
“This paper develops a scanning strategy for the upcoming GeoCarb mission from geostationary 

orbit, using an optimization algorithm to establish the greatest return in terms of soundings that 

exceed an unspecified minimum threshold in signal-to-noise ratio (SNR). The development of the 

approach appears logical and seems to give reasonable results. To me, though, it feels like a 

starting point for a more detailed treatment. It treats the land masses of the Americas as a 

“uniform space,” treating all points as equally important. While it is crucial to obtain global 

coverage (over the viewing area of the satellite), it seems to me that not all locations are 

equivalent in terms of monitoring greenhouse gas emissions. There are presumably hot spots of 

industrial activity that could benefit from closer scrutiny. The measurements do no extend to 

high enough latitude to capture emissions from the Alberta oil sands, but you will measure over 

the U.S. oil shale deposits in Colorado, Utah, and Wyoming, for example. I say this because one 

of the purported benefits of having the mission on a geostationary platform was that, according 

to the manuscript, “areas with high and uncertain anthropogenic emissions of CO2, CH4 and 

CO may be targeted with contiguous sampling,” but this benefit is not exploited with the 

proposed scanning strategy. One would need to attribute increased weight to the hot spots to 

properly shade the coverage. The authors do mention the notion of adjusting the coverage to 

study events such as volcanoes and large wildfires, but that is a separate notion, a temporary 

campaign mode rather than a regular coverage strategy.” 

 

Our original goal for this study was to quantitatively obtain a scanning strategy that would cover 

the satellite viewing area once and result in the highest quality measurements of the Americas. 

The decision was made to scan the area between 50 degrees north and 50 degrees south in our 

study because it includes the areas of interest in the six science hypotheses stated in Moore et al 

(2018). To make this clearer to the reader, we’ve included the six hypotheses in the introduction.   

 

We also agreed that demonstrating a scanning strategy with equal weighting for all land masses 

in the satellite viewing area does not illustrate to the reader the advantage of a geostationary 

platform. Therefore, we ran an additional experiment for a “city campaign” mode and added it to 

Section 5 of our manuscript. We would like to reiterate that this study is just a demonstration of 

one of many possible techniques and is not the proposed scanning strategy for the GeoCarb 

mission. 

 

“Another benefit mentioned for the geostationary platform was that you could improve the signal 

by increasing the dwell time for a measurement. I do not know if there is some constraint that 

would require every scan to be identical. If one could select the measurement dwell time 

employed in each individual scan, for example, one could improve the results in regions where a 

large percentage of the soundings would otherwise fall below the SNR threshold and therefore 

be tagged as unusable. In this scenario, scan time would become an additional parameter to 

include in the optimization.” 

 

GeoCarb does not have the measurement dwell time as a parameter to be optimized since the 

long observation slit will, in general, cover areas of both low and high SNR in every scan. 

Additionally, maximizing observations from low SNR areas is not a primary goal of the mission, 

as seen in Moore et al (2018). 

 



“The authors indicate that no results above the oceans are possible due to low signal. Is there no 

possibility of making use of ocean glint, as the OCO-2 mission does? This would obviously only 

work at certain times, when the conditions were such that sunlight reflected off the ocean at the 

same angle that the instrument was viewing the surface, but it would expand the coverage.” 

 

It is true that GeoCarb can theoretically make observations of ocean glint, but that is also not a 

primary objective of the mission. 

 

“Judging from Figure 4, the gain in “usable soundings” relative to the baseline approach 

appears to be strongly related to a reduced number of measurements over the oceans. The 

expected improvement in errors over the Amazon is presumably related to the increased number 

of overlapping scans in that region.” 

 

In general, the increased number of overlapping scans is indeed a reason for increased number of 

soundings. However, we have added histogram plots of airmass and solar zenith angle, which are 

the stationary parameters on which our algorithm optimizes on, to show that the algorithm is 

selecting scanning blocks at peak airmass and solar zenith angle more than the baseline strategy. 

 

“Note that no mention was made of what constituted a usable sounding. The last sentence relates 

the gain in soundings with SNR > 100, but it is not clear if that was the threshold employed for 

the determination of whether a particular measurement was usable. Based on the discussion on 

page 4, the calculated SNR was associated with the O2 A-band measurements. That means you 

assumed the SNR for the measurements of the CO2 bands was higher, or at the very least 

comparable?” 

 

That was a typo and it has been corrected to say the SNR associated with the Weak CO2 band.  

 

“In the text (page 8, lines 9-10), the statement is made that Figure 6 showed the minimum error 

distribution medians and variances occur where both weights are equal to 1. For me, that does 

not seem like an obvious conclusion to draw from the figure. It certainly seems true for the upper 

left panel, and maybe for the median in the upper right panel, but unless I misinterpret what is 

being said, I do not see it for the other plots.” 

 

We changed our language to say that the weighting of the terms does not have a large impact on 

the predicted error. We point that the spread of error medians and variances is approximately 

0.01 ppm and ultimately decided to leave the weighting at 1.  

 

“Minor comments 

Page 2, line 2: the acronym “FoV” was defined but not used again, so there is no need to define 

the acronym” 

 

Fixed in manuscript. 

 

“Page 8, line 9: “Figure 6” should be “Fig. 6”” 

 



Since the figure is referenced at the beginning of the sentence, AMT guidelines tell us to spell 

out the entire word. 

 

“Page 8, line 17: “Fig. 7 and 8” should probably be “Figs. 7 and 8”” 

 

Fixed in manuscript. 

 

“Page 9, line 9: … mean Error… >Why is “Error” capitalized?” 

 

Fixed in manuscript. 

