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Abstract. The Orbiting Carbon Observatory-3 (OCO-3) is NASA’s next instrument dedicated to extending the record of the

dry-air mole fraction of column carbon dioxide (XCO2) and solar-induced fluorescence (SIF) measurements from space. The

current schedule calls for a launch in the first half
::::
from

:::
the

:::::::
Kennedy

::::::
Space

::::::
Center

::
no

::::::
earlier

::::
than

:::::
April of 2019 via a Space-

X Falcon 9 and Dragon capsule, with installation .
::::

The
:::::::::
instrument

::::
will

:::
be

:::::::
installed

:
as an external payload on the Japanese

Experimental Module Exposed Facility (JEM-EF) of the International Space Station (ISS) . The
:::
with

::
a nominal mission lifetime5

is
::
of 3 years. The precessing orbit of the ISS will allow for viewing of the earth at all latitudes less than approximately 52◦,

with a ground repeat cycle that is much more complicated than the polar orbiting satellites that so far have carried all of the

instruments capable of measuring carbon dioxide from space.

The grating spectrometer at the core of OCO-3 is a direct copy of the OCO-2 spectrometer, which was launched into a

polar orbit in July 2014. As such, OCO-3 is expected to have similar instrument sensitivity and performance characteristics to10

OCO-2, which provides measurements of XCO2 with precision better than 1 ppm at 3 Hz with each viewing frame containing

8 footprints of approximate size 1.6 by 2.2 km. However, the physical configuration of the instrument aboard the ISS, as well

as the use of a new pointing mirror assembly (PMA), will alter some of the characteristics of the OCO-3 data, compared to

OCO-2. Specifically, there will be significant differences from day to day in the sampling locations and time of day. In addition,

the flexible PMA system allows for a much more dynamic observation mode schedule.15

This paper outlines the science objectives of the OCO-3 mission and, using a simulation of one year of global observations,

characterizes the spatial sampling, time of day coverage, and anticipated data quality of the simulated L1b. After application of

cloud and aerosol prescreening, the L1b radiances are run through the operational L2 full physics retrieval algorithm, as well

as post-retrieval filtering and bias correction, to examine the expected coverage and quality of the retrieved XCO2 and to show

how the measurement objectives are met. In addition, results of the SIF from the IMAP-DOAS algorithm are analyzed. This20

paper focuses only on the nominal nadir-land and glint-water observation modes, although on-orbit measurements will also be

made in transition and target modes, similar to OCO-2, as well as the new “snapshot ” area mapping
:::::::
snapshot

::::
area

::::::::
mapping

::::::
(SAM) mode.
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1 Introduction

As called for in NASA’s Climate Architecture Report (June 2010), the Orbiting Carbon Observatory-3 (OCO-3) was built from

spare parts during the construction of OCO-2 to be made available as an instrument of opportunity. After assessment of various

options, the decision was made in 2013 to design and build the OCO-3 payload for operation on the International Space Station

(ISS). The primary scientific objective of OCO-3 is to provide global, dense, high-precision measurements of the dry-air mole5

fraction of column carbon dioxide (XCO2) and solar-induced fluorescence (SIF) from space. A planned 3 year lifetime aboard

the ISS will allow for continuation of the international measurement record of CO2 that began in earnest with the Japanese

GOSAT satellite (January 2009 to present) (Kuze et al., 2009), followed by the NASA
:::::::
NASA’s

:
OCO-2 mission (July 2014

to present), and most recently by the Chinese TANSAT (December 2016 to present) (Yang et al., 2018)
:
,
:::
and

:::::
most

:::::::
recently

::
by

:::::::::
GOSAT-2

::::::::
(launched

::::::::::::
29-Oct-2018)

:::::::::::::::::::
(Nakajima et al., 2012). Furthermore, a 2019 launch of OCO-3

::::
with

:
a
::
3

::::
year

:::::::
mission10

::::::
lifetime

:
would provide overlap for future planned missions such as GOSAT-2 (planned 2018 launch) (Nakajima et al., 2012),

the MicroCARB mission
::::::::
endeavors

::::
such

::
as

:::::::::::
MicroCARB

:
from CNES (planned 2021 launch) (Buil et al., 2011), and possibly

even with the recently selected NASA GeoCarb mission (O’Brien et al., 2016)
:::::::::::::::::::
(Moore III et al., 2018), which has a planned

2022
:::::::
mid-2022

:
launch. Because of the relatively small variations in atmospheric CO2 globally, it is critical to understand how

the data products from various sensors intercompare at levels less than their precision, which is 0.1% for both OCO-2 and15

OCO-3. It is worth noting that all of the sensors mentioned above are polar orbiting, with the exception of OCO-3 (precessing)

and GeoCarb, which is the first planned geostationary observation system for measuring XCO2.

The nominal planned viewing strategy of OCO-3 is to take down-looking nadir viewing measurements over land to minimize

the probability of cloud and aerosol contamination. Over water,
:
measurements will be taken near the specular reflection spot

(glint viewing) to maximize the signal over the low reflectivity surface. However, unlike OCO-2, which performs complex20

maneuvers of the entire satellite bus to observe ground targets, the OCO-3 instrument will be fitted with an agile 2-D pointing

mechanism, i.e., a pointing mirror assembly (PMA). This will allow for rapid transitions between nadir and glint mode (less

than 1 minute)
::
on

:::::
order

::::
10’s

::
of
::::::::

seconds. The PMA will also allow for target mode observations, similar to those taken by

OCO-2, typically at Total Column Carbon Observation Network (TCCON) ground sites for use in validation (Wunch et al.,

2010). The
::
In

::::::::
addition,

:::
the PMA will provide the ability to scan large contiguous areas (order 80

:::
100 km by 80

:::
100 km), such25

as cities and forests, on a single overpass. This will be known as "snapshot "
:::::::
snapshot

::::
area

::::::::
mapping

::::::
(SAM)

:
mode and will

allow for fine scale spatial sampling of CO2 and SIF variations unlike what can be done with any current satellite system. If

OCO-2 and OCO-3 operate concurrently, the snapshot mode can
:::::
SAM

:::::
mode

:::
will

:
be used to gather a significant fraction of

overlapping data. However, this paper deals exclusively with the two main viewing modes (nadir-land and glint-water), while

a detailed discussion of snapshot
::::
SAM

:
mode is deferred to a companion paper.30

The sampling that will be provided by OCO-3 aboard the precessing ISS will differ significantly compared to the polar

orbits of OCO-2 and GOSAT. The overpasses will not always occur at the same local time of day for a given point on the earth,

which has implications with respect to the diurnal cycle of both clouds and aerosols (which contaminate the observations of

XCO2) and studies of the carbon cycle, which itself has a strong diurnal variation. The precession in time-of-day sampling
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will be especially informative for the SIF observations with respect to studying the biosphere response (both natural and

anthropogenic) to changes in sunlight.

The international record of satellite remote sensing of CO2 has extended across a number of measurement platforms, e.g.

SCIAMACHY (2002-2012), Aqua-AIRS (2002-present) , GOSAT (2009-present), TANSAT (2016-present) and is being used

to quantify several aspects of the carbon cycle. The CO2 seasonal cycle has been studied with SCIAMACHY and GOSAT5

data(,
:
e.g., (Buchwitz et al., 2015; Lindqvist et al., 2015; Reuter et al., 2013; Wunch et al., 2013)). The GOSAT measurements

have been used to characterize a number of relatively large disturbances to the carbon cycle, including reduced carbon uptake

in 2010 due to the Eurasia heat wave (Guerlet et al., 2013), larger than average carbon fluxes in tropical Asia in 2010 due to

above-average temperatures (Basu et al., 2014), and anomalous carbon uptake in Australia (Detmers et al., 2015). In addition,

Parazoo et al.
:::::::::::::::::
Parazoo et al. (2014) used GOSAT XCO2 and SIF estimates to better understand the carbon balance of southern10

Amazonia(Parazoo et al., 2014), while Ross et al. ,
:::::
while

:::::::::::::::
Ross et al. (2013) used GOSAT data to obtain information on wildfire

CH4:CO2 emission ratios(Ross et al., 2013).

Relative to earlier carbon dioxide measurements from space, OCO-2 is providing a much denser data set (in both time and

space) with higher precision in retrieved XCO2. The publicly available B7 version of the OCO-2 data ((
:::
now

::::::::::
superseded

::
by

::::
B9,

::::::::
available

::
at

:
https://disc.gsfc.nasa.gov/) ) has recently

:::
has

:
been used to

:::::
assess

:::
the

::::::::::
2015-2016

:::::
global

:::::::
carbon

:::::
cycle15

:::::::::::::::::
(Crowell et al., 2019)

:
,
:::
and

::
to

:
quantify changes in

::
the

:
tropical carbon fluxes (Liu et al., 2017) and the equatorial Pacific ocean

(Chatterjee et al., 2017) , due to the strong 2015 El Nino.
::::
Both

::::::::::::::::
Nassar et al. (2017)

:::
and

:
Schwandner et al. (2017) highlighted

localized sources detected by OCO-2, while Eldering et al. (2017b) provided an extensive global view of the atmospheric

carbon dioxide as observed from OCO-2 after its first two years
::
18

:::::::
months in space.

In order to continue the international measurement record of global carbon dioxide from space, NASA plans to operate20

OCO-3 from the ISS for a period of about 3 years, beginning nominally in early 2019. .
::::

The
::::::

launch
::::

date
:::

at
:::
the

::::
time

:::
of

::::::
writing

::
is

::::::::
scheduled

:::
for

:::::
April

:::
25,

:::::
2019

::::
from

:::
the

::::::::
Kennedy

::::::
Space

:::::
Center

:::
in

:::::::
Florida,

::::::
U.S.A. Since there are a number of new

considerations related to the unique viewing and sampling from this platform, it is desirable to study the expected performance

of the instrument prior to launch. To do this we generated one full year of simulated OCO-3 measurements, on which we

ran the current versions of the OCO-2 prescreeners and L2 retrieval
:::::
XCO2:::::::

retrieval
:::::::::
algorithm, as well as the post-processing25

quality filtering and bias correction. The bulk of this paper is based on these simulations to evaluate expected data quality and

data density from OCO-3 aboard the ISS.

The paper is organized as follows. Section 2 provides an overview of the OCO-3 mission, the science objectives and planned

measurement modes. In Section 3, the generation of one year of simulated L1b radiances using realistic geometry, instru-

ment characteristics and meteorology is detailed. Section 4 discusses properties of the retrieved
::::::
briefly

::::::::
overviews

:::
the

:::::::
various30

:::::::::
algorithms

:::::::::::
(prescreeners

:::
and

:
XCO2 from OCO-3 using effectively operational algorithms for retrieval, filtering ,

:::::::
retrieval)

::::
and

::::::::::::
methodologies

:::::::
(filtering

:
and bias correction. Overall analysis )

:::::::::
employed

::
in

:::
this

:::::
work.

::::::::
Analysis of the results are presented in

Section 5. Particular focus is given to the temporal and spatial coverage, expected signal-to-noise ratios, and XCO2 and SIF

errors. Finally, Section 6 provides a summary of the expected performance of the OCO-3 mission based on these simulations.

3



2 The OCO-3 science objectives and measurement overview

Like OCO-2, the OCO-3 mission has been designed to collect a dense set of precise measurements of XCO2 with a small

footprint. The scientific objective of the mission is to quantify variations of XCO2 with the precision, resolution, coverage,

and temporal stability needed to improve our understanding of surface sources and sinks of carbon dioxide on regional scales

('1000 km by 1000 km) and the processes controlling their variability over the seasonal cycle. The measurement objective is5

to quantify the dry air column carbon dioxide ratio (the total column of carbon dioxide normalized by the column of dry air)

to better than 1 ppm for collections of 100 footprints, the same objective as OCO-2. The footprint size is equal to or less then

:::
than

:
4 km2, and changes in aspect ratio with the viewing geometry. The OCO-3 mission will also provide a measurement of

solar-induced fluorescence (SIF), again with similar characteristics as OCO-2. As will be discussed in Section 3, the sampling

characteristic from the ISS will result in changing latitudinal coverage each month, such that the regions where sources and10

sinks can be quantified will vary in time. The nominal measurement operation mode will be to collect data in nadir viewing

over land and glint viewing over oceans, with a variable number of target and snapshot
:::::
mode

:::
and

::::::::
snapshot

::::
area

::::::::
mapping

::::::
(SAM) mode measurements integrated each day.

In addition, the OCO-3 mission also has the potential to contribute to carbon cycle science beyond its primary objective. The

current plan includes the nearly simultaneous installation of three other instruments aboard the ISS that are focused on various15

aspects of the terrestrial carbon cycle (Stavros et al., 2017). This includes NASA’s Global Ecosystem Dynamics Investigation

(GEDI), which is a lidar instrument designed to make observations of forest vertical structure to assess the above-ground carbon

balance of the land surface and investigate its role in mitigating atmospheric CO2 in the coming decades (Dubayah et al., 2014;

Stysley et al., 2015). NASA/JPL’s Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)

will measure evapotranspiration and assess plant stress and its relationship to water availability (Fisher et al., 2015; Hulley20

et al., 2017).
:
Finally, the Hyperspectral Imager Suite (HISUI) from JAXA will have a multi-band spectrometer with a focus

on identifying plant types (Matsunaga et al., 2015, 2017). The integration of these data, along with OCO-3 measurements of

XCO2 and SIF, have the potential to inform our understanding of many aspects of ecosystem processes (Stavros et al., 2017).

An additional enhancement to the OCO-3 data set will be provided by the currently operating OCO-2 instrument if its

special pointing capability is synchronized with this suite of instruments to view specific ground targets. A second opportunity25

for OCO-3 relates to the use of the snapshot
::::
SAM mode to focus on emissions hotspots, such as emissions from cities and power

plants, or from natural sources such as volcanoes and wildfires. If OCO-2 and OCO-3 operate concurrently, complementary

sampling could maximize the insights on the sources and sinks of carbon dioxide.

2.1 The OCO-3 instrument payload

At the core of OCO-3 is a three-band grating spectrometer built as a spare for the OCO-2 instrument, which measures reflected30

sunlight (Crisp et al., 2017; Eldering et al., 2017a).
:::::::
sunlight

:::::::
reflected

::::
from

:::
the

:::::
earth

::::::::::::::::::::::::::::::::::
(Crisp et al., 2017; Eldering et al., 2017a)

:
.
::::::::
Estimates

::
of

::::::
XCO2:::

are
:::::::
derived

::::
from

:::::
these

::::::
spectra

:::::
using

:::
an

:::::::
optimal

:::::::::
estimation

:::::::
retrieval

:::::::
method,

:::::::
denoted

:::
the

:::::
Level

::
2
::::
Full
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::::::
Physics

::::::
(L2FP)

:::::::::
algorithm,

:::
that

::::::::
integrates

:::::::
detailed

::::::
models

::
of

:::
the

:::::::
physics

::
of

::
the

::::::::::
atmosphere

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bösch et al., 2006; Connor et al., 2008; O’Dell et al., 2012, 2018)

:
.

The oxygen A-band (O2 A-band) measures
:
is
::::::::

sensitive
::
to

:
absorption by molecular oxygen near 0.76µm, while two car-

bon dioxide bands, labelled here as the weak and strong CO2 bands, are located near 1.6 and 2.0µm, respectively. The

O2 A-band
:::::::
provides

::::::
several

:::::::::
important

::::::
pieces

::
of

:::::::::::
information.

