
Paris,
06-02-2019

«Detecting cloud contamination in passive microwave satellite measurements over
land»

Samuel Favrichon, Catherine Prigent, Carlos Jimenez, and Filipe Aires 

Response to editor comments:

The following marked-up manuscript tracks the changes made in response to the editor’s comments.

Specifically, the abstract was improved (p.1, l.0-5) :

Remotely sensed brightness temperatures from passive observations in the microwave (MW) range
are  used  to  retrieve  various  geophysical  parameters,  e.g.,  near-surface  temperature.  Cloud
contamination,  although  less  of  an  issue  at  MW than  at  visible  to  infrared  wavelengths,  may
adversely affect retrieval quality, particularly in the presence of strong cloud formation (convective
towers) or precipitation. To limit errors associated with cloud contamination, we present an index
derived from standalone MW brightness temperature observations which measures the probability
of residual cloud contamination.

Figure 2 was corrected to add axis labels, and figure 6 legend was clarified to improve readability.

The  authors  are  grateful  for  the  editor  precise  comments  that  were  helpful  to  improve  the
manuscript.



Detecting cloud contamination in passive microwave satellite
measurements over land
Samuel Favrichon1, Catherine Prigent1, Carlos Jimenez2, and Filipe Aires1

1Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Paris, France
2Estellus, Paris, France

Correspondence: Favrichon Samuel (samuel.favrichon@obspm.fr)

Abstract. Multiple geophysical parameters such as land surface temperature, are estimated using Microwave (MW) remote

sensed brightness temperature. It is known that clouds do not affect those measurement in the MWs as much as in Visible

and Infrared (VIS/IR) , but some contaminationcan still occur when
::::::::
Remotely

::::::
sensed

:::::::::
brightness

:::::::::::
temperatures

::::
from

:::::::
passive

::::::::::
observations

::
in

:::
the

:::::::::
microwave

::::::
(MW)

:::::
range

::
are

:::::
used

::
to

::::::
retrieve

::::::
various

::::::::::
geophysical

::::::::::
parameters,

::::
e.g.,

::::::::::
near-surface

:::::::::::
temperature.

:::::
Cloud

::::::::::::
contamination,

::::::::
although

::::
less

::
of

::
an

:::::
issue

::
at

::::
MW

::::
than

::
at
::::::
visible

::
to

:::::::
infrared

:::::::::::
wavelengths,

::::
may

::::::::
adversely

::::::
affect

:::::::
retrieval5

::::::
quality,

::::::::::
particularly

::
in

:::
the

::::::::
presence

::
of
:

strong cloud formation (i.e. convective towers) or precipitationare present. To limit

errors associated to cloud contaminationin the estimation of surface parameters, we build an index giving the confidence to

have an observation clear from contamination using
:::
with

:::::
cloud

:::::::::::::
contamination,

:::
we

::::::
present

:::
an

:::::
index

::::::
derived

:::::
from standalone

MW brightness temperature measurements
::::::::::
observations

:::::
which

::::::::
measures

:::
the

:::::::::
probability

:::
of

:::::::
residual

:::::
cloud

::::::::::::
contamination. The

method developed uses a statistical neural networks model built upon
::::::
network

::::::
model

::::::
trained

:::::
with the Global Precipitation10

Microwave Imager (GPM-GMI) observations , with cloud presence information taken from Meteosat Third
:::
and

:
a
::::::

cloud

::::::::::
classification

:::::
from

::::::::
Meteosat

:::::::
Second Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI). This in-

dex is available over land and ocean, and is developed for multiple frequency ranges to be applicable to successive generations

of MW imagers(10 to 40GHz, 10 to 100GHz, 10 to 200GHz). The index confidence increases with the number of channels

available
:::::::
available

::::::::::
frequencies, and performs better over the ocean,

:
as expected. In all cases, even with a reduced number15

of information
:::
for

:::
the

::::
more

::::::::::
challenging

::::::::::
radiometric

:::::::::
signatures

:
over land, the model reaches an accuracy ≥ 70%,

::::::
≥ 70% in

detecting contaminated observations. Finally an example application of this index to eliminate grid cells unsuitable for land

surface temperature estimation is shown.

Copyright statement. TEXT

1 Introduction20

Visible/Infrared (VIS/IR) satellite imagers provide excellent information about land surface characterization. The applications

::::::::::
Applications

:
include land surface temperature estimations (e.g. Freitas et al., 2013)

::::::::::::::::::::
(e.g., Freitas et al., 2013), vegetation char-
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acteristics (e.g., Tucker et al., 2005), or surface water extent (e.g., Pekel et al., 2016). These geophysical parameters can be

retrieved accurately and with a good spatial and temporal resolution from VIS/IR observations, but only under clear sky con-

ditions. With clouds covering ∼ 60% of the globe at any time (Rossow and Schiffer, 1999), there is a need for alternative

sources of information. Passive microwave observations from satellites can partly fill this gap: they are much less sensitive

to clouds and can provide valuable estimates of the surface properties, despite their coarser spatial and temporal resolution.5

Today, land surface temperature can be retrieved from IR observations for ∼ 60% of the locations with a spatial resolution of

1 km twice a day from polar orbiters (Prata et al., 1995) and with a spatial resolution of 2 km every 15 minutes from geo-

stationary satellites (e.g., Schmit et al., 2017). On the other hand, passive microwaves can provide this information with a

spatial resolution of ∼20 km spatial resolution twice a day over ∼ 100% of the continents (Aires et al., 2001). Programs are

underway to merge these different observations for a complete spatial and temporal coverage. For instance, long time series of10

land surface temperature estimations with passive microwave observations are under-construction, using different generations

of passive microwave satellite instruments to be used in synergy with IR estimates (e.g., Prigent et al., 2016; Jiménez et al.,