 

“Page 9, line 13: “Fig. 5 and 10” should probably be “Figs. 5 and 10”” 

 

Fixed in manuscript. 

 

“Page 10, lines 4-5: “We also found that by optimizing for the global distribution of error, we 

obtained an improvement in regional errors as well, seen in Fig. 8” >This is not true for all 

regions, maybe an “overall improvement”” 

 

We agreed and fixed our language to state an “overall” improvement rather than the former. 

 

“Page 10, line 13: the acronym "AOD" is not defined” 

 

Now defined in manuscript. 

 

“Figure 2: The caption claims that the plots relate to June (on the left) and December (on the 

right). The titles on the plots suggest they relate to September (on the left) and June (on the 

right).” 

 

Fixed in manuscript. 

 

“Figure 6: The variables w_dist and w_overlap are used to label the plots rather than w_d and 

w_o, the variables employed in the text.” 

 

Noted in caption. 

 

“In Figures 8 and 9, it looks like there are no results over Cuba (greyed out?), even though that 

region appears to be within the scan range.” 

 

Cuba is not included in our scanning region as it is not a region of interest for the six hypotheses 

listed in Moore et al (2018). 



“The manuscript deals with the optimization of geographic coverage, which is a problem of 

interest for geostationary satellite remote sensing.  The approach presented in the manuscript is 

new and deserves publication in AMT. However, the approach and its underlying assumptions 

need to be better explained and the discussion of the results needs to be made clearer. The 

manuscript needs to be revised addressing the issues identified below. 

 

1.  The proposed scheme aims at enhancing the yield and quality of a geostationary CO2 

observation system by optimizing the scanning strategy with a focus on the Signal to Noise Ratio 

(SNR). Many other parameters that are expected to drive the yield and quality of such 

observations are not taken into account. Degraded CO2 product quality is expected not only in 

cases with low SNR, but also in many other conditions e.g. when viewing geometries are slant, 

when target air masses contain clouds or aerosol, and when clouds cover parts of the field of 

view thus increasing the risk of spatial straylight. The choice of focusing on SNR needs to be 

justified, and the approach regarding other potential drivers need to be explained and 

motivated.” 

 

We do include slant geometry into our calculation of SNR. We acknowledge that cloud 

contamination can cause bias in our measurements, but quantifying that effect is an open 

research topic and beyond the scope of this paper. The long viewing slit of GeoCarb means that 

at any given time there is a high probability that part of the slit will be obscured by clouds. 

Therefore, adaptive scanning to avoid clouds is beyond the scope of this first demonstration. Our 

algorithm seeks to maximize SNR by looking at the drivers that are more stationary processes 

such as the airmass and surface reflectance.  

 

“2.  The link between radiometric noise and the total CO2 uncertainty need to be dis-cussed in 

more detail (beyond reference to O’Brian, 2016 and Eq.  3).  The main contributors to the CO2 

product uncertainty budget need to be discussed, and it needs to be explained why the 

optimization is driven by the random radiometric error.” 

 

The model we use is an empirical model of retrieval uncertainty as a function of SNR, not the 

actual physical models used in the L2 algorithm. We would like to point out that we are not 

minimizing total CO2 uncertainty, but rather uncertainty due to stationary processes such as the 

solar zenith angle, surface reflectance, and airmass. We have added additional explanation to 

Section 3.3 as to how we linked SNR to retrieved CO2 uncertainty. 

 

“3.  The objective function given (Eq.  5) minimized in the optimization scheme seems 

incomplete. The SNR depends on the radiance signal level (Eq. 2) hence also on the solar zenith 

angle (SZA) (Eq.  1).  However, the SZA does not appear explicitly in the objective function. The 

penalty on slant illumination conditions seems to be missing.” 

 

The penalty for slant illumination is contained in the airmass factor, m. As a matter of fact, we 

initially had SZA explicitly in our objective function. However, the viewing slit of the GeoCarb 

instrument is so long that the slant penalty accounted over the entire area of a scanning block can 

outweigh other penalties such as overlapping coverage. This would cause the algorithm to pick 

too many overlapping blocks and extend the scan past the usable daytime. Therefore, we found 

that the SZA accounted by the airmass factor was sufficient. 



 

“4.   The top-level concept of the optimization scheme needs to be explained upfront (i.e.  briefly 

in the abstract and in more detail in the introduction).  Please clarify key elements such as a) 

that the scheme is to be applied off-line to determine a static scanning strategy, b) that near-real 

time information e.g. on cloud conditions is not taken into account, c) that the scheme is 

implemented by incrementally adding observation blocks, d) that the selection of the added 

blocks is performed by optimizing parameters X, Y, Z.” 

 

a) The technique demonstrated in the paper was indeed applied offline and it has been noted in 

the manuscript. We would like to point out that this IO routine could be applied online with real-

time information.  

 

b) The technique demonstrated in the paper assumes cloud-free atmosphere. This has been 

specified in sections 2, 3, 3.3, and 4. We know that this is physically incorrect and we believe 

that, in the future, the IO routine can be modified to take in real-time cloud information if it were 

available for the entire scanning region. Although as previously mentioned, that area of research 

is beyond the scope of this paper. We would like to reiterate that this is just a demonstration of a 

technique and not the proposed scanning strategy for the GeoCarb mission. 

 

c), d) Additional explanation of the main idea of IO has been added to the abstract and 

introduction. 