::::
The

:::::::::
absorption

:::
by

::::::
oxygen

:::::::::
molecules

:
is sensitive to the at-5

mospheric path lengthobserved due to the absorption by oxygen, and is used to estimate the apparent surface elevation

and as part of the detection of clouds. This band also provides sensitivity to ,
::::::::
allowing

:::
for

:::
an

:::::::
estimate

:::
of

:::
the

::::::::
apparent

::::::
surface

:::::::
pressure,

::::::
which

::
in

:::
turn

::
is
::::
used

:::
for

:::::
cloud

::::::::
screening

:::::::::::::::::
(Taylor et al., 2016),

:::
the

:::::::
retrieval

::
of

:::::
cloud

::::::::::::
macrophysical

:::::::::
properties

::::::::::::::::::::
(Richardson et al., 2018)

:::
and

::
to

:::::::
provide

:
a
:::::::
surface

:::::::
pressure

:::::::
estimate

:::::
within

:::
the

::::::
XCO2:::::::

retrieval
::::::::
algorithm

:::::::::::::::::
(O’Dell et al., 2018)

:
.

::::::
Aerosol

:::::::::
scattering

::
in

:::
this

::::
band

:::::::
informs

:::
the

:::::
XCO2:::::::

retrieval
:::::::::
algorithm

:::::
which

:::::::::
necessarily

:::::::
contains

:::::::
aerosol

:::::::::
parameters

::
in

:::
the

::::
state10

:::::
vector

::::::::::::::::::::::
(Nelson and O’Dell, 2018).

:::::::
Finally,

:::::
solar

:::::::::
Fraunhofer

::::
lines

::
in
::::
this

:::::::
spectral

::::
band

:::::
allow

:::
for

:::
the

:::::::
retrieval

::
of

:
solar-induced

fluorescence (SIF), a small amount of light emitted during plant photosynthesis (Frankenberg et al., 2012).

The weak CO2 and strong CO2 bands
::::::
spectral

:::::
bands

::::::::
primarily

:
provide sensitivity to carbon dioxide, with peaks at different

vertical heights, but .
:::::

They
:
are also used as part of the cloud detection scheme since they are particularly sensitive to the

wavelength dependence of aerosol scattering and absorption. Estimates of XCO
:::::::::
extinction.

::
In

::::::::
addition,

:::
the

:::
CO2 are derived15

from these spectra using an optimal estimation retrieval method that integrates detailed models of the physics of the atmosphere

(Bösch et al., 2006; Connor et al., 2008; O’Dell et al., 2012)
:::::
bands

:::::
allow

:::
for

::
a
::::
very

::::::::
accurate

:::::::
retrieval

::
of

:::::
total

:::::::
column

:::::
water

:::::
vapor

:::
due

::
to

:::
the

::::::::
existence

::
of

:
a
:::::::
number

::
of

:::::
water

:::::
vapor

:::::::::
absorption

::::
lines

::::::::::::::::::
(Nelson et al., 2016a).

The instrument has
:::::::
measures

::
at

:
1016 spectral elements in each

::::::::
channels,

:::
i.e.,

::::::::::::
wavelengths,

::
in

::::
each

:::::::
spectral

:
band, with

160 pixels averaged in groups of 20 along the slit, creating eight spatial footprints .
::
per

::::::::::::
measurement

:::::
frame.

:
The entrance20

optics have been modified to reduce the magnification from 2.4:1 to 1:1, to maintain similar footprint sizes given the lower

altitude of the ISS, which typically flies at '404 km, compared to OCO-2 at '705 km. This magnification change will result

in OCO-3 footprints that are < 4 km2, comparable to the 3 km2 of OCO-2. The instrument field of view, i.e., the frame, will be

approximately 13 km, or 1.6 km width per eight footprints, and the spacecraft motion covers '2.2 km during the 0.33 seconds

of integration time. The rate of data collection will be approximately 1 million sets of 3 spectral band measurements per day,25

before considering ISS limitations discussed in Section 2.3.

The OCO-3 project inherited a fully characterized spectrometer from the OCO-2 project, which was designed for integration

on a LeoStar spacecraft. For utilization on the ISS JEM-EF, a number of adaptations were required (Basilio et al., 2013). These

include redesign of the thermal system, updates to the electrical system, and updates to the data flow from the instrument to

the data processing center at JPL. These changes do not fundamentally change the radiometric characteristics, and therefore30

the science data quality, so will not be discussed in this paper. As described in the following section, a new pointing mirror

assembly was also required for OCO-3.
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2.2 OCO-3 pointing mirror assembly overview

A design change that impacts the radiometric characteristics of the data is the addition of a pointing mirror assembly (PMA).

The PMA is required to allow non-nadir observations from the fixed position on the ISS, unlike the currently operating OCO-2,

which maneuvers the entire spacecraft to point. Two important design requirements of the PMA were to allow quick movement

through a large range of angles, and that the movement not impart any angular dependent polarization or radiance changes in the5

measurements. To meet these objectives a variation of the pointing system designed for the Glory Aerosol Polarimetry Sensor

(APS) (Persh et al., 2010) was selected. This system relies on a single pair of matched mirrors in an orthogonal configuration

that impart less than 0.05% change to the polarization (Mishchenko et al., 2007). For the OCO-3 PMA the concept was extended

to a 2-axis pointing system. There are two elements; one controlling the azimuthal (cross-track) angle, and the other controlling

the elevation (along-track) angle. Although the PMA itself does not change the polarization of the light more them
::::
than 0.1%,10

there are polarization implications, since the image of the slit is rotated as a function of the change in the PMA, primarily

driven by the elevation (along-track) angle. It is worth noting that reflected sunlight is naturally polarized by its interaction

with the earth’s surface and atmosphere, especially over water.

Early in the mission design, a trade study was performed, evaluating the expected signal with and without the installation of

an additional polarization scrambler, i.e., a polarization nulling optical component. Without a scrambler, the signal measured15

by the instrument is large when the polarization of the incident light is aligned with the axis of polarization sensitivity of

the instrument, i.e, polarization angle of zero. However, the measured signal decreases towards zero as the polarization of the

incoming light rotates orthogonal to the axis of instrument polarization (polarization angle of 90 degrees). Inserting a scrambler

would make the polarization orientation of the incoming light random, regardless of the position of the PMA
:::
and

:::
the

:::::::::
orientation

::
of

:::
the

:::::::::
instrument

:::
slit, but would reduce the signal by nearly 50%compared to having no scrambler. In addition, the analysis20

showed that a single optical element that could scramble light at all of the OCO-3 wavelengths could not be manufactured

and characterized to the required precision. Lastly, the volume and coverage of data with sufficient signal in the no-scrambler

case was predicted to be more than sufficient to meet the science objectives. Therefore, OCO-3 will be operated without a

polarization scrambler.

As will be discussed in more detail in Section 5.1, the PMA is one element that contributes to a change in the overall light25

throughput of OCO-3 compared to OCO-2. In the O2 A-band, each mirror has a reflectivity of 95.4%, so the 4 mirror PMA

system has an effective transmission of 83%. The weak and strong CO2 band overall transmissions are higher, at 93% and

95%, respectively.

The thermal vacuum testing of OCO-3 has been finalized and analysis of the data is underway, with completion planned in

the second half of 2018. Details of the measurement performance and how it compares to the instrument requirements will be30

reported in a forthcoming manuscript.
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2.3 Sampling from the International Space Station - routine measurements

The ISS orbit is nearly circular about the earth, with altitudes that ranges from 330 km to 410 km. The planned altitude during

the time of OCO-3 operation is 405 km. With a ground-track velocity of 27,600 km/h (7.667 km/s), one orbit around the earth

is completed in about 92 minutes. The inclination of the orbit is 51.6◦, which limits the latitudinal range that can be sampled

by OCO-3. These orbital parameters result in a precessing orbit, meaning the local overpass time
::::
with

:::
the

::::::
equator

::::::::
crossing5

::::
time

::::::::
occurring

:::::
about

::
20

:::::::
minutes

::::
early

:::::
each

:::
day.

::::
The

:::::
effect

::
is

:::
that

::::
over

:::
the

::::::
course

::
of

:
a
::::
year

:::
the

::::::
OCO-3

::::::::
sampling

::
at

::
a

::::::::
particular

:::::::::
geolocation

:
varies across all hours of the dayover the course of a year. .

::::::
Many

::::
more

::::::
details

::
of

:::
the

:::
ISS

:::
and

:::
its

::::
orbit

:::
can

:::
be

:::::
found

::
in

:::
the

::::::::
technical

:::::::::
document

::::::::::
ESA (2011).

:::::::
Section

:::
3.2

:::::::
pertains

:::::::::
specifically

::
to

:::
the

::::
ISS

::::
orbit

::::::::::
parameters.

OCO-3 will dynamically control the viewing mode along each orbit via the PMA, with routine data collection consisting

of nadir and glint measurements. Over land, where both nadir and glint measurements provide sufficient signal, the
:::
The

:::::
PMA10

::::::::::
compensates

:::
for

:::
ISS

:::::
pitch

:::
and

:::
roll

::
in
::::::::
real-time

:::::
using

:::
the

:::::::
on-board

::::
star

::::::
tracker

:::
and

::::::
Inertial

::::::::::::
Measurement

::::
Unit

::::::
(IMU).

:::
The

:::::
IMU

::::::::
comprises

:::::
three

:::::::::
fiber-optic

:::::
gyros

:::
and

:::::
three

:::::::::
solid-state

::::::::::::
accelerometers

::
in

::
a
:::::::
compact

:::::::
package

::::
that

:::::::
measure

:::::::
velocity

::::
and

:::::
angle

::::::
changes

:::
in

:
a
:::::::::
coordinate

::::::
system

:::::
fixed

:::::::
relative

::
to

::
its

:::::
case.

::
In

:::::::::
principle,

::::::
OCO-3

:::::
could

:::::::
operate

::::
even

:::::
when

:::
the

::::
ISS

::
is

:::::
rolled

:::
90

::::::
degrees

::::::
relative

:::
to

:
it
:::::::
nominal

:::::::
attitude.

:

::::
Over

::::
land measurements will primarily be made in nadir mode, where both the optical path length and statistical probability15

of observing clouds are minimized.

Glint measurements are necessary over the ocean, as the surface reflectivity is not large enough to produce adequate signal,

except in a few cases. A small offset from the true glint spot will be included to avoid saturation of the instrument. While the

glint measurements provide larger signal over oceans, the longer optical path lengths and enlarged footprint of this geometry

also make these measurements more sensitive to cloud cover (Miller et al., 2007).20

The transition time for the PMA is required to be less than 50 seconds between nadir and glint modes, which translates

into approximately 380 km along-track. In testing with the flight hardware, all moves were made within 10 seconds, which

corresponds to about 75 km along track. Mission planning assumes the required 50 s move time, and thus, similarly
::::::
similar

to GOSAT, small land masses in the ocean will be measured in glint mode, while continental scale areas (areas that will be

sampled for more than 200 seconds) will be measured in nadir mode. Unfortunately, this means that most inland fresh water25

bodies will be observed in nadir mode and will therefore not provide useful retrievals due to low signal to noise ratios. This

will include bodies as large as, for example,
:::::::::
substantial

:::::
bodies

:::
of

::::
water

:::::
such

::
as the Great Lakes of North America. However,

bodies of water as large as the Mediterranean Sea
::
for

::::::::
example will be sampled in glint viewing. This

:::
The

::::::::
sampling

:::::::
strategy is

one of the key differences from OCO-2, where the measurement mode is specified orbit by orbit.

A subtlety of OCO-3 relative to OCO-2 is that, for nadir-land observations, the slit will remain perpendicular to the direction30

of flight since the instrument is not rotated to maintain measurements in the principle plane. This will produce a constant swath

width of about 13 km, as depicted in Figure 1, which provides a best-guess representation of several frames viewing the Los

Angeles metropolitan area. The ground footprint for glint mode measurements, however, will more closely resemble that of

OCO-2, as the PMA will rotate to view near the specular reflection point.
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Figure 1. OCO-3 context image depicting 9 sequential frames acquired in 3.0 seconds in nadir viewing mode over the Los Angeles basin.

Each frame contains 8 adjacent footprints in the cross-track direction of size 2.2 by 1.6 km, yielding a footprint area of approximately

3.5 km
:

2. Each footprint constitutes a sounding, containing high resolution spectra in the Oxygen-A, weak CO2 and strong CO2 bands. Image

courtesy of Karen Yuen and Laura Generosa at JPL.

2.4 Target validation measurements

For the currently operating OCO-2, target mode measurements are taken over ground validation sites of the Total Carbon

Column Observing Network (TCCON) (Wunch et al., 2010, 2011, 2017). The TCCON instruments are ground-based Fourier

Transform Spectrometers that look directly at the sun (thus avoiding the complications of atmospheric scattering phenomena),

and are used to derive total column carbon dioxide measurements with similar sensitivity as OCO-2 and OCO-3. The TCCON5

data are tied to the WMO scale for carbon dioxide through routine, ongoing overflights of aircraft equipped with in-situ sensors.

The mechanics of the target mode observations of OCO-3 will be very similar to that of OCO-2, where data is collected using a

sweeping, or dithering, pattern over the ground-based station. The width of the sampling area is determined by the combination

of the instrument field-of-view and rotation of the footprints, which, in turn, is determined by the extent of PMA motion. Each

target acquisition provides a set of overlapping observations that are used to statistically evaluate the retrieval performance10

for a range of viewing geometries as compared to the static TCCON ground-based measurement. The current OCO-2 mission
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captures 1 or 2 target measurements per day, such that the total number gathered over the mission lifetime has been sufficient

to perform validation (Wunch et al., 2017). OCO-3 will follow this basic strategy, although for some sites, where there are very

few measurements in some seasons, e.g., at high latitudes in the winter, OCO-3 will potentially take more target measurements

per day if it will improve the seasonal coverage for these sites.

2.5 Snapshot
::::
area

::::::::
mapping

::::::
(SAM) mode measurements5

The agile pointing system of OCO-3 will also allow for collection of data in new spatial patterns relative to OCO-2. We have

designed a snapshot mode, which can simply be thought of as a target observation
:::
The

::::::::
snapshot

::::
area

:::::::
mapping

:::::::
(SAM)

:::::
mode

:::
has

::::
been

::::::::
designed,

::::::
which

::
is

::::::
similar

::
to
::::

the
:::::
target

:::::
mode

:::::::::::
observations,

:::
but

:
with two dimensional sweeping, i.e., from side to

side as well as back and forth. In this way, an area on the order of 80
:::
100 km by 80

:::
100 km can be sampled. The types of areas

that will be sampled include CO2 emission hotspots, terrestrial carbon focus areas, and volcanos. Based on analysis of fossil10

fuel emissions and uncertainties of the emissions estimates (Oda and Maksyutov, 2011; Oda et al., 2018), a nominal sampling

strategy for the emission hotspots is being developed. Preliminary results suggest that 50 to 100 snapshots per day will be

collected, consuming up to 200 of the approximately 650 day-light orbit minutes, i.e., 25 to 30% of the data volume. This will

:::
All

::
(or

::::::
nearly

:::
all)

::
of
::::

the
::::::
SAM’s

:::
will

:::
be

:::::
made

::::
over

::::
land,

:::::::::
especially

::
in

:::
the

:::::::
northern

:::::::::::
hemisphere,

::::::
leading

::
to

::
a
:::
vast

:::::::::
reduction

::
in

::
the

:::::::
amount

::
of

:::::::
nominal

:::::::::
nadir-land

::::
data

::::
that

::
is

:::::::
actually

::::::::
collected.

::::
The

::::::
SAM’s

::::
will provide a novel data set for exploration by15

the scientific community that is focused on the remote sensing of greenhouse gases and SIF from space. The full details of the

new snapshot
:::::
SAM mode will be presented in a future companion paper

:::::
paper

::::::::::
post-launch

::::
using

:::::::
on-orbit

::::::::::::
measurements.

