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Abstract. Most odor nuisance investigations rely on either human olfactory examination or on-site sampling and 

analytical techniques, but these methods are often subject to spatial and temporal limitations and thus impractical 

for locating odor emission sources. This study developed an alternative approach with a dual-optical sensing 

system, a meteorological station, and the combination of factor and cluster analyses to identify and characterize 

emission sources of multiple air contaminants. Factor and cluster analyses were employed to establish the 5 

emission profile of multiple odorous substances from each emission source. Both receptor and source continuous 

monitoring data were reciprocally compared to characterize the emission sources of various odorous substances. 

Open-path Fourier transform infrared (OP-FTIR) as a receptor path detected concurrent trends of several organic 

solvents with concentrations higher than the reference odor threshold values, indicating that these compounds 

were potential causes of odor nuisance. Qualitative source apportionment by factor and cluster analyses 10 

suggested that these odorous substances were used as organic solvents in surface coating or painting processes. 

Closed-cell Fourier transform infrared (CC-FTIR) at two nearby surface-coating companies indicated that only one 

company’s stack exhibited the same odorous substance profile found by the OP-FTIR receptor path. The major 

odor emission source was thus identified in this study. This study demonstrated the feasibility of using the 

alternative investigative framework to successfully identify emission sources from an industrial odor nuisance site. 15 

The major emission sources were identified, and future enforcement plans can be conducted to enhance odor 

investigation efficiency and improve overall air quality.  

Keywords. cluster analysis; dual-optical sensing system; qualitative source apportionment; factor analysis; 
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1. Introduction 

The rapid growth of the economy and industrialization have led to environmental pollution problems, and 

consequently, an increase in environmental nuisance complaints has been evidenced in recent years. With more 

than 93,265 complaints, representing 33.7% of total reported environmental nuisances (Fig. A.1), odor nuisances 

have been ranked as the leading cause of environmental nuisances in Taiwan (Taiwan Environmental Protection 5 

Agency 2017). Volatile organic compounds (VOCs) are one of the factors contributing to odors and triggering 

various health problems, such as asthma, pneumonia, and bronchitis (Pride et al., 2015). It is also a precursor to 

fine particulate matter in the atmosphere, aggravating photochemical smog conditions in urban areas (Hu et al., 

2017;Jathar et al., 2014). With residential area gradually expanded to industrial districts, odor nuisance has 

become another critical problem related to industrial VOC emissions, with a great impact on quality of life.  10 

Identifying the emission sources responsible for VOCs and odors remains a great challenge. Most odor nuisance 

investigations rely on either human olfactory examination or on-site sampling and analytical techniques (Merlen et 

al., 2017). However, these methods are hampered by spatial and temporal limitations. The “triangle odor bag 

method”, originally developed by the Tokyo metropolitan government in 1972, was adopted by the Taiwanese 

government as a regulatory enforcement method in odor nuisance investigation. This method quantifies odor 15 

nuisance by using the human olfactory sense of a group of trained personnel (Higuchi, 2009;Higuchi and Masuda, 

2004;Ueno et al., 2009). However, this method can only help determine the degree of odor intensity in collected air 

samples, but cannot enable the identification of the responsible emission sources. Sampling tools such as the 

Summa canister, Tedlar bag, and charcoal tube can be equipped with conventional fixed-point sampling and 

analytical methods to measure various VOC odor species (van Harreveld, 2003;Rumsey et al., 2012). However, 20 

these methods are highly temporally and spatially dependent, rendering the sampling of periodic or occasional 

odor episodes problematic. The insufficiency of conventional fixed-point sampling and analytical methods poses a 

great challenge to regulatory inspectors when odor nuisance occurs intermittently or during nonworking hours or 

originates from multiple sources. Many repeated air pollution complaints remain unresolved because the root 

pollution sources have not yet been found.  25 

Fourier transform infrared (FTIR) spectrometry is an optical sensing technology that can detect multi-gaseous 

pollutants on a continuous basis and is therefore suitable for use in VOC or odor emission source investigation 