2017). Although microwaves are less sensitive to clouds, the effect of clouds and rain on the microwave radiation increases

with frequencies
::::::::
frequency. Multiple effects can occur, from liquid water clouds and rain emitting passive microwave radiation

at the physical temperature of the cloud or rain, to scattering by ice clouds that can lower the measured brightness temperatures15

especially at high frequencies and for large ice contents. The cloud / rain effect that can be detected strongly depends upon

the surface type. The surface contribution to the passive microwave observations is proportional to the surface emissivity that

changes from ∼ 0.5 over ocean to ∼ 1 over dry soil or dense forests. This means that the contrast between the liquid particles

in the cloud and rain and the surface will be usually larger over ocean than over land: the cloud and rain liquid water emission

increases the brightness temperature over the radiometrically cold ocean but will not show much contrast over the already20

radiometrically warm land. The opposite will prevail for frozen clouds, with the cloud scattering depressing the brightness

temperature above a
:::
the radiometrically warm land surface. Over ocean, passive microwaves have been extensively used to

quantify the cloud liquid water and rain amounts (e.g., Greenwald et al., 1993; Kummerow et al., 1998). For ocean surface

applications, the cloud liquid water amount can usually be accounted for and the surface parameter estimation can compen-

sate for the cloud impact, when the atmospheric transmission is still high enough to have a significant contribution from the25

surface. Over land, cloud and rain detection using passive microwave is much more complicated (e.g., Spencer et al., 1989;

Aires et al., 2001). First, the surface emissivity is usually close to one reducing the contrast between the cloud and the
:::::
cloud

:::
and surface and second, it changes spatially and temporally, with e.g., variations in soil moisture, vegetation density, or snow

cover (e.g., Prigent et al., 2006). This can seriously affect the retrieval of land surface parameters when a cloud or rain effect is

miss-interpreted
::::::::::::
misinterpreted

:
as a surface change.30

The objective of this study is to develop a method that indicates the
:
a cloud / rain contamination on the passive microwave

(MW) observations over land, for different ranges of frequencies available on board the successive generations of passive

MW satellite instruments. Rain detection schemes have been developed for the Special Sensor Microwave / Imager (SSM/I)

over land: they are based on the scattering signal at 85GHz and use decision trees (Grody, 1991; Ferraro, 1997). Cloud

filtering methods have also been derived, for specific applications or for a given instrument. Long et al. (1999) analyzed the35
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brightness temperature time series at 85GHz with different methods to remove the cloud perturbation on the SSM/I images

for land surface applications. For the estimation of upper tropospheric humidity with satellite measurements around the water

vapor line at 183.31GHz, Buehler et al. (2007) developed filters with different channels around the line to avoid the cloud

contaminated grid cells. Aires et al. (2011) used a neural network method trained on Meteosat Third
::::::
Second

:
Generation

Spinning Enhanced Visible and Infrared Imager (SEVIRI) cloud products to create a cloud mask and
:
a
:
classification from the5

Advanced Microwave Sounding Units A and B (AMSU-A / AMSU-B) with channels from 23GHz to 183GHz: statistical

models were built separately over land and ocean to detect clouds or classify them into clear sky, low, medium, or high clouds.

Here, we use a similar approach to Aires et al. (2011) to develop a cloud / rain indicator over land, for the passive MW

imagers used for the estimation of land surface parameters over the last decades. Starting from early 80’s
:::
the

:::
late

::::::
1970s with

the Scanning Multichannel Microwave Radiometer (SMMR), a number of imagers have been launched along the years, includ-10

ing the Special Sensor Microwave Imagers (SSMI, SSMI
::::
SSM/S), and

:
I,

:::::::
SSMIS),

:::
the

:::::::
Tropical

:::::::
Rainfall

::::::::::::
Measurement

:::::::
Mission

:::::::
(TRMM)

::::::::::
Microwave

:::::::
Imager

:::::
(TMI)

::::::::::::::::::::::
(Kummerow et al., 1998), the Advanced Microwave Scanning Radiometers (AMSR-E,

AMSR2)
:
,
::
or

::::
the

:::::::
WindSat

::::::::::
instrument

::::::::::::::::
(Gaiser et al., 2004). The latest instrument is the Global Precipitation Measurement

(GPM) Microwave Imager (GMI)
:::::::
launched

:
in 2014. Given the characteristics of the successive MW imagers available (see

Table 1), similar
::::::
Similar

:
frequencies are used across instruments, and

:::
the

:::::::::
successive

::::
MW

::::::::
imagers,

:::
and

::::
they

:
have relatively15

close characteristics
:::
(see

:::::
Table

::
1) that could allow for a similar processing of the data starting from 1978.

We can divide the available instruments in 3 groups, based on the imaging frequencies used on each of them:

– Below 40GHz: That particular set of channels is available onboard SMMR that flew from 1978 to 1987. On GMI, the

frequencies available
:::::
1987,

::
as

::::
well

::
as

:::::::
WindSat

:::::
since

:::::
2003.

:::
The

::::::::::
frequencies

:::::::
available

:::::::
onboard

:::::
GMI are: 18.7GHz (V,H),

23.8GHz (V), and 36.5GHz (V,H).20

– Below
::::
With

:::::::::
frequencies

:::
up

::
to 90GHz: Available on the Special Sensor Microwave/Imager (SSM/I) (1987 to present)or

on ,
:

the Advanced Microwave Scanning Radiometer (AMSR-E/AMSR2) (2002 to present) . Onboard GPM
::
and

::::
the

:::::::
Tropical

:::::::
Rainfall

:::::::::::
Measurement

:::::::
Mission

::::::::
(TRMM)

:::::::::
Microwave

::::::
Imager

::::::
(TMI)

:::::::
between

::::
1998

::::
and

:::::
2015.

:::::::
Onboard

::::
GMI, the

89GHz (V,H)
::::::::
frequency is added.

– Below
::::
With

:::::::::
frequencies

:::
up

::
to 190GHz: This is for instance the case for the Special Sensor Microwave Imager Sounder25

(SSMIS) (2003 to present) or the GMI (2014 to present) . In addition to all the above channels ,
::::
with

::::::::
channels

::
at

165.5GHz (V,H) and 183.3GHz (V)channels are present.