  

 

“5.  It is concluded that the IO based solution outperforms the “obvious human” solution.  This 

statement needs to be either better supported addressing a the apparent weaknesses listed below, 

or revised.  Weaknesses include:  a) the “obvious human”solution is to some degree arbitrary, 

there might be better guesses;  b) comparisons are shown only for two cases with similar time of 

day,  the situation can be different for other times;  c) improvements in Amazonia and 

degradations at other places are reported (Fig 8), but it is not clear how global performances 

are determined and compared; d) differences in the total number of usable observations are 

reported (Section4.1) but the basis of these numbers is unclear; How is the number of ‘usable 

soundings’ determined? Are there thresholds on SZA, AMF, SNR, albedo, .. ?” 

 

a) Prior to submitting this paper, the Moore et al (2018) had not been published. We possessed a 

tentative strategy and chose “obvious human” solution as a stand in for calling it the “proposed 

strategy” up until now. We have changed the language to say “proposed scanning strategy” 

rather than “obvious human” solution, referring to Moore et al (2018) as the source document for 

the GeoCarb mission description.  

 

b) Part of the technique is that the algorithm chooses a timeframe for scanning by using a 

specified “starting airmass factor (AF) threshold” parameter. After specifying a starting AF 

threshold, the decision of when and where to start scanning is left to the algorithm. This is 

specified in Section 3.2. 

 



c) Global performance in our context is meant to signify the aggregate predicted observational 

uncertainty (from Eq. (3) now Eq. (4)) over our satellite viewing area. We altered the language 

of the manuscript to clarify this. 

 

d) We chose an SNR of 100 as our threshold as to what constitutes a usable sounding. In the 

empirical model of predicted CO2 retrieval uncertainty as a function of SNR, a SNR of 100 

translates to a 2 ppm XCO2 retrieval uncertainty, which is within the first proposed accuracy per 

sample of XCO2 mentioned in Polonsky et al (2014). We have added extra explanation to the 

manuscript to clarify this. 

 

“6.  Section 4.2 reports a sensitivity analysis based on the assessment of regression coefficients. 

The conclusion of this analysis is unclear. Please clarify the conclusion in Section 4.2 and 

discuss the result in the overall context, in Section 5.7.  Figures 5 and 10 are not understood.  

Specify, also in the caption, which parameter is plotted on the ordinate, what the colour coding 

means, which distributions are represented by the ‘violins’. Why are distributions plotted as 

double-sided graphs?” 

 

The x-axes of Figs. 5 and 10 are labeled as “starting threshold” in reference to the starting 

airmass factor threshold that the algorithm takes as a parameter. The colors are not in reference 

to any specific attribute of the distribution, rather it just makes it easier to distinguish between 

different distributions. We chose to represent our distributions as violins because we felt that it 

makes it easy for the reader to identify areas of high density within each distribution. 

 

The sensitivity analysis was performed post-simulation runs as a check to see if the algorithm 

would exhibit unexpected behaviors when perturbed and concluded that it does not. These results 

are not tied to the main results of this paper. Therefore, the sensitivity analysis was moved to the 

appendix.  

 

“Technical Corrections 

Section 3.6 The iterative determination of scanning blocks might be dependent on the starting 

point (the location of the first scanning block).  Have various different starting positions been 

investigated?” 

 

As mentioned in response to comment 5, the algorithm takes a specified starting airmass factor 

threshold as an argument and then it decides when and where to start scanning. As a pseudo-

sensitivity check early in conducting our experiments, we did try to force the algorithm to start at 

different areas, but it would return to scanning generally the same geographic locations as other 

algorithm-selected strategies within a short time after starting the scan. 

 

“Section 3.5.2 Is full and contiguous coverage of the continental Americas within +/- 50deg lat 

within a day a hard boundary conditions for the optimization?” 

 

Yes. We have added additional explanation to the background section that explains that this 

geographic region includes the regions of interest for the six major science hypotheses stated in 

Moore et al (2018). 

 



“Page 4 line 18:  the aerosol optical thickness of 0.3 is considered very large.  Please justify. 

Aerosol optical depth depends on wavelength. What is the reference wavelength for the optical 

depth values provided?” 

 

We chose an aerosol optical thickness of 0.3 because it is considered a worst-case scenario for 

clear-sky retrievals and would give us conservative estimates of predicted observational 

uncertainty. This decision was based on the experience of the ACOS and OCO-2 team, 

referenced in the manuscript. We have added additional language clarifying that we are looking 

at the weak CO2 (1.61 micron) band. 

 

“Page 4 Eq 2:  please provide units of parameters N0 and N1 (which should be sameas the units 

of I)” 

 

Units have been added clarifying that I, N0 and N1 are in units of 𝑛𝑊 (𝑐𝑚2 𝑠𝑟 𝑐𝑚−1)−1 

 

“Page 4 Eq 3:  please clarify the meaning of sigma (introduced as the observational 

uncertainty).   Clarify whether  it  is  taken  as  the  dominant  contribution  to  the  XCO2vertical 

column uncertainty. Discuss the validity of this assumption.” 

 

Additional explanation of sigma was added to Section 3.3, which explains that sigma is derived 

from the posterior covariance given by the L2 algorithm.  

 

“Page 4 Eq 3: Specify units of sigma.” 

 

The manuscript has been fixed to say that sigma is in units of ppm. 

 

“Page 5 Eq 4: eq 2 established a simple noise model.  Eq 5 established an alternative more 

simplistic noise model. Why is the latter needed?” 

 

The more simplified model in Eq. 5 is an intermediate step to explaining the formulations of the 

objective function. It has been moved to be an inline equation rather than a numbered equation 

block. 

 

“Page 5 line 7: unclear what is meant with “multiplicative inverse”” 

 

Additional language was added to clarify that we mean, one divided by the radiance. 