3 Simulated geometry, meteorology and L1b dataset

In this section, we discuss the simulation of OCO-3 data in terms of viewing geometry, meteorology and observed radiometric

quantities such as data density and SNR
:::::
signal

::
to

:::::
noise

::::
ratio

::::::
(SNR)

::
of

:::
the

::::::::::::
measurements, the latter of which is the primary20

driver of instrument precision. This will enable us to realistically discern
:
a
:::::::
realistic

:::::::
analysis

::
of the effects that the ISS orbit will

have on our
:::
the

::::::
OCO-3

:
data products, in comparison to the sun-synchronous afternoon orbits of OCO-2. The generation of

OCO-3 L1b radiances presented in this paper followed the same basic methodology as that used in previously published work

on both GOSAT and OCO-2, e.g., (Bösch et al., 2006; O’Brien et al., 2009; O’Dell et al., 2012).

3.1 Simulated OCO-3 observation geometry25

Actual ISS ephemeris data for the year 2015 were used to provide position and velocity vectors of the space station each second

over the course of a year. To create a manageable data set for this work, samples were taken only once every 10 seconds, rather

than at the true 3 Hz collection rate of the OCO-3 instrument. Also, only one sounding per frame, rather than eight, was used

since the truth models lack the fidelity necessary for such high spatial resolution. The analysis presented in this work focuses

on nadir and glint
::::::::
nadir-land

:::
and

::::::::::
glint-water observation modes only, i.e., ignores transition, target and snapshot modes. This30

provides a baseline of the densest possible nadir and glint data if all the other viewing modes were disabled. As was mentioned
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in Sect. 2.5, it is estimated that as much as 25-30% of the data volume will be collected in snapshot mode, with some
::::::
mostly

:::
over

::::::::
northern

::::::::::
hemisphere

::::
land.

:::::
Some

:
additional small amount(,

:::
on

:
order of a few percent) ,

::::
will

::
be

:
collected in target mode.

:::
and

::::::::
transition

::::::
modes.

:

Although the ISS latitude varies between ± 51.6◦, the OCO-3 PMA allows for measurements extending beyond this range

to approximately± 55.5◦ latitude. However, we found that useful measurements, i.e., those assigned a good XCO2 quality flag5

as described in Sect. 4.3 and 5.3, are obtained at latitudes less than about 52◦, where the solar zenith angle is less than about

73◦. The exact range of latitudes measured on any given day will vary, depending on solar geometry and mechanical viewing

constraints from the ISS, as described below.

The top panels of Figure 2 show the number of measurements as a function of latitude and day of year, for the full annual data

set. Nadir-land
:::
with

:::::::::
nadir-land

::::
(left

:::::::
column)

:
and glint-water observations are shown separatelyin the left and right columns,10

respectively
::::
(right

:::::::
column)

:::::::::::
observations

::::::
shown

:::::::::
separately. The data are binned in increments of 1 day and 2◦ latitude. The

values in these figures, and in the accompanying discussion, must be inflated by 240 to reflect expected real sounding densities

at the full spatiotemporal resolution. Note that the figures in this section use L1b data collection density with no filtering.

That is no cloud/aerosol prescreening or post L2
:::::
L2FP filtering have been performed here, topics which are discussed in later

sections.15

The most notable feature of both the nadir-land and glint-water observation density
::
the

:::::::
density

:::
data

:
is the sinusoidal pattern

with a period of about
:::::::::::
approximately

:
70 days, yielding approximately

::
'5 repeats

:::::
repeat

::::::
cycles

:
per year. The nadir-land

observation density ranges from close to zero soundings per bin below about
:
∼30◦

:
S
:

latitude (where there is little land), to

about
::::::::::::
approximately 25 soundings per bin (per day

:
,
:
per 2◦ latitude) up to about

:::::::::
southward

::
of

::
∼20◦ N latitude. Above about

:::::::::
Northward

::
of

::
∼20◦north

:
N
:
latitude, the sampling density has significant

::::::::::
dependences

:::
on latitude and timedependences, with20

a maximum of more than 300 soundings per bin at the northern extremity (approximately
::
∼55◦ N).

The density pattern for glint-water viewing is qualitatively very similar, but with much higher (50 to 60 soundings per bin)

::::::
density

:
2
:::

to
:
3
:::::
times

::::::
higher

::::
than

::::
land

:
across most of the subtropics. The data densities can be over 300 soundings per bin at

high latitudes near the satellite orbit inflection points. The simulated geometry used in this work takes into account the physical

limitations of the PMA due to interference from the solar panels and other constraints on the ISS. These physical restrictions25

have an especially large impact on the southern hemisphere glint data, as seen around DOY 120, 180 and 240.
:::
240

::
in

::::::
Figure

::
2.

The lower panels of Figure 2 show the same data subset to DOY range 60 to 119 (approximately March-April) to highlight

the latitude and time dependence of the data collection across most of a single 70 day repeat cycle. Some interesting features,

advantages and limitations of these collection patterns are presented after the discussion of the seasonal maps that are shown30

next.

Another way to visualize the spatiotemporal distribution of the data is presented in Figure 3, which shows seasonal sounding

density maps from the simulated data set, binned at 2◦
::::::
latitude by 2◦ latitude

::::::::
longitude. Here, and elsewhere in the manuscript,

the seasons are defined as December/January/February (DJF), March/April/May (MAM), June/July/August (JJA), and Septem-

ber/October/November (SON). Here, no prescreening has been applied, and the reduction in spatiotemporal resolution requires35
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inflation of the values by 240 to get real expected sounding densities. There are just under a million soundings total for the full

year, with approximately 25 soundings in each 2◦ bin over most of the globe per season. Presenting the data in this manner

accentuates the high density of soundings at the orbit inflection points, although the drift in coverage with seasons is muted.

The gaps in data collection so apparent in Figure 2 are no longer observed when the data have been aggregated monthly or

seasonally. This has implications for the spatial and temporal scales of science questions that can be probed with the OCO-35

observations made from the ISS.

Due to the precessing orbit, the local overpass time of the ISS ranges across all hours of the day. For OCO-3, with its pointing

capability, this means that all daylight hours can in principle be sampled. Figure 4 uses Hovmoller diagrams to illustrate some

of these features
:::
the

:::::::
features

::
of

:::
the

::::::::
sampling

::::
from

:::
the

:::
ISS

:::::::::
precessing

::::
orbit. The upper left panel shows the observation latitude

as a function of hours from local noon (HFLN) and day of year (DOY) for the full annual data set. The dominance of the yellow10

colors suggests that a large fraction of the soundings are taken at latitudes greater than 50◦ N.

The upper right panel shows the HFLN as a function of latitude and DOY for the full annual data set. Most of the observations

are taken ± 5 hours relative to local solar noon. Here the ' 70 day repeat cycle is evident, and the precession in observation

time as a function of latitude becomes clear.

The lower panels of Figure 4 subset the data to DOY 60 to 119 (approximately March and April) to highlight some of the15

detail across a single repeat cycle. Ten day periods are denoted with vertical lines in the diagrams. The data dropouts due to

mechanical interference of the PMA by the ISS are seen at the higher southern latitudes. In general, the diurnal and spatial

sampling pattern of OCO-3 aboard the ISS will vary significantly from the more familiar polar orbiting satellites. This will

have implications on the XCO2 and SIF science questions that can be explored.

An additional way to visualize the data is shown in Figure 5 , which presents global maps of the sampling pattern for the20

six sets of ten sequential days, highlighting both the spatial coverage and time of day sampling for a single repeat cycle. These

maps clearly show the ascending/descending node variation in timeand make it easy to comprehend ,
:::::::::
elucidating

:
the drift in

HFLN as a function of day for any given location.

For example, imagine a field site of interest located in the Amazon basin. At the beginning of the repeat cycle this area is

sampled in the ascending node (ground track orientatied from south-west to north-east) about 3-4 hours after local noon. Ten25

days later (days 70-79), the orbits are still oriented in the ascending node, but now the sampling time has drifted closer to

noon. The next ten day period (days 80-89) continues with ascending node orbits but sampling time about 3-4 hours before

noon, when the biological processes driving SIF and CO2 are only just ramping up for the day. Then suddenly, during the

next 10 day period (days 90-99), the very same field site begins to be sampled in the descending node, i.e., from north-west to

south-east, about 5 hours after noon. The sampling time again drifts closer to noon over the course of the next 10 days (days30

100-109) before the final set of days (110-119) are observed in the morning hours. Disentangling the diurnal from the annual

(and semi-annual) signals could be a challenge with this complex sampling pattern. Other sites at different latitudes will, of

course, have different sampling patterns. The
:::
The

:
interpretation of this complex sampling pattern by global flux inversion

models in an observing system simulation experiment (OSSE), as was performed for OCO-2 by Miller et al. (2007) and for

GOSAT by Liu et al. (2014), is an interesting, but unexamined, issue that is outside of the scope of the current work.35
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Figure 2. Simulated sounding densities for nadir-land (left) and glint-water (right) for the annual (top) and DOY 60-119 (bottom) data sets.

Data are binned in 1 day by 2◦ latitude increments. Values should be inflated by 240 to reflect real expected sounding densities at the full

spatial (8 footprints per frame) and temporal (3 Hz) acquisition rates. To account for the large dynamic range, the density scale has been

truncated at 150, although the extreme high latitudes contains up to 300 soundings per bin in some cases.

3.2 Simulated instrument polarization angle and Stokes coefficients

As unpolarized solar radiation traverses the earth’s atmosphere (twice) prior to incidence upon the OCO instrument
:
a
::::::::::
space-borne

:::::
sensor, interactions with particles, e.g., oxygen molecules and aerosols, as well as reflection off the surface, introduce some

amount of polarization. Both the OCO-2 and OCO-3 instruments are sensitive only to radiation that is oriented
::
the

::::::::::
component
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Figure 3. Seasonal L1b sounding density maps for 2◦
:::::

latitude by 2◦ latitude
:::::::
longitude bins. Values should be inflated by 240 to reflect real

expected sounding densities at the full spatial (8 footprints per frame) and temporal (3 Hz) acquisition rates.

::
of

:::::::
radiation

::::::::
polarized perpendicular to the long axis of the spectrometer slits 1. This is critical over strongly polarizing water sur-

faces, but of lesser concern over land surfaces, which are only slightly polarizing. In the limit that the axis of accepted and actual

polarization are perfectly orthogonal, the intensity observed by the instrument is identically zero. Although the degree (i.e.,

amount)of polarization of the reflected sun light is unknown (although somewhat predictable for water-glint measurements),

the
::::::::::
Specifically,

:::
the

::::::::
vertically

::::::::
polarized

::::::::::
component

::
of

::::
light

::::::::
reflecting

:::
off

::
a

:::::
water

::::::
surface

::
is

::::
very

::::
low

:::
for

::::::::
incidence

::::::
angles

::
in5

1As noted in (Crisp et al., 2017), the OCO-2 instrument was built erroneously; it was intended to be sensitive only to light parallel to the long axis of the

spectrometer slits. OCO-3 was built in the same manner. This error was mitigated on OCO-2 by yawing the spacecraft in order to maximize the signal over

ocean while simultaneously maintaining sufficient electrical power generated from sunlight on incident on the spacecraft solar panels. For OCO-3, electrical

power comes from the ISS and is therefore a non-issue.
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Figure 4. Hovmoller plots showing the observation latitude versus day of year and sampling time relative to local noon (top left) and the time

relative to local noon versus DOY and latitude (top right) for the full year of simulations. Lower panels are subsets highlighting the patterns

across days 60 to 119. Values should be inflated by 240 to reflect real expected sounding densities at the full spatial (8 footprints per frame)

and temporal (3 Hz) acquisition rates.

:
a
:::::
broad

:::::
range

:::::
about

::::::::::
Brewster’s

:::::
Angle

::::::
(53◦).

::
If

:::
the

:::::::::
instrument

::
is
:::::::
oriented

:::::
such

::::
that

:
it
:::::

only
::::::
accepts

:::
the

:::::::::
vertically

::::::::
polarized

:::::::::
component

:::
for

:
a
:::::
given

::::::::
sounding

::::
then

:::
the

:::::::::::
measurement

::::
SNR

::
is

:::::::
expected

::
to
:::
be

::::
very

:::
low

::
in

::::::::
clear-sky

::
or

::::::::::::::
nearly-clear-sky

::::::
scenes,

::::::
making

:::
the

:::::::
retrieval

::
of

::::::
XCO2 :::::::::

unreliable.
:::
The

:
polarization angle of any particular sounding , which is a form of the throughput

of the instrument, is a
:
is

:
a
:
quantity that is calculable from illumination and observing geometries

::
the

:::::::::
observing

:::::::::
geometery. The

local meridian plane, formed by the local normal and the ray from the ground FOV to the satellite, forms the reference plane5

for polarization. The polarization angle of a measurement (φp) is then defined as the angle between the axis of the instrument’s

14



Figure 5. Simulated OCO-3 sampling pattern for six 10-day periods, colored by the time in hours relative to local noon. The pixel size of

individual footprints has been magnified for viewing purposes.

accepted polarization and this reference plane (Boesch et al., 2015). Since fundamental physics predicts that scattered light

will be preferentially polarized parallel to the plane of a horizontal surface, i.e., perpendicular to the
::::
local

::::::::
meridian reference

plane, the larger (smaller) the polarization angle
:::::
closer

:::
the

::::::
OCO-3

::::::::::
polarization

:::::
angle

::
to

:::
90◦

::::
(0◦), the more (less) of the reflected

sunlight incident on the instrument will pass through to the detectors, assuming a constant amount of polarization of the light.

The geometry of individual soundings allows for the calculation of φp, and hence to the calculation of the Stokes coefficients,5

which

:::
The

::::::::
polarized

:::::::
intensity

::::::::
detected

::
by

::::::
OCO-2

:::
or

::::::
OCO-3

::
is

:::::
given

:::
by:

Imeas = mII + mQQ+ mUU
:::::::::::::::::::::::

(1)

:::::
where

::
I

::::::::
represents

:::
the

:::::
total

:::::::
intensity,

::::
and

::
Q

::::
and

::
U

::::::::
represent

::::::::::
components

::
of
::::

the
::::::
linearly

::::::::
polarized

:::::::
portion

::
of

:::
the

:::::
light.

::::
The

::::::
circular

::::::::::
component

::
of

:::::::::::
polarization,

:::
V ,

::
is
:::::::

ignored
:::

as
::
it

::
is

::::::::
typically

::::::::
extremely

:::::
close

:::
to

::::
zero

::
in
::::

the
::::::::::
atmosphere,

::::
and

:::::
most10

:::::::::
instruments

:::
are

::::::::
designed

::
to

:::
be

:::::::::
insensitive

::
to

::
it.

::::
The

:::::::
so-called

:::::::
Stokes’

::::::::::
coefficients

::
mi:::

for
:::
an

:::::::::
instrument

:::::::::
containing

:
a
::::::::
polarizer

::::
such

::
as

::::::
OCO-2

::::
and

::::::
OCO-3 are given bythe set of equations;
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:
:

mI =
1

2
::::

(2)

m
: Q =

1

2
· cos(2φp) (3)

mU =
1

2
· sin(2φp) (4)

A critical difference in OCO-3 observations aboard the ISS is that the polarization angle of the measurements will not be5

constant nor tied to latitude, as is the case for OCO-2, where φp is controlled by the dynamic orientation of the spacecraft to

maximize instrument throughput (Crisp et al., 2017). For OCO-2 all data since November 2015 have been collected with the

spacecraft yawed at 30◦, resulting in a constant polarization angle of
::::
with about the same sign and magnitude. For OCO-3, the

polarization angle of the glint measurements will vary significantly in time and space as the pointing mirror
::::
space

:::
and

:::::
time

::
as

::
the

:::::
PMA

:
is oriented to view the ground target of interest.10

Detailed optical modeling and laboratory tests have been
::::
were

:
performed to simulate the effects of the PMA induced

:::::::::::
PMA-induced

:
changes to the polarization angle. The analysis showed

:::::
shows

:
that φp is a largely driven by the the PMA

elevation angles with a some influence of
:::::
angle

::::
with

:::::
some

:::::::
influence

:::::
from the PMA azimuth angle. For elevation angles below

20◦, the polarization angle is nearly equal to the elevation angle of the PMA. In the nadir observing mode, the sensitivity to

polarization is essentially negligible. However, for all off-nadir measurements, i.e., glint, transition, target, and snapshot
:::::
SAM15

modes, there will be a range of polarization angles, as the elevation angle of the PMA is adjusted to view the ground target.