(Russwurm et al., 1991;Sung et al., 2014). It can allow real-time monitoring and analysis of several compounds 

simultaneously. FTIR systems are of two types, namely open-path and closed-cell systems (USEPA, 2011). The 

open-path system, also called open-path Fourier transform infrared (OP-FTIR) spectroscopy, is an optical remote 30 

sensing technique used for measuring VOCs and inorganic compounds such as ammonia and hydrogen chloride 

in the ambient environment (e.g., fenceline monitoring). The closed-cell system, also called closed-cell Fourier 

transform infrared (CC-FTIR) spectroscopy, is equipped with the same basic FTIR module as the OP-FTIR system, 
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but employs gas pumps and sampling tubes to extract waste gas (e.g., from stack outlets) to a multipath cell 

attached to the FTIR spectrometer. In this study, the OP-FTIR and CC-FTIR systems were combined to obtain a 

“dual-optical sensing system” for accomplishing the multiple functions of open-path long range measurement, 

continuous monitoring, and multiple species measurement of stack exhaust, offering a powerful alternative 

method for investigating VOC or odor emission sources. Because OP-FTIR and CC-FTIR systems can generate a 5 

large speciation dataset in a short period, statistical methods play an essential role in data processing to extract 

the underlying meaning behind time-series patterns. Multivariate statistical modeling is suitable for processing 

FTIR data because it primarily analyzes correlations between time-series trends of different species at different 

locations. By identifying common contaminants and concurrent trends among the various species measured using 

both systems, data from both receptors (OP-FTIR) and sources (CC-FTIR) may be compared and analyzed.  10 

The aim of this study was to develop an alternative investigative framework to detect air pollution sources by using 

a dual-optical sensing system, a meteorological station, and factor and cluster analyses to enable future 

accomplishments of emission reductions according to the investigation result. 

2. Materials and Methodology    

2.1 Site description and sampling techniques  15 

Taiwan Environmental Protection Agency (TEPA) frequently receives complaints of odor nuisance at an 

intersection near an industrial park in southern Taiwan. The odor, being described as solvent- or chemical-like, is 

mostly reported by commuters traveling through or waiting at the traffic signal at this intersection. A sunglass 

factory (hereafter called CY) is located at the northwest corner, a light metal casing factory (hereafter called KS) in 

the southeast corner, and a solar cell manufacturer (hereafter called NS) at a slight remove from the intersection to 20 

the east. Stacks (approximately 15–30 m high) on the rooftop of each factory continuously emit various processing 

gases during operating hours. The chemicals used at both CY and KS are mainly paint-related materials 

containing organic solvents, such as toluene, xylene, acetone, and ethyl acetate, for surface coating purposes 

(CRC, 2006). NS mainly uses inorganic materials such as ammonia, silane, and nitric acid for silicon glass 

processing, thus generating both primary and secondary air pollutants (e.g., nitrogen dioxide) from 25 

high-temperature glass sintering processes (USPatent:4883521A, 1989). 

To investigate odor emission sources at this location, an OP-FTIR beam path was deployed at the intersection to 

mimic the olfactory sense of people traveling through it. The OP-FTIR spectrometer (AirSentry-FTIR, CEREX, 

USA) used in this study was a monostatic type equipped with Zn-Se beam splitters and liquid nitrogen–cooled 

mercury cadmium telluride (HgCdTe) detectors and a corner-cube retroreflector (PLX, Inc., USA) placed on the 30 

other end of the beam path. An infrared (IR) light beam transmitted from a telescope to the retroreflector targeted 

some distance away from the light emitter was reflected back to the detector inside the instrument, enabling 
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measurement of pollutants transported through the light beam path.  

Monitoring was conducted from March 9 to 19, 2015, collecting a total of 2,911 consecutive spectral data. The 

OP-FTIR beam path was 143 m long in one direction and was equipped with a light emitter on the ground level on 

one side and a retroreflector at a height of 10 m on the other side. A meteorological station at a height of 12 m 

(fourth floor) was used together with the OP-FTIR beam path to monitor wind speed and direction (see Fig. 1a). 5 

Wind and OP-FTIR data were simultaneously measured and continuously collected in a synchronic system to 

enable identification of the incoming direction of gaseous contaminants and provide spatiotemporal measurement 

of VOCs or odor pollutants.  