 

“Page 5 Eq 5: ‘s’ is used in an inconsistent way.  It is introduced as an index to label the 

candidate block.  It appears as a parameter in the argument AF, where it probably should not 

appear since x and y already capture the horizontal spatial dimensions. At the same time it 

represents an area in the spatial overlap operation; instead a dedicated variable (eg A_s) should 

be used to represent the area of the candidate block s.” 

 

We realized that having set operations in the equation could be ambiguous to the reader. The 

terms in the objective function were reformulated to exclude set operations. 

 



“Page 5 Eq 5:  specify across which domain the median is evaluated.  I guess it is the area of the 

candidate block ‘s’.” 

 

Additional language was added to clarify that we meant the area of the candidate block, s. 

 

“Page 5 Eq 5: The variables E and I should be introduced as ‘areas of’ the target landmass and 

of the selected scan blocks.” 

 

The terms in the objective function were reformulated to be more clear to the reader. 

 

“Page 5 Eq 5: the distance delta is not well defined.  Please clarify from which point to which 

point is it to be evaluated.” 

 

Additional language was added to clarify that delta is the shortest linear distance from the 

boundary of the last selected scan block to the candidate scan block. A diagram has also been 

added to clarify the terms of distance, overlap, and coverage. 

 

“Page 6 Section 3.5 discusses a finite number of possible locations of a scan block, which 

suggests that blocks can be located only at discrete positions.  Please clarify whether this is 

correct.  If so, introduce this constraint explicitly and specify the grid of candidate locations.” 

 

Additional explanation was added to Section 3.5, referencing the explanation of the formulation 

of scan blocks in Section 3.1. 

 

“Section 3.5 Page 6 Section 3.5 line 9-10: The formulation “...a Greedy heuristic algorithm was 

employed to find a minimal covering set as a lower-bound estimate for set cardinality “ is not 

understood.  Please clarify what is meant with the term ‘cardinality’ in the present context?” 

 

The term ‘cardinality’ has been changed to say “set size”. 

 

“Page 7 line 7-10 very long sentence, meaning is unclear. Please split and reformulate. 

Page 7 line 7-10 The variance of predicted errors is mentioned.  On which parameter and over 

which domain is this variance evaluated?” 

 

We believe that the commenter is referencing to Page 8 lines 7-10. The entire Section 3.7 (now 

Sect. 3.6) has been reformulated for clarity.  

 

“Page 7 line 7-10 Please clarify and elaborate how to the optimum at weights=1 is found.” 

 

We changed our language to say that the weighting of the terms have negligible effects on the 

predicted error. We point that the spread of error medians and variances is approximately 0.01 

ppm and ultimately decided that the weights shall remain equal to 1.  

  



 

The following is the marked up manuscript. The language added to the original manuscript is 

highlighted in blue. The language removed from the original manuscript is striked out in red. 
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Abstract. The Geostationary Carbon
:::::
Cycle Observatory (GeoCarb) will make measurements of greenhouse gases over the

land mass in the western hemisphere
::::::::
contiguous

::::::
North

:::
and

::::::
South

::::::::
American

:::::
land

::::::
masses

::
at

:::::
daily

::::::::
temporal

::::::::
resolution. The

extreme flexibility of observing from geostationary orbit induces an optimization problem, as operators must choose what

to observe and when.
:::
The

::::::::
proposed

::::::::
scanning

:::::::
strategy

:::
for

:::
the

::::::::
GeoCarb

:::::::
mission

:::::
tracks

:::
the

:::::
sun’s

::::
path

::::
from

::::
East

:::
to

::::
West

::::
and

:::::
covers

:::
the

:::::
entire

::::
area

::
of

:::::::
interest

::
in

:::
five

:::::::
coherent

:::::::
regions

::
in

:::
the

:::::
order

::
of

:::::::
Tropical

:::::
South

:::::::
America

:::::
East,

:::::::
Tropical

:::::
South

::::::::
America5

::::
West,

:::::::::
Temperate

::::::
South

::::::::
America,

:::::::
Tropical

:::::
North

::::::::
America,

::::
and

:::::::::
Temperate

:::::
North

::::::::
America.

:
We express this problem in terms

of an optimal subcovering
:
a
:::::::::
geometric

:::
set

::::
cover

:
problem, and use an Incremental Optimization

:::::::::
incremental

:::::::::::
optimization (IO)

algorithm to create a scanning strategy that minimizes expected error as a function of the signal-to-noise ratio (SNR), and show

that this method outperforms the "human selected" strategy in terms of global error distributions.
:

:::
The

:::
IO

:::::::::
algorithm

::::
used

::
in

::::
this

::::::
studied

:::
is

:
a
::::::::
modified

:::::::
Greedy

::::::::
algorithm

::::
that

:::::::
selects,

:::::::::::
incrementally

:::
at

::::::::
5-minute

::::::::
intervals,10

::
the

::::::::
scanning

:::::
areas

::::
with

:::
the

:::::::
highest

::::::::
predicted

:::::
SNR

::::
with

::::::
respect

::
to
:::::::

airmass
::::::
factor

::::
(AF)

::::
and

::::
solar

::::::
zenith

:::::
angle

::::::
(SZA)

:::::
while

:::
also

::::::::::
considering

::::::::::
operational

:::::::::
constraints

::
to
:::::::::

minimize
::::::::::
overlapping

:::::
scans

:::
and

:::::::::::
observations

::::
over

::::::
water.

::
As

::
a
:::::
proof

::
of

::::::::
concept,

:::
two

:::::::::::
experiments

:::
are

:::::::::
performed

::::::::
applying

::::::
offline

:::
the

:::
IO

::::::::
algorithm

:::
to

:::::
create

:::
an

:::::::::::::
SNR-optimized

:::::::
strategy

::::
and

::::::::
compare

:
it
:::

to

::
the

:::::::::
proposed

:::::::
strategy.