All these instruments observe with a similar incidence angle at the surface (as a consequence the angular dependence is not

to take into account as with sounders such as AMSU). The available frequencies are close (e.g., 37GHz for SSM/I against

36.5GHz for GMI and AMSR2) and with small differences in the operating bandwidth. Note that frequencies below 18GHz30

are available for some of these instruments but they will not be considered
:::
here

:
as their sensitivity to clouds is very limited. In

this study, the passive microwave observations will come from GMI as it includes all the possible frequencies that we may want

to use. Another benefit is that the GPM mission is not sun-synchronous and as a result, it covers the full diurnal cycle, whereas
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Imager
Channels (GHz) (Polarisation) Spatial Resolution Viewing

angle

Operating

years∼ 18 (V,H) ∼ 23 ∼ 36 (V,H) ∼ 89 (V,H) 165.5 183.3 (at 37GHz)

SMMR 18.0 21.0 (V,H) 37.0 – – – 29 km * 17 km 50.2° 1978–1987

SSM/I 19.4 22.2 (V) 37.0 85.5 – – 36 km * 24 km 53.1° 1987–2006

:::
TMI

: ::::
19.35

:::
21.3

:::
(V)

: ::
37

:::
85.5

: :
–

:
–

::::::
16 km *

::::
9 km

:::::
53.0°

::::::::
1998–2015

AMSR-E 18.7 23.8 (V,H) 36.5 89.0 – – 14 km * 9 km 55.0° 2002–2011

::::::
WindSat

: :::
18.7

: :::
23.8

:::::
(V,H)

::::
37.0

:
–
: :

–
:
–

:::::
8 km *

:::::
13 km

::::::
50°-55°

:::::
2003–

SSMIS 19.4 22.2 (V) 37.0 91.6 – H,H 44 km * 28 km 53.1° 2003–

AMSR2 18.7 23.8 (V,H) 36.5 89.0 – – 12 km * 7 km 55.0° 2012–

GMI 18.7 23.8 (V) 36.5
::::
36.64 89.0 V,H V,V 15 km * 9 km 52.8° 2014–

Table 1. Characteristics of the MW imagers over the years.

the other instruments are sun-synchronous with overpassing times at the equator in the morning and afternoon (SSMR, SSMI,

SSMIS) or at mid-day and mid-night (AMSR-E and AMSR2). The cloud information comes from SEVIRI on board Meteosat:

it provides a cloud mask as well as a cloud classification. Rain is not detected per se, separately from the cloud: some clouds

are likely to precipitate and the detection of these clouds will obviously include the detection of rain.

We first describe the data sets
::::::
datasets

:
relevant for this study (Sect. 2). In Sect. 3, we will elaborate on the methodology.5

Results will be presented over land surfaces as well as over ocean (to illustrate the difference in behavior over these two surface

types), insisting on the detection of the cloud contamination on the MW observations over land (Sect. 4). Sect. 5 concludes this

study.

2 Data sources

The different data sources are described here, namely the SEVIRI cloud classification and the GMI brightness temperatures10

(Tbs). The steps to create a consistent data set are described, along with a preliminary analysis of the observations. Using

ancillary data to help characterize the atmospheric and surface conditions related to the cloud occurrence (such as land surface

emissivities
::::::::
emissivity

:
atlases) could help the cloud detection but at the cost of increasing the complexity to apply it. For

flexibility and convenience, the detection of the cloud contamination will be exclusively built from passive MW observations.

2.1 Cloud mask and classification from Meteosat SEVIRI15

Meteosat is a geostationary satellite positioned over the equator. It covers mostly Africa, Southern America, Europe and the

Middle East, from ±60° latitude and ±60° longitude. The SEVIRI channels on board Meteosat encompass the visible and

infrared ranges (Schmid, 2000), with varying pixel sizes around 4 km2
::::
3 km2. Algorithms have been developed to provide

cloud information, such as cloud top height, water content, and also cloud classification, every 15 minutes over the whole

field-of-view (Derrien and Le Gléau, 2005).20
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The Climate Satellite Application Facilities (SAF) at the European Organisation for the Exploitation of Meteorological

Satellites (EUMETSAT) provides daily data since 2004. We used the 2013 version of the SEVIRI cloud classification algorithm

that provides a robust overview of the different cloud types that matter for VIS/IR observations. Using this classification, the

goal is to improve our understanding of the MW interaction with clouds and to detect the cloudy situations that impact the

MW. Six full days each month in 2015 provide 72 different daily situations that represent a large variation of the possible5

cloud types and surface conditions, covering the full diurnal and annual cycles. The cloud classes are described in Table 2.

High semitransparent clouds are mostly cirrus of varying thickness, possibly over lower clouds. The fractional cloud class

corresponds to cells that are only partly cloudy and to heterogeneous cloud cover. The other cloud types represent the continuum

of possible cloud states, with varying opacity and height. Some of these clouds are likely to precipitate, and rain cases are

naturally included in the database.10

SEVIRI class description

Cloud type number
::::::
SEVIRI

::::
class

::::::::
description

:

:
1 Cloud free land 1

:
1 Cloud free sea 1

:
2 Very low clouds2

Low clouds3
:::
Low

::::::
clouds

Medium clouds4
::::::
Medium

:::::
clouds

:
5 High opaque clouds5

:
6 Very high opaque clouds6

:
7 High semitransparent thin clouds7

:
8 High semitransparent meanly thick clouds8

:
9 High semitransparent thick clouds9

::
10

:
High semitransparent above lower clouds10

Fractional clouds 11
:::::::
Fractional

::::::
clouds

Table 2. Cloud classification from SEVIRI (Derrien and Le Gléau, 2005).

Figure 1 shows the latitudinal variation of the cloud types over land within the SEVIRI disk, for February and August 2015.

The Inter-Tropical Convergence Zone (ITCZ) location changes between the two seasons, as expected. Over the mid-latitudes,

the cloud frequency in February is higher than in August. The average relative frequency of each cloud type is displayed,

showing that all cloud types are well represented.

2.2 The passive microwave observations from GMI15

GPM relies on several instruments to provide a precipitation evaluation around the globe. The GMI is on board the core GPM

satellite. The satellite has a 65° inclination that allows a non sun-synchronous
::::::::::::::
Sun-synchronous observation of the Earth. The

available frequencies range from 10GHz to 183GHz
:
(Hou et al., 2014). In this study, we use the corrected calibrated Tbs
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created by the level-1C algorithm
:::::::
available

::
in
::::

the
::::
level

:::::
1C-R

:::::::
product

:::::
where

:::
all

:::
the

:::::::
channels

:::
are

::::::::
projected

::
to
::

a
::::::::
common

::::
scan

:::::
center

:::::::
position,

:::::::::
consistent

::::
with

:::
the

:::::::::::::
89GHz channel

:::::::::
resolution

:::::::
(4 km2).

