aerosols.  Here we applied mass extinction efficiencies from fine mode 390 
aerosols to coarse mode aerosols, and not surprisingly, see large uncertainties.  Lower uncertainties 391 
can be expected if we apply coarse mode mass extinction efficiencies to coarse mode aerosols.  392 
However, this puts the pressure on accurate estimations of aerosol types from CALIOP or other 393 
lidar observations, which we believe is a study of its own, and will be investigated in future studies.    394 

Comment: Section 3.2.9: In this section it would be also useful to provide a map with the distances 395 
where the 1/e value is found at each station.  396 

Response: Thank you for this suggestion.  However, for each pair of PM observing locations, one 397 
correlation value is computed for a given distance between the two locations.  Thus, the analysis 398 
is discrete, not continuous.  The 1/e values are estimated from Fig. 10, which is composed of 399 
individual points representing both a distance and spatial PM2.5 correlation between pairs of EPA 400 
sites over the CONUS.  If we apply the same analysis to a given PM observing location, it is likely 401 
to have data gaps due to the discrete nature of the dataset.  Thus, we leave Fig. 10 untouched.   402 

Comment: Page 3 – Lines 81-84: Could you please explain better this sentence?  403 

Response:  We have rewritten the sentence to: 404 
 405 
“Indeed, Kaku et al. (2018) recently showed that surface PM2.5 had longer spatial correlation 406 
lengths than AOD, even in the “well behaved” southeastern United States where previous studies 407 
showed good correlation between PM2.5 and AOD (e.g., Wang and Christopher, 2003).” 408 
 409 
 410 
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Comment: Page 4 – Lines 91-94: It is not clear what the authors want to say here.  411 

Response: We have rewritten the sentence to: 412 
 413 
 “It is arguable that from a climatological/long-term average perspective, the use of AOD as a 414 
proxy for PM2.5 concentrations nevertheless has certain qualitative skill (e.g., Toth et al., 2014; 415 
Reid et al., 2017) due to the averaging process that suppresses sporadic aerosol events with highly 416 
variable vertical distributions.” 417 

Comment: Page 10 – Line 244: What do you mean exactly here? (“..., as surface layer heights may 418 
change seasonally and diurnally.”)  419 

Response:  We have removed “as surface layer heights may change seasonally and diurnally” to 420 
avoid confusion. 421 

Comment: Page 19 – Line 431: Sulfate & organic or just sulfate?  422 

Response:  To avoid confusion, we removed “& organic”.  But primary and secondary biogenic 423 
aerosols are mostly fine mode as well. 424 

Comment: Page 20 – Lines 456-458: Please rephrase this sentence.  425 

Response:  This sentence was broken into two sentences, as follows: “To accomplish this, all EPA 426 
stations over the CONUS with at least 50 days of daily data available for the 2008-2009 period 427 
were first determined.  Next, the distances between each pair of these EPA stations, and their 428 
corresponding correlation of daily PM2.5 concentrations, were computed.” 429 
 430 
 431 
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Abstract.  In this proof-of-concept paper, we apply a bulk-mass-modeling method using 509 

observations from the NASA Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 510 

instrument for retrieving particulate matter (PM) concentration over the contiguous United States 511 

(CONUS) over a 2-year period (2008-2009).  Different from previous approaches that rely on 512 

empirical relationships between aerosol optical depth (AOD) and PM2.5 (PM with particle 513 

diameters less than 2.5 µm), for the first time, we derive PM2.5 concentrations, both at daytime and 514 

nighttime, from near surface CALIOP aerosol extinction retrievals using bulk mass extinction 515 

coefficients and model-based hygroscopicity.  Preliminary results from this 2-year study 516 

conducted over the CONUS show a good agreement (r2 ~ 0.48; mean bias of -3.3 µg m-3) between 517 

the averaged nighttime CALIOP-derived PM2.5 and ground-based PM2.5 (with a lower r2 of ~0.21 518 

for daytime; mean bias of -0.4 µg m-3), suggesting that PM concentrations can be obtained from 519 

active-based spaceborne observations with reasonable accuracy.  Results from sensitivity studies 520 

suggest that accurate aerosol typing is needed for applying CALIOP measurements for PM2.5 521 

studies.  Lastly, the e-folding correlation length for surface PM2.5 is found to be around 600 km for 522 

the entire CONUS (~300 km for Western CONUS and ~700 km for Eastern CONUS), indicating 523 
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that CALIOP observations, although sparse in spatial coverage, may still be applicable for PM2.5 525 

studies.  526 

 527 

1         Introduction 528 

During the last decade, an extensive number of studies have researched the feasibility of 529 

estimating PM2.5 (particulate matter with particle diameters smaller than 2.5 µm) pollution with 530 

the use of passive-based satellite-derived aerosol optical depth (AOD; e.g., Liu et al., 2007; Hoff 531 

and Christopher, 2009; van Donkelaar et al., 2015).  Monitoring of PM concentration from space 532 

observations is needed, as PM2.5 pollution is one of the known causes of respiratory related diseases 533 

as well as other health related issues (e.g., Liu et al., 2005; Hoff and Christopher, 2009; Silva et 534 

al., 2013).  Yet, ground-based PM2.5 measurements are often inconsistent or have limited 535 

availability over much of the globe. 536 

In some earlier studies, empirical relationships of PM2.5 concentrations and AODs were 537 

developed and used for estimating PM2.5 concentrations from passive sensor retrieved AODs (e.g., 538 

Wang and Christopher, 2003; Engel-Cox et al., 2004; Liu et al., 2005; Kumar et al., 2007; Hoff 539 

and Christopher, 2009).  One of the limitations of this approach is that vertical distributions and 540 

thermodynamic state of aerosol particles vary with space and time.  Especially for regions with 541 

elevated aerosol plumes, deep boundary layer entrainment zones, or strong nighttime inversions, 542 

column-integrated AODs are not a good approximation of surface PM2.5 concentrations at specific 543 

points and times (e.g., Liu et al., 2004; Toth et al., 2014; Reid et al., 2017).  Indeed, Kaku et al. 544 

(2018) recently showed that surface PM2.5 had longer spatial correlation lengths than AOD, even 545 

in the “well behaved” southeastern United States where previous studies showed good correlation 546 

between PM2.5  and AOD (e.g., Wang and Christopher, 2003).  To account for variability in aerosol 547 
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vertical distribution, several studies have attempted the use of chemical transport models, or CTMs 550 

(e.g., van Donkelaar et al., 2015).  Satellite data assimilation of AOD has become commonplace, 551 

vastly improving AOD analyses and short-term prediction (e.g., Zhang et al., 2014; Sessions et al., 552 

2015).  Yet, PM2.5 simulations remain poor (e.g., Reid et al., 2016).  Uncertainties in such studies 553 

are unavoidable due to uncertainties in CTM-based aerosol vertical distributions, and no nighttime 554 

AODs are currently available from passive-based satellite retrievals.    555 

It is arguable that from a climatological/long-term average perspective, the use of AOD as 556 

a proxy for PM2.5 concentrations nevertheless has certain qualitative skill (e.g., Toth et al., 2014; 557 

Reid et al., 2017) due to the averaging process that suppresses sporadic aerosol events with highly 558 

variable vertical distributions.  Still, as illustrated in Fig. 1, where 2-year (2008-2009) means of 559 

Moderate Resolution Imaging Spectroradiometer (MODIS) AOD are plotted against PM2.5 560 

concentrations throughout the contiguous United States (CONUS), although a linear relationship 561 

is plausibly shown, a low r2 value of 0.08 is found.  To construct Fig. 1, Aqua MODIS Collection 562 