Official documents were reviewed to ascertain the raw material usage of each of the nearby factories. Three 

potential sources (factories), namely, CY, KS, and NS were targeted for further stack monitoring using CC-FTIR. 10 

The stack exhaust of these three factories was measured for 24 to 72 hours, generating data at each 5-min 

interval. This continuous monitoring system generated sufficient time-series data to enable factor and cluster 

analysis in the next phase. Two CC-FTIR systems were deployed at each selected emission source to measure 

chemical species of exhaust gases from each stack (see Fig. 1b). Sampling tubes were divided into several 

manifolds at the stack end, joining together before entering the CC-FTIR gas cell. This sampling method allowed 15 

multiple waste gas flow from different stacks to be collected and transferred to the gas cell simultaneously, 

avoiding time lags when switching the sampling line from one stack to another. A total of 4,378 spectral data was 

collected from the stack outlets of the three potential odor emission sources, namely 288 spectra from CY, 2,907 

spectra from KS, and 1,183 spectra from NS. 

2.2 Chemical analysis methods  20 

The resolution of the OP-FTIR and CC-FTIR interferograms was 1 cm−1, recording a coadded infrared spectrum at 

5-min intervals, with 64 IR scans generated at each interval. Contaminants of interest were identified and 

quantified using spectral search software featuring compound-specific analysis and comparison to the system’s 

internal reference spectra library. Multicomponent classical least-squares techniques were employed in the FTIR 

spectral quantitative analysis. Any gaseous compounds absorbed in the IR region (approximately 2.5–25 microns) 25 

were potential candidates for monitoring using FTIR technology. The IR “fingerprints” of over 300 compounds 

were established on the basis of information from the US Environmental Protection Agency (USEPA) and the 

FTIR software developers. Rolling backgrounds were used in OP-FTIR spectral analysis to eliminate baseline 

shifts resulting from contingent changes in weather conditions (Hunt, 1995). A “fixed” reference method was used 

in CC-FTIR spectral analysis. 30 

2.3 Qualitative receptor modeling 

Factor analysis using the SAS statistical software package (SAS Institute, Inc., USA) was employed in qualitative 
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receptor modeling using an eigenvector with varimax orthogonal rotations to interpret large datasets (Johnson, 

1998). The factor analysis model expresses each variable as a linear combination of underlying common factors 

F1, F2,…,Fm with an accompanying error term to specify that part of the variables that is uncorrelated with any of 

the common factors. For X1, X2,…, Xp in any observation vector X, the model is calculated following Eq. (1–4): 

(Rencher, 2002): 5 

X1 = a11F1 + a12F2 + … +a1mFm + e1 Eq. (1) 

X2 = a21F1 + a22F2 + … +a2mFm + e2 Eq. (2) 

Xp = ap1F1 + ap2F2 + … +apmFm + ep Eq. (3) 

X = (X1,…,XP)’, F = (F1,…Fm)’, and e = (e1,…ep)’ Eq. (4) 

Because data collected by FTIR contain many intercorrelated variables that are multivariate, simultaneous 

consideration of all variables was essential to understanding the underlying meaning of the measured data. 

Variables (VOC or odor substances) with concurrent patterns were grouped together as a factor to gain insight into 

the underlying emission source characteristics. Factors with an eigenvalue greater than one were retained for 

varimax rotations and factor loading calculations. Factor loadings with absolute values greater than 0.4 were 10 

considered influential variables (Rencher, 2002); the higher the factor loading (>0.4), the stronger the correlation 

between the variables (odor substances) and the factor (emission source). The combination of variables in each 

factor roughly represented the types or characteristics of each factor or source. This method is especially useful 

when the patterns of association between the receptor (measured by ambient OP-FTIR) and source (measured by 

stack CC-FTIR) are compared reciprocally, enabling emission sources that mutually correspond to be identified. 15 

3. Results and Discussion

3.1 Meteorological data 

The meteorological data from March 9 to 19, 2015 are shown in Fig. A2. The prevailing wind from March 9 to 14 

was from the NNW–N–NNE direction, whereas the prevailing wind from March 15 to 18 was from the SSW–S–

SSE–SE–ESE direction. A dramatic change in wind direction from March 14 to March 15, when the incoming wind 20 

direction changed from north to south, was observed. The integrated wind direction shown in Fig. A2a indicated 

that the overall wind direction was from the N–NNE direction during the 10 days of field monitoring.  