::::
The

::::
first

::::::::::
experiment

::::::::
considers

:::
all

::::
land

:::::::
masses

::::
with

::::::
equal

:::::::::
importance

::::
and

:::
the

:::::::
second

::::::::::
experiment

::::::::
illustrates

:
a
:::::::::
temporary

::::::::
campaign

:::::
mode

::::
that

::::
gives

::::::
major

:::::
urban

::::
areas

::::::
greater

::::::::::
importance

:::::::::
weighting.

:::::
Using

::
a
::::::
simple

:::::::::
instrument15

::::::
model,

:::
we

::::::
found

:::
that

:::::
there

::
is

:
a
:::::::::

significant
:::::::::::
performance

:::::::
increase

::::
with

:::::::
respect

::
to

::::::
overall

::::::::
predicted

:::::
error

::::
when

::::::::::
comparing

:::
the

:::::::::::::::
algorithm-selected

:::::::
scanning

:::::::::
strategies

::
to

:::
the

:::::::
proposed

::::::::
scanning

:::::::
strategy.

1 Introduction

Understanding the effects of anthropogenic carbon dioxide (CO2) on the carbon cycle requires us to understand the spatial

distribution of atmospheric CO2 concentrations to identify natural and anthropogenic sources and sinks. In addition to a sparse20

in situ sampling network, ground-based remote sensing measurements are currently obtained from the Total Column Carbon

Observing Network (TCCON) and space-based measurements from the Orbiting Carbon Observatory (OCO-2) (Eldering et al.

(2017a), Eldering et al. (2017b), Crisp et al. (2017), Crisp et al. (2008), Crisp et al. (2004)) and Greenhouse Gases Observing

Satellite (GOSAT) (Kuze et al. (2009), Yokota et al. (2009), Hammerling et al. (2012)). These instruments have provided a

1



wealth of data for understanding the global carbon cycle in the recent years. However, these instruments have spatial and

temporal limitations. The repeat cycles of the space-based instruments force the spatial and temporal interpolation of the

atmospheric CO2 concentrations within their respective cycles, 3 days for GOSAT (Kuze et al. (2009)) and 16 days for OCO-2

(Miller et al. (2007)). The sparsity of the TCCON measurement sites restricts the latitudinal range of observations. The new

Geostationary Carbon
::::
Cycle

:
Observatory (GeoCarb) (

::::::::::::::::
Moore et al. (2018),

:
Polonsky et al. (2014)) will allow us to

::::::
provide5

:::::::::::
measurements

::::
that augment the current remote sensors on the ground and in space

::
in

::::
both

::::::::
temporal

:::
and

::::::
spatial

:::::::
coverage.

Recently selected as the NASA’s Earth Venture Mission-2 (EVM-2), GeoCarb is set to launch into geostationary orbit in

2022 to be positioned at 85◦W
:::::::::::
approximately

::::
85◦

::::::
(±15◦)

:::::
West

:::::::::
longitude, with the mission of improving the understanding

of the carbon cycle. Building on the work of OCO-2, GeoCarb will observe reflected sunlight daily over the Americas, and

retrieve the column average dry air mole fraction of carbon dioxide (XCO2), carbon monoxide (XCO), methane (XCH4), and10

solar-induced fluorescence (SIF). GeoCarb views
::::::::::::::::
Moore et al. (2018)

::::::
identify

:::
six

:::::
major

:::::::::
hypotheses

:::::
about

:::
the

::::::::::::::
Carbon-Climate

::::::::::
connnection

:::
that

::::
the

:::::::
GeoCarb

:::::::
mission

:::::
aims

::
to

:::::::
provide

::::::
insight

:::
on:

:::
(1)

::::
The

::::
ratio

:::
of

:::
the

::::
CO2:::::

fossil
::::::
source

::
to
::::::

biotic
::::
sink

:::
the

:::::::::::
conterminous

::::::
United

:::::
States

:::::::::
(CONUS)

::
is

:::::
∼4:1,

::::
(2)

:::::::
Variation

:::
in

::::::::::
productivity

:::::::
controls

:::
the

::::::
spatial

::::::
pattern

::
of
:::::::::

terrestrial
::::::
uptake

::
of

::::
CO2,

::::
(3)

:::
The

::::::::::
Amazonian

::::::
Forest

::
is

:
a
:::::::::
significant

::::::::
(0.5–1.0

::::::::
PgC/year)

:::
net

:::::::::
terrestrial

::::
sink

:::
for

::::
CO2,

::::
(4)

:::::::
Tropical

::::::::::
Amazonian

:::::::::
ecosystems

:::
are

::
a

::::
large

:::::::
(50–100

:::::::::
PgC/year)

::::::
source

:::
for

:::::
CH4,

:::
(5)

::::
The

:::::::
CONUS

:::::::
methane

:::::::::
emissions

:::
are

:
a
::::::
factor

:::
1.6

:
±
:::
0.3

::::::
larger15

:::
than

::
in
:::
the

::::
EPA

::::::::
database,

:::
(6)

::::::
Larger

:::::
cities

::
are

:::::
more

::::
CO2

:::::::::
emissions

::::::
efficient

::::
than

:::::::
smaller

::::
ones.

::::::
These

::
six

:::::::::
hypothesis

:::::
were

::::
used

::
as

:
a
:::::
basis

::
to

:::::
select

:::
the

::::::
∼85◦W

:::::::::
observing

:::
slot

::
as

:::
the

:::::::
position

::::
with

:::::
most

::::::::
"potential

:::
for

:::::::::
significant

:::::::
scientific

::::::::::
advances."