6 (C6) Optical_Depth_Land_And_Ocean data (0.55 µm), restricted to “Very Good” retrievals as 563 

reported by the Land_Ocean_Quality_Flag, are first collocated with daily surface PM2.5 564 

measurements in both space and time (i.e., within 40 km in distance and the same day), and then 565 

collocated daily pairs are averaged into 2-year means (for each PM2.5 site).   Figure 1 may be 566 

indicating that even from a long-term mean perspective, aerosol vertical distributions are not 567 

uniform across the CONUS, which is also confirmed by other studies (e.g., Toth et al., 2014).  568 

AOD retrievals themselves, with known uncertainties due to cloud contamination and assumptions 569 

in the retrieval process (e.g., Levy et al., 2013), may also introduce uncertainties to that task.  570 

On board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 571 

(CALIPSO) satellite, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument 572 
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provides observations of aerosol and cloud vertical distributions at both day and night (Hunt et al., 575 

2009; Winker et al., 2010).  Given that CALIOP provides aerosol extinction retrievals near the 576 

ground, it is interesting and reasonable to raise the question: can near surface CALIPSO extinction 577 

be used as a better physical quantity than AOD for estimating surface PM2.5 concentrations?  This 578 

is because unlike AOD, which is a column-integrated value, near surface CALIPSO extinction is, 579 

in theory, a more realistic representation of near surface aerosol properties.  Yet, in comparing 580 

with passive sensors such as MODIS, which has a swath width on the order of ~2000 km, CALIOP 581 

is a nadir pointing instrument with a narrow swath of ~70 m and a repeat cycle of 16 days (Winker 582 

et al., 2009).  Thus, the spatial sampling of CALIOP is sparse on a daily basis and temporal 583 

sampling or other conditional or contextual biases are unavoidable if CALIOP observations are 584 

used to estimate daily PM2.5 concentrations (Zhang and Reid, 2009; Colarco et al., 2014).  Also, 585 

there are known uncertainties in CALIPSO retrieved extinction values due to uncertainties in the 586 

retrieval process, such as the lidar ratio (extinction-to-backscatter ratio), calibration, and the 587 

“retrieval fill value” (RFV) issue (Young et al., 2013; Toth et al., 2018).   588 

Even with these known issues, especially the sampling bias, it is still compelling to 589 

investigate if near surface CALIOP extinction can be utilized to retrieve surface PM2.5 590 

concentrations with reasonable accuracy from a long-term (i.e., two-year) mean perspective. 591 

CALIOP data have been successfully used in PM2.5 studies in the past, but primarily for assisting 592 

passive-based AOD/PM2.5 analyses using aerosol vertical distribution as a constraint (e.g., Glantz 593 

et al., 2009; van Donkelaar et al., 2010; Val Martin et al., 2013; Toth et al., 2014; Li et al., 2015; 594 

Gong et al., 2017).  However, the question remained as to the efficacy of the direct use of CALIOP 595 

retrievals.  To demonstrate a concept, we developed a bulk mass scattering scheme for inferring 596 

PM concentrations from near surface aerosol extinction retrievals derived from CALIOP 597 
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observations.  The bulk method used here is based upon the well-established relationship between 598 

particle light scattering and PM2.5 aerosol mass concentration (e.g., Charlson et al., 1968; 599 

Waggoner and Weiss, 1980; Liou, 2002; Chow et al., 2006), discussed further, with the relevant 600 

equations, in Sect. 2.   601 

In this study, using two years (2008-2009) of CALIOP and United States (U.S.) 602 

Environmental Protection Agency (EPA) data over the CONUS, the following questions are 603 

addressed: 604 

1. Can CALIOP extinction be used effectively for estimating PM2.5 concentrations through a 605 

bulk mass scattering scheme from a 2-year mean perspective for both daytime and 606 

nighttime?   607 

2. Can CALIOP extinction be used as a better parameter than AOD for estimating PM2.5 608 

concentrations from a 2-year mean perspective?  609 

3. What are the sampling biases we can expect in CALIOP estimates of PM2.5? 610 

4. How do uncertainties in bulk properties compare to overall CALIOP-retrieved PM2.5 611 

uncertainty? 612 

Details of the methods and datasets used are described in Sect. 2.  Section 3 shows the 613 

preliminary results using two years of EPA PM2.5 and CALIOP data, including an uncertainty 614 

analysis.  The conclusions of this paper are provided in Sect. 4. 615 

 616 

 617 

 618 

2 Data and Methods 619 
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Since 1970, the U.S. EPA has monitored surface PM using a number of Federal 620 

Reference/Equivalent Methods (FRMs/FEMs), which employ gravimetric, tapered element 621 

oscillating microbalance (TEOM), and beta gauge instruments (Federal Register, 1997; 622 

Greenstone, 2002).  Two years (2008-2009) of daily PM2.5 Local Conditions (EPA code = 88101) 623 

data were acquired from the EPA Air Quality System for use in this investigation, consistent with 624 

our previous PM2.5 study (Toth et al., 2014).  These data represent PM2.5 concentrations over a 24-625 

hour period and include two scenarios: one sample is taken during the 24-hour duration (i.e., filter-626 

based measurement), or an average is computed from hourly samples within this time period (every 627 

hour may not have an available measurement, however).   628 

Note that uncertainties have been reported for hourly PM measurements (Kiss et al., 2017). 629 

Examples of some uncertainties in these PM2.5 measurements depend upon the instrument/method 630 

used: gravimetric (e.g., transport to the lab/human error and volatization of PM during the drying 631 

process; Patashnick et al., 2001), TEOM (e.g., errors due to improper inlet tube temperature; 632 

Eatough et al., 2003), and beta attenuation monitors (e.g., changes in the sample flow rate due to 633 

variations in temperature and moisture; Spagnolo, 1989).  Also, it has been found that beta 634 

attenuation monitors may be more accurate than TEOM, as TEOM can underestimate PM2.5 at low 635 

temperatures (e.g., Chung et al., 2001).  Still, as suggested by Kiss et al. (2017), PM data collected 636 

over a longer period of time are much less likely to be biased.   Thus, we expect lower uncertainties 637 

from data collected over 24-hours, then daily data generated by averaging hourly observations.  638 

Fully quantifying the differences from the two different PM observing methods, however, is the 639 

subject for a future study.  640 

CALIOP, flying aboard the CALIPSO platform within the A-Train satellite constellation, 641 

is a dual wavelength (0.532 and 1.064 µm) lidar that has collected profiles of atmospheric aerosol 642 
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particles and clouds since summer 2006 (Winker et al., 2007).  In this study, daytime and nighttime 662 

extinction coefficients retrieved at 0.532 µm from the Version 4.10 CALIOP Level 2 5 km aerosol 663 

profile (L2_05kmAPro) product were used.  Using parameters provided in the L2_05kmAPro 664 

product, as well as the corresponding Level 2 5 km aerosol layer (L2_05kmALay) product, a robust 665 

quality-assurance (QA) procedure for the aerosol observations was implemented (Table 1).  666 

Further information on the QA metrics and screening protocol are discussed in detail in previous 667 

studies (Kittaka et al. 2011; Campbell et al. 2012; Toth et al. 2013; 2016).  Once the QA procedure 668 

was applied, the aerosol profiles were linearly re-gridded from 60 m vertical resolution (above 669 

mean sea level [AMSL]) to 100 m segments (i.e., resampled to 100 m resolution) referenced to the 670 

local surface (above ground level [AGL]; Toth et al., 2014; 2016).  The choice of 100 m was 671 

arbitrary, and the profiles were re-gridded in order to obtain an AGL-corrected dataset, as opposed 672 

to the AMSL-referenced profiles provided by the L2_05kmAPro product.  Surface elevation and 673 

relative humidity (RH) were taken from collocated model data included in the CALIPSO 674 