3.2 Ambient data from receptor path 

Table 1 shows the ambient concentration of air contaminants measured using the OP-FTIR system at the 

intersection. The first column represents the 17 species measured by the receptor path (OP-FTIR), namely 25 

acetone, ethyl acetate, ammonia, gasoline, m-xylene, nitrogen dioxide, o-xylene, n-butyl acetate, toluene, 

propylene glycol mono ethyl acetate (PGMEA), p-xylene, acetylene, ethylene, butyl cellosolve, cyclohexane, 
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carbon monoxide, and nitrous oxide. Fig. A3 displays a series of comparisons between the measured and 

reference spectra. The concentrations of most species were quantified, except for background species such as 

carbon monoxide and nitrous oxide. The exact concentration of background species cannot be quantified using a 

rolling background in spectral analysis because of unknown background levels; however, the incremental 

concentration of these species can still be calculated to generate concentration trends suitable for factor analysis. 5 

A total of 2,911 consecutive spectra was collected during the 10 days of field monitoring, with various detection 

limits intrinsic to each compound. The numbers shown in the second column indicated that the probability of 

detection of ammonia, ethyl acetate, methanol, sulfur hexafluoride, acetone, butyl cellosolve, n-butyl acetate, 

o-xylene, PGMEA, and ethylene was higher than that of other species. The maximum value of each detected 

contaminant represented the highest concentration measured within a 5-min period. Concentrations detected 10 

using OP-FTIR were path average. Among the 17 detected species, the major compounds were gasoline, 

m-xylene, and nitrogen dioxide, with mean concentrations of 33.21 ± 5.00, 27.96 ± 6.05, and 25.13 ± 3.28 ppbv, 

respectively. Toluene, isopropanol, o-xylene, dichloromethane, and acetone revealed mean concentrations 

ranging from 11.61 to 20.57 ppbv. The concentration levels of gasoline, m-xylene, nitrogen dioxide, n-butyl acetate, 

toluene, and PGMEA were higher than the odor threshold reference values, indicating that these compounds were 15 

potential causes of odor nuisance in the intersection zone. These odor substances are mainly used as organic 

solvents in surface coating or painting processes. The evidence of correlation between the substances 

(concentrations) detected at the receptor site and reported odor nuisance events was provided by using phi 

coefficients and point biserial correlation (Gallagher, 2011;Demirtas et al., 2012). The phi-coefficient correlations 

(rphi) for “odor” versus “compound” displayed correlation coefficients of two dichotomous variables between the 20 

detection of compounds (detected vs. non-detected) and the perception of odor (odor vs. non-odor; as recorded 

by the local environmental protection agency). The point biserial correlation (rpb), a correlation between one 

continuous and one dichotomous variable, represents the concentration of compounds and the perception of odor 

(Capelli et al., 2013). A value close to 1 for rphi / rpb indicated that the association between “odor” and “compound” 

was strong. The rphi / rpb between the “odor” and acetone, ethyl acetate, toluene, PGMEA and butyl cellosolve were 25 

mostly at moderate levels (rphi = 0.50 to 0.67; rpb = 0.30 to 0.45), and the correlations were statistically significant 

(p<0.001). Relatively weak correlations between the “odor” and m-xylene, p-xylene, and n-butyl acetate were 

shown, although the correlations were statistically significant (p<0.001) as well. Therefore, it would suggest that 

acetone, ethyl acetate, toluene, PGMEA and butyl cellosolve were the most possible odor substances that were 

correlated with the recorded odor nuisance events, which were defined by any solvent smell arising from the 30 

intersection zone. 

Table 2 summarizes the results of factor analysis for the OP-FTIR receptor path. The pattern of the first factor 

indicated several organic solvents, including m-xylene, p-xylene, o-xylene, ethyl acetate, PGMEA, toluene, and 

butyl cellosolve, all of which are commonly used as chemical solvents in surface coatings and paints (USEPA, 
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2009) and could be considered possible causes of odor nuisance because their concentrations were higher than 

the reference values. The daytime pattern of factor scores for the first group, as shown in Fig. 2a, revealed higher 

concentrations and frequencies of occurrence from 14:00 to 22:00, particularly on weekdays. This could explain 

the higher incidence of odor nuisance complaints during the afternoon and evening hours on weekdays. Moreover, 

the incoming direction of these seven species (as represented by factor scores) was mostly from the N–NE or NW, 5 

although a few came from the ESE direction (Fig. 3a), indicating an upwind location of the emission source(s). 