Ultimately this will have effects on the signal to noise ratios, as will be discussed in Section 5.1

:::::
These

::::::
effects

:::
are

:::::
neatly

:::::::::::
summarized

::
in

::::::
Figure

::
6,

::::::
which

:::::
shows

::::::::
contours

::
of

:::
the

:::::::::
theoretical

:::
O2:::::::

A-band
:::::
SNR

::
as

:
a
::::::::

function

::
of

::::
both

::::
solar

::::::
zenith

:::::
angle

::::
and

::::::::::
polarization

:::::
angle

:::
for

:
a
:::::::::

specularly
::::::::
reflecting

:::::::
surface

::::::
model

:::::::::::::::::::
(Cox and Munk, 1954)

::
at

:
a
:::::
fixed

::::
wind

:::::
speed

::
of

::::::
8 m/s.

:::
The

::::::::
constant

::::::::::
polarization

:::::
angle

::
of

::::::
OCO-2

::
at
::::
30◦

::
is

:::::::::
designated

:::
by

:::
the

::::::::
horizontal

::::::::::
dot-dashed

::::
line,

:::::
while20

::
the

:::::::::::
polarization

:::::
angle

::
of

::::::
OCO-3

::::::::
assumed

::
in

:::
this

:::::
work

::
is

::::::
shown

::
by

:::
the

:::::::
labeled

::::::
dashed

::::
line,

::::::
which

::::
used

:
a
::::::
simple

:::
but

:::::::
inexact

:::::::::::::
parameterization

:::
of

::
the

::::::::::
relationship

:::::::
between

:::
the

:::::
PMA

::::::::
elevation

:::::
angle

::::
(ζPMA)

::::
and

:::
the

::::::::::
polarization

:::::
angle.

::
In

:::
the

::::::
figure,

:::
the

:::::
actual

::::
range

:::
of

::::::::::
polarization

::::::
angles

:::
for

::::::
OCO-3

::::::::
expected

:::::::
on-orbit

:::::
using

::
a
:::::
more

::::::::
complete

::::::::::::::
parameterization

::
is

::::::::
indicated

::
by

:::
the

:::::
gray

::::::
shaded

::::
area.

:::
As

:::::
stated

::::::
above,

:::
this

:::::
range

::
is

::::::
closely

::::
tied

::
to

:::
the

:::::
PMA

::::::::
elevation

:::::
angle,

:::::
which

:::::
itself

::
is

::::::
closely

::::::
related

::
to

:::
the

:::::
solar

:::::
zenith

:::::
angle

::
at

::
the

::::
glint

:::::
spot.

::::
Note

:::
that

::::::
actual

:::::::
on-orbit

::::::
OCO-3

:::::
SNRs

::::
over

:::::
ocean

::
at

:::
the

:::::
higher

::::
SZA

::::::
values

:::
will

:::
be

::::::::
somewhat

::::
less25

:::
than

:::::
those

:::::::
depicted

::
in
::::::
Figure

::
6

:::
and

::::::
Section

::
5,
:::
as

::::::
OCO-3

::::
will

:::::::
off-point

::::
from

:::
the

::::
true

::::
glint

::::
spot

::
to

:::::
avoid

::::::::
saturating

:::
its

::::::::
detectors,

::
as

:::
was

:::::
done

::
for

:::::::
OCO-2

:::::::::::::::
(Crisp et al., 2017).
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Figure 6.
::::::
Contour

:::
plot

::
of

:::
the

::::::::
theoretical

::::
SNR

::::::
versus

::::
solar

:::::
zenith

:::
and

:::::::::
polarization

::::::
angles

::
as

::::::::
determined

:::::
from

:
a
::::
Cox

:::
and

:::::
Munk

::::::
surface

::::::::
reflectance

:::::
model.

::::::
Results

::::
here

:::
are

::
for

:::
the

:::
O2::::::

A-band
:::::::
assuming

:::
an

:
8
:::::
meter

:::
per

:::::
second

::::::
surface

::::
wind

:::::
speed.

::::::
Results

:::
for

:::
the

::::
CO2 ::::::

spectral

::::
bands

:::
and

:::
for

::::
other

::::::
realistic

::::
wind

::::::
speeds

:::
look

::::::::::
qualitatively

:::::
similar

::::
(not

::::::
shown).

:::
The

::::
fixed

::::::
OCO-2

:::::::::
operational

:::::::::
polarization

::::
angle

:::
due

::
to

:::
the

:::
30 ◦

::::::::
instrument

::::
yaw

:
is
:::::::
indicated

:::
by

::
the

::::::::
horizontal

::::::::
dot-dashed

::::
line,

::::
while

:::
the

:::::
simple

:::::::::
relationship

:::::::
between

::
the

::::::
OCO-3

:::::::::
polarization

:::::
angle

:::
and

:::
solar

:::::
zenith

:::::
angle

:::
used

::
in
::::
these

:::::::::
simulations

::
is

:::::::
indicated

::
by

:::
the

:::::
dashed

::::
line.

:::
The

::::
gray

:::::
shaded

:::::
region

:::::
shows

:::
the

::::
range

::
of

:::
the

::::::
expected

:::::::
on-orbit

:::::
OCO-3

:::::::::
polarization

:::::
angles

:::::::::
determined

::::
from

:::::
recent

:::::::::
calculations.

:

3.3 Simulated meteorology, gas and cloud/aerosol fields

In our simulations, vertical profiles of standard meteorological information needed to calculate realistic radiances were taken

from the National Centers for Environmental Prediction (NCEP) (Saha et al., 2014). The NCEP database has a native spatial

resolution of 2.5◦ latitude by 2.5◦ longitude (10,512 spatial points) with variables given on 17 vertical layers every 6 hours.

For this work, the model was sampled at individual OCO-3 observations, defined by time, latitude, longitude, and surface5

elevation, for temperature, humidity, two meter temperature, surface pressure, and winds. The data are interpolated spatially

and temporally to 26 vertical levels to create "scenes" for every individual OCO-3 sounding.

Vertical values of carbon dioxide for each sounding were sampled from the CarbonTracker 2015 database (CT2015) (Peters

et al., 2007), with updates documented at http://carbontracker.noaa.gov), which has a native spatial resolution of 2.0◦ latitude by

3.0◦ longitude (10,800 spatial points), with CO2 mole fractions given on 25 vertical layers every 3 hours. Data are interpolated10

in space and time to match individual OCO-3 soundings. Note that although the ISS ephemeris was taken from 2015, the CT

database was sampled for 2012. Ultimately this makes no difference to the overall outcomes reported in this paper (which are
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not focused on actual carbon cycle science), but it is important to note that the simulations are representative of an earth-like

system, not the actual conditions on Earth at the time of the soundings.

For each individual sounding, a cloud and aerosol profile containing 25 vertical layers was built based on a random se-

lection from a monthly climatology of CALIOP profiles
:::::
based

::
on

:::
the

::::::::::
05kmALay

::::::
product

::::::::::::::::::
(Winker et al., 2007)

:
as
:::::::::

described

::
in

:::
the

:::::
OCO

::::::::
simulator

:::::::::
document

::::::::::::::::::
(O’Brien et al., 2009).

:::::
This

::
is

:
a
:::::

static
::::::::

database
:::
of

:::
real

:::::::::
CALIPSO

:::::::
profiles

:::::::::
measured

::
in

::
a5

:::::
single

::::
year

:
binned at 2.0◦ latitude by 2.0◦ longitude (16,200 spatial points) , as described in the OCO simulator document

(O’Brien et al., 2009)
::::
with

::::
each

:::
bin

:::::::::
containing

:::
on

:::::::
average

:::::
about

::
90

:::::::
profiles,

:::
for

::
a

::::
total

::
of

::::::::::::
approximately

:::
1.4

:::::::
million

::::::
profiles.

While these profiles do not capture the diurnal characteristics of cloud and aerosol fields (as CALIOP , flying in the A-Train,

always has the same
::::
since

::::::::
CALIOP

:::
has

::
a
:::::
fixed local overpass time), they are sufficient for this analysis, which is assessing

statistics on monthly or seasonal time scales.10

3.4 Simulated land surface model and SIF

A model of the earth’s surface is a critical component for the calculation of reflected solar radiances. For land surfaces, scalar

Bi-Directional Reflectance Distribution Functions (BRDF) were taken from the MODIS 16-day MCD43B1
:::::::::
MCD43B1 product

(Schaaf et al., 2002). For water surfaces, a fully polarized Cox and Munk model with a foam component based on wind speed

was used. Additional details and citations can be found in the CSU simulator ATBD (O’Brien et al., 2009). Realistic estimates15

of solar induced chlorophyll fluorescence (SIF) from biological activity were added to the oxygen
::
O2:

A-band L1b radiances

based on the implementation of Frankenberg et al. (2012). A static gross primary production (GPP) climatology of Beer et al.

(2010), which is a mean monthly climatology based on the 18 IGBP surface types at 0.5◦ by 0.5◦ latitude and longitude

resolution, is scaled to a daily average SIF value using the empirical scaling factor of Frankenberg et al. (2011). Daily average

SIF is converted to instantaneous SIF via scaling by the instantaneous solar insolation relative to the average for that day and20

location. The wavelength dependence is a double Gaussian function as given in Frankenberg et al. (2012). Overall, this provides

values of SIF that are representative in time (seasonal and diurnal cycle) and space (as a function of latitude and local plant

physiology). It is worth noting that the use of the static GPP climatology does not allow for interannual variability, but this has

no effect on the single year of simulated data presented here.

3.5 Simulated L1b radiances25

Radiances, as would
:::
are

:::::::
expected

:::
to be observed by the OCO-3 instrument in space, are calculated using the same forward

model (FM) that has previously been employed for GOSAT and OCO-2 simulation studies, e.g., O’Dell et al. (2012). The FM

consists of a
::
an

:
atmospheric model, surface model, instrument model, solar model, and radiative transfer model.

The solar spectrum is comprised of two parts; a pseudo-transmittance spectrum (Toon et al., 1999) and a solar continuum

spectrum (Thuillier et al., 2003), used to produce a high-resolution, absolutely-calibrated input solar spectrum for the forward30

model (Boesch et al., 2015). For this work, the gas absorption coefficients, i.e., spectroscopy, of the current operational OCO-2

:::::::::
operational

:
B8 L2

::::
L2FP

:
algorithm, ABSCO v5.0.0, were used. The instrument model, which includes the instrument line

shapes (ILS), radiometric characteristics, polarization sensitivity, and noise specifications, were taken from the OCO-3 thermal
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vacuum tests performed in September 2016. Noise was applied to the calculated radiances via the same model used for OCO-

2, as described in Rosenberg et al. (2017). The radiative transfer calculation accurately accounts for multiple scattering from

clouds and aerosols as well as polarization, as described in O’Brien et al. (2009) and references therein.

4 Level 2 preprocessors and full physics retrieval algorithms
::::::::
algorithm

The primary data products for OCO-2 and OCO-3 are the column-averaged dry-air mole fraction of CO2 (XCO2) and the solar5

induced chlorophyll fluorescence (SIF), both of which can be used to help constrain the global carbon cycle, e.g. Eldering

et al. (2017b); Sun et al. (2017). For this work, the simulated L1b radiances were analyzed with the same tools used in OCO-2

operational data processing, as described in Section 4 of Eldering et al. (2017a). These steps include prescreening, L2 retrievals,

quality screening
:::
the

::::
Level

::
2
::::
Full

::::::
Physics

::::::
(L2FP)

:::::::::
algorithm,

::::::
quality

:::::::
filtering

::::
(QF)

:
and the application of a bias correction

::::
(BC)

for XCO2. This section briefly discusses each of the components as it relates specifically to the OCO-3 simulations. Relevant10

citations containing the full details are provided.

4.1 Preprocessors

Cloud screening was performed using only the A-Band Preprocessor (ABP), as described in Taylor et al. (2016). The ABP

identifies cloud contaminated soundings primarily via a threshold on the difference in retrieved and prior surface pressure

in the Oxygen-A band, typically ± 25 hPa. Although operational OCO-2 data also utilizes a weak filter on the ratio of CO215

retrieved independently in the strong and weak CO2 bands by the IMAP-DOAS Preprocessor (IDP), we did not implement

this filter for cloud screening. The IDP CO2 and H2O ratios were however used for post L2
::::
L2FP

:
retrieval quality filtering and

bias correction. In addition, IDP performs a retrieval of SIF, which is used as a prior for the full physics L2 SIF retrieval. After

some additional post processing, such as removing a zero level offset (ZLO), the IDP SIF becomes the formal LiteSIF product

that is available on the NASA DISC
:::::
L2FP

:::
SIF

::::::::
retrieval,

:::::
which

::
is
::::::::
included

::
in

:::
the

:::::
L2FP

::::
state

::::::
vector

::
as

:
a
:::::::::

necessary
:::::::::
interferent20

::::::::
parameter

::::
(See

:::::::
Section

:::
3.5

::
of

::::::::::::::::
O’Dell et al. (2018)

:
). Both preprocessors neglect scattering in the atmosphere (except Rayleigh

scattering is included in ABP), making them computationally very efficient.

4.2 Full physics retrieval algorithm for XCO2and SIF

The soundings that were identified as clear by the ABP cloud flag were then run thru the OCO-2 B8 operational
:::::
FPL2 retrieval

algorithm. The algorithm was first described in Bösch et al. (2006) and Connor et al. (2008) prior to the failed launch of25

OCO-1 in February 2009, and was later applied to GOSAT as described in O’Dell et al. (2012). Recent updates and a complete

description of the modern B8 version of the algorithm can be found in Boesch et al. (2015) and O’Dell et al. (2018).

In summary, the algorithm
::::
L2FP is an optimal estimation retrieval with

::::::::
containing

:
a prior that minimizes radiance residuals,

i.e., chi-squared, to maximize
:::::::::
maximizes the a posterior probability

::
of

:::
the

:::::::
solution

:::::
space

:::
via

::::::::::::
minimization

::
of

:::
the

::::::::
radiance

:::::::
residuals

:::::::
through

:::
the

::::::::::
chi-squared

:::::::
statistic. The solution is solved on 20 vertical levels, with the state vector containing CO230

dry air mole fraction, aerosol parameters, surface albedo, wind speed, water vapor, and a temperature scaling factor,
:::
as

::::
well

::
as
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:
a
:::
SIF

::::
term. The high spectral resolution measurements of top of the atmosphere reflected radiances measured by sensors such

as GOSAT, OCO-2, or OCO-3 serve as the primary source of information in the retrieval. The measurements are coupled with

an a priori state of the atmosphere
:::
(the

::::
state

:::::
vector

::::::::
elements

:::::
listed

::::::
above)

:
in order to constrain the inversion. Within the L2

::::
L2FP

:
retrieval, modeled spectra are generated by a radiative transfer

:::
(RT)

:
code as described in O’Dell et al. (2012) and Boesch

et al. (2015). Although they share many components, the L2
:::::
L2FP

:::
RT code base differs slightly from the RT FM used in the5

generation of the
:::::
model

:::::
used

::
to

:::::::
generate

:::
the

::::::::
simulated

:
L1b radiances, thus creating a realistic error source in the simulation

exercise, i. e., imperfect radiative transfer.
:
.