L2_05kmAPro product (CALIPSO Data Products Catalog (Release 4.20); RH taken from the 675 

Modern Era Retrospective-Analysis for Research, or MERRA-2 reanalysis product).  To limit the 676 

effects of signal attenuation and increase the chances of measuring aerosol presence near the 677 

surface, the Atmospheric Volume Description parameter within the L2_05kmAPro dataset is used 678 

to cloud-screen each aerosol profile as in Toth et al. (2018).   679 

In this study, near surface PM mass concentration (Cm) is derived from near surface 680 

CALIOP extinction based on a bulk formulation as in Equation 1 (e.g., Liou, 2002; Chow et al., 681 

2006): 682 

𝛽	 = 	𝐶%(𝑎()*+𝑓-. + 𝑎*0()	x	1000                                (1) 683 



 20 

where β is CALIOP-derived near surface extinction in km-1, Cm is the PM mass 684 

concentration in µg m-3, ascat and aabs are dry mass scattering and absorption efficiencies in m2 g-1, 685 

and frh represents the light scattering hygroscopicity, respectively.  As a preliminary study, for the 686 

purpose of demonstrating this concept, we assume the dominant aerosol type over the contiguous 687 

U.S. (CONUS) is pollution aerosol (i.e., the most prevalent near-surface aerosol type reported in 688 

the CALIOP products for the CONUS during 2008-2009 is polluted continental) with ascat and aabs 689 

values of 3.40 and 0.37 m2 g-1 (Hess et al., 1998; Lynch et al., 2016), respectively.  These values 690 

are similar to those reported in Malm and Hand (2007) and Kaku et al. (2018) but are interpolated 691 

to 0.532 µm from values at 0.450 µm and 0.550 µm obtained from the Optical Properties of 692 

Aerosols and Clouds (OPAC) model (Hess et al., 1998).  Still, both ascat and aabs have regional and 693 

species related dependencies.  Also, only 2-year averages are used in this study, and we assume 694 

that sporadic aerosol plumes are smoothed out in the averaging process, and that bulk aerosol 695 

properties are similar throughout the study region.  We have further explored the impact of aerosol 696 

types to PM2.5 retrievals in a later section.  Furthermore, to aid in focusing this study on fine 697 

mode/anthropogenic aerosols, those aerosol extinction range bins classified as dust by the CALIOP 698 

typing algorithm were excluded from the analysis.     699 

Also, surface PM concentrations are dry mass measurements.  To account for the impact 700 

of humidity on ascat (it is assumed that aabs is not affected by moisture; Nessler et al., 2005; Lynch 701 

et al., 2016), we estimated the hygroscopic growth factor for pollution aerosol based on Hanel 702 

(1976), as shown in Equation 2: 703 

                                                                             (2) 704 
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where frh is the hygroscopic growth factor, RH is the relative humidity, and RHref is the 705 

reference RH and is set to 30% in this study (Lynch et al., 2016).  Γ is a unitless value (a fit 706 

parameter describing the amount of hygroscopic increase in scattering) and is assumed to be 0.63 707 

(i.e., sulfate aerosol) in this study (Hanel, 1976; Chew et al., 2016; Lynch et al., 2016). 708 

Additionally, the CALIOP-derived PM density is for all particle sizes.  To convert from 709 

mass concentration of PM (Cm) to mass concentration of PM2.5 (Cm2.5), which represents mass 710 

concentration for particle diameters smaller than 2.5 µm, we adopted the PM2.5 to PM10 (PM with 711 

diameters less than 10 µm) ratio (f) of 0.6 as measured during the Studies of Emissions and 712 

Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) 713 

campaign over the US (Kaku et al., 2018).  Again, the ratio of PM2.5 to PM10 can also vary spatially, 714 

however we used a regional mean to demonstrate the concept.  Analyses in a later section using 715 

two-years (2008-2009) of surface PM2.5 to PM10 data suggest that 0.6 is a rather reasonable number 716 

to use for the CONUS for the study period.  Here we assume that mass concentrations for particle 717 

diameters larger than 10 µm are negligible over the CONUS.  Thus, we can rewrite Equation 1 as: 718 

 𝐶%5.7 = 	
8	9	:

(*;<=>	9		?@AB	*=C;)	9	DEEE
                   (3) 719 

where Cm2.5 is the CALIOP-derived PM2.5 concentration in units of µg m-3.    720 

 Lastly, we note that most of the results are shown in the form of scatter plots with fits from 721 

Deming regression (Deming, 1943).  Due to uncertainties in PM2.5 data, we show slopes computed 722 

from Deming regression analyses instead of those from simple linear regression.  Deming 723 

regression in particular is appropriate here, as it accounts for errors in both the independent and 724 

dependent variables (Deming, 1943), and has been used in past PM2.5 related studies (e.g., Huang 725 

et al., 2014).     726 

 727 
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3 Results and Discussion 731 

3.1 Regional analysis  732 

Figure 2a shows the mean PM2.5 concentration using two years (2008-2009) of daily 733 

surface PM2.5 data from the U.S. EPA (PM2.5_EPA), not collocated with CALIOP observations.  A 734 

total of 1,091 stations (some operational throughout the entire period; others only partially) are 735 

included in the analysis and observations from those stations are further used in evaluating 736 

CALOP-derived PM2.5 concentrations (Cm2.5), as later shown in Fig. 3.  PM2.5 concentrations of 737 

~10 µg m-3 are found over the eastern CONUS.  In comparison, much lower PM2.5 concentrations 738 

of ~5 µg m-3 are exhibited for the interior CONUS, over states including Montana, Wyoming, 739 

North Dakota, South Dakota, Utah, Colorado, and Arizona.  For the west coast of the CONUS, 740 

and especially over California, higher PM2.5 concentrations are observed, with the maximum two-741 

year mean near 20 µg m-3.  Note that the spatial distribution of surface PM2.5 concentrations over 742 

the CONUS as shown in Fig. 2a is consistent with reported values from several studies (e.g., Hand 743 

et al., 2013; Van Donkelaar et al., 2015; Di et al., 2017). 744 

Figure 3a shows the two-year averaged 1° x 1° (latitude/longitude) gridded daytime 745 

CALIOP aerosol extinction over the CONUS using CALIOP observations from 100-1000 m, 746 

referenced to the number of cloud-free L2_05kmAPro profiles in each 1 x 1° bin.  The lowest 100 747 

m of CALIOP extinction data are not used in the analysis due to the potential of surface return 748 

contamination (e.g., Toth et al., 2014), although this has been improved for the Version 4 CALIOP 749 

products but may still be present in some cases.  Here the averaged extinction from 100-1000 m is 750 

used to represent near surface aerosol extinction.  This selection of the 100-1000 m layer is 751 

somewhat arbitrary, even though it is estimated from the mean CALIOP-based aerosol vertical 752 

distribution over the CONUS (Toth et al., 2014).  Thus, a sensitivity study is provided in a later 753 Deleted: , as surface layer heights may change seasonally and 754 
diurnally755 
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section to understand the impact of this aerosol layer selection to CALIOP-based PM2.5 retrievals.  756 

As shown in Fig. 3a, higher mean near surface CALIOP extinction of 0.1 km-1 are found for the 757 

eastern CONUS and over California, while lower values of 0.025-0.05 km-1 found for the interior 758 