The compounds included in the second factor were cyclohexane, acetylene, ethylene, gasoline, and carbon 

monoxide. Fig. 2b shows the daytime pattern of these five species, indicating higher concentrations during the 

peak traffic hours from 6:00 to 9:00 and 17:00 to 20:00 on weekdays. This unique pattern indicates that the second 

group of compounds was derived from incomplete combustion in vehicles waiting or idling at the intersection and 10 

thus generating chemical byproducts such as cyclohexane, acetylene, ethylene, and carbon monoxide (USEPA, 

2000;Liu et al., 2014).  

Ammonia, nitrogen dioxide, and nitrous oxide were identified as the third-factor compounds (Fig. 2c). These 

mainly inorganic compounds came from the NE direction (Fig. 3c) and exhibited higher concentrations from 06:00 

to 09:00 on weekends. The solar cell production company located in the NE and using inorganic materials such as 15 

ammonia, silane, and nitric acid to produce silicon glass could generate nitrogen dioxide and nitrous oxide from 

high-temperature glass sintering processes (USPatent:4883521A, 1989), and was therefore deemed the potential 

emission source.  

The fourth-factor compounds, namely acetone and n-butyl acetate (Fig. 2d), also exhibited higher concentrations 

and greater frequency of occurrence from 6:00 to 10:00 and from 17:00 to 22:00 on weekdays. The incoming 20 

direction of these two compounds was mainly from the N–ENE direction (Fig. 3d), which is slightly different from 

that of the first-factor compounds. 

The four factors were identified and characterized through the combination of species, hours of emission, and 

incoming direction of each. Four groups of emission sources were identified and categorized using factor analysis, 

namely surface coating (paint), incomplete engine combustion, solar cell production, and solvent use. 25 

3.3 Comparison of ambient data from the receptor path and source profiles from multiple stacks 

The ambient data from the receptor path indicated a number of factor or source groups at the intersection, 

including organic solvents from surface coating, traffic emissions from incomplete vehicle engine combustion, and 

inorganic emissions from solar cell production. Official documents showed that the chemicals used in both CY and 

KS were paint-related materials containing organic solvents, which were thus categorized as first-factor 30 

compounds. However, windrose diagrams for the first factor (Fig. 3a) displayed multiple source directions 

(including N–NE, NW, and ESE), indicating that the first factor might not be limited to one source; further efforts 
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are thus required to clarify the sources. To analyze observations at the receptor path, the emission profiles of 

potential sources were compared.  

Figure 4 and Table A1 present a comparison of the detected air pollutants and their concentrations at the receptor 

path and source stacks in the intersection zone. Vehicle exhaust profiles from the USEPA’s SPECIATE database 

are also provided in the last column of Table A1 to indicate the traffic emissions from incomplete vehicle engine 5 

combustion at the receptor path. Almost every compound detected in the receptor path corresponded with one or 

more chemicals from the source stacks, except for traffic-related chemicals (e.g., gasoline, ethylene, and 

acetylene). The panel plot shows the patterns of association between the receptor (ambient data from OP-FTIR) 

and source (stack source profile from CC-FTIR). Concentration boxplots for chemical species (except carbon 

monoxide) measured using OP-FTIR (at the intersection) are shown in Fig. 4e, with eight species coinciding with 10 

those found in the CY stacks (Fig. 4a), seven coinciding with those found in the KS stacks (Fig. 4b), and three 

coinciding with those found in the NS stacks (Fig. 4c), as well as six from vehicle emissions (Fig. 4d). Furthermore, 

among the species found in the of CY and KS stacks, six coexisted in both factories, namely, ethyl acetate, 

toluene, o-xylene, m-xylene, p-xylene, and acetone, indicating that these six compounds were common species 

emitted at both locations. By contrast, butyl cellosolve and PGMEA were uniquely found in the CY stacks. 15 

Ammonia was found at both the KS and NS stacks. 