:::::::
GeoCarb

::::
will

::::
view

:
reflected sunlight from Earth through a narrow slit that projects on the Earth’s surface to an area measur-

ing about 1,740
:::
690

:
miles (2,800

:::
700

:
kilometers) from north to south and about 3.7 miles (6

:::
3.2

:::::
miles

::::
(5.2 kilometers) from

east to west. The instrument makes
::::
will

::::
make

:
measurements along the slit with a 4.5 second integration

:::
∼9

::::::
second

:::::::::
integration20

::::
time. Instrument pointing is

:::
will

:::
be

:
accomplished by way of two scanning mirrors that shift the field of view (FoV) north-

south and east-west. The pointing system is extremely flexible, and observations can be made at any location at any
:::
and time

with sufficient solar illumination. This flexibility induces an optimization problem: where
::::::
Where should the instrument take

measurements at a given time throughout the day?

Determining when and where to make daily scans with GeoCarb’s observing capabilities is mathematically similar to a CO225

::::::
ground observation network optimization problem for establishing new observation sites. Selecting the optimal location of

new observing stations has been shown to be feasible by utilizing various optimization algorithms. There have been previous

studies performed on the problem of optimizing CO2 observation networks utilizing computationally expensive evolutionary

algorithms [i.e.
:
, Simulated Annealing (Rayner et al. (1996); Gloor et al. (2000)) and Genetic Algorithm (Nickless et al. (2018))]

and one utilizing a deterministic, incremental
::::::::::
optimization

::::
(IO)

:
algorithm (Patra and Maksyutov (2002)). All of the previous30

studies utilized
::::::::
mentioned

:::::::::
employed their optimization routines to minimize CO2 measurement uncertainty as a function of

signal-to-noise ratio (SNR).

In this paper, a deterministic, incremental optimization routine (IO )
:::
IO

::::::
routine

:
is utilized to find a scanning strategy for

GeoCarb that minimizes expected
:::::::::::
geostationary

:::::::
scanning

:::::::
strategy

::::
that

::::::::
minimizes

::::::::::
GeoCarb’s

:::::::
expected

::::
CO2:

measurement un-

certainty as a function of SNR . Section 2
::
for

:::
the

:::::::
satellite

:::::::
viewing

::::
area.

::::::
Section

::
2 gives background information on the GeoCarb35
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mission and the objectives for this paper. Section 3
:
3
:
explains the process used to create the SNR-optimized

::::::::::::::
SNR-optimizing,

::
IO

:
algorithm and how the expected error is calculated from the simulated retrievals. In Section 4, the distribution of global

error of the
:
4,
::

a
::::::::::
comparison

::
is

::::
done

::::::::
between

::
an

:
algorithm-selected strategy is compared to a baseline strategy to determine

the performance of the algorithm and the sensitivity of algorithmto inputs is investigated, with results discussed in Sect. 5.
:::
and

::
the

::::::::
baseline

::::::
strategy

::
in
:::

the
::::

case
::::::

where
::
all

:::::::::
American

::::
land

::::::
masses

:::::::
between

:::::
50◦N

::::
and

::::
50◦S

:::
are

:::::::
scanned

::::
with

:::::
equal

::::::::::
importance5

:::::::::
weighting.

:::
In

::::::
Section

::
5,

:
a
::::
case

:::::
study

::
is

:::::::::
performed

::
to

::::::
exhibit

:
a
::::
"city

:::::::::
campaign"

:::::
mode

:::
for

:::
the

::
IO

:::::::::
algorithm. We offer concluding

statements in Sect. 6
:
6 and future research goals.

2 Background

GeoCarb will be hosted on a SES Government Solutions (http://www.ses-gs.com) communications satellite in geostationary

orbit at 85◦
:::::
∼ 85◦W. It will measure reflected near-infrared sunlight in the O2 band at 0.76µm to measure total column O2,10

::
the

:
weak and strong CO2 bands at 1.61µm and 2.06µm to measure XCO2, and the CH4 and CO bands

::::
band

::
at 2.32µm for

measuring XCH4 and XCO. The O2 spectral band is identical to that of the OCO-2 mission and allows for determination of

mixing ratios and the measurement of SIF, as well as additional information on aerosol and cloud contamination of retrievals.

The baseline mission for GeoCarb aims to produce column-averaged mixing ratios of CO2, CH4
::::
CO2,

::::
CH4:

and CO with

accuracy per sample of 0.7% (≈ 2.7 ppm), 1% (≈ 18 ppb),
:
and 10% (≈ 10 ppb), respectively

::::::::::::::::::
(Polonsky et al. (2014)

:
). Geo-15

stationary orbit offers two main advantages over low Earth orbit (LEO). First, the signal-to-noise
::::
ratio (SNR) is proportional

to the square root of the dwell time for detectors limited by photon shot noise. Geostationary
:
,
:::
and

:::::::::::
geostationary

:
orbits enables

longer observation times, thereby increasing SNR. Second,
:::
due

::
to

:::
the

::::::::
flexibility

:::
of

:::
the

:::::::
scanning

:::::::
mirrors,

:
areas with high and

uncertain anthropogenic emissions of CO2, CH4 and CO may be targeted with contiguous sampling, relatively small spatial

footprints,
:
and fine temporal resolution allowing for several observations per day on continental scalesare possible.20

We are presented
:::
with

:
the problem of finding an optimized scanning strategy for the GeoCarb satellite instrument. The

underlying abstract mathematical problem related to optimizing the scanning pattern is the Geometric Set Cover
::::::::
geometric

:::
set

::::
cover

:
problem (Hetland (2014)). Given a finite set of points in space and a set of subsets

::::::::
collection

:::
of

::::::
subsets

::
of

:::::
those

:::::
points,

the objective is to find a minimal set of scan blocks
::::::
subsets whose union covers all

::
the

:
points in the space. This idea is identical

to a network optimization problemcomparing the coverage area of a potential network observation site to a geometric subset in25

the space to be covered.
:::
The

:::::::
classical

:::::::
method

::
for

:::::::
finding

:
a
:::::::
solution

::
to

:::
the

:::::::::
geometric

::
set

:::::
cover

:::::::
problem

::
is
::
to
:::::::
employ

:
a
:::::::
Greedy

::::::::
algorithm.