GMI covers the full frequency range we want to analyse, with an incidence angle close to 53°. In this study, different

subsets of the channels will be tested, corresponding to the different channel ranges available on the instruments since 1978.

In addition, it observes at different local times, limiting possible biases related to observations at specific times of the day. The5

GMI data from 2015 have been downloaded, for the 72 days corresponding to the SEVIRI selection.

2.3 Dataset preparation and preliminary analysis

The SEVIRI and GMI data have very different spatial and temporal resolutions. We need to find the closest matching observa-

tions and relocate them on a common grid for further processing.
::::
Grid

::::
cells

:::::
with

:::
low

::::::
quality

::::
flag

:::
are

:::::::
avoided,

:::
for

::::
both

:::::
GMI

:::
and

:::::::
SEVIRI.

:
Each GMI observation has a time stamp that is used to find the closest SEVIRI scan. With SEVIRI data every10

15min, there is a maximum of 7.5min difference between GMI measurements and the corresponding SEVIRI classification.

Grid cells with low quality flag are avoided, for both GMI and SEVIRI. Given the spatial resolution, several SEVIRI cells will

obviously fall in one GMI grid cell. Thus
::
In

:::
the

:::::::
training

::::::
dataset,

:
only GMI observations associated to a single

::::::
unique

:::::
target

SEVIRI class are kept, to reduce ambiguities in the training dataset.
:::::
There

::::
may

:::
be

::::
some

:::::::::
mismatch

:::::::
between

:::::::
observed

::::::::
radiance

:::
and

:::
the

:::::::
SEVIRI

:::::
cloud

:::
type

::::
due

::
to

:::::::::::::
inhomogeneous

::::::
clouds

::
at

:
a
::::
scale

:::::
lower

::::
than

:::
the

::::::::
footprint

::::::::
especially

:::
for

:::
the

:::::
lowest

:::::::::
frequency15

:::::::
channels. This does not mean that GMI cells with heterogeneous cloud cover will not be able to be classified: it just limits the

confusion
:::::
effect

::
of

::::::::::
ambiguous

::::
cases

:
during the training phase. The grid cells located above 55° North and below 50° South

are discarded: they are larger in size
::
in

:::
the

::::::
SEVIRI

::::
data

:
and are subject to more contamination by snow and ice. The GMI land

mask is adopted to separate land and water bodies.

As a first analysis of the MW sensitivity to clouds, the distributions of the MW brightness temperatures (Tbs) are plotted20

in Fig. 2, for the different cloud types and for selected GMI frequencies, over ocean (left) and land (right). With increasing

frequency, the atmospheric attenuation increases and the surface contribution to the signal decreases: the difference in the

mean Tbs between the ocean and land situations diminishes with higher frequencies. Differences in the signal received by the

instrument, when it is not totally absorbed by the atmosphere, can be due to the cloud effect but can also be related to changes

in the surface properties (surface temperature of the ocean or land, wind speed at the ocean surface, soil moisture or vegetation25

density over land). Cloud types can be preferably associated to some environments, and the surface emissivity change with the

surface conditions makes it difficult to find simple relationships between signals and cloud presence. In addition, water vapor

modulates the MW signal, and this effect increases with frequencies in the window channels.

Over ocean up to 100GHz, the clouds are detectable and to some extent, their types can be distinguished: there is enough

contrast between the radiometrically cold ocean background and the cloud radiation. Above 100GHz, the surface contribution30

decreases drastically. The high opaque clouds can present low Tbs (the long left tail of the histogram) that are related to the

scattering by the cloud frozen phase.

Over land at 18GHz, the lowest peak
::::
peaks

:
in the histograms for most cloud types (around 265K) are likely related to

the presence of water at the surface. Otherwise, at 18GHz, the histograms are very similar for all land situations, meaning
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that this frequency has a very limited sensitivity to the cloud presence and type. This can be seen as an asset for land surface

characterization with these frequencies, as the signal will not be affected by the cloud presence. At high frequencies, the high

opaque clouds present low Tbs (the left tails of the histograms), due to the ice scattering in the clouds (as at 166GHz over

ocean). These opaque clouds will likely be detected over land with these high frequencies.

3 Method5

Our goal is to detect cloud-contamination in the MW observations, over land. It is not at this stage to classify cloud types. It

will nevertheless be interesting to analyse the effects of each cloud type in the different frequency domains. We focus here

on the cloud detection for which a binary classification is required, but we will also experiment the cloud-type classification.

Several methods are available, some are rule-based, mostly by using thresholds for the various cloud types (e.g., the SEVIRI

cloud algorithm by Derrien and Le Gléau (2005), or the cloud filter at 183GHz from Buehler et al. (2007)). In this study, we10

use a statistical approach,
:
similar to the one presented in Aires et al. (2011).

3.1 The training and testing datasets

The training and testing datasets are constructed using the collocated GMI observations and SEVIRI cloud information. To

cover the full diversity of cloud situation
::::::::
situations, a full year of data has been sampled with 72 days (Sect. 2). The SE-

VIRI acquisition disk excludes the high latitude regions and does not cover the full snow and ice free continents either. The15

development in this study will not be applicable to the snow and ice covered regions. However, it was shown in Aires et al.

(2011) that the calibration of a cloud classification on the SEVIRI disk with MW observations can be extrapolated to the other

continents and we are confident that the methodology will be applicable outside the SEVIRI disk, excluding the snow and ice

regions. In the database, we impose that every cloud type is equally represented. This process ensures that the obtained classi-

fication will not be biased towards the most frequent cloud situations, disregarding the less frequent ones. We therefore sample20

the same number of clear and cloudy situations, with each cloud type equally represented in the cloudy part. This resulted in

1 million samples for each of the 10 cloud types, and 10 million cloud-free samples. For a cloud classification model, with 11

different possible output classes, the database is built with an
:
a
:
similar repartition of classes, giving around 11M

::
11

:::::::
million

observations. The resulting databases are then randomly divided into the training (80%) and the testing (20%) datasets.