4.3 Filtering and bias correction approach

The NASA operational procedure for both OCO-2 and GOSAT applies a quality filtering (QF) and bias correction (BC) process

to the retrieved
::::
L2FP

:
XCO2 (O’Dell et al., 2018). Correlations between variables and XCO2 error variability are quantified10

and used to develop the filtering thresholds and linear bias correction equations. The quality filtering is designed to remove

soundings with anomalous XCO2 values relative to other soundings in close proximity, making use of the assumption that

real variations in XCO2 are quite small (<1 ppm) on small scales (< 100 km). Some form of "truth" metric, or truth proxy, is

required with which to calculate an "error" in XCO2. For operational OCO-2 data, several forms of a truth proxy are used, as

detailed in Section 4.1 of O’Dell et al. (2018).15

A similar treatment was applied to the OCO-3 simulation dataset. However, with simulations it was possible to use the actual

true XCO2 as the truth proxy in the QF and BC procedures. There are both advantages and disadvantages to the circularity

imposed by knowing the true values of the atmospheric state. In this case, we expect that the use of the truth data will result in

an overly optimistic QF and BC.
::
On

:::
the

:::::
other

:::::
hand,

:::
we

:::::
don’t

::::
have

::
to

:::::::
consider

::::::
errors

::
in

:::
the

::::
truth

:::::
proxy

:::::
itself

::
in

:::
our

::::::::
analysis,

::
an

::::
issue

:::
of

:::
real

:::::::
concern

:::::
when

:::::::
working

::::
with

:::
real

::::::::::::
measurements

::::
such

::
as

:::::
those

::::
from

::::::::
TCCON

::::::::
validation

::::
sites

::
or

::::::
model

::::::::
estimates20

::
of

::::::
XCO2.

At its completion, the QF/BC procedure assigns to every sounding a binary flag indicating good/bad quality, as well as a BC

value (in units ppm). The operational OCO-2 BC equation contains three components; a correction based on retrieval variables

(parametric), a correction for inter-footprint dependence and a global bias, each calculated separately for land (combined nadir

and glint) and ocean-glint. For the OCO-3 simulations the inter-footprint bias is not needed since only a single footprint per25

frame was calculated. Explicit results from the procedure as performed on the OCO-3 simulations are given in Sections 5.3

and 5.4.

5 Results

This section discusses characteristics of the L1b radiances, performance of the preprocessors, and application of the quality

filter and bias correction methodology before presenting the L2
::::
L2FP

:
XCO2 results. In addition, we provide a brief analysis30

of the SIF determined by the IDP
:::::::::::
IMAP-DOAS

:::::::::::
Preprocessor

:::::
(IDP)

:
retrieval. Table 1 summarizes the number of soundings in

the simulated data set at each stage of the analysis, broken out by nadir-land and glint-water observations.
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5.1 Simulated L1b radiance characteristics

At a gross level, the characteristics of the simulated OCO-3 radiances are very similar to those from real OCO-2 measurements.

The high resolution spectra for OCO-3 (not shown) exhibit the expected absorption features that allow for cloud and aerosol

screening, and the retrieval of surface pressure and SIF (from the O2 A-band) and XCO2 (from the weak and strong CO2

bands).5

However, some differences are expected between the two sensors in both measured signal and instrument noise due to

the addition of the PMA and calibration characteristics of the spectrometers, e.g., dark noise, stray light and ILS. Optical

inefficiencies in the OCO -3
::::::
OCO-3

:
PMA will reduce the transmission of light by about 17% in the O2 A-band, and 7% and

5% in the weak and strong CO2 bands, respectively. To compensate for the effects of the PMA, the instrument aperture of the

O2 A-band was increased. When all of the optical elements and instrument changes are considered, the O2 A-band transmission10

of OCO-3 will be about 95% of OCO-2, while the weak and strong CO2 bands will have 75% of the transmission of OCO-2,

thus reducing the observed signal for the same scene.

The instrument calibration parameters for the OCO-3 simulations reported here were taken
::::::
derived

:
from results of the

September 2016 pre-launch thermal vacuum testing (TVAC), which was performed using an early version of the instrument

telescope and without the PMA installed. The noise coefficients were adjusted post-hoc to account for the reduced optical15

throughput caused by the PMA,
::::::
which

:::
was

:::::::::
discussed

::
in

::::::
Section

:::
2.2. Although the final round of pre-launch TVAC calibration

::::::
thermal

:::::::
vacuum

:::
test

:::
of

:::
the

::::::
OCO-3

::::::::
payload,

::::::::
including

:::
the

:::::
PMA,

:
was completed in May

:::
July

:
2018, the results were still not

available at the time of writing. However, based
::::::
analysis

::
is
::::
still

::
in

:::::::
progress

::
to
::::::::
generate

:::::::::
calibration

:::::::::
coefficients

:::::
from

:::
this

:::::
data.

:::::
Some

:::::
values

::::
will

::::::
remain

:::::
fixed,

:::::
while

::::::
others

::::
will

::
be

::::::::
regularly

:::::::
updated

::
in
::::::

flight.
:::::::::
Instrument

:::::::::::
performance

::::
will

::
be

::::::::
reported

::
in

::::::::::
forthcoming

::::::::::
manuscripts

:::::::::::
post-launch.

:::::
Based

:
on preliminary analysis, the updated instrument characteristics are not expected20

to change at a level that would greatly effect the results presented here.

A key characteristic of the radiances measured by satellite sensors is the SNR, which effectively determines the information

content of the measurements, thereby controlling the precision of the retrieval estimates of XCO2 and SIF. The signal for each

band is calculated from continuum level radiances, using the ten channels with the highest values, after filtering for outliers

that occasionally exist due to cosmic rays or some other random electronic anomoly
:::::::
anomaly. The OCO noise model combines25

contributions from a constant background (dark noise) term and a photon (shot noise) term, the later of which is proportional

to the square root of the radiance (Rosenberg et al., 2017).

Figure 7 compares the OCO-2 SNR calculated from the operational noise model (solid traces) against OCO-3 (dashed

traces) versus a measure of the surface brightness(
:
,
::::::::::::
parameterized

::
as the albedo scaled by the cosine of the solar zenith angle,

:
; A · cos(SZA)). The left panel displays the SNR of each spectral band for both sensors, while the right panel shows the ratio30

of the two sensor’s SNR per spectral band. This data demonstrates that the only situation in which OCO-3 has a higher SNR

than OCO-2 (values >1.0 on the right panel) is in the O2 A-band for
::::
when

:
A · cos(SZA) & 0.15. This typically occurs over

very bright deserts and during glint-water measurements when the sun is low in the sky. It is worth noting that the O2 A-band

is used primarily for cloud and aerosol detection and for the L2 FP
::::
L2FP

:
surface pressure retrieval as well as for SIF.
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In both of the weak and strong CO2 bands (green and red, respectively, in the figure
::::::
Figure

:
7), OCO-3 always has a signifi-

cantly lower SNR than OCO-2. This reduced SNR can be attributed to both increased noise due to the use of noisier instrument

detectors that were spare parts from the rebuild of the OCO-2 instrument, and
::::
some

:::::::::::
combination

::
of

::::::::
increased

:::::
noise

:::
in

:::
the

:::::::::
instrument

:::::::
detectors

::::::
and/or to decreased signal incurred by the use of the PMA, a polarizer in the telescope, and a larger center

obscuration in the entrance optics.5

The overall SNR differences are captured in the histograms of Figure 8, which compare the OCO-3 simulations with the

real SNR for operational OCO-2 B8 measurements acquired in 2016. The operational OCO-2 data has been down selected

::::::::::::
down-selected to include only a single footprint

:::
per

:::::
frame and one sounding every 10 seconds to provide a fairer comparison

against the OCO-3 simulations. Both data sets have been screened using the L2 FP
::::
their

::::::::
respective

:::::
L2FP

:
quality flags, which

were introduced in Section 4.3, and will be discussed in more detail in Section 5.3. At a gross level, the data look reasonably10

similar, although a few key distinctions stand out, particularly that the slightly brighter OCO-3 O2 A-band is primarily due

to a long tail of high values for glint-water soundings. The OCO-3 weak CO2 band exhibits a substantially lower SNR for

glint-water compared to OCO-2, while the strong CO2 band tends to be also
::::::::
somewhat

:
lower than OCO-2. These figures show

that the OCO-3 data will include less data with SNR values over 600, and more data with SNR between 200 and 400. Previous

OCO-2 studies and experience with the real data show that an SNR of 200 is sufficient to achieve the desired precision of the15

retrieval algorithm. As will be shown in Sections 5.5 and 5.6, the L2 FP
::::
L2FP

:
retrieval still provides good estimates of XCO2

and SIF on this set of OCO-3 simulated radiances, even with the lower SNR values.

Maps comparing the simulated OCO-3 SNR to the operational B8 OCO-2 data for each spectral band are shown in Figure 9

for the month of April
::
for

:::::
each

::::::
spectral

:::::
band. Qualitatively, the overall patterns agree quite well, although the difference in

latitudinal coverage from the two spacecraft is noteworthy. We also note that a
:::::::
apparent

::
as

:::
are

::::::::::
differences

::
in

:::
the

::::::::::
throughput,20

::::::
notably

::::
over

:::
the

::::::::
Amazon,

:::
the

::::::
Sahara

:::
and

:::::::
eastern

:::::
China.

::
A
:
higher fraction of the soundings that converge in the L2 FP

:::::
L2FP

retrieval are assigned a good quality filter in the OCO-3 simulations (approximately 70%), versus only about 40% for real

OCO-2 B8 data. This is
:::
The

::::::::::
differences

::
in

:::::::::
throughput

:::
are

:
likely driven by deficiencies in the simulation setup, such as .

:::
In

::::::::
particular,

:
lack of a Southern Atlantic Anomaly model, and a parameterized cloud and aerosol scheme in the L1b simulations

that lacks full realism. We expect that real on-orbit OCO-3 good quality sounding fractions will in reality be closer to the25

OCO-2 values.

:
,
::::::::
especially

:::::
over

:::
the

:::::
three

::::::::::
continental

:::::
areas

:::::::::
mentioned

::::::
above.

:
For both sensors, the highest SNR’s are obtained over

un-vegetated
:::::::::
unvegetated

:
(bright) land, and for glint-water when the sun is low in the sky, producing

:::::
which

::::::::
produces a strong

specular reflection. The lowest values of SNR occur when when the sun is high in the sky, and for vegetated (dark) land surfaces

at higher latitudes. As with OCO-2, the weak CO2 band displays the highest SNR values, while the O2 A-band and strong CO230

bands have lower but comparable SNRs.

A final glimpse of the SNR characteristics are shown in Figures 10 and 11, which compare the SNR dependence on latitude

and SZA for both sensors. The restriction of OCO-3 to latitudes less than approximately
:::::
below

::
∼54◦ is pronounced, especially

for the glint-water soundings, when comparing to the wider latitudinal distribution obtained from OCO-2. This is simply a

consequence of the ISS precessing orbit versus the polar orbit of OCO-2. On the other hand, the
:
It
:::

is
:::
also

:::::::
evident

::::
that

:::
the35
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Figure 7. OCO-2 and OCO-3 mean SNR (averaged across footprints and channels) for each band as a function of the product of surface

albedo and cosine of solar zenith angle (left panel). The quantity A cos(SZA) is proportional to the reflected sunlight off of a surface. The

right panel shows the ratio of OCO-3 SNR to OCO-2 SNR using a logarithmic abscissa scale. The small vertical lines represent A cos(SZA)

for Railroad Valley at the winter solstice. OCO-3 SNR is lower at lower signal levels because it has a higher noise floor than OCO-2.

OCO-3 measurements span SZA’s from approximately 85
:
a
:::::
much

::::::
larger

::::
SZA

:::::
range

:::::
(∼75 to 0◦, while

::
),

::::::::
compared

::
to

:
OCO-

2measurements are limited to a minimum SZA of approximately 20◦ in the subtropics and larger than 30◦ above 40◦ latitude.

As was demonstrated previously in the histogram plots (Figure 8, we again see here
:
),
:::

we
::::
find

:
that for nadir-land the OCO-3

SNR values tend to be lower for OCO-3 compared to OCO-2 in all spectral bands, with the exception of a few high O2 A-band

SNRs around 20◦ latitude which correspond to the Sahara desert. For glint-water soundings, there is a population of very high5

SNR values (> 800) spanning the full latitudinal space, at SZA around
::
∼60◦ due to the very bright specular glint spot achieved

under these conditions.

While real on-orbit SNR characteristics will likely differ somewhat from those shown here, these simulations suggest that

the instrument has been well built and well calibrated and should provide SNR that meets the mission requirements. In addition,

due to the nature of the precessing orbit of the ISS,
:::::
which

::::::::
decouples

:::
the

::::
solar

::::::
zenith

:::::
angle

::::
from

:::
the

:::::::
latitude, we expect that the10

SNR distribution, which fundamentally drives the information content in the L2 FP
::::
L2FP

:
retrievals, will not be tied to latitude

in the same way that it is for OCO-2. This has implications as to the spatial patters
::::::
patterns of good quality XCO2 and SIF

retrievals, as will be discussed in the following sections.

23



Figure 8. SNR histograms comparing simulated OCO-3 (left column) to operational B8 OCO-2 (right column) for nadir-land (top row) and

glint-water (bottom row). The colors represent the three spectral bands, as described in the legend. Both data sets have been filtered using

their respective L2
::::
L2FP quality flags. The median value for each spectral band is shown as a vertical dashed line in the corresponding color.

5.2 Preprocessor performance

For this simulation experiment only the ABP cloud flag was used to select soundings, although real operational sounding

selection is expected to be slightly more elaborate (see Sec. 2 of O’Dell et al. (2018)). In particular, no IDP variables were

used in the L2
::::
L2FP

:
sounding selection here, although they were used later in the post-filtering and bias correction. The results

shown in Table 1 indicate that about a quarter (24.2%) of all of the observations passed the ABP cloud flag, leaving about5

250,000 to run through the L2 FP retrieval. Broken out by
::::
L2FP

::::::::
retrieval.

:::
By viewing mode, approximately one third (31.8%)
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of the nadir-land and one fifth (20.2%) of the glint-water observations passed the ABP cloud flag. These statistics are roughly

similar to those seen in real OCO-2 operational processing.

Figure 12 shows maps of the clear-sky fractions in each 2◦ spatial bin (left) and the resulting clear-sky sounding densities

(right). As expected, the highest fraction (up to about 75%) of the scenes pass in the arid land regions, where there are few

clouds and aerosols. The southern subtropical oceans also tend to have areas of moderately high passing rates around
::
of

::
∼50%.5

Tropical land regions, e.g., the Amazon, Congo and Indonesian rainforests, have on average only about 5 to 10% passing rates.

Most temperate land regions such as the eastern United States and southern Europe generally have passing rates of about

::
∼30%. These results meet expectations and are qualitatively very similar to those seen in Fig. 1 of O’Dell et al. (2018) for

OCO-2 operational B8 data.

The right panel of Figure 12 confirms that the highest density of cloud-free soundings (more than 100 per 2◦ bin) are found10

over the arid regions of the globe, as expected. In addition, a large number of soundings are found over the northern hemisphere

land at the satellite orbit inflection points. Much of the temperate land regions contain about
::
∼30-50 soundings per bin, while

few soundings remain over tropical forests. In glint-water viewing, the regions of high clear-sky fraction have about
::
∼50 to

80 soundings per 2◦ bin, while the cloudy areas contain only about
:
∼10 soundings per bin selected for processing by the L2

FP
::::
L2FP

:
retrieval. Recall that on-orbit OCO-3 sounding densities will be about

:::::::::::
approximately

:
240 times greater due to the15

reduced spatiotemporal sampling used in this simulation set.
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5.3 Application of XCO2 quality filter

The L2 FP
:::::
L2FP retrieval algorithm described in Section 4.2 was applied to the cloud screened set of soundings, and then, as

with operational OCO-2 data, a set of post-processing filters were implemented to determine the binary XCO2 quality flags

:::
flag

:
(QF)

:::
for

::::
each

::::::::
sounding. Details of the methodology are documented in O’Dell et al. (2018). Here, the true XCO2 for

each sounding was used as the truth metric to assess residual biases and errors. This provides perhaps an overly optimistic5

interpretation of the results, and should be considered an upper limit on the actual performance expected from the real system.