CONUS.  Figure 3b shows a plot similar to Fig. 3a but using nighttime CALIOP observations 759 

only.  Although similar spatial patterns are found during both day and night, the near surface 760 

extinction values are overall lower for nighttime than daytime, and nighttime data are less noisy 761 

than daytime.  These findings are not surprising, as daytime CALIOP measurements are subject to 762 

contamination from background solar radiation (e.g., Omar et al., 2013).   763 

To investigate any diurnal biases in the data, Figs. 3c and 3d show the derived PM2.5 764 

concentration using daytime and nighttime CALIOP data respectively, based on the method 765 

described in Section 2.  Both Figures 3c and 3d suggest a higher PM2.5 concentration of ~10-12.5 766 

µg m-3 over the eastern CONUS, and a much lower PM2.5 concentration of ~2.5-5 µg m-3 over the 767 

interior CONUS.  High PM2.5 values of 10-20 µg m-3 are also found over the west coast of the 768 

CONUS, particularly over California.  The spatial distribution of PM2.5 concentrations, as derived 769 

using near surface CALIOP data (Figs. 3c and 3d, as well as the combined daytime and nighttime 770 

perspective shown in Fig. 2c), is remarkably similar to the spatial distribution of PM2.5 values as 771 

estimated based on ground-based observations (Fig. 2a).  Still, day and night differences in PM2.5 772 

concentrations are also clearly visible, as higher PM2.5 values are found, in general, during daytime, 773 

based on CALIOP observations.  The high daytime PM2.5 values, as shown in Fig. 3c, may 774 

represent stronger near surface convection and more frequent anthropogenic activities during 775 

daytime.  However, they may also be partially contributed from solar radiation contamination.  776 

Another possibility is that the daytime mean extinction coefficients (from which the mean PM2.5 777 

estimates are derived) appear artifically larger than at night due to high daytime noise limiting the 778 
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ability of CALIOP to detect fainter aerosol layers during daylight operations.  Note that, for 779 

context, maps of the number of days and CALIOP Level 2 5 km aerosol profiles used in the 780 

creation of Fig. 3a-d are shown in Appendix Fig. 1.   781 

 Figure 3e shows the inter-comparison between PM2.5_EPA and PM2.5_CALIOP concentrations.  782 

Note that only CALIOP and ground-based PM2.5 data pairs, which are within 100 km of each other 783 

and have reported values for the same day (i.e., year, month, and day), are used to generate Fig. 784 

3e.  Still, although only spatially and temporally collocated data pairs are used, ground-based PM2.5 785 

data represent 24-hour averages, while CALIOP-derived PM2.5 concentrations are instantaneous 786 

values over the daytime CALIOP overpass.  To reduce this temporal bias, two years (2008-2009) 787 

of collocated CALIOP-derived and measured PM2.5 concentrations are averaged and only the two-788 

year averages are used in constructing Fig 3e.  Also, to minimize the above-mentioned temporal 789 

sampling bias, ground stations with fewer than 100 collocated pairs are discarded.  This leaves a 790 

total of 276 stations for constructing Fig. 3e.   791 

As shown in Fig. 3e, an r2 value of 0.21 (with slope of 1.07) is found between CALIOP-792 

derived and measured surface PM2.5 concentrations, with a corresponding mean bias of -0.40 µg 793 

m-3 (PM2.5_CALIOP - PM2.5_EPA).  In comparison, Fig. 3f shows results similar to Fig. 3e, but for 794 

nighttime CALIOP data.  A much higher r2 value of 0.48 (with slope of 0.96) is found between 795 

CALIOP-derived and measurement PM2.5 values from 528 EPA stations, with a corresponding 796 

mean bias of -3.3 µgm-3 (PM2.5_CALIOP - PM2.5_EPA).  This may be related to the diurnal variability 797 

of PM2.5 concentrations, as the daily mean EPA measurement might be closer to the CALIOP A.M. 798 

retrieval than to its P.M. counterpart.  Still, data points are more scattered in Fig. 3e in comparison 799 

with Fig. 3f, which again indicates that daytime CALIOP data are noisier, possibly due to daytime 800 
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solar contamination as well as other factors such as biases in relative humidity.  Details of these 805 

biases are further explored in Section 3.2. 806 

To supplement this analysis, a pairwise PM2.5_EPA and PM2.5_CALIOP (day and night CALIOP 807 

combined) analysis is presented in the spatial plots of Figs. 2b and 2d.  Here, however, we lift the 808 

100 collocated pairs requirement to increase data samples for better spatial representativeness.  The 809 

spatial variability of PM2.5 over the CONUS is consistent with the observed patterns of non-810 

collocated data (i.e., Figs. 2a and 2c), but with generally higher values due to differences in 811 

sampling.  Also, comparing Figs. 2b and 2d, PM2.5_EPA spatial patterns match well with those of 812 

PM2.5_CALIOP, yet with larger values for PM2.5_EPA (consistent with the biases discussed above).  813 

Lastly, a scatterplot of the pairwise analysis shown in Figs. 2b and 2d is provided in Fig. 4.  An r2 814 

value of 0.40 is found between EPA and CALIOP-derived PM2.5 concentrations from a combined 815 

daytime and nighttime CALIOP perspective.  Overall, Figs. 2, 3, and 4 indicate that near surface 816 

CALIOP extinction data can be used to estimate surface PM2.5 concentrations with reasonable 817 

accuracy.   818 

 819 

3.2 Uncertainty analysis 820 

In this section, uncertainties in the CALIOP derived, 2-year averaged PM2.5 concentrations 821 

are explored as functions of aerosol vertical distribution, PM2.5 to PM10 ratio, RH, aerosol type, 822 

and cloud presence above.  Spatial sampling related biases as well as prognostic errors are also 823 

studied. 824 

 825 

3.2.1 Prognostic errors in Cm2.5 826 
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As a first step for the uncertainty analysis, we estimated the prognostic error of 2-year 827 

averaged PM2.5_CALIOP.  Figure 5 shows the root-mean-square error (RMSE) of CALIOP-based 828 

PM2.5 concentrations against those from EPA stations as a function of CALIOP-based PM2.5 for 829 

the 2008-2009 period over the CONUS.  RMSEs were computed for five equally sampled bins, 830 

determined from a cumulative histogram analysis.  Each point in Fig. 5, from left to right, 831 

represents the RMSE and mean PM2.5 concentration derived from CALIOP for 0-20%, 20-40%, 832 

40-60%, 60-80%, and 80-100% cumulative frequencies.  A mean combined daytime and nighttime 833 

RMSE of ~4 µg m-3 is found, with a mean value slightly greater for nighttime (~4.3 µg m-3) than 834 

daytime (~3.7 µg m-3).  While most bins exhibit larger nighttime RMSEs, daytime RMSEs are 835 

larger for the greatest mean CALIOP-derived PM2.5 concentrations. 836 

 837 

 838 

3.2.2 Surface layer height sensitivity study  839 

A sensitivity study was conducted for which PM2.5 was derived from near-surface CALIOP 840 

aerosol extinction by varying the height of the surface layer in increments of 100 m from the 841 

ground to 1000 m.  Note that the surface layer (0-100 m) is included for this sensitivity study only.  842 

The statistical results of this analysis, for both daytime and nighttime conditions, are shown in 843 