3.2 Statistical models25

Several statistical models have been tested (e.g., tree-based or logistic regression, results not shown) but we kept a Neu-

ral Network (NN) classification, based on the MultiLayer Perceptron (MLP)(?)
:::::::::::::::::::::
(Rumelhart et al., 1986b). MLP are univer-

sal nonlinear approximators, that can, given enough parameters, approximate any function (Hornik, 1991). The NN inputs

are the MW channels, their number depending on the frequency ranges (5, 7, or 11). Five neurons (resp. 7 and 9) in the

hidden layer are used. More neurons and larger network have been tested but they did not offer significant improvements30

in the resulting accuracy (results not shown). The output layer is composed of one binary output (for the cloud detection)
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or 11 binary outputs (for the cloud classification). The activation in the output layer is a softmax function. The param-

eters of the MLP classifier are found during the learning stage where a cost functionis minimized. Using a cost function

measuring an error such as binary
::::::
binary cross-entropy ,

::::
loss

:::::::
function

::::::::::::::::::::::::::::::::
(Dreiseitl and Ohno-Machado, 2002) is

::::::::::
minimized

::::
with

:::
the

::::::::::::::
backpropagation

::::::::
algorithm

::::::::::::::::::::::
(Rumelhart et al., 1986a).

:::::
Using

::::
this

:::
loss

::::::::
function

::::::
allows the continuous output of the

NN can represent the classification probability
:
to

:::
be

:::::::::
interpreted

::
as

::
a

:::::::::::
classification

:::::::::
probability

:
(Bridle, 1989). The

::::::
models

:::
are5

::::::::::
implemented

:::::
using

::::
the

:::::
Keras

::::::
library

::::::::::::::::::
(Chollet et al., 2015),

:::
and

:::
the

:::::::
training

::
is

:::::::
stopped

:::::
when

:::
the

::::
loss

::
is

:::
not

:::::::::
decreasing

:::
for

::
5

:::::::::
consecutive

:::::::
epochs,

:::::
which

::::::::
happens

::::
after

:
a
::::
few

:::::::
hundred

::::::
epochs

:::::::::
depending

::
on

:::
the

::::::::
network

:::
and

:::::
input

::::
size.

::::
The

:::::::
hardware

:::::
used

::
for

::::
this

::::
step

:
is
::

a
:::::::
standard

:::::
office

::::::
laptop,

:::::
with

:
4
:::::
cores

:::
and

:::::
16Gb

:::
of

:::::
RAM.

:::::
After

:::::::
training,

:::
the

:
prediction closest to 0 indicates a

high probability of having a cloudy grid cell (respectively 1 for clear sky). The result of the continuous NN output can then be

converted into a binary decision using a threshold to be defined. In the following graphs and results, if not otherwise specified,10

a decision threshold of 0.5 is applied to derive the binary classification. For multi-class outputs, the highest value among the

output neurons is selected as the predicted class. The results are displayed showing the percentage of true positives (cloudy

grid cells correctly detected), and true negatives (clear grid cells correctly predicted) from all the samples inside a test set.

4 Results

We first test the methodology over ocean, where clouds are expected to be easier to detect and quantify as we saw from the15

distributions in Fig. 2. It provides a testing ground for the method, before expanding it to the more difficult land case.

4.1 Detecting clouds over ocean

As described in Sect. 3.1, the database is created with an equal distribution of the cloud
:::::
cloudy

:
and clear conditions and a

balanced repartition between the different cloud types. The cloud detection is evaluated for the three MW frequency ranges

(all channels, below 100GHz only, below 40GHz only), and the results are presented in Table 3 for the test dataset. The20

cloud detection performs well over ocean, reaching at least 80% accuracy, even with a reduced number of channels. The low

emissivity of the ocean (∼ 0.5) and its relative homogeneity makes it possible to correctly detect the cloud presence, even at

low MW frequencies.

All channels (%) Below 100GHz (%) Below 40GHz (%)

Clear grid cells correctly predicted 91 89 89

Cloudy grid cells correctly predicted 81 74 72
Table 3. Results of a binary classification over the ocean for different MW frequency ranges.

These cloud detection results are very encouraging and the natural next step is to investigate a cloud classification over

ocean, with the same MW frequency ranges. The dataset with all classes equally sampled is used, suitable for a multiclass25

classification. Similar NN schemes are implemented, with 11 possible output neurons representing the 10 cloud classes and

the clear case, for the three frequency ranges. The confusion matrices (Fig. 3) display the results of the classification,
:
showing
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for each class (y-axis) , the percentage of the samples predicted to belong to one of the 11 possible
::::::
SEVIRI

:
classes (x-axis).

The diagonal shows the correctly classified percentage for each cloud type. The highest accuracy is reached for the cloud-free

ocean, for the three MW frequency ranges. It is occasionally confused with the high semitransparent meanly thick clouds (class

8) or the fractional clouds (class 11) as they may not significantly affect the measured Tbs. For opaque clouds (class
::::::
classes 2-

6), the highest percentages are near the diagonal: these cloud types are correctly classified or classified as a cloud with a similar5

altitude. We see an increase in the detection of high opaque clouds (class
::::::
classes 4/,5) when the channel at 89GHz is available.

This can be explained by the increased detection of the ice content that this channels offers compared to lower frequencies.

When all channels are available the discrimination between cloud layers is even easier resulting in a better classification. The

high semi transparent clouds (class 7-8-9-10
:::::
classes

:::::::
7,8,9,10) are sometimes incorrectly classified as clear sky especially with

only lower frequencies (due to channels less sensitive to high altitudes
::::::
altitude

:
phenomena), or high semitransparent thick10

clouds (class 8) with higher frequencies which is expected given that they share similar properties (such as cloud height).

Fractional clouds (class 11) are not well classified, the predicted class being either cloud-free or high semitransparent (class 8).

4.2 Detecting clouds over land

A similar cloud detection method is applied over land. The NN classifiers are built, using the three different MW frequency

ranges as inputs and with one output indicating the clear / cloudy probability.15

The specifics of the model and database are dscribed
::::::::
described in Sect. 3.1 and 3.2.

:
Similar to Table 3 over ocean, Table 4

(top part) presents the accuracies reached over land by the three frequency ranges. The classification performance deteriorates

compared to the ocean case, as expected. Nevertheless even for the worst case (with only 5 low frequency channels available)

true positive and negative detections are close to 70%.

The result of the detection has been analyzed further, as a function of the cloud type (lower part of Table 4). Note that20

these are only a detail of the previous results (top part of Table 4) separated by each original cloud type. Large differences are

observed between cloud types. For non semitransparent clouds, the higher the cloud the better the detection rate: this is directly

related to the presence of ice in high clouds that can scatter the MWs. The higher the frequency, the better the detection of ice

phase. Likewise, high semitransparent clouds can be detected only when they are thick enough.