::::::
on-orbit

:::::::
OCO-3

::::::::::::
measurements.

:

Explicit values of the QF thresholds determined for the OCO-3 simulations are presented in Tables 2 and 3. The QF method-

ology was applied independently to the nadir-land and glint-water scenes, as is done with real
:::::::::
operational

:
OCO-2 data. Eleven

variables were used to form the QF for nadir-land, while nine were used for glint-water. Not surprisingly, many of the same10

variables are selected for quality filtering the OCO-3 simulations as were used in the operational OCO-2 procedure. See Fig-

ures 10 and 11 of O’Dell et al. (2018). Approximately 70% of the soundings that converged in L2 FP
::::
L2FP

:
were assigned a

good quality flag.

The quality filtering process had similar impacts on data volume across all months (not shown). On average, global data

densities of good QF soundings in the simulations were 11,000 to 12,000 soundings per month, or 33,000 to 36,000 per season.15

When using the full spatiotemporal resolution, this translates to approximately 2.5 million soundings per month (7.5 million

per season), similar to the density of OCO-2 B8 data.

Figure 13 shows seasonal plots of the fraction (left column) and number (right column) of soundings passing the quality

filters for each season (DJF, MAM, JJA, SON), binned in 4◦ degree lat/lon bins. The spatial patterns are useful, but the absolute

numbers need to be inflated by 240 to reflect actual predicted on-orbit throughput. These maps can be compared with those20

shown in Figure 12 of O’Dell et al. (2018).

In general, the QF throughputs for glint-water are quite high (>70%) in the tropics and subtropics (<30◦ latitude), and display

very little seasonal cycle. The QF throughput is persistently low for glint-water observations at the extreme latitudes. The QF

throughputs are more varied for nadir-land observations, and a modest seasonal cycle is seen for some regions. But overall, the

results look qualitatively similar to those from OCO-2 for the B8 operational data set, and demonstrate that the methodology25

is a robust procedure.
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5.4 Bias correction of XCO2

The final bias correction (BC)
:::
for

:::
the

::::::
OCO-3

::::::::::
simulations

:
incorporates four of the QF variables for nadir-land and three for

glint-water as shown in Table 4. There are notable similarities and differences in the selected variables when comparing between

the OCO-3 simulations and real OCO-2 data. See Section 4.3.1 in O’Dell et al. (2018).

Figure 14 illustrates how the final BC parameters for land affect the XCO2 error. Each panel shows median binned values5

of the XCO2 error (retrieved minus true in ppm) versus a particular retrieval variable shown by the heavyblack dots
::::::
(heavy,

::::
black

:::::
dots). Also shown are the range in XCO2 error (thin vertical bars) and the least squares linear fit (thin dashed line). To

provide context, the relative histogram of points is shown in the background by the shaded grey region. The slope of the fit,

the standard deviation of the XCO2 error post BC, and the percent of the variance explained by this variable are given in the

legend. The original standard deviation is shown in the upper left panel for reference.10

For land, 25% of the variance is explained by the L2 dP (
::::::::
difference

::
in

:::
the

:::::
L2FP retrieved surface pressure minus a priori

::::
from

::
the

:::::
prior

:::::::
(denoted

:::::
“dp”), while another 15% is explained by the

:::::
square

::::
root

::
of

:::
the

:
combined retrieved AOD from dust

:
,
:::::
water

::::
cloud

:
and sea salt aerosols

::::::
(DWS). An additional 3% and 2% are explained by the L2

::::
L2FP

:
fine mode AOD and the water

vapor scaling factor, respectively. We believe that a minor indexing bug found in the
::::::::
simulated

:
meteorology is responsible

for the reliance on water vapor. The final reduction in XCO2 error is shown in Table 6, which gives the standard deviations15

(sigma
::
σ) in the retrieved XCO2 with and without QF and BC. For land, sigma

:
σ
:
was reduced from 1.88 ppm to 0.85 ppm after

application of both QF and BC.

Figure 15 is similar to Figure 14, but for the glint-water scenes. Here, 18% of the variance in XCO2 error is explained by

the IDP CO2 ratio, while another 16% is explained by the ABP dP. An additional 7% is explained by the L2 dP.
::::
L2FP

:::
dP.

::::
The

::::
need

:::
for

:::
two

:::::::::::
preprocessor

:::::::
variables

:::
in

::
the

::::::::::
glint-water

:::
bias

:::::::::
correction

::::
hints

::::
that

:::
the

:::::::::::
prescreening

::
for

::::::
clouds

::::
may

:::
not

::::
have

:::::
been20

:::::::
stringent

:::::::
enough.

:::
Use

::
of
:::
the

::::
IDP

::::::
results

::
for

:::::::::::
prescreening

:::
on

:::
real

::::::
OCO-3

::::
data

::::
may

::::
alter

:::
this

::::::::
outcome.

:
As seen in Table 6, sigma

::
the

::::::
XCO2::

σ was reduced from 2.15 ppm to 0.52 ppm for glint water soundings after application of both QF and BC.
:
It

::
is

:::::
likely

:::
that

:::
the

::::::
smaller

:::::::
QF/BC

::
σ

::
for

::::::::::
glint-water

:::::::::
(0.52 ppm)

::::::
relative

:::
to

::::::::
nadir-land

::::::::::
(0.85 ppm)

:
is
::::::
driven

:::
by

:::::
L2FP

:::::::
retrieval

::::::::::
interference

:::::
errors

::::
such

::
as

::::::
albedo

:::
and

::::::::
aerosols,

:::::
which

::::
vary

:::::
more

::::
over

::::
land,

:::
as

::::::::
concluded

:::
by

:::::::::::::::::
Worden et al. (2017)

::
in

::::
their

:::::
study

::
of

:::::::
OCO-2

::
B7

:::::
data.25

:::::
There

:::
are

::::::
notable

:::::::::
similarities

::::
and

:::::::::
differences

::
in

:::
the

:::::::
selected

:::::::
variables

:::::
when

:::::::::
comparing

:::::::
between

:::
the

:::::::
OCO-3

:::::::::
simulations

::::
and

:::::
either

:::
real

:::::::
OCO-2

::::
data

:::::::
(Section

:::::
4.3.1

::
of

::::::::::::::::
O’Dell et al. (2018)

:
),
:::

or
::::::
OCO-2

::::::::::
simulations

::::::::::::::::::
(Kulawik et al., 2018)

:
.
::
In

:::
all

:::::
cases

:::
the

::::
L2FP

:::
dp

::
is

:::::
found

::
to

::
be

:::
the

:::::::
primary

::::
bias

:::::::::
correction

::::::::
parameter

:::
for

::::
land

:::
and

:::::
water

:::::::::
soundings.

:::::
Both

:::
the

:::
real

:::::::
OCO-2

:::
data

::::
and

:::
the

::::::::
simulated

::::::
OCO-3

::::
land

::::
data

::::
rely

::
on

::
a
::::
form

::
of

:::
the

:::::::
aerosol

::::::::::::::
parameterization

:::
for

:::
bias

:::::::::
correction

::::::
(DWS

::
for

:::
the

::::::
former

::::
and

:::::
DWS

:::
and

:::
fine

:::::
mode

:::::::
aerosols

:::
for

:::
the

:::::
later).

::::
This

::::::
stands

::
to

::::::
reason

::
as

:::::::
aerosols

:::
are

:::::
highly

:::::::
varying

::::
over

::::
land

:::
and

::::
have

:::::
been

:::::
shown

::
to

:::
be30

:
a
:::::
strong

::::::
source

::
of

::::::::::
interference

:::::
error

:::::::::::::::::
(Connor et al., 2016).

:

:
A
::::

key
:::::::::
difference

:
is
::::

that
:::
the

:::::
L2FP

:::::::
variable

::::
CO2:::::

grad
:::
del

:::::::
(δ∇co2),

::
a

:::::::
measure

::
of

:::
the

::::::
change

:::
of

:::
the

:::::::
retrieved

:::::::
vertical

::::::
profile

::
of

::::
CO2:::::::

relative
::
to

:::
the

:::::
prior

::::
(See

:::
Eq.

::
5
::
in
:::::::::::::::::

O’Dell et al. (2018)
:
),
::::
does

::::
not

:::::
show

::
up

:::
as

:
a
::::::
strong

::::
bias

:::::::::
correction

::::::::
parameter

:::
in

::
the

:::::::::
simulated

:::::::
OCO-3

::::
data

:::
set.

::::::::::::::::::
Kulawik et al. (2018)

::::::
discuss

::
in

:::::
detail

::::
the

:::
ties

:::::::
between

:::::::
δ∇co2,

:::
the

:::::
L2FP

:::::
prior

::::
CO2::::

and
:::
the
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:::::::::
partitioning

::
of
:::::
CO2 ::

in
:::
the

:::::
upper

:::
and

:::::
lower

::::::::::
atmosphere

::
in

:::
the

:::::::
retrieved

::::
state

::::::
vector.

::
At

::::
this

::::
time

:::
we

::::
have

::
no

::::
real

::::::::::
explanation

::
as

::
to

::::
why

:::::
δ∇co2::

is
:::
not

:::::::
showing

:::
up

::
as

::
a

:::
bias

:::::::::
correction

::::
term

::
in
:::

the
:::::::

OCO-3
::::::::::
simulations.

::::::::
Analysis

::
of

:::::::
on-orbit

::::::
OCO-3

:::::
data,

:::::
when

::::::::
available,

:::
will

:::
be

::::::::
revealing

::
as

::
to

:::::::
whether

::::
this

:
is
::::

due
::
to

:::::
some

::::::::::
fundamental

:::::::::
difference

::
in

:::
the

:::::::
OCO-3

::::::::::::
measurements

::
or

:::::::
perhaps

::::::::
associated

::::
with

:::::::::
something

::::::::
particular

::
in

:::
the

:::::::
retrieval

::::::
setup.

Spatial seasonal maps of the total bias correction (in units ppm) are shown in Figure 16. Although the results are qualitatively5

different from those seen for operational OCO-2 B8 data presented in O’Dell et al. (2018), this follows expectations in that

here we are working with simulated data which is more internally consistent then real data, especially with respect to ABSCO

and meteorology. These results underscore the conclusion that even given nearly perfect alignment of the retrieval model with

the truth, there are still retrieval errors that induce biases and scatter into the estimates of XCO2. This is particularly true

of aerosols, which are a continued known source of trouble in virtually all retrievals of greenhouse gases from space , e. g.,10

(Aben et al., 2007; Butz et al., 2009).
:::::::::::::::::::::::::::::::::::::::::::::::::::
(Aben et al., 2007; Butz et al., 2009; Nelson and O’Dell, 2018).

:
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5.5 Retrieved XCO2 characteristics after filtering and bias correction

One of the objectives of this study was to analyze the error on the retrieved XCO2 from OCO-3. Here the “actual” error is

given as the retrieved value minus the known truth (after applying the averaging kernel correction), and is denoted ∆XCO2. The

“predicted” error is an L2 FP
:::::
L2FP retrieval state vector parameter that provides the theoretical error due to the combination

of measurement noise plus smoothing and interference errors, as discussed in Boesch et al. (2015). The actual errors in the5

simulated framework are expected to be substantially lower than those seen in OCO-2 operational data, while the predicted

errors should be roughly equivalent due to use of similar instrument model and retrieval algorithm.

As demonstrated in Figure 17, which shows the histograms of ∆XCO2 for nadir-land and glint-water data separately,

∆XCO2 is small and effectively corrected by the filtering and bias correction process on an annual average basis. Overall,

QF/BC reduces the median ∆XCO2 bias from -0.12 to -0.02 ppm for land soundings and from 0.23 to -0.09 ppm for glint-10

water soundings. The histograms indicate that the filtering process identifies a significant population of glint-water soundings

with large negative biases up to about -12 ppm.

The seasonal spatial distributions of ∆XCO2 are shown in the maps of Figure 18. These can be compared to Figure 19 of

O’Dell et al. (2018). While the qualitative patterns of actual XCO2 errors are quite different between OCO-2 B8 and simulated

OCO-3 data, note that the dynamic range of the scale is much lower for OCO-3 (±1 ppm) compared to OCO-2 (±3 ppm).15

Again, this follows expectations since the truth proxy for the simulations is the actual truth, while that metric is not available in

the real world.
::::::::
Although

::
the

::::
ISS

::::::
latitude

:::::
varies

::::::::
between

:::::::
± 51.6◦,

:::
the

::::::
OCO-3

:::::
PMA

:::::
allows

:::
for

::::::::::::
measurements

::::::::
extending

:::::::
beyond

:::
this

:::::
range

::
to

::::::::::::
approximately

:::::::
± 55.5◦

:::::::
latitude.

:::::::::
However,

:::
we

:::::
found

:::
that

::::::::::::
measurements

::::::::
assigned

::
a

::::
good

::::::
XCO2::::::

quality
::::
flag

:::
are

:::::::
obtained

::
at

:::::::
latitudes

::::
less

::::
than

::::
about

::::
52◦,

::::::
where

:::
the

::::
solar

::::::
zenith

::::
angle

::
is
::::
less

::::
than

:::::
about

:::
73◦.

:

For the OCO-3 simulations, after QF/BC have been applied, the errors are largely uncorrelated with any geophysical or20

retrieval parameters. Specifically, we used the glint-water soundings to check for correlation of both the raw and BC XCO2

data against latitude, solar zenith angle, polarization angle, SNR (per spectral band), and the true aerosol optical depth. The

results are summarized in Table 5. It is worth noting that the true AOD was not used as a bias fitting parameter, yet there is

a high reduction in the correlation with ∆XCO2. The very small slopes, offsets and linear correlation coefficients that remain

after application of the QF/BC indicates that remaining errors in the XCO2 are likely driven by retrieval errors such as the25

aerosol parameterization (Nelson et al., 2016b).

Shown in Figure 19 are the OCO-3 actual (∆XCO2) versus the L2 FP
:::::
L2FP retrieval predicted XCO2 errors comparing the

unfiltered raw, the filtered raw and the filtered and bias corrected data. There is a huge improvement in the performance after

filtering is applied. Additional improvements are achieved by application of the bias correction. Results fall nearly on the one-

to-one line, with some exception for nadir-land soundings when the predicted error falls below about 0.7 ppm, in which case30

the actual error is larger than theory. Overall, these results provide evidence that the filtering and bias correction methodology

is a robust procedure that performs according to theory given a (nearly) perfect truth metric.
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5.6 Retrieved SIF characteristics

Similar to the analysis of XCO2 in the previous section, here we present the IDP SIF relative to the true values and examine

both the actual and predicted errors. In order to calculate the “actual” SIF error (retrieved - true), the L1b truth values, which

are calculated at 755 nm in the simulator code, were first wavelength shifted to match the IDP retrieved values at 758.65 nm and

769.95 nm. Note that these IDP channel values denote the center points of the
::::
IDP retrieval ranges but are labeled as 757 nm5

and 771 nm throughout the code and analysis for historical purposes as reported in Section 2.2 of Sun et al. (2018). For brevity,

we only show results for the 757 nm band, although there is no reason to expect a significant difference in performance in the

771 nm band.