:::::::
Greedy

:::::::::
algorithms

:::::::::::
incrementally

::::::
choose

:::::::
optimal

:::::::
solutions

:::::
based

:::
on

:::
the

:::::::
available

::::::::::
information

::
at

:
a
:::::
given

:::::
time.

::
In

:::
the

::::::
context

::
of

:::
the

:::::::::
geometric

::
set

:::::
cover

::::::::
problem,

:::
the

::::::
Greedy

:::::::::
algorithm

:::::::::::
incrementally

::::::
selects

::::::
subsets

::::
that

:::::
cover

:::
the

::::
most

:::::::
amount

::
of

::::::::
uncovered

::::::
points

::::
until

::
all

::::::
points

:::
are

:::::::
covered

::
by

:::
the

::::::
chosen

:::::::
subsets.

:::::::::
Modifying

:::
the

:::::::
Greedy

::::::::
algorithm

::
to

::::::::
optimize

::
an

::::::::
objective

:::::::
function

::
at

::::
each

:::::::
iteration

::
is
::
a
:::::::
common

:::::::
routine

:::
for

::::::
finding

:::::::::
geometric

:::::::
solutions

:::
to

:::::
spatial

:::::::::
problems

::::
with

::
no

::::::
known

:::::::::
analytical30

::::::::
solutions.

The task of determining the locations of new observation sites so that the total number of required sites to cover an

area is minimal is solved similarly. Therefore, we looked at methods used for optimizing network observation sites for our
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application. However, our motivation extends beyond just finding a minimal covering set
:::
has

::::
been

::::::
solved

:::::
using

:::
IO

:::::::::
algorithms

:::::::::::::::::
(Rayner et al. (1996);

::::::::::::::::
Gloor et al. (2000);

::::::::::::::::::::::::
Patra and Maksyutov (2002)

:
).

:::::::
Finding

::
an

:::::::::
optimized

:::::::
scanning

:::::::
strategy

:::
for

::::::::
GeoCarb

:
is
::::::::
identical

::
to

::
an

::::::::::
observation

:::::::
network

:::::::::::
optimization

::::::::
problem.

:::::::::
Therefore,

:::::
these

::
IO

::::::::::
algorithms

::::
were

::::::::::
prospective

:::::::::
candidates

:::
for

:::::::::
application

::
to

::::::::
GeoCarb. Our goal is

:::
was to find a minimal covering set that

::::::::
translates

::
to

:
a
::::::::
scanning

:::::::
strategy

:::
that is operationally

efficient and minimizes global measurement error for the GeoCarb instrument.5

Specific to the instrument

3
:::::::
Methods

:::::::::
Translating

:::
the

::::
idea

::
of

:::
the

:::::::::
geometric

:::
set

:::::
cover

:::::::
problem

::
to

::::::::
GeoCarb’s application, the

::::::::
collection

::
of

:
geometric subsets are 5-

minute East-to-West scan blocks, shown in Fig. 1, and the .
::::
The points in space that we are trying to cover is

::
to

::
be

:::::::
covered

:::
are

the North American and South American land masses between 50◦N and 50◦S . Because measurement
::::
since

::::
this

:::::::
contains

:::
the10

::::::
regions

:::::::
relevant

::
to

:::
the

::
six

:::::::
science

:::::::::
hypotheses

:::::::::
mentioned

::
in

:::
the

:::::::::::
introduction.

:::::::::::
Measurement

:
errors are influenced by parameters

that vary in space and time
::::
such

::
as

::::::
clouds,

::::::::
airmass,

:::
and

:::::
solar

:::::
zenith

::::::
angle.

:::::::::
Predicting

:::::
cloud

::::::::
formation

::::
and

::::::::::
quantifying

:::
the

:::::
effects

::
of

::::::
clouds

:::
on

:::::::::::
measurement

:::::
errors

:::
are

:::::
active

:::::
areas

::
of

::::::::
research.

:::
For

:::::::::
simplicity

:::
and

::::::::::::
computational

:::::::::
efficiency,

:
a
:::::::::
cloud-free

:::::::::
atmosphere

::
is

:::::::
assumed

::
in
:::
the

::::::
simple

:::::::::
instrument

::::::
model.

:::::::
Surface

:::::
albedo

::
is
::::::::
assumed

::
to

::
be

:::::::
constant

::::::
within

:::
the

::::
span

::
of

:
a
::::
day.

::::
Due

::
to

::::::::::::::
time-dependency, the solutions are in the form of ordered sets where the scan blocks are ordered by time of execution.

:::::
These15

:::::::
solutions

:::
are

:::::::
referred

::
to

::
in

:::
this

:::::
paper

::
as

::::::::
scanning

::::::::
strategies.