4.3 Detecting cloud contaminated microwave observations over land25

The previous results showed that MWs cannot detect all clouds seen by VIS/IR measurements especially when only a sub-

set of the frequencies is available. This behavior is actually very attractive for “all-weather” land surface applications with

MWs. However, for accurate land surface characterization with MW, we need to identify the cloudy situations that are re-

ally contaminating the MW. To that end we use the results from the previous model to select an appropriate definition of

cloud-contamination in the MW. For all frequency ranges, high semitransparent thin clouds, high semitransparent meanly30

thick clouds, and the fractional clouds (i.e., classes 7-8-11
:::::
7,8,11), the classification accuracy is close to 50% similar to a ran-

dom class assignment, meaning that these frequency ranges are not affected enough by these cloud types to be able to detect

it. To focus on the clouds that do impact the MWs, we rebuild a training dataset, suppressing the 3 ambiguous classes pre-
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All channels (%) Below 100GHz (%) Below 40GHz (%)

Clear grid cells correctly predicted 83 73 69

Cloudy grid cells correctly predicted 77 73 73

:
2
:
- Very low clouds

63 70 71

:
3
:
- Low clouds

77 78 77

:
4
:
- Medium clouds

92 85 83

:
5
:
- High opaque clouds

97 85 83

:
6
:
- Very high opaque clouds

98 92 90

:
7
:
- High semitransparent thin clouds

59 56 54

:
8
:
- High semitransparent meanly thick clouds

66 61 64

:
9
:
- High semitransparent thick clouds

89 80 80

::
10

:
- High semitransparent above lower clouds

84 74 71

::
11

:
- Fractional clouds

53 48 46

Table 4. Top part: percentage of correct cloud detection from the test set over land. Lower part: Detail
::::
detail of the percentage of each cloud

type predicted as cloudy. The results are presented for the three MW frequency ranges.

viously mentioned (namely classes 7-8-11
:::::
7,8,11). The idea behind this new training database is that removing ambiguities

at the learning stage will improve the classification. In other words, removing the ambiguous SEVIRI cloud types from the

training database allows the model to ignore these phenomena mostly detected in VIS/IR. The lower sensitivity to clouds in

MW is thus accounted for in the new training dataset. The results of this new classification are provided in Table 5, separately

for the clear grid cells (SEVIRI class 1), for the cloudy grid cells with clouds that do contaminate the MW (the MW cloud-5

contaminated grid cells, i.e., SEVIRI classes 2-3-4-5-6-9-10
:::::
classes

::::::::::::
2,3,4,5,6,9,10), and for the cloudy grid cells corresponding

to the 3 cloud types difficult to detect from
::::
with

:
MW (the ambiguous grid cells, ignored in the training dataset, i.e., SEVIRI

classes 7-8-11
::::::
classes

:::::
7,8,11).

The results show that the clear sky detection increases and so does the detection of MW cloud-contaminated cells (84%

with all frequencies) compared to the detection of cloudy cells in Table 4 (77% with all frequencies). This is expected as the10

ambiguous cases have been removed from the statistics; it is also consistent with the number of ambiguous cells (ignored in

the training datasets) that are predicted as MW cloud-contaminated by the new classification (close to 50% regardless of the

frequency range).
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All channels (%) Below 100GHz (%) Below 40GHz (%)

Clear cells correctly predicted 88 77 71

MW cloud-contaminated cells correctly predicted 84 76 78

Ambiguous grid cells predicted as MW cloud-contaminated 49 43 52
Table 5. Classification results for the different clear and cloudy populations, for the three MW frequency ranges. See text for more details.

The original output of the classification is not binary, but a number between 0 and 1 (see Section 3.2). In the results shown

so far a decision threshold at 0.5 has been adopted to separate the two classes. Would it be possible to adjust this threshold

for a better detection of the cloud-contaminated observations? Figure 4 presents the outputs of the NN classifier, for the three

populations previously defined in Table 5 and for each MW frequency range (Figure 4).

Figure 4 (top and middle panels) confirms that the clear grid cells and the MW cloud-contaminated grid cells are confidently5

classified, with very distinct output distributions for these two populations, 0 indicating a high confidence to be in the MW

cloud-contaminated class and 1 a high confidence to be in the clear class. Nevertheless, when channels above 100GHz are

not available, a non-negligible fraction of the clear grid cells population is classified between 0.1 and 0.4, meaning that the

confidence in the prediction is lower. For the ambiguous cloud types that were ignored during the training (bottom panel),

the distribution of the outputs covers a large range of values, traducing
::::::::
conveying the uncertainty in the prediction. However,10

with the full frequency range there are a number of observations labelled as confidently contaminated (peak in low NN output

values), this can be expected due to the better sensitivity of the high frequency channels to thin clouds. Fig. 4 clearly shows

that depending on the decision threshold selected for the NN output values, it is possible to filter out more or less ambiguous

grid cells. It was so far set at 0.5, but it could be modified. The selection of this threshold should depend upon the frequency

range and the application.15

For instance, for land surface temperature estimates, the idea is to avoid the clouds that really affect the low microwave

Tbs (below 40GHz) that are used for the retrieval of this parameter (e.g., Prigent et al., 2016; Jiménez et al., 2017). Note

however that this does not exclude the use of the higher frequencies for cloud-contamination detection, if these frequencies are

also available. In addition, the interest of the MW for the land surface temperature estimation is to complement the infrared

estimations that are not available under cloudy conditions: as a consequence, only the MW observations seriously cloud-20

contaminated
::::
MW

:::::::::::
observations should be detected, to maintain a quasi “all weather” coverage of the MW estimates while

limiting erroneous estimates under very cloudy / rainy situations. In that framework, the role of the cloud classification is to

make sure the cloud-contaminated observations are correctly detected. The correct detection of the
::::
true clear cases is of a lesser

importance.

Figure 5 presents the percentage of MW observations predicted as cloud-contaminated, as a function of the threshold on25

the NN classifier output, for both the MW cloud-contaminated cases (the true positive, solid line) and the clear sky cases (the

false positive, dash line). It shows that a threshold below 0.1 keeps the percentage of misclassified clear sky cases low (low
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percentage of false positive). Combined with the results from Figure 4 (middle panel), a threshold at 0.05 and 0.01 could also

be tested, to only classify the cloud-contaminated observations with a high degree of confidence.