3.4 Factor and cluster analyses of sources 

Because the chemicals used at both CY and KS were mainly organic solvents that are similar to each other, factor 

analysis was performed for each source (CY and KS) to distinguish the main contributor of odor nuisance in this 

location and examine relationships between the ambient data and the profiles of these two sources.  20 

Two types of multivariate statistical methods, namely factor and cluster analyses, were used together to analyze 

concurrent trends of CC-FTIR data measured at the CY and KS stacks (Table 3). The result of factor analysis for 

CY (Table 3a) indicated two factors with an eigenvalue greater than one. The influential species (factor loading of 

>0.4) for the first factor were o-xylene, m-xylene, p-xylene, toluene, PGMEA, ethyl acetate, and butyl cellosolve, 

but only acetone for the second factor. The first factor contained a combination of various types of solvents used 25 

as paint thinners (for plastic coating purposes), whereas the second factor species (acetone) were used as a 

chemical solvent to remove residual paint in sprinkle nozzles. Two factors were also identified from the CC-FTIR 

results for the KS stack (Table 4c). The first factor comprised p-xylene, toluene, m-xylene, and o-xylene, and the 

second factor acetone and ethyl acetate. The first factor thus contained various chemical solvents used as paint 

thinners (for metal coating purposes), whereas the second factor contained substances used for cleaning or other 30 

purposes in manufacturing light metal casings.  

Using cluster dendrograms, different compounds can be linked to represent their relationships with each other and 

the interrelationships between groups, thus providing another means of displaying correlations between different 
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variables. According to the cluster analysis results in Table 3b& 3d, acetone was excluded from other chemicals 

already in the first branch, indicating that its original source was different from others. Similarly, the linkage path 

between groups of chemicals differed from one company to another, indicating that different types of paint thinner 

could be used in two companies for different purposes. Factor analysis between ambient data and source profiles 

indicated that the grouping pattern of seven odorous compounds (o-xylene, m-xylene, p-xylene, toluene, PGMEA, 5 

ethyl acetate, and butyl cellosolve) between the receptor path (OP-FTIR) and the CY stack (CC-FTIR) was 

identical. Thus, the CC-FTIR results from the CY stacks indicated the same odorous compounds as the receptor 

path (OP-FTIR), all of which came from the direction of CY. However, the grouping pattern for KS differed from that 

of the receptor path (OP-FTIR), with three key species in the first factor (PGMEA, ethyl acetate, and butyl 

cellosolve) missing in the KS stacks.  10 

Figure 5 uses scatter plots to display concentration variations in detected contaminants over time, with the 

interrelationship between odorous compounds at the CY stack (CC-FTIR) and the receptor path (OP-FTIR) 

delineated and compared. Compounds for each pair were linearly correlated, with the correlation coefficients 

mostly greater than 0.7. However, the correlation coefficients for the KS stack was mostly below 0.1, indicating 

that the relationships between the ambient data and the KS source profiles were not as significant as those for CY. 15 

4. Conclusion 

This study developed an alternative investigative framework for detecting air pollution sources of odor nuisance by 

using a dual-optical sensing system, a meteorological station, and factor and cluster analyses to identify and 

characterize emission sources of multiple air contaminants. Factor and cluster analyses were employed to 

improve the quality and completeness of the source profiles. The major odor emission source was identified 20 

through qualitative source apportionment of factor and cluster analyses. With enhanced efficiency in odor 

investigation methodology, future emission reduction plans can be developed and overall air quality can be 

improved. 
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8. Table 

Table 1: Descriptive statistics of VOC measurements at the receptor site 

Compound 
Detected 

n 

Concentration (ppbv) 
Odor  

Thres- 
hold 

(ppbv) 

Detec- 
tion 

Limitb  

(ppbv) 

Odor vs. Compound 
Correlation 

 
p-valuee 

Maxa MeanSE 
CV  
(%) 

rphi
c rpb

d 
 

rphi
c rpb

d 

Acetone 182 130.3 11.611.02 118.8 37 1.10 0.672 0.432  <0.001*** <0.001*** 

Ethyl Acetate 519 126.1 4.950.38 176.5 170 0.23 0.551 0.450  <0.001*** <0.001*** 

Ammonia 982 117.6 7.070.50 223.0 45 0.26 0.286 -0.129  <0.001*** 0.046* 
Gasoline (mixture of C5+ and 
BTEX) 