:
With the simplifying assumptions of making our

::::::
making

:::
the prob-

lem computationally tractable and minimizing scan coverage over the ocean, we propose a candidate set of 135 scan blocks (
::
is

:::::::
proposed

::
in

:
Fig. 1). This is a much larger candidate set than those of the network optimization studies that utilized evolutionary

algorithms (Rayner et al. (1996); Gloor et al. (2000)). Therefore, the computationally efficient Incremental Optimization (IO

) procedure
::
IO

:::::::::
algorithm,

::::::
which

::
is

:
a
::::::::
modified

::::::
Greedy

:::::::::
algorithm,

:
was implemented to select scan blocks that minimize our20

objective function at each increment in time.

4 Methods

3.1 Scan Blocks

We assume
:::
The

::::::::
scanning

:::::
region

::
is
::::::::::

discretized
::
in

:::
the

::::::::
east-west

::::::::
direction

::::::::
assuming

:
that GeoCarb will process commands in

terms of 5-minute scan blocks, during which the instrument steps
:
.
::::::
During

:::
the

::::
scan

:::
the

:::::::::
instrument

::::
will

::::
step the slit from east25

to west . The set of considered scan blocks , shown in Fig. 1, purposely excludes potential
:::::
within

:::
the

::::
scan

::::::
block.

:::::
Each

:::
slit

:::::::::
observation

::
is
::::::::
proposed

::
to

:::::::
contain

::::::::::::
approximately

::::
1000

:::::::::
individual

::::::::
soundings

::::
and

::
is

:::::::
assumed

::
to

::::
have

::
a
:::
∼ 9

:::::::
second

:::::::::
integration

::::
time.

::::
The

:::::::
scanning

::::::
region

:
is
::::::
further

:::::::::
discretized

::
in
:::
the

::::::::::
north-south

::::::::
direction

::
by

::::
scan

::::::
blocks

::::::::
separated

::
by

:::
5◦

::::::
latitude

::::::::::
increments.

:::::::
Potential

:
scans that are primarily over the ocean , as GeoCarb will not be able to make retrievals over water surfaces due to

lack of signal in the CO2 spectral bands. The potential scans are also largely
:::
are

::::::::
excluded,

:::::
since

::::::::::::
measurements

::::
over

:::
the

:::::
ocean30

::
are

:::
not

::
a
::::::
priority

:::
for

:::
the

::::::::
GeoCarb

:::::::
mission.

:::
The

::::
scan

::::::
blocks

:::
are

::::
also restricted to land between 50◦N and below 50◦S

:
as

::
a
::::
hard
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::::::::
constraint

:
due to larger solar

:::::
sensor

:::::::
viewing

:
zenith angles at the higher latitudes. Each slit observation (i.e. 1016 individual

soundings) is assumed to take 5 seconds, after which the slit moves to the west by half a slit width,
::::::
though

::::
this

::::
area

::::
still

:::::::
includes

::
all

:::::::
regions

:::::::
relevant

::
to

:::
the

:::
six

::::::
science

::::::::::
hypotheses

:::::::::
mentioned

::
in

:::
the

:::::::::::
introduction.

::::
The

:::::::
resulting

:::
set

::
of

:::::::::
candidate

::::
scan

:::::
blocks

:::
are

::::::
shown

::
in

::::
Fig.

:
1.

3.2 Science Operations Timeline5

A goal of this study is to create a scanning strategy that views all land masses of interest
::
at

::::
least

::::
once

:
within the time window

of usable daylight. To determine what time of day to begin the scanning process, Macapá, Brazil and Mexico City, Mexico

were chosen as geographic reference points to determine the beginning and ending time, respectively, of the usable daylight

time frame. Macapá is located at (0◦, 50◦W ) at the mouth of the Amazon river and being on the equator gives us a consistent

starting time relative to airmass factor (AF), a function of solar zenith angle (SZA) and the sensor
::::::
viewing

:
zenith angle10

(ZA
::::
VZA), where AF = 1

cos(SZA) + 1
cos(ZA)::::::::::::::::::

= 1
cos(SZA) + 1

cos(VZA) . Located at (19.5◦N , 99.25◦W ), Mexico City, Mexico is an

ideal reference point to determine when the window of usable daylight ended because it is longitudinally centered in the North

American land mass while being close enough to the equator for the calculated airmass factors to remain consistent through the

winter months. The scanning strategy
::
IO

::::::::
algorithm calculates the starting time when Macapá first exceeds a starting threshold

for AF and the ending time when Mexico City drops below an ending threshold for AF to determine when the usable daylight15

time window is over. As a result of parameter exploration experiments described in section 3.7
::::
Sect.

:::
3.7 , the suggested starting

threshold is AF = 2.6 for the Summer Solstice and AF = 2.7 for the Autumn Equinox for minimum variance in predicted

errors.

3.3 Uncertainty in Retrieved Gas Concentrations

GeoCarb retrieves gas concentrations using reflected sunlight. The radiance, I ,
:::::
Errors

::
in

::::::::
retrieved

::::
gases

:::
are

::
a

::::
result

::
of

:::::::::
numerous20

:::::::
different

:::::::
sources,

::::::::
including

::::::::
imperfect

::::::::::
radiometric

::::::::::
calibration,

:::::
errors

::
in

::::::::::
differential

:::::::::
absorption

:::::::::::
spectroscopy,

:::::::::
variations

::
in

:::
the

:::::::::
instrument

:::
line

::::::
shape,

:::
and

::::::
others.

:::
For

:::::::::
simplicity,

::
we

:::::::
assume

:::
that

:::
the

:::::
errors

::
in

::::::::
retrieved

::::
gases

:::
are

:::::
arise

::::
from

:::::::::
instrument

:::::
noise

::
as

:::::::
specified

:::