Table 2.  Four statistical parameters were computed, consisting of r2, slope from Deming 844 

regression, mean bias (CALIOP – EPA) of PM2.5, and percent error change in derived PM2.5, 845 

defined as: ((mean_new_PM2.5 – mean_original_PM2.5)/mean_original_PM2.5)*100.  For context, 846 

the bottom row of Table 2 shows the results from the original analysis.  In terms of r2 and slope, 847 

optimal values peak at different surface layer heights between daytime and nighttime.  For 848 

example, for daytime, the largest correlations are found for the 0-600 m and 0-700 m layers, while 849 
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for nighttime these are found for the 0-300 m and 0-400 m layers.  However, the 0-300 m layer 867 

exhibits the lowest mean bias for the daytime analysis, and the 100-1000 m layer exhibits the 868 

lowest mean bias for the nighttime analysis.  Overall, marginal changes are found for varying the 869 

height of the surface layer.  Yet the largest mean bias is found for the 0-100 m layer, indicating 870 

the need for excluding the 0-100 m layer in the analysis. 871 

 872 

3.2.3 RH sensitivity study 873 

Profiles of RH were taken from the MERRA-2 reanalysis product, as these collocated data 874 

are provided in the CALIPSO L2_05kmAPro product.  However, biases may exist in this RH 875 

dataset.  Thus, we examined the impact of varying the RH values by +/- 10% on the CALIOP-876 

derived PM2.5 concentrations.  For both daytime and nighttime analyses, no significant differences 877 

in the r2 and slope values were found.  However, a +15% change in the mean derived PM2.5 values 878 

was found by decreasing the RH values by 10%, while a -15% change in the mean derived PM2.5 879 

values was found by increasing the RH values by 10%.  880 

3.2.4 PM2.5 to PM10 ratio sensitivity study  881 

Another source of uncertainty in this study is the PM2.5/PM10 ratio.  Using surface-based 882 

PM2.5 and PM10 data from those EPA stations over the CONUS for 2008-2009 with concurrent 883 

PM2.5 and PM10 daily data available (i.e., 409 stations), we computed the mean PM2.5/PM10 ratio, 884 

and its corresponding standard deviation.  The mean ratio was 0.56 with a standard deviation of 885 

0.32.  It is interesting to note that the mean PM2.5/PM10 ratio estimated from two years of surface 886 

observations over the CONUS is close to 0.6 (the number used in this study), as reported by Kaku 887 

et al. (2018).  We also tested the sensitivity of the derived PM2.5 concentrations as a function of 888 

PM2.5/PM10 ratio for two scenarios: ±1 standard deviation of the mean (Table 3).  In general, a ±50 889 
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% to 60 % change is found with the variation of the PM2.5/PM10 ratio at the range of ±1 standard 897 

deviation of the mean.  As suggested from Table 3, the lowest mean daytime bias is found for a 898 

ratio of 0.6, and for nighttime the lowest mean bias occurs using a ratio of 0.88.    899 

   900 

3.2.5 Sampling-related biases 901 

As mentioned in the introduction section, a sampling bias, due to the very small footprint 902 

size and ~16 day repeat cycle of CALIOP, can exist when using CALIOP observations for PM2.5 903 

estimates (Zhang and Reid, 2009).  This sampling-induced bias is investigated from a 2-year mean 904 

perspective by comparing histograms of PM2.5_EPA and Cm2.5 concentrations as shown in Fig. 6.  To 905 

generate Fig. 6, all available daily EPA PM2.5 are used to represent the “true” 2-year mean spectrum 906 

of PM2.5 concentrations over the EPA sites.  The aerosol extinction data spatially collocated to the 907 

EPA sites (Sect. 3.1), but not temporally collocated, are used for estimating the 2-year mean 908 

spectrum of PM2.5 concentrations as derived from CALIOP observations.  To be consistent with 909 

the previous analysis, only cloud-free CALIOP profiles are considered.  The PM2.5_EPA 910 

concentrations peak at ~10 µg m-3 (standard deviation of ~3 µg m-3), and CALIOP-derived PM2.5 911 

peaks at ~9 µg m-3 (daytime; standard deviation of ~4 µg m-3) and ~7 µg m-3 (nighttime; standard 912 

deviation of ~2 µg m-3).  The distribution shifts towards smaller concentrations for CALIOP, more 913 

so for nighttime than daytime (possibly due to CALIOP daytime versus nighttime detection 914 

differences).   915 

Still, Fig. 6 may reflect the diurnal difference in PM2.5 concentrations as well as the 916 

retrieval bias in Cm2.5 values.  Thus, we have re-performed the exercise shown in Fig. 6 using 917 

spatially and temporally collocated PM2.5_EPA and Cm2.5 data as shown in Fig. 7.  To construct Fig. 918 

7, PM2.5_EPA and Cm2.5 data are collocated following the steps mentioned in Sect. 3.1, with CALIOP 919 
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and EPA PM2.5 representing 2-year mean values for each EPA station.  Again, only cloud-free 925 

CALIOP profiles are considered for this analysis.  As shown in Fig. 7a, the PM2.5_EPA 926 

concentrations peak at ~12 µg m-3 (standard deviation of ~4 µg m-3), and daytime Cm2.5 peaks at 927 

~10 µg m-3 (standard deviation of ~4 µg m-3).  In comparison, with the use of collocated nighttime 928 

Cm2.5 and PM2.5_EPA data as shown in Fig. 7b, the peak PM2.5_EPA value is about 5 µg m-3 higher 929 

than the peak Cm2.5 value (with similar standard deviations as found in the analyses of Fig. 7a).    930 

Considering both Figs. 6 and 7, it is likely that the temporal sampling bias seen in Fig. 6 is at least 931 

in part due to retrieval bias as well as the difference in PM2.5 concentrations during daytime and 932 

nighttime. 933 

 934 

3.2.6 CALIOP AOD analysis 935 

Most past studies focused on the use of column AODs as proxies for surface PM2.5 (e.g., 936 

Liu et al., 2005; Hoff and Christopher, 2009; van Donkelaar et al., 2015).  Therefore, it is 937 

interesting to investigate whether near surface CALIOP extinction values can be used as a better 938 

physical quantity to estimate surface PM2.5 in comparing with column-integrated CALIOP AOD. 939 

To achieve this goal, we have compared CALIOP column AOD and PM2.5 from EPA stations, as 940 

shown in Fig. 8.  Similar to the scatterplots of Fig. 4, each point represents a two-year mean for 941 

each EPA site, and was created from a dataset following the same spatial/temporal collocation as 942 

described above.  As shown in Fig. 9, r2 values of 0.04 and 0.13 are found using CALIOP daytime 943 

and nighttime AOD data, respectively, similar to the MODIS-based analysis shown in Fig. 1.  This 944 

is expected, as elevated aerosol layers will negatively impact the relationship between surface 945 

PM2.5 and column AOD.  The derivation of surface PM2.5 from near surface CALIOP extinction, 946 

as demonstrated from this study however, provides a much better spatial matching between the 947 
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quantities being compared, with potential error terms that can be well quantified and minimized in 951 

later studies.   952 

 953 

3.2.7 Cloud flag sensitivity study  954 

For most of this paper, a strict cloud screening process is implemented, during which no 955 

clouds are allowed in the entire CALIOP profile.  However, in contrast to passive sensor 956 

capabilities (e.g., MODIS), near-surface aerosol extinction coefficients can be readily retrieved 957 

from CALIOP profiles even when there are transparent cloud layers above. Therefore, we 958 

conducted an additional analysis for which no cloud flag was set (i.e., all-sky conditions).  Results 959 

are shown in scatterplot form in Fig. 9, in a similar manner as Figs. 3e and f, with an additional 97 960 

points for the daytime analysis and 156 points for the nighttime analysis.  Comparing the all-sky 961 

results with those of Figs. 3e, and f (cloud-free conditions), the r2 values are similar.  This is also 962 

true in terms of mean bias, with similar values of 0.70 µg m-3 found for daytime, and -2.68 µg m-3 963 

for nighttime, all-sky scenarios.  This indicates that our method performs reasonably well from an 964 

all-sky perspective.  However, we note that restricting the analysis to solely those cases that are 965 

cloudy (not shown), the method does not perform as well.  For example, the r2 value decreases by 966 