A day of GMI observations, June 15th, 2015, is selected to illustrate the potential of the classification of the MW cloud con-

tamination. Note that this day is not included in the training nor testing datasets previously used. For the three MW frequency

ranges, the classification is applied with the selected thresholds (0.1, 0.05, 0.01). Table 6 provides the percentage of observa-5

tions classified as cloud contaminated for each setup, along with the results from the Ferraro (1997) precipitation detection

algorithms based on a decision tree and thresholds on channels. As expected, when the high frequency channels are included,

the sensitivity of our methodology to the cloud contamination increases, as does the percentage of cloud-contaminated obser-

vations, with ∼ 10% cloud contaminated observations for this frequency range. Note that for that day, the coincident SEVIRI

observations are cloudy at 29%, i.e., three times more than the results from the high MW frequency range highest detection.10

Using only frequencies below 40GHz, the percentage of cloud contaminated observations decreases. This illustrates the benefit

of using lower MW frequency channels for "all weather" land surface characterization, with a ratio of 4 between the number of

contaminated observations when adding the 89GHz to the frequencies below 40GHz (using the 0.05 threshold). For all these

thresholds/model combination the number of clear sky observations (according to SEVIRI) incorrectly flagged stays below

0.5% of all observations.15

For comparison purposes, the Ferraro (1997) rain detection algorithms are also run
:::
and

::::::::
compared

::
to, both the algorithm

using the 85GHz channel and the one limited to the frequencies below 40GHz. The results in the second part
:::
last

:::
line

:
of

the table shows
::::
show

:
the number of observations that are flagged as precipitating. As expected the number of precipitating

situations is lower than the number of contaminated
:::::::::::::::
cloud-contaminated

:
MW observations. With

:::
For

:::
the models with channels

above 40GHz, more than 90% of the precipitating observations are detected by our method. The model with only channels20

below 40GHz still retrieves more than 50% of the precipitating observations when the 0.1 threshold is used.

Nevertheless, depending on the applications and the degree of uncertainty required on the land surface product, if the full

frequency range up to 100GHz is available on the instrument, it can be relevant to use all the frequencies up to 100GHz to

filter out the cloud-contaminated grid cells, even if only the frequencies below 40GHz are used in the retrieval of the
::::
land

::::::
surface parameter. As an example, if the land surface temperature is to be retrieved with very low uncertainty from SSM/I25

observations (an instrument that has channels up to 90GHz), it can be wise to use the full frequency range to detect the cloud

contamination even if only the lower frequencies below 40GHz are used in the retrieval.

Now that we have an estimate of the number of points that are flagged by each model with different thresholds we can plot the

global map of the location of these contaminated cells. Figure 6 shows the results for the 3 different frequencies group
::::::::
frequency

:::::
groups

:
and with three thresholds applied. The threshold

:::::::::
thresholds were chosen based on the results in table

::::
Table 6, to illustrate30

how different thresholds might be applied to each model, while still providing coherent estimates of cloud-contaminated grid

cells.

In Fig. 6, models are applied to the data over landand sea, to create the 3 different maps. For each map a different threshold

is applied, 0.1 with the lowest channels
:::
(A), 0.05 with channels up to 100GHz

::
(B)

:
and 0.01 with all channels available

::
(C).
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Threshold used All channels (%) Below 100GHz (%) Below 40GHz (%)

0.1 9.7 5.1 1.5

0.05 7.9 3.6 0.8

0.01 5.2 2.0 0.3

Ferraro (1997) – 1.4 0.4
Table 6. Percentage of MW observations classified as cloud contaminated, for the three MW frequencies ranges, with different threshold

:::::::
thresholds

:
on the NN classifier output. Results are presented for June 15th, 2015, over land surfaces within the SEVIRI disc. Second part

:::
The

:::
last

:::
line of the table presents the percentage of observations detected as precipitating with

::
the

:
Ferraro methods, with

::::::
method

::::
using channels

up to 100GHz or only below 40GHz.

The fourth subplot
:::
(D) is the precipitating observations according to Ferraro’s 89GHz algorithmand the fifth .

::::
The

:::
fifth

:::::::
subplot

:::
(E) shows the SEVIRI cloud type. We can analyse the output of this map:

– The agreement between models and the increased number of flagged points with more channels is clearly visible
::::::
(A,B,C).

– In some areas, the cloudy grid cells do not appear to be detected, (i.e.,
:
red square area). When looking at the detail of the

SEVIRI cloud types
::::::
(subplot

:::
E) in that area we find out they are mostly fractional/semitransparent or low clouds, which5

explains the low contamination rate, according to our definition.

– In the pink area, we have a stronger detection of contaminated grid cells. Indeed the most represented cloud types are:

High
::::
high

:
semi transparent thick clouds

:
(23%, High

:
),
::::
high

:
semi transparent clouds above low or medium clouds

:
(20%,

and Very
:
),

:::
and

::::
very

:
high opaque clouds (17%

:
). All these cloud types are the ones that might affect the measurement the

most.10

– We find that the precipitating observations are correctly found under cloudy cellsdetected
:::::
within

:::
the

::::::::
detected

::::::
cloudy

::::
cells, but there are more cloud-contaminated observations.