The retrieval of SIF from space is highly sensitive to measurement error, i.e., instrument noise (Frankenberg et al., 2014). It

is therefore a common practice to aggregate some number of soundings, N, in order to minimize the random noise. Since these10

simulations have spatiotemporal sampling of 1/240 of the real expected value, we “noise-corrected” our results by scaling the

noise as;

SIF′ = SIF +
noise√

240
, (5)

where SIF represents the retrieved values using noiseless radiances, and noise is calculated by differencing the with- and

without- instrument noise retrievals
:::
SIF

:::::
from

:::
IDP

::::
runs

::::
with

::::
and

::::::
without

:::::::::
instrument

:::::
noise

:::::
added

:::
to

::
the

::::
L1b

::::::::
radiances.15

Unlike with XCO2::::::::
retrievals, the retrieval of SIF using the solar Fraunhofer lines is not highly sensitive to cloud and aerosol

contamination (Frankenberg et al., 2012) We therefore did not apply any strict prescreening or L2 quality flagging prior to

running the IDP retrieval on the L1b files. Although IDP can in principle retrieve SIF over water, glint-water soundings were

ignored since the L1b simulator assumes zero SIF in these cases. Out of the
::
∼337,000 total land soundings approximately 12%

of the IDP retrievals failed altogether (identified by way of fill values in the output)
:::::::
outright,

:::::::
leaving

::::::::
∼300,000

:::
for

:::::::
analysis.20

We then applied a
:
A
:
post processing quality filter on the approximately 300, 000 successful nadir-land soundings,

:::
was

::::
then

::::::
applied,

:
which included removal of scenes with SZA

:
> 70, for which the actual SIF error became very large. We also removed

49 soundings where the predicted retrieval noise as a function of the continuum level radiance fell well outside a smooth fitting

criteria. For unknown reason these small number of soundings had very large actual SIF errors. After application of the filtering

criteria, approximately 264,000 land soundings (88% of the successful soundings 2) remained in the annual data set.25

The top row of Figure 20 shows maps of the true (left) and IDP retrieved SIF (right) for the 757 nm band for the JJA season,

when the northern hemisphere land photosynthetic activity is at its annual maximum. The units are expressed in radiance space

as Watts-per-square-meter-per-micron-per-steradian (W/m2/µm/sr). SIF typically comprises at the maximum about 1 to 2%

of the total radiance measured at the top of the atmosphere by satellite sensors (Frankenberg et al., 2012). At a gross scale,

the true and retrieved values show the expected patterns, with SIF up to about 1.2 W/m2/µm/sr in densely vegetated tropical30

regions, when aggregated to 1◦ by 1◦ bins, and (near) zero SIF over barren deserts, high mountains and high latitudes.

2It is coincidence that both the fraction of soundings that failed the IDP retrieval and the number that were flagged by our post processing filter is 12%.
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Although they appear qualitatively similar, the absolute difference in true and retrieved values suggests that the IDP tends to

underestimate SIF. This is particularly so for higher fluorescing areas, as seen in the middle left of Figure 20. To better quantify

the differences in the retrieved and true values, a fractional difference was calculated after masking out the soundings with true

SIF less than 0.2 W/m2/µm/sr (to avoid the intractable math of the ratio of two numbers close to zero). As seen in the middle

right panel, the median fractional differences in SIF is -9% for this subset of the data, with individual soundings having outliers5

as large as -240%. The bottom row of panels shows the correlation between the true and retrieved values for the JJA data, with

and without the true SIF < 0.2 W/m2/µm/sr. The Pearson linear correlation coefficients are very close to 1, indicating that the

retrieval of SIF from the IDP is expected to perform well for the OCO-3 instrument, as has already been shown for operational

OCO-2 data (Sun et al., 2017, 2018).

The comparison between the “actual” (retrieved minus true) and “predicted” SIF error are shown in Figure 21. Here we10

show both the unfiltered, i.e., no quality flag applied, and filtered annual data sets. When the retrieval predicted error is

above approximately 0.25 W/m2/µm/sr the actual error is in very close agreement for the filtered data. Below predicted

error of '0.25 W/m2/µm/sr, the filtered data set still tends to have a slightly larger value of actual error. For predicted error

< 0.25 W/m2/µm/sr the actual error becomes quite large in the unfiltered data set.

A comparison of the single sounding SIF precision between the OCO-3 simulations and the operational B8 OCO-2 data15

is given in Figure 22 for both the 757 nm and 771 nm windows. For both instruments, the precision is an increasing function

of the continuum level radiance, as explained in Section 3.1 of Frankenberg et al. (2014) in association with Figure 8. The

darker the scene, the better the precision, due to decreasing noise in the Fraunhofer lines. Overall, both instruments have better

precision at the shorter wavelength channel. This analysis suggests that OCO-3 SIF precision will be 10-20% worse than for

OCO-2, which may be directly ascribable to the noisier instrument detectors. More research and analysis on IDP SIF using20

real on-orbit measurements will be needed to determine answers.
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Figure 9. Maps comparing the SNR of OCO-3 (left) to OCO-2 (right) for each spectral band (rows) for the month of April binned in 2◦

latitude bins. Both data sets have been filtered using the L2
::::
L2FP quality flag. The operational OCO-2 data has been downselected to include

a single footprint and one sounding every 10 seconds to provide a fairer comparison against the OCO-3 simulations. The OCO-2 data also

includes both nadir and glint land soundings, in addition to glint-water.
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Figure 10. Comparison of the nadir-land SNR of OCO-3 (left) to OCO-2 (right) for each spectral band (rows) for the full annual data set.

Both data sets have been filtered using the L2
::::
L2FP

:
quality flag. The operational OCO-2 data has been downselected to include a single

footprint and one sounding every 10 seconds to provide a fairer comparison against the OCO-3 simulations.
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Figure 11. Same as Figure 10, but for glint-water soundings.
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Figure 12. Maps of the annual fraction of soundings passing the ABP cloud flag (left) and the resultant clear-sky sounding density (right)

binned 2◦x2◦ latitude. Number densities should be inflated by 240 to provide real estimated number of soundings at the full spatiotemporal

sampling.
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Figure 13. Maps of the seasonal throughput (left column) and the resulting sounding densities (right column) in 4◦ lat/lon bins after appli-

cation of the L2 FP
::::
L2FP

:
quality flag. Inflate densities by 240 to account for on-orbit spatiotemporal sampling.
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Figure 14. Final bias correction variables used for land
::::::::
nadir-land scenes illustrating the correlation of the actual error (∆ XCO2 defined as

retrieved - true) as a function of variable value. The leading retrieval parameters that explain the maximum variance for land are the L2 delta

surface pressure
::::
L2FP

::
dp, L2

::::
L2FP

:
H2O scale factor, and two L2

::::
L2FP aerosol terms. The original standard deviation (σ) of the data set is

given in the upper part of the first panel, with the cumulative reduction in σ and percent variance explained given in the lower right.
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Figure 15. Same as in Fig.14, but for water
::::::::
glint-water

:
scenes. Here the leading retrieval variables that explain the maximum variance are

the L2 delta surface pressure
::::
L2FP

::
dp, the IDP co2_ratio and the ABP dp_cld.
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Figure 16. Seasonal maps of the total XCO2 bias correction in 4◦ lat/lon bins for all good quality soundings. Top left is DJF, top right is

MAM, bottom left is JJA and bottom right is SON.
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Figure 17. Histograms of the error in XCO2 (retrieved - true) at 0.25 ppm resolution for land (left) and water (right) for the full year of

simulations. The raw, uncorrected XCO2 are shown in black, while the filtered and bias corrected values are shown in blue.
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Figure 18. Seasonal maps of delta XCO2 (retrieved - true [ppm]) in 4◦ lat/lon bins after quality filtering and bias correction. Top left is DJF,

top right is MAM, bottom left is JJA and bottom right is SON.
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Figure 19. Binned median values of the actual versus predicted XCO2 error for the full annual data set, for nadir-land (left panel) and

the glint-water soundings (right panel). Each panel shows the unfiltered raw XCO2 (open diamonds), the quality filtered raw XCO2 (open

circles), and the quality filtered and bias corrected XCO2 (closed circles). To provide reference, the raw, unfiltered data set is also displayed

as individual values (tiny black dots) and a histogram. The one-to-one line is shown
::::
given

::
as

:
a
::::::
dashed

:::
line.
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Figure 20. Results comparing the IDP retrieved and true L1b SIF. These results are from the cloudy with noise-corrected SIF at 757 nm.

The top two rows show maps gridded to 1◦ by 1◦ for the quality filtered JJA data set. The true L1b values (left) and the corresponding IDP

retrieved values (right) are both in units W/m2/µm/sr. The middle row shows the absolute difference between the retrieved and true values

(left) and the fractional difference after an additional screening on true SIF >0.2 (right). The bottom row shows the linear correlation, along

with some basic statistics for the full JJA set and the subsetted data.
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Figure 21. Actual versus predicted IDP SIF error for the unfiltered and filtered annual data set. This is for the nadir-land retrievals using

instrument noise. The histogram shows the filtered data frequency normalized to one, with the one-to-one relationship given by the dotted

line.

Figure 22. 1σ precision of estimated SIF, using both the 757 nm window (black) and the 771 nm window (red), for OCO-2 (solid) and

OCO-3 (dashed). SIF precision at 755 nm was estimated from the 757 nm (771 nm) value by scaling by a factor of 1.10 (1.76), following

Frankenberg et al. (2015). The OCO-2 values have been evaluated from the IDP posterior uncertainties in the actual SIF data product, for

an average of all eight footprints. The OCO-3 values have come from an early version of the preflight noise estimates, which are subject to

change.
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Table 1. Summary statistics of the filtering for each stage of the analysis. Results are shown for the nadir-land, glint-water, and combined

soundings separately.

Filter N N N Fraction passing (relative to combined total) Fraction passing (relative to surface type total)

Combined Land Water Combined Land Water Land Water

L1b (all) 982922 337211 645711 100.0% 34.3% 65.7% 100.0% 100.0%

ABP (pass) 237736 107295 130441 24.2% 10.9% 13.3% 31.8% 20.2%

L2
::::
L2FP (converge) 196211 96182 100029 20.0% 9.8% 10.2% 28.5% 15.5%

QF (good) 140741 68264 72477 14.3% 6.9% 7.4% 20.2% 11.2%
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Table 2. Variables and thresholds used for quality filtering in the OCO-3 simulations for nadir-land. The cumulative fraction of scenes

passing are also given. Note that the need for the water vapor scale factor (L2
::::
L2FP WV scale) is likely due to a recently discovered bug in

the simulator code that introduced a mismatch between the vertical profile in the scene and meteorology files.

Variable
::::
Short Name

::::::
Variable

:::::::::
Description QF range Cum Frac Pass

IDP CO2 ratio
:::
ratio

::
of
:::
the

::::
CO2::::

value
:::::::
retrieved

::
in

::
the

::::
1.61

:::
and

::::::
2.0µm

::::
bands

::::
from

:::
the

:::
IDP

:
[0.9, 1.03] 88.7%

IDP H2O ratio
:::
ratio

::
of
:::
the

::::
H2O

::::
value

:::::::
retrieved

::
in

:::
the

:::
1.61

:::
and

::::::
2.0µm

::::
bands

::::
from

:::
the

:::
IDP

:
[0.88, 1.1] 85.6%

L2
::::
L2FP dp

:::::::
difference

:::::::
between

:::
the

::::::
retrieved

:::
and

::::
prior

::::::
surface

::::::
pressure

::::
from

:::
the

::::
L2FP

:::::::
retrieval [-6.0, 7.0] 81.6%

L2
::::
L2FP total AOD

:::::::
combined

::::::
optical

::::
depth

::::
from

::
all

::::::
aerosol

:::
and

::::
cloud

::::::
species

::::
from

:::
the

::::
L2FP

:::::::
retrieval [0.0, 0.4] 79.1%

L2
::::
L2FP water AOD

:::::
optical

:::::
depth

:
of
:::::

water
::::
cloud

::::
from

:::
the

::::
L2FP

:::::::
retrieval [0.0008, 0.1] 77.3%

L2
::::
L2FP fine mode AOD

:::::::
combined

::::::
optical

::::
depth

::
of

:::
fine

:::::
mode

:::::
aerosol

:::::::
particles

::::
from

::
the

:::::
L2FP

::::::
retrieval

:
[0.0, 0.08] 74.8%

L2
::::
L2FP WV scale

::::
water

:::::
vapor

:::::
profile

:::::
scaling

:::::
factor

::::
from

:::
the

::::
L2FP

::::::
retrieval

:
[0.84, 0.95] 73.7%

ABP dp
:::::::
difference

:::::::
between

:::
the

::::::
retrieved

:::
and

::::
prior

::::::
surface

::::::
pressure

::::
from

:::
the

::::
ABP

::::::
retrieval

:
[-25.0, 4.0] 71.7%

::::
L2FP

:::::
δ∇co2: :

a
::::::
measure

::
of
:::
the

::::::
change

:
in
:::
the

:
CO2 grad del

::::
profile

:::::
shape

:::::
versus

:::
the

:::
prior

:
[-40.0, 40.0] 71.2%

L2
::::
from

::
the

:::::
L2FP

::::::
retrieval

:::
(in

::::
plain

:::
text

::::::
denoted

:::::::::::
co2_grad_del)

::::
L2FP

:
χ2 O2A

::
-A

::
the

:::::::::
chi-squared

::::::::::::
goodness-of-fit

::::::
statistic

:::
from

:::
the

:::::
L2FP

::::::
retrieval [0, 1.25] 71.1%

L1b signal 3
:
/1

:::
ratio

::
of
:::
the

::::::
2.0µm

:
to
:::::::

0.76µm
::::::
spectral

::::
band

::::
from

::
the

::::::::
measured

:::
L1b

:::::::
radiances

:
[0.075, 0.4] 70.7%
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Table 3. Same as Table 2, but for glint-water soundings.

Variable
::::
Short Name

::::::
Variable

:::::::::
Description QF range Cum Frac Pass

Albedo slope weak CO
::::
L2FP

:::::
WCO2 :::::

albedo
::::
slope

:::::
albedo

::::
slope

::::
term

::
of

:::
the

::::::
1.61µm

::::::
spectral

::::
band [0.1, 100.0] 84.3%

::::
from

::
the

:::::
L2FP

::::::
retrieval

:

ABP dp
:::::::
difference

:::::::
between

:::
the

::::::
retrieved

:::
and

::::
prior

::::::
surface

::::::
pressure

:
[-50.0, -3.0] 81.7%

L2
::::
from

::
the

::::
ABP

:::::::
retrieval

::::
L2FP

:
dp

:::::::
difference

:::::::
between

:::
the

::::::
retrieved

:::
and

::::
prior

::::::
surface

::::::
pressure

:
[-5.0, 2.0] 75.0%

::::
from

::
the

:::::
L2FP

::::::
retrieval

:

IDP CO2 ratio
:::
ratio

::
of
:::
the

::::
CO2::::

value
:::::::
retrieved

::
in

::
the

::::
1.61

:::
and

::::::
2.0µm

::::
bands

:
[1.0005, 1.015] 73.5%

::::
from

::
the

::::
IDP

::::::
retrieval

:

IDP H2O ratio
:::
ratio

::
of
:::
the

::::
H2O

::::
value

:::::::
retrieved

::
in

:::
the

:::
1.61

:::
and

::::::
2.0µm

::::
bands

:
[0.88, 1.03] 72.6%

L2
::::
from

::
the

::::
IDP

::::::
retrieval

:

::::
L2FP

:::::
δ∇co2: :

a
::::::
measure

::
of
:::
the

::::::
change

:
in
:::
the

:
CO2 grad del

::::
profile

:::::
shape

:::::
versus

:::
the

:::
prior

:
[-30.0, 60.0] 72.4%

L2 Total
::::
from

::
the

:::::
L2FP

::::::
retrieval

:::
(in

::::
plain

:::
text

::::::
denoted

:::::::::::
co2_grad_del)

::::
L2FP

::::
total AOD

:::::::
combined

::::::
optical

::::
depth

::::
from

::
all

::::::
aerosol

:::
and

::::
cloud

::::::
species

:
[0.0, 0.25] 72.2%

::::
from

::
the

:::::
L2FP

::::::
retrieval

:

Solar zenith angle
::::
solar

:::::
zenith

::::
angle

::
at

::
the

::::
local

:::::
target [0.0, 63.0] 70.4%

:::::::
contained

::
in

:::
the

:::::::::
geolocation
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Table 4. Bias correction parameters for the the OCO-3 simulation. Only the dp terms have units [hPa], while the other parameters are unitless.