71% for the daytime analysis compared to the cloud-free results (Fig. 3e).  The corresponding 967 

nighttime r2 value decreases by 90%.  This is expected, as any errors made in estimating the optical 968 

depths of the overlying clouds will propagate (as biases) into the extinction retrievals for the 969 

underlying aerosols. 970 

 971 

3.2.8 Aerosol type analysis 972 
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Also, for this study, we assume that the primary aerosol type over the CONUS is pollution 986 

(i.e., sulfate) aerosol, which is generally composed of smaller (fine mode) particles that tend to 987 

exhibit mass extinction efficiencies ~4 m2 g-1.  However, even after implementing our dust-free 988 

restriction, the study region can also be contaminated with non-pollution aerosols, which can have 989 

a larger particle size and exhibit lower mass extinction efficiencies (e.g., Hess et al., 1998; Malm 990 

and Hand, 2007; Lynch et al., 2016).  The use of PM2.5 versus PM10 somewhat mitigates this size 991 

dependency, but nevertheless coarse mode dust or sea salt can dominate PM2.5 mass values (e.g., 992 

Atwood et al., 2013).   993 

Thus, in this section, the impact of aerosol types to the derived PM2.5 concentrations was 994 

explored by varying the mass scattering and absorption efficiencies and gamma values associated 995 

with each aerosol type.  The three aerosol types chosen for this sensitivity study were dust, sea 996 

salt, and smoke, based upon Lynch et al. (2016).  The mass scattering and absorption values for 997 

dust and sea salt were interpolated to 0.532 µm from values at 0.450 µm and 0.550 µm from OPAC 998 

(as was done for the sulfate case; Hess et al., 1998).  For smoke, these values were interpolated to 999 

0.532 µm from values at 0.440 µm and 0.670 µm as provided by Reid et al. (2005) for smoke cases 1000 

over the US and Canada.  The gamma values were taken from Lynch et al. (2016) and the 1001 

references within.  These values, as well as the results from this sensitivity study, are shown in 1002 

Table 4.  If we assume all aerosols within the study region are smoke aerosols, no major changes 1003 

in the retrieved CALIOP PM2.5 values are found.  However, significant uncertainties on the order 1004 

of ~200% are found if sea salt, or ~800% if dust, aerosol mass scattering/absorption efficiencies 1005 

and gamma values are used instead.  Clearly, this study suggests that accurate aerosol typing is 1006 

necessary for future applications of CALIOP observations for surface PM2.5 estimations.     1007 
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3.3 E-folding correlation length for PM2.5 concentrations over the CONUS 1013 

As a last study, we also estimated the spatial e-folding correlation length for PM2.5 1014 

concentrations over the CONUS.  This provides us an estimation of the correlation between a 1015 

CALIOP-derived and actual PM2.5 concentration for a given location as a function of distance 1016 

between the CALIOP observation and the given location.  To accomplish this, all EPA stations 1017 

over the CONUS with at least 50 days of daily data available for the 2008-2009 period were first 1018 

determined.  Next, the distances between each pair of these EPA stations, and their corresponding 1019 

correlation of daily PM2.5 concentrations, were computed.  Results are shown in Fig. 10 as a 1020 

scatterplot, with individual points in gray and the black curve representing the exponential fit to 1021 

the data.  A decrease in PM2.5 correlation with distance between EPA stations is found, and the e-1022 

folding length in correlation (e.g., correlation reduced to 1/e, or 0.37) is ~600 km (from an AOD 1023 

standpoint, this value is 40-400 km, as suggested by Anderson et al., 2003).   1024 

Also included in Fig. 10 are results from a corresponding regional analysis, with the red 1025 

and blue lines showing bin averages (10 km) for the Western and Eastern CONUS, respectively 1026 

(regions partitioned by the -97° longitude line).  The e-folding length is ~300 km for the Western 1027 

CONUS, and ~700 km for the Eastern CONUS, indicating a much shorter correlation length for 1028 

pollution over the Western CONUS, possibly due to a more complex terrain such as mountains.  1029 

Overall, these PM2.5 e-folding lengths suggest that CALIOP-derived PM2.5 concentrations could 1030 

still have some representative skill within a few hundred kilometers of a given location.   1031 

 1032 

4 Conclusions 1033 

In this paper, we have demonstrated a new bulk-mass-modeling method for retrieving 1034 

surface particulate matter (PM) with particle diameters smaller than 2.5 µm (PM2.5) using 1035 

Deleted: 2.9 1036 

Deleted: (1037 
Deleted: )1038 
Deleted: Western (1039 
Deleted: )1040 

Deleted: sizes 1041 



 33 

observations acquired by the NASA Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 1042 

instrument from 2008-2009.  For the purposes of demonstrating this concept, only regionally-1043 

averaged parameters, such as mass scattering and absorption coefficients, and PM2.5 to PM10 (PM 1044 

with particle diameters smaller than 10 µm) conversion ratio, are used.  Also, we assume the 1045 

dominant type of aerosols over the study region is pollution aerosols (supported by the occurrence 1046 

frequencies of aerosol types determined by the CALIOP algorithms), and exclude aerosol 1047 

extinction range bins classified as dust from the analysis.  Even with the highly-averaged 1048 

parameters, the results from this paper are rather promising and demonstrate a potential for 1049 

monitoring PM pollution using active-based lidar observations.  Specifically, the primary results 1050 

of this study are as follows: 1051 

1. CALIOP-derived PM2.5 concentrations of ~10-12.5 µg m-3 are found over the eastern 1052 

contiguous United States (CONUS), with lower values of ~2.5-5 µg m-3 over the central 1053 

CONUS.  PM2.5 values of ~10-20 µg m-3 are found over the west coast of the CONUS, 1054 

primarily California.  The spatial distribution of 2-year mean PM2.5 concentrations derived 1055 

from near surface CALIOP aerosol data compares well to the spatial distribution of in situ 1056 

PM2.5 measurements collected at the ground-based stations of the U.S. Environmental 1057 

Protection Agency (EPA).  The use of nighttime CALIOP extinction to derive PM2.5 results 1058 

in a higher correlation (r2 = 0.48; mean bias = -3.3 µgm-3) with EPA PM2.5 than daytime 1059 

CALIOP extinction data (r2 = 0.21; mean bias = -0.40 µgm-3).  1060 

2. Correlations between CALIOP aerosol optical depth (AOD) and EPA PM2.5 are much 1061 

lower (r2 values of 0.04 and 0.13, for daytime and nighttime CALIOP AOD data, 1062 

respectively) than those obtained from derived PM2.5 using near-surface CALIOP aerosol 1063 

extinction.  A similar correlation is also found between Moderate Resolution Imaging 1064 
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Spectroradiometer (MODIS) AOD and EPA PM2.5 from two-year (2008-2009) means.  1066 

This suggests that CALIOP extinction may be used as a better parameter for estimating 1067 

PM2.5 concentrations from a 2-year mean perspective.  Also, the algorithm proposed in this 1068 

study is essentially a semi-physical-based method, and thus the retrieval process can be 1069 

improved, upon a careful study of the physical parameters used in the process. 1070 

3. Spatial and temporal sampling biases, as well as a retrieval bias, are found.  Also, several 1071 

sensitivity studies were conducted, including surface layer height, cloud flag, PM2.5/PM10 1072 

ratio, relative humidity, and aerosol type.  The sensitivity studies highlight the need for 1073 

accurate aerosol typing for estimating PM2.5 concentrations using CALIOP observations. 1074 