22 110.2 33.215.00 70.6 25 0.77 0.155 0.016  0.017* 0.810 

m-Xylene 17 106.4 27.966.05 89.2 81 1.29 0.328 0.272  <0.001*** <0.001*** 

Nitrogen Dioxide 35 98.1 25.133.28 77.1 58 3.08 -0.161 -0.107  0.013* 0.099 

o-Xylene 96 72.0 16.260.89 53.8 180 1.12 -0.001 0.027  0.987 0.680 

n-Butyl Acetate 103 57.7 9.921.05 107.2 6.3 0.28 0.345 0.020  <0.001*** 0.758 

Toluene 16 54.5 20.573.36 65.3 21 1.12 0.328 0.302  <0.001*** <0.001*** 
Propylene Glycol Methyl Ether 
Acetate (PGMEA) 

93 46.3 4.620.67 139.8 25 0.20 0.569 0.312  <0.001*** <0.001*** 

p-Xylene 39 43.6 8.151.13 87.0 120 0.72 0.168 0.215  0.010* 0.001** 

Acetylene 65 17.4 3.800.35 75.1 226000 0.22 0.016 -0.017  0.803 0.791 

Ethylene 71 12.0 3.170.25 67.0 17000 0.31 0.166 0.063  0.010* 0.331 

Butyl cellosolve 137 18.5 2.300.20 104.2 100 0.18 0.499 0.304  <0.001*** <0.001*** 

Carbon monoxide 
(above background) 

2779 Detected 

Nitrous oxide 
(above background) 

15 Detected 

Note. (1) Measurements performed from March 9, 2015 at 15:41 to March 19, 2015 at 11:25; (2) 2,911 spectra were recorded at 5-min intervals. 

a
Underlined numbers represent concentrations exceeding corresponding odor thresholds 

b
The detection limit calculated as:

NEAx
An

mppm
MDC *

)(

)*(




, where MDC = minimum detectable concentration, An() = normalized absorbance, and NEAx = noise equivalent absorbance 

c
Phi Correlation Coefficient (Gallagher, 2011) 

d
Point Biserial Correlation (Demirtas et al., 2012)

 

e
Statistically significant correlation coefficients are marked with *p < 0.05, **p<0.01, *** p<.0.001 
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Table 2: Factor analysis of chemical species measured using OP-FTIR at the receptor site 

Compounds MSA 

Factors / Sources 
 (percentage of variance explained) 

Factor1 
(28.15%) 

Factor2 
(13.13%) 

Factor3 
(7.42%) 

Factor4 
(6.18%) 

m-Xylene 0.84 0.95 0.02 0.00 0.01 

PGMEA 0.83 0.95 0.04 0.00 0.18 

Ethyl Acetate 0.93 0.90 0.06 -0.02 0.24 

p-Xylene 0.93 0.89 0.03 0.00 0.03 

Toluene 0.94 0.85 -0.02 0.01 0.04 

Butyl cellosolve 0.85 0.78 0.02 0.01 0.30 

o-Xylene 0.97 0.63 -0.01 -0.03 -0.16 

Acetylene 0.66 0.02 0.88 -0.03 -0.02 

Ethylene 0.68 0.04 0.86 -0.04 -0.03 

Gasoline 0.81 -0.01 0.69 0.01 -0.03 

Carbon Monoxide 0.83 0.03 0.60 0.19 0.17 

Nitrogen Dioxide 0.52 0.00 0.01 0.82 -0.04 

Ammonia 0.57 -0.02 0.25 0.81 -0.04 

Nitrous Oxide 0.50 0.00 -0.05 0.37 0.03 

Acetone 0.65 0.01 0.00 0.00 0.76 

n-Butyl Acetate 0.81 0.19 0.05 0.00 0.63 

Source directions N &NW All directions ENE N 

Possible sources 
Surface 

Coating(paint) 

incomplete 
engine 

combustion 

Solar cell 
production 

Solvent use 

(1) Extraction method: principal component analysis; (2) rotation method: varimax with Kaiser normalization; (3) bold underlined numbers represent factor loadings 

of >0.40, indicating the main species in each factor (source); (5) Kaiser’s measure of sampling adequacy: overall MSA = 0.849, indicating the dataset’s 

appropriateness for use in factor analysis is meritorious. 
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Table 3: Factor & cluster analyses of chemicals measured using CC-FTIR in CY & KS stacks 

