

Responses to Comments by AMT_2018-338-RC1

Note: We have included the reviewer comments in *italics* and our replies in **boldface** to aid the reader.

The paper deals with the analysis of comparisons between a UV ozone DIAL (Differential Absorption Lidar) and in-situ surface and aircraft measurements in Southern California during the CABOTS campaign. The objective is to assess differences between the ozone measurement techniques deployed during CABOTS. Authors focus on the comparability of measurements close to the surface, thanks to the scanning capabilities of the lidar system. A detailed analysis of the aircraft flight path around the lidar is also essential to separate the role of horizontal variability from that of instrumental differences. Many studies have been published to compare UV DIAL with either aircraft, ozonesonde or surface observation.

This is not enough recognized in the introduction where few references to similar campaigns are given.

The topic is still sound and of interest for its publication in Atmospheric Measurement Techniques, because the comparison of lidar data with surface measurement is quite difficult.

Specific aerosol interferences encountered in Southern California (biomass burning, polluted dust and advection of marine aerosols) also need to be characterized. However, the current paper needs some minor revisions before its final publication in Atmospheric Measurement Techniques.

My major concern is the lack of synthesis and quantitative discussion about the comparison results. The expected UV DIAL accuracy below 4 km presented in section 3.1 is ± 3 ppb, but this number is not compared with the differences observed during the campaign when taking into account the detailed analysis of the spatial variability conducted in the paper. Also, the description of the aerosol interference correction is not very well explained although the ozone profiles shown in Fig. 10 prove that it is probably very efficient.

Specific comments

*p.2 l.19 Ozone accuracy needed to address the stratospheric intrusion and long range transport studies could be given as a specification for the ozone measurement accuracy. **We have added a statement here referencing a desired accuracy as 10%, which is the nominal tropospheric accuracy of ECC ozonesondes.** Do you plan Lagrangian studies between aircraft and lidar observations? Analysis of the CABOTS data including FLEXPART analyses is ongoing, but no Lagrangian studies directly linking the aircraft and lidar measurements are currently planned.*

p.2 l.24 Provide more references to previous lidar characterization using airborne or surface measurements (e.g. DOI: 10.1063/1.1144769, DOI: 10.1023/A:1021354511127, DOI:

10.1016/j.atmosres.2004.10.003, ...). The suggested references have been added to the introduction.

p.2 I.30 State in introduction the need for a good characterization of lidar retrieval between surface and 100 m, especially for pollution studies. A statement to this effect has been added.

p.4 I.15 Does the iterative technique include the aerosol interference correction? If yes specify the parameters used for this correction. Does it correspond to the aerosol encountered during CABOTS? Yes, the iterative technique includes a correction for differential aerosol backscatter and extinction (this is described in detail in the Alvarez et al., 2011 reference) and a description of this process has been added to Section 3.1. We used Angstrom coefficients of 0 (no wavelength dependence) for aerosol backscatter and -0.5 for aerosol extinction for the entire study. These values are based on the work of Voelger et al. (1996) and are a good compromise for a wide variety of aerosol mixtures. The composition of the aerosols encountered during CABOTS was not directly measured, but wood smoke predominated in the latter part of the CABOTS campaign.

p.4 I. 28 Specify the accuracy and detection limit for the Scientific Aviation (ScAvi) ozone monitor. This information has been added to Section 3.2.

p. 5 I.6-8 Did you perform flights in formation between the two aircraft to identify differences between the two airborne in-situ ozone measurements? If yes please provide the range of observed O3 differences. There were no formation flights with the Mooney and Alpha Jet during CABOTS.

p.5 I. 37 "the 27.5 m TOPAZ measurements were usually larger than the VMA in- situ". Specify the value of the bias. It seems larger than 3 ppb. Why not using all the measurement days shown in Fig. 3 to make the scatterplot in Fig. 4b? The bias will be more representative, especially if the daytime and SE wind assumptions are included. The scatter plot in Fig. 4b does include all the measurement days and the bias (caused by localize titration) is in the in-situ measurements and not the lidar measurements. We have revised the text for greater clarity and the scatter plot axes in Fig. 4b have been reversed to emphasize this last point.

p.7 I.6 The sentence "differences are within $\pm 10\%$ " is not really useful if it is not detailed. See next comment. Differences are hard to read in Fig. 8. Please specify bias for daytime. There is no daytime bias in the TOPAZ measurements over the altitude ranges considered in this study. It is also useful to report on differences between aircraft and in-situ observations. Two scatter plots comparing the aircraft and in-situ measurements have been added to Figure 9. These data are consistent with the lidar-surface comparisons in Section 4.1.

p.7I.13 Why $\pm 10\%$ for the gray envelope and not the expected ± 3 ppb lidar accuracy? Differences between the lidar and aircraft measurements include unknown contributions arising from the imperfect overlap of the sampled airmasses and the spatial and temporal variability of ozone. We use 10% as a reference because it is the nominal accuracy of ECC

ozonesondes, the generally accepted reference standard for ozone profiling, in the troposphere. We clarify this in text added to the beginning of Section 4.2.

p.7 I.16 "The agreement between the TOPAZ and Mooney measurements in Figure 9 is quite good, with some notable differences". Specify how large are the differences or add scatterplot in addition to the vertical profile plots shown in Fig. 9. The text has been expanded **Scatter plots showing altitude binned comparisons have been added to Figure 15 and a Table has been added to quantitatively summarize the differences between the measurements.**

p.7 I.22-26. The 10 ppb lidar underestimate in the 0-800 m altitude range on June 3rd is not really discussed while it is larger than differences observed for other flights in the same altitude range. What is the aerosol backscatter on this day? **The discussion of these measurements has been expanded and the red (SciAv) points in Figure 9 have been enlarged to better show that the lidar and aircraft measurements on 3 June do, in fact, overlap despite the large horizontal variability seen in the aircraft measurements. The aerosol loading on that day was not unusual.**

p.7 I.37 It is indeed an interesting comparison. Please give the parameters used for the aerosol correction interference. Is it consistent with biomass burning aerosol optical properties in the UV? See the comments for p.4 I.15 above.

p.8 I.1 Please specify why you expect an interference from NO₂ or H₂O vertical distribution. **We do not expect an interference, but both NO₂ and H₂O have weak UV absorbances and the question of possible interferences in lidar retrievals has been considered in previous studies (see ref in text).**

p.8 I.34 It is very difficult to see the magnitude of spatial ozone inhomogeneities in Fig. 14. Please give numbers or a better figure (x-z cross section along the dimension with largest horizontal gradient would be more explicit and easier to read). **Two panels showing altitude-latitude and altitude-longitude plots have been added to the figure to help clarify this issue.**

p.9 I.2 The authors could show the 0.5-1.5 km range scatterplot in addition to the 1.5- 2.5 km figure. Standard deviations may be larger for profiles with large ozone gradient, but the bias must remain small if the instrument accuracy is not the limiting factor. The issue of this paper is indeed to demonstrate that a good comparison is possible at range below 2 km. **Figure 15 has been revised to show comparisons with data binned into 1 km intervals:0-1, 1-2, 2-3, 3-4, and 4-5 km (AJAX only).**

p.9 I.11-13 Please make a quantitative summary of the comparison findings and discuss these numbers with the expected overall bias and single profile accuracy of the TOPAZ lidar. **We have added a new discussion section (5) and a table to quantitatively summarize the comparison findings.**