4. Using surface-based PM2.5 at EPA stations alone, the e-folding correlation length for PM2.5 1075 

concentrations was found to be about 600 km for the CONUS.  A regional analysis yielded 1076 

values of ~300 km and ~700 km for the Western and Eastern CONUS, respectively.  Thus, 1077 

while limited in spatial sampling, measurements from CALIOP may still be used for 1078 

estimating PM2.5 concentrations over the CONUS. 1079 

 As noted earlier, CALIOP observations are still rather sparse, and concerns related to 1080 

reported CALIOP aerosol extinction values also exist, such as solar and surface contamination and 1081 

the “retrieval fill value” issue (e.g., Toth et al., 2018).  Yet, the future High Spectral Resolution 1082 

Lidar (HSRL) instrument on board the Earth Clouds, Aerosol, and Radiation Explorer 1083 

(EarthCARE) satellite (Illingworth et al., 2015), as well as forthcoming space-based lidar missions 1084 

in response to the 2017 Decadal Survey, offer opportunities to further explore aerosol extinction -1085 

based PM concentrations.  Ultimately the results from this study show that the combined use of 1086 

several lidar instruments for monitoring regional and global PM pollution is potentially achievable. 1087 

 1088 
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Figure and Table Captions 1352 
 1353 

Figure 1.  For 2008-2009, scatterplot of mean PM2.5 concentration from ground-based U.S. EPA 1354 

stations and mean column AOD (550 nm) from collocated Collection 6 (C6) Aqua MODIS 1355 

observations.  The red line represents the Deming regression fit. 1356 

 1357 

Figure 2.  For 2008-2009 over the CONUS, (a) mean PM2.5 concentration (µg m-3) for those U.S. 1358 

EPA stations with reported daily measurements, and (c) 1° x 1° average CALIOP-derived PM2.5 1359 

concentrations for the 100–1000 m AGL atmospheric layer, using Equation 3, for combined 1360 

daytime and nighttime conditions.  Also shown are the pairwise PM2.5 concentrations from (b) 1361 

EPA daily measurements and (d) those derived from CALIOP (day and night combined), both 1362 

averaged for each EPA station for the 2008-2009 period.  For all four plots, values greater than 20 1363 

µgm-3 are colored red.      1364 

 1365 

Figure 3.  For 2008-2009 over the CONUS, 1° x 1° average CALIOP extinction, relative to the 1366 

number of cloud-free 5 km CALIOP profiles in each 1° x 1° bin, for the 100 – 1000 m AGL 1367 

atmospheric layer, for (a) daytime and (b) nighttime measurements.  Also shown are the 1368 

corresponding CALIOP-derived PM2.5 concentrations, using Equation 3 for (c) daytime and (d) 1369 

nighttime conditions.  Values greater than 0.2 km-1 and 20 µg m-3 for (a, b) and (c, d), respectively, 1370 

are colored red.  Scatterplots of mean PM2.5 concentration from ground-based U.S. EPA stations 1371 

and those derived from collocated near-surface CALIOP observations are shown in the bottom 1372 

row, using (e) daytime and (f) nighttime CALIOP data.  The red lines represent the Deming 1373 

regression fits.   1374 
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Figure 4.  Scatterplot of mean PM2.5 concentration from ground-based U.S. EPA stations and those 1375 

derived from collocated near-surface CALIOP observations using combined daytime and 1376 

nighttime CALIOP data.  The red line represents the Deming regression fit.   1377 

 1378 

Figure 5.  Root-mean-square errors of CALIOP-derived PM2.5 against EPA PM2.5 as a function of 1379 

CALIOP-derived PM2.5, using both daytime (in red) and nighttime (in blue) CALIOP observations.  1380 

The five bins are equally sampled based upon a cumulative histogram analysis, and each point 1381 

from left to right represents the RMSE and mean PM2.5 concentration derived from CALIOP for 1382 

0-20%, 20-40%, 40-60%, 60-80%, and 80-100% cumulative frequencies.     1383 

 1384 

Figure 6.  Two-year (2008-2009) histograms of mean PM2.5 concentrations from the U.S. EPA (in 1385 

black) and those derived from aerosol extinction using nighttime (in blue) and daytime (in red) 1386 

CALIOP data.  The U.S. EPA data shown are not collocated, while those derived using CALIOP 1387 

are spatially (but not temporally) collocated, with EPA station observations.               1388 

 1389 

Figure 7.  Two-year (2008-2009) histograms of mean PM2.5 concentrations from the U.S. EPA and 1390 

those derived from spatially and temporally collocated aerosol extinction using (a) daytime and 1391 

(b) nighttime CALIOP data.   1392 

 1393 

Figure 8.  For 2008-2009, scatterplots of mean PM2.5 concentration from ground-based U.S. EPA 1394 

stations and mean column AOD from collocated CALIOP observations, using (a) daytime and (b) 1395 

nighttime CALIOP data.  The red lines represent the Deming regression fits. 1396 

 1397 

Deleted: Root-mean-square errors of CALIOP-derived PM2.5 1398 
against EPA PM2.5 as a function of CALIOP-derived PM2.5 (filled 1399 
circles), and corresponding number of data samples per bin (X 1400 
symbols), using both daytime (in red) and nighttime (in blue) 1401 
CALIOP observations. ¶1402 
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Figure 9.  For 2008-2009, scatterplots of mean PM2.5 concentration from ground-based U.S. EPA 1404 

stations and those derived from collocated all-sky (including cloud-free and cloudy profiles) near-1405 

surface CALIOP observations, using (a) daytime and (b) nighttime CALIOP data.  The red lines 1406 

represent the Deming regression fits.   1407 

 1408 

Figure 10.  For 2008-2009 over the CONUS, scatterplot of distance (km) between any two U.S. 1409 

EPA stations and the corresponding spatial correlation of PM2.5 concentration between each pair 1410 

of stations.  The black curve represents the exponential fit to the data for the entire CONUS, and 1411 

the red and blue dashed lines represent 10 km bin averages for the Western and Eastern CONUS, 1412 

respectively.   1413 

 1414 

Table 1.  The parameters, and corresponding values, used to quality assure the CALIOP aerosol 1415 

extinction profile. 1416 

 1417 

Table 2.  Statistical summary of a sensitivity analysis varying the height of the surface layer, 1418 

including R2, slope from Deming regression, mean bias (CALIOP -  EPA) of PM2.5 in µg m-3, and 1419 

percent error change in derived PM2.5, defined as: ((mean new PM2.5 – mean original PM2.5)/mean 1420 

original PM2.5)*100.  The row in bold represents the results shown in the remainder of the paper.  1421 

 1422 

Table 3.  Statistical summary of a sensitivity analysis varying the PM2.5 to PM10 ratio used, 1423 

including slope from Deming regression, mean bias (CALIOP - EPA) of PM2.5 in µg m-3, and 1424 

percent error change in derived PM2.5, defined as: ((mean new PM2.5 – mean original PM2.5)/mean 1425 
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Figure 1.  For 2008-2009, scatterplot of mean PM2.5 concentration from ground-based U.S. EPA 
stations and mean column AOD (550 nm) from collocated Collection 6 (C6) Aqua MODIS 
observations.  The red line represents the Deming regression fit.  
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Figure 2.  For 2008-2009 over the CONUS, (a) mean PM2.5 concentration (µg m-3) for those U.S. 
EPA stations with reported daily measurements, and (c) 1° x 1° average CALIOP-derived PM2.5 
concentrations for the 100–1000 m AGL atmospheric layer, using Equation 3, for combined 
daytime and nighttime conditions.  Also shown are the pairwise PM2.5 concentrations from (b) 
EPA daily measurements and (d) those derived from CALIOP (day and night combined), both 
averaged for each EPA station for the 2008-2009 period.  For all four plots, values greater than 
20 µg m-3 are colored red.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 52 

 1463 

 
 

 
 

 
Figure 3.  For 2008-2009 over the CONUS, 1° x 1° average CALIOP extinction, relative to the 
number of cloud-free L2_05kmAPro profiles in each 1° x 1° bin, for the 100 – 1000 m AGL 
atmospheric layer, for (a) daytime and (b) nighttime measurements.  Also shown are the 
corresponding CALIOP-derived PM2.5 concentrations, using Equation 3 for (c) daytime and (d) 
nighttime conditions.  Values greater than 0.2 km-1 and 20 µg m-3 for (a, b) and (c, d), respectively, 
are colored red.  Scatterplots of mean PM2.5 concentration from ground-based U.S. EPA stations 
and those derived from collocated near-surface CALIOP observations are shown in the bottom 
row, using (e) daytime and (f) nighttime CALIOP data.  The red lines represent the Deming 
regression fits.   
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Figure 4.  Scatterplot of mean PM2.5 concentration from ground-based U.S. EPA stations and 
those derived from collocated near-surface CALIOP observations using combined daytime and 
nighttime CALIOP data.  The red line represents the Deming regression fit.   
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Figure 5.  Root-mean-square errors of CALIOP-derived PM2.5 against EPA PM2.5 as a function 
of CALIOP-derived PM2.5, using both daytime (in red) and nighttime (in blue) CALIOP 
observations.  The five bins are equally sampled based upon a cumulative histogram analysis, 
and each point from left to right represents the RMSE and mean PM2.5 concentration derived 
from CALIOP for 0-20%, 20-40%, 40-60%, 60-80%, and 80-100% cumulative frequencies.     
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Figure 6.  Two-year (2008-2009) histograms of mean PM2.5 concentrations from the U.S. EPA 
(in black) and those derived from aerosol extinction using nighttime (in blue) and daytime (in 
red) CALIOP data.  The U.S. EPA data shown are not collocated, while those derived using 
CALIOP are spatially (but not temporally) collocated, with EPA station observations. 
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Figure 7.  Two-year (2008-2009) histograms of mean PM2.5 concentrations from the U.S. EPA 
and those derived from spatially and temporally collocated aerosol extinction using (a) daytime 
and (b) nighttime CALIOP data.   
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Figure 8.  For 2008-2009, scatterplots of mean PM2.5 concentration from ground-based U.S. EPA 
stations and mean column AOD from collocated CALIOP observations, using (a) daytime and 
(b) nighttime CALIOP data.  The red lines represent the Deming regression fits. 
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Figure 9.  For 2008-2009, scatterplots of mean PM2.5 concentration from ground-based U.S. EPA 
stations and those derived from collocated all-sky (including cloud-free and cloudy profiles) 
near-surface CALIOP observations, using (a) daytime and (b) nighttime CALIOP data.  The red 
lines represent the Deming regression fits.   
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Figure 10.  For 2008-2009 over the CONUS, scatterplot of distance (km) between any two U.S. 
EPA stations and the corresponding spatial correlation of PM2.5 concentration between each pair 
of stations.  The black curve represents the exponential fit to the data for the entire CONUS, and 
the red and blue dashed lines represent 10 km bin averages for the Western and Eastern CONUS, 
respectively.   
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Table 1.  The parameters, and corresponding values, used to quality assure the CALIOP aerosol 
extinction profile. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	

Parameter Values 

Integrated_Attenuated_Backscatter_532 ≤ 0.01 sr-1 

Extinction_Coefficient_532 ≥ 0 and ≤ 1.25 km-1 

Extinction_QC_532 = 0, 1, 2, 16, or 18 

CAD_Score ≥ -100 and ≤ -20 

Extinction_Coefficient_Uncertainty_532 ≤ 10 km-1 

Atmospheric_Volume_Description (Bits 1-3) = 3 

Atmospheric_Volume_Description (Bits 10-12) ≠ 0 
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Table 2.  Statistical summary of a sensitivity analysis varying the height of the surface layer, 
including R2, slope from Deming regression, mean bias (CALIOP -  EPA) of PM2.5 in µg m-3, 
and percent error change in derived PM2.5, defined as: ((mean new PM2.5 – mean original 
PM2.5)/mean original PM2.5)*100.  The row in bold represents the results shown in the remainder 
of the paper.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Surface Layer (m)
Analysis (Day/Night)

R2 Deming Slope Mean Bias (CALIOP - EPA; µg m-3) Error Change (%)
0-100 0.27/0.41 1.32/0.60 -2.67/-9.06 -13.71/-61.94
0-200 0.33/0.53 1.34/1.04 -0.52/-5.68 3.79/-23.58
0-300 0.35/0.54 1.32/1.11 -0.09/-4.70 7.24/-12.15
0-400 0.38/0.57 1.30/1.13 -0.13/-4.25 6.92/-6.46
0-500 0.35/0.52 1.26/1.06 -0.21/-4.04 5.70/-4.39
0-600 0.40/0.53 1.19/1.04 -0.46/-3.91 3.72/-2.15
0-700 0.44/0.46 1.20/0.98 -0.41/-3.89 2.73/-2.88
0-800 0.35/0.50 1.06/0.94 -0.59/-3.76 -0.77/-2.04
0-900 0.17/0.49 1.04/0.91 -0.74/-3.74 -3.91/-2.25
0-1000 0.13/0.48 0.98/0.89 -1.08/-3.74 -7.48/-2.57
100-500 0.34/0.44 1.23/1.00 0.54/-3.40 14.21/-0.84
100-1000 0.21/0.48 1.07/0.96 -0.39/-3.34
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Table 3.  Statistical summary of a sensitivity analysis varying the PM2.5 to PM10 ratio used, 
including slope from Deming regression, mean bias (CALIOP - EPA) of PM2.5 in µg m-3, and 
percent error change in derived PM2.5, defined as: ((mean new PM2.5 – mean original PM2.5)/mean 
original PM2.5)*100.  The row in bold represents the results shown in the remainder of the paper.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis (Day/Night)
PM2.5/PM10 Ratio Deming Slope Mean Bias (CALIOP - EPA; µg m-3) % Error Change

Low ratio (-1 STDEV) = 0.24 0.43/0.38 -7.81/-8.61 -60.00%/-60.00%
High ratio (+1 STDEV) = 0.88 1.57/1.41 5.39/0.77 46.67%/46.67%

0.6 1.07/0.96 -0.39/-3.34
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Table 4.  Statistical summary of a sensitivity analysis varying the aerosol type assumed in the 
derivation of PM2.5, including R2, slope from Deming regression, mean bias (CALIOP - EPA) of 
PM2.5 in µg m-3, and percent error change in derived PM2.5, defined as: ((mean new PM2.5 – mean 
original PM2.5)/mean original PM2.5)*100.  The row in bold represents the results shown in the 
remainder of the paper.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis (Day/Night)
Aerosol Type R2 Deming Slope Mean Bias (CALIOP - EPA; µg m-3) % Error Change

ascat aabs !
Smoke 5.26 0.26 0.18 0.10/0.44 0.86/0.78 -1.81/-4.26 -11.53/-10.54
Sea salt 1.42 0.01 0.46 0.18/0.48 2.92/2.64 22.42/12.93 184.12/184.99

Dust 0.52 0.08 0.00 0.05/0.39 9.01/8.18 102.04/70.82 826.94/843.33
Sulfate 3.4 0.37 0.63 0.21/0.48 1.07/0.96 -0.39/-3.34
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Appendix Figure 1.  For 2008-2009 over the CONUS, for each 1° x 1° grid box, the number of 
days and CALIOP Level 2 5 km aerosol profiles used in the creation of the maps in Fig. 3 for (a, 
c) daytime and (b, d) nighttime measurements.  Values greater than 400 profiles for (c, d) are 
colored red. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Day

Day Night

(a) (b)

(c) (d)

Night