This global application of our models shows the possible use with different frequencies range
::::::
ranges, to detect contaminated

observations. Although adding more information by using the channels more sensitive to ice content leads to a better detec-

tion of cloud contamination, we show here that it is possible to filter out incorrect
:::::
cloud

:::::::::::
contaminated

:
measurements even15

above land with a restricted number of channels. The threshold
::::::::
thresholds used here are coherent for the specific application

shown here
::
in

:::
this

:::::
study, with a low number of miss classified

::::::::::
misclassified

:
clear sky grid cells, and also with the real world

occurrence of deep convective phenomena that contaminate the observations the most. Indeed
:
, the International Satellite Cloud

Climatology Project (ISCCP) data shows that they have an average occurrence of 2.6% for deep convections that is of the same

magnitude as our cloud index associated with the proposed thresholds (Rossow and Schiffer, 1999).20
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5 Conclusions

Passive microwave observations from satellites are less sensitive to clouds than visible / infrared measurements and can pro-

vide an almost “all weather” land surface characterization. However, cloud (and possible rain) can affect the microwave ob-

servations, even at frequencies below 40GHz. For accurate estimation of land surface parameters, cloud-contaminated MW

observations have to be detected to avoid interpreting a cloud presence as a surface change.5

A methodology has been developed to detect cloud contamination on passive MW observations, over land (except snow

and ice covered areas). It is based on a NN classification, trained on collocated SEVIRI cloud types. The NN output indicates

the probability of cloud-contamination in the MW signal, for a given MW frequency range. The cloud-contamination index

is provided with values in the 0–1 range: the threshold applied to this index can be customized to fit the required application

needed to flag out the contaminated observations. Although the target here is cloud detection over land surfaces, the model10

was also tested over the simpler case of detection over the ocean. The index confidence increased with the number of channels

available, and performed better over the ocean as expected. In all cases, even with a reduced number of information over

land, the model reaches an accuracy ≥ 70% in detecting contaminated observations
::::::::
detection

::
of

:::::::::::
contaminated

:::::::::::
observations

::
is

::::::::
performed

::::
with

:::::
more

::::
than

::::
70%

::::::::
accuracy.

An example of a possible application of this cloud-contamination index to eliminate grid cells unsuitable for land surface15

temperature estimation was shown. The index proved useful to signal cloud contamination for this particular application and

will soon be applied in the quality control of a long time record of land surface temperatures (Prigent et al., 2016). The land

surface temperature estimate is essentially based on passive microwave frequencies between 18 to 40GHz, from a succession

of satellite imagers since 1978 (SMMR, SSM/I, SSMIS). The first instrument only measured up to 36GHz, contrarily to the

last instruments. So far, the cloud and/or rain detection indices are based on indices
::::::::
thresholds

:
related to channels around20

85GHz (Jiménez et al., 2017). This frequency is not available on board SMMR and the new methodology for the frequency

range below 40GHz will be applied to the full data set, with possible comparisons with the
::::::
current

:
method up to 100GHz,

when these channels are available. Overall these models
::
the

::::::
models

:::::::::
developed

::
in

:::
this

:::::
study can be applied globally and increase

the detection of contaminating phenomena over the non-contaminating ones in the MW range
::
in

::
ice

::::
and

::::
snow

::::
free

:::::
areas

:::
and

:::
are

:::::::::
potentially

:::::
useful

:::
for

::::::::
numerous

::::::::::
applications

::::::
where

::
it

:
is
:::
of

::::::
interest

::
to

:::::::
identify

:::::::
possible

:::::
cloud

:::::::::::::
contaminations

::
in

::::::::
observed

::::
MW25

::::::::
radiances.

::
In

:::::::
addition

::
to

:::
the

::::
land

::::::
surface

::::::::::
temperature

::::::::
example,

::::
this

::::
index

::::
can

::
be

:::::
useful

::
to
::::::
select

::::
clear

::::::
scenes

::
for

::::::::
accurate

::::
MW

::::::::
emissivity

:::::::::
estimation

:::::::::::::::::::
(Moncet et al., 2011) or

::
to

:::::
detect

::::::
cloudy

::::::
scenes

:::
for

::
the

:::::::
analysis

::
of

::::
deep

::::::::::
convections

:::::::::::::::::
(Prigent et al., 2011).

Data availability. The CLAAS-2 Cloud property dataset using SEVIRI - Edition 2 (CLAAS-2, DOI:10.5676/EUM_SAF_CM/CLAAS/V002)

is publicly available from the Satellite Application Facility on Climate Monitoring (CM SAF). The GPM GMI_R Common Calibrated Bright-

ness Temperatures Collocated L1C 1.5 hours 13 km V05 (GPM_1CGPMGMI_R, DOI:10.5067/GPM/GMI/R/1C/05) is provided by NASA.30
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Figure 1. Relative frequency of cloud types as a function of latitude, for February (left) and August (right) 2015, over land within the SEVIRI

disk. The
::::::
average frequency of each cloud type

::::
over

::::
these

:
2
::::::
months is indicated in the legend, averaged over these 2 months.
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Figure 2. Probability distributions of the GMI observed Tbs for various cloud types at 18GHz (top), 89GHz (middle), and 166GHz

(bottom) for the vertical polarization, over ocean (left) and land (right) from the filtered dataset.
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Figure 3. Confusion matrix over the ocean for the cloud type classification for the three MW frequency ranges: below 40GHz (top), below

100GHz (middle), and all channels (bottom). The cloud type numbers are detailed in Table 2.
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Figure 4. Model output probability distributions for the clear grid cells (top), the MW cloud-contaminated grid cells (middle), and for the

ambiguous grid cells (bottom), for the three MW frequency ranges. See text for more detail about the three populations.
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Figure 5. Evolution of the percentage of MW observations correctly classified as cloud-contaminated (true positive, solid lines), and clear

sky grid cells incorrectly classified as being contaminated (false positive, dashed line), as a function of the NN output threshold, for the three

MW frequency ranges. Note that for this dataset half the observations are cloudy according to SEVIRI.23



Figure 6. Maps showing
::
for

:::
the

::::
15th

::
of
::::

June
:::::

2015:
::::

(A) the predicted grid cells flagged given by 3 models and thresholds
:::
the

:::::
model

::::
using

:::::::
channels

::::
below

::::::
40GHz with different

:
a

::
0.1

::::::::
threshold;

:::
(B)

::
by

:::
the

::::
model

:::::
using channels available on June 15, 2015, compared to

:::::
below

::::::
100GHz

::::
with

:
a
:::
0.05

::::::::
threshold;

:::
(C)

::
by the detecting

::::
model

:::::
using

::::::
channels

:::::
below

:::::::
190GHz

:::
with

:
a
::::
0.01

:::::::
threshold;

:::
(D)

:::
the

::::::
detected

:
precipitating

cells accoring
:::::::
according

:
to Ferraro (1997);

:
and

::
(E) the cloudy classes from SEVIRI.

:::
The

:::
red

:::
and

::
the

::::
pink

::::::
squared

::::
boxes

:::::::
highlight

:::
two

::::::
smaller

:::::
regions

::::::
further

:::::::
discussed

::
in

::::::
Section

:::
4.3. 24