CY STACKS 

(a) Compounds
Factors (variance explained, %) (b) Cluster Dendrogram

Factor1(63) Factor2(18) 

o-Xylene 0.952 -0.008 

m-Xylene 0.946 -0.016 

p-Xylene 0.938 -0.074

Toluene 0.854 0.160 

PGMEA 0.768 0.014 

Ethyl Acetate 0.755 -0.394

Acetone 0.375 0.829

Butyl cellosolve 0.519 -0.769

Possible sources 
Paint thinner 

(plastic) 
Paint 

remover 

KS STACKS 

(c) Compounds
Factors (variance explained, %) (d) Cluster Dendrogram

Factor1(66) Factor2(26) 

p-Xylene 0.997 0.019 

Toluene 0.996 0.020 

m-Xylene 0.996 0.019 

o-Xylene 0.972 0.011 

Acetone -0.045 0.888 

Ethyl Acetate 0.077 0.885 

Possible sources 
Paint thinner 

(metal) 
Cleaner or 

others 
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9. Figures 

(a) 

 

     
(b) 

 
Figure 1: Top view of OP (CC) -FTIR configuration; (a) Receptor path OP-FTIR monitoring at the 
intersection; (b) Source stack CC-FTIR measurement at three potential odor emission sources 
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(a) Factor 1: surface coating (b) Factor 2: incomplete engine combustion 

  
(c) Factor 3: solar cell production (d) Factor 4: solvent use 

  
Figure 3: Windrose diagrams for factors 1, 2, 3, and 4 
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Figure 4: Panel plots showing relationships between source profiles and ambient data: (a) CY source 
profile; (b) KS source profile; (c) NS source profile; (d) traffic source profile; (e) ambient data at receptor 
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Stack CY (CC-FTIR) Receptor Path (OP-FTIR) 

  

  

  

  

  
Figure 5: Scatter plots of concentration variations over time between two detected contaminants from CY 

stacks (CC-FTIR) and receptor path (OP-FTIR)  
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10. Appendices

Table A1: Concentrations of the receptor path vs. source stacks and vehicle exhaust profile (in ppbv) 

Max. Mean Speciate 
(Traffic 
Profile) Compounds 

Receptor 
(OP-FTIR) 

Sources (Stack Emissions) 
(CC-FTIR) 

Intersection 
(n=2,911) 

Plant CY 
(n=288) 

Plant KS 
(n=2,907) 

Plant NS 
(n=1,183) 

Vehicle 
Exhaust 

Ethyl Acetate 126.1 8,045.2 228.4 --. -- 

Toluene 54.5 11,085.4 12.0 --. 57,200 

o-Xylene 72.0 7,063.4 12.9 --. 17,600 

m-Xylene 106.4 5,102.2 9.4 --. -- 

p-Xylene 43.6 4,377.3 3.6 --. 28,700 

Acetone 130.3 15,396.5 15,151.1 --. -- 

Butyl Cellosolve 3.1 2,413.1 --. --. -- 

PGMEA 46.3 949.1 --. --. -- 

Ammonia 117.6 -- 350.0 9,723.1 -- 

Nitrous Oxide 7.9 -- --. 2,040.7 -- 

Nitrogen Dioxide 98.1 -- --. 234.9 -- 

Nitrous acid -- -- --. 1.1 -- 

Silane -- -- --. 31.9 -- 

n-Butyl Acetate 57.7 -- 9.9 --. -- 

Cyclohexane 5.2 -- -- -- 16,200 

Acetylene 17.4 -- -- -- 22,500 

Ethylene 12.0 -- -- -- 84,100 

Carbon monoxide 1,381 32,433 90,400 
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Figure A1. Trend of total odor nuisance complaints by the TEPA 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

Figure A2: Windroses for (a) 2015/3/9–3/19, (b to l) each day during the 2015/3/9–3/19 period, respectively; 
2015/3/9–3/14 from the NNW–N–NNE direction; 2015/3/15–3/18 from the SSW–S–SSE–SE–ESE direction 
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Figure A3: Comparison between measured spectra (at the receptor site) and reference spectra (from the 

spectra library) 
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11. Graphical abstract

Figure A4: Graphical abstract illustrating the concept of using a dual-optical sensing system to generate 
receptor and source continuous monitoring data for performing the qualitative source apportionment of 
factor and cluster analyses in this study 5 
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