Again, the need for a water vapor scaling factor bias correction term is likely due to an indexing bug in the L1b simulator code. The “DS”

AOD is the combined optical depth of dust and sea salt aerosols.

Nadir-land Glint-water

Global bias=0.18 Global bias=0.0

Variable
::::
Short

::::
Name

: ::::::
Variable

:::::::::
Description BC slope, offset BC slope, offset

L2
::::
L2FP dp

:::::::
difference

:::::::
between

:::
the

::::::
retrieved

:::
and

::::
prior

::::::
surface

::::::
pressure

:
-0.20, 1.0 [hPa] -0.21, 0.0 [hPa]

L2
::::
from

::
the

:::::
L2FP

::::::
retrieval

:

::::
L2FP

:
WV scale

::::
water

:::::
vapor

:::::
profile

:::::
scaling

:::::
factor

::::
from

:::
the

::::
L2FP

::::::
retrieval

:
14.0, 0.9 NA

L2 DS AOD
::::
L2FP

::::::::::

√
DWS AOD

:::::::
combined

::::::
optical

::::
depth

::::
from

:::
the

::::
dust,

::::
water

:::
and

:::
sea

:::
salt

:::::
aerosol

::::::
species

:
-7.6, 0.0 NA

L2 Fine
::::
from

::
the

:::::
L2FP

::::::
retrieval

:

::::
L2FP

:::
fine

:
mode AOD

:::::::
combined

::::::
optical

::::
depth

::
of

:::
fine

:::::
mode

:::::
aerosol

:::::::
particles

::::
from

::
the

:::::
L2FP

::::::
retrieval

:
14.0, 0.0 NA

IDP CO2 ratio
:::
ratio

::
of
:::
the

::::
CO2::::

value
:::::::
retrieved

::
in

::
the

::::
1.61

:::
and

::::::
2.0µm

::::
bands

:
NA -170.0, 1.003

::::
from

::
the

::::
IDP

::::::
retrieval

:

ABP dp
:::::::
difference

:::::::
between

:::
the

::::::
retrieved

:::
and

::::
prior

::::::
surface

::::::
pressure

:
NA -0.053, 0.0 [hPa]

::::
from

::
the

::::
ABP

:::::::
retrieval
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Table 5. The slope
:::
(m)

:
and offset

:::
(b) of a linear least squares fit (LLS) and Pearson linear correlation coefficient (R) for ∆XCO2 versus

geophysical parameters before and after application of the QF/BC procedure. Data is for the full annual glint-water soundings only.

Variable Name Pre QF/BC Post QF/BC

LLS m/b R LLS m/b R

Sounding latitude -0.000/ 0.520 -0.009 0.002/-0.086 0.041

Solar zenith angle -0.013/0.924 -0.255 -0.002/0.009 -0.052

Polarization angle -0.016/ 0.928 -0.256 -0.002/ 0.009 -0.052

SNR (Oxygen-A band) -0.000/ 0.513 -0.001 -0.000/-0.054 -0.002

SNR (Weak CO2 band) -0.000/ 0.519 -0.005 -0.000/-0.054 -0.001

SNR (Strong CO2 band) -0.000/ 0.518 -0.005 -0.000/-0.055 -0.001

True AOD -1.469/ 0.673 -0.171 -0.029/-0.053 -0.004
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Table 6. Comparison of the standard deviation
::
(σ)

:
in XCO2 before and after QF and BC.

Land-nadir Ocean-glint

N 96,182 100,029

Sigma
:
σ raw 1.88 ppm 2.15 ppm

Sigma
:
σ BC 1.79 ppm 1.76 ppm

Sigma
:
σ
:
raw QF 1.14 ppm 0.67 ppm

Sigma
:
σ
:
QF, BC 0.85 ppm 0.52 ppm

6 Summary

The work presented here highlights the overall science objectives and expected performance for NASA’s upcoming Orbiting

Carbon Observatory-3 (OCO-3) mission. OCO-3 will be a hosted payload on the International Space Station, which is in a

precessing orbit. The launch is currently planned for early
::
late

:::::
April

:
2019, with a nominal three year mission life. While the

instrument itself is a duplicate of the operational OCO-2, several features, such as the addition of a pointing mirror assembly,5

and other necessary optical components, will slightly alter the instrument performance. The OCO-3 mission will largely inherit

the data algorithms that have been tested and refined using OCO-2.

After introducing the high level science objectives (which are similar to the OCO-2 mission) and providing a brief overview

of the planned measurement strategy, a detailed analysis of a year long simulation of OCO-3 measurements is presented. The

analysis begins with realistic ephemeris and measurement geometries, which are used, along with modeled meteorology and10

trace gases, to generate synthetic L1b radiances. Cloud screening preprocessors are used to select soundings to be run through

the OCO-2 B8 L2 full physics
::::::
(L2FP) retrieval, which is the current version of the algorithm that will be adopted for the OCO-3

mission. We performed a full quality filtering and bias correction to the retrieved L2
::::
L2FP

:
XCO2, following the methodology

given by
::::::::
described

::
in

:
O’Dell et al. (2018). Overall XCO2 errors, relative to both the true XCO2 and to the predicted error, are

assessed. We also present analysis of the solar induced chlorophyll fluorescence from the IMAP DOAS retrieval algorithm,15

and discuss implications of the spatiotemporal sampling from the ISS relative to polar orbiters
:::::::
orbiting

:::::::
satellites.

Generally, these simulations highlight the spatial and temporal sampling expected from OCO-3 aboard the precessing ISS,

illustrating how measurements will span a wide range of sunlit hours, and have large day to day variation in latitudinal sampling.

The simulated L1b radiances show signal to noise characteristic that are generally slightly lower than OCO-2, but still sufficient

to accurately estimate XCO2. Over monthly timescales that are typical of the global flux analysis, all latitudes are sampled and20

:::::::
typically

::::
used

::
in
::::::
global

::::
flux

::::::::
inversion

:::::::::
algorithms

::
to

:::::::
estimate

:::::::
sources

:::
and

:::::
sinks

::
of

:::::
CO2,

:
roughly 2.5 million good quality L2

retrievals are expected
::::::::
estimates

::
of

::::::
XCO2 :::

are
:::::::
expected

::::::::
spanning

:::::::
latitudes

:::::::
∼±52◦. An assessment of the error characteristics

of XCO2 indicate that they will be comparable to operational OCO-2 data. Furthermore, we demonstrate that the general

methodology of L2
::::
L2FP

:
quality filtering and bias correction on the retrieved XCO2 which is being used on operational OCO-
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2 data can be used to identify the most useful data and reduce the bias inherent in the full physics retrieval algorithm. In fact,

the filtering and bias correction process is necessary in order to meet the measurement objectives.

Retrievals of SIF using the IDP algorithm are also expected to have similar error characteristics compared to OCO-2, espe-

cially with respect to error induced by instrument noise. This new set of space-based SIF will be highly informative because

of the varying time of day
::::::::::
time-of-day sampling, so important to characterizing the local behavior of SIF. The dense coverage5

of latitudes below about 50
:::::::
spanning

::::::
∼±52◦, where global SIF is most active on an annual scale, is expected to provide a rich

data set to the science community.

Overall, the OCO-3 performance characteristics, as assessed in this simulation, should provide a global dataset that achieves

the mission goals and continues the dense, high-precision XCO2 and SIF record from space-borne measurements.
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Appendix A: Response to anonymous reviewer 125

1. Section 3.2 presents the issue of polarization and the computation of Stokes coefficients, but no further analysis is

presented in the results section. Why should the reader be interested in the computation of these Stokes coefficients (Eq.

1 and 2) if they are not used later on? It would be nice to actually see some discussion of polarization effects in Section

5.1, as promised at the end of Sect. 3.2.

This is a fair point. We felt that some discussion of the polarization angle is warranted as this to some extent drives the30

“throughput” or “signal” that the instrument measures. Since the polarization angle is a form of geometry, we felt that

placement in Section 3 “Simulated geometry, meteorology and L1b dataset” was the appropriate place to introduce it.

In an attempt to better tie the discussion of the (expected) OCO-3 polarization angle to the solar zenith angle and the

signal to noise ratio, we have provided a more comprehensive discussion of the polarization in Section 3.2 “Simulated

instrument polarization angle and Stokes coefficients”. This includes addition of a new figure (Fig.6) that shows the35
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Figure A1. Maps showing the number of CALIPSO cloud and aerosol profiles contained in each 2◦ by 2◦ lat/lon bin for January (left) and

September (right). For each OCO-3 sounding in the simulated data set a single profile was picked at random from the appropriate month and

bin.

theoretical relationship between the polarization angle, the solar zenith angle and the measured signal to noise ratio for

a specularly reflecting surface driven by a Cox and Munk model, i.e., glint-water viewing. The reference in Sec 3.2

to further discussion on polarization in Sect 5.1 was removed since Sect 5.1 focuses mainly on the SNR aspect of the

measurements, which is of overall greater importance than polarization w/r/t XCO2 retrievals.

2. Page 4, Line 25: Isn’t the O2-A band also providing useful information on aerosols?5

Yes, this is true. We have slightly modified the wording in Section 2.1: “The OCO-3 instrument payload” to more

accurately describe the function of each of the three spectral bands. A few relevant citations have been added as well.

3. P15, L19: I didn’t quite understand how exactly the random selection of cloud and aerosol profiles was made. Was the

random selection made following some probability of detecting a cloud based on climatological cloud coverage?

No, there is no climatological cloud coverage taken into account. However, the static database is composed of real10

CALIPSO/CALIOP profiles that are binned into monthly 2x2 lat/lon bins, so each randomly selected profile represents

a scene that was actually measured by CALIOP, but there is no continuity among adjacent OCO-3 soundings which are

order 2x2 km. Some examples of the number of CALIPSO profiles for each lat/lon bin are shown in Figure A1. Although

this material is interesting, we feel that the paper is already a bit lengthy so have opted not to include this figure in the

text. Some alterations were made to the wording in Section 3.3 “Simulated meteorology, gas and cloud/aerosol fields” in15

an attempt to more clearly explain the procedure.

4. Small corrections:

(a) 1. Page 3, line 32: ’then 4 km’ -> ’than 4 km’ Corrected.

(b) 2. P3, L12. Point is missing in front of ’Finally’ Corrected.

(c) 3. P9, L14: It should probably be ’30 south latitude’ Corrected.20
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(d) 4. P9, L26: It should probably be ’2 longitude x 2 latitude’. Same issue in legend of Fig. 3. Corrected.

(e) 5. P14, L12: There are two ’a’ on this line that should be deleted. Corrected.

(f) 6. P16, L15: I suggest to delete ’accurately’ in this sentence. The calculation will always only be an approximation

of reality and will only be (nearly) accurate, if the inputs such as aerosol properties are accurate. Corrected.

(g) 7. P17, L1: What is the ’NASA DISC’? Removed this reference as it is irrelevant in this context.5

(h) 8. P17, L13: What do you mean by ’ a priori state of the atmosphere’? What properties of the atmosphere are

described? Slight rewording of Section 4.2 to better describe the setup of the L2 retrieval algorithm.

(i) 9. P18, L29: ’anomoly’ -> ’anomaly’ Corrected.

(j) 10. P19, L32: delete one of the two ’when’ Corrected.

(k) 11. P20, L6: There seems to be a closing bracket missing. Corrected.10

(l) 12. P20, L7: ’the OCO-3 SNR’ -> ’the SNR’ Corrected.

(m) 13. Tables 2-4: These tables are full of acronyms and hard to read. I suggest adding another column ’description’

describing the variables. Updated the three tables to include a Variable Description column

(n) 14. P25, L2: Could you be more specific regarding the similarities and differences in the selected variables between

OCO-3 and OCO-2 We modified the discussion in Section 5.4 “Bias correction of XCO2” to be more explicit about15

the similarities and differences with both real and simulated OCO-2 data.

(o) 15. Fig. 13, lower left panel: Why is the x-axis the square root of the AOD and not AOD directly? We found

that the XCO2 error was closer to linear versus the square-root of the AOD. Since the BC formulation is linear in

nature, this is the optimal variable to make the correction against. Table 4 was corrected to show this variable (was

improperly just DS AOD before). It is such a minor detail that we did not insert any additional verbiage into the20

text for the sake of brevity.

(p) 16. Fig. 18: I can’t see any ’tiny black dots’ Removed the reference to the tiny black dots since they had been

removed from this version of the plot for clarity.

Appendix A: Response to anonymous reviewer 2

1. It is not stated whether the spacecraft pitch and roll is either taken into account (i.e. the PMA can compensate for25

spacecraft pitch and roll in real time) or is assumed to be small enough that the results aren’t affected; it would be

interesting to know whether the spacecraft orientation is a problem in terms of achieving the required pointing accuracy.

This is a good point. Yes, the PMA does compensate for ISS pitch and roll. We updated the text in Section : “Sampling

from the International Space Station - routine measurements” to better describe the expected operations and provided a

reference to an ISS technical document that specifies orbit parameters and other interesting information.30
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2. In the spatial comparison shown in Figure 8, the lack of OCO-2 soundings over the Amazon, sub-Saharan Africa, and

China compared with OCO-3 stands out; is this due to the ‘deficiencies in the simulation setup’ mentioned on page 19

line 28, meaning that in reality we might expect these regions to be filtered out in the OCO-3 data as well as in OCO-2?

Yes, our expectation is that the OCO-3 data as presented here is a bit over optimistic relative to what is expected from

real data. Think of it as a “best case” scenario, if all systems function perfectly, e.g., perfect instrument calibration and5

spectroscopy. Some text has been added to the discussion in Section 5.1 “Simulated L1b radiance characteristics” in

reference to Fig 8 to more explicitly call out and explain the expected lack of data in these three particular regions.

3. Page 2 Line 7: GOSAT-2 has now been launched, on 29th October 2018 We slightly modified the discussion in the

Introduction to more accurately describe the current situation as the original text was a bit out of date.

4. Page 6 Line 4: Update on whether analysis of thermal vacuum testing data is complete (I assume the results will go in10

the forthcoming manuscript mentioned on Line 5) The final OCO-3 TVAC data is still under analysis and the results are

planned for publication, likely post-launch. The discussion in Section 2.2 “OCO-3 pointing mirror assembly overview”

was updated and consolidated in Section 5.1 “Simulated L1b radiance characteristics” to more accurately describe the

current situation as the original text was a bit out of date.

5. Page 18 Line 23: I assume this refers to the same testing data mentioned on Page 6 Line 4; perhaps an ‘in preparation’15

reference would help clarify this? To clarify the message, the discussion of instrument calibration was removed from

Section 2.2 “OCO-3 pointing mirror assembly overview” and consolidated in Section 5.1 “Simulated L1b radiance

characteristics”.

6. Page 20 Line 6: Close brackets on ‘Figure 7’ Corrected.

7. Page 25 Line 18: Acronym ‘IDP’ not defined? The IMAP-DOAS Preprocessor (IDP) was first defined in Section 4.120

“Preprocessors”. We now spell it out explicitly again in the header of Section 5 for the convenience of the reader.

8. Page 25 Line 25: Move ‘e.g.’ inside the brackets, i.e. ‘. . . gases from space (e.g. Aben et al., 2007; Butz et al., 2009)’

Corrected.
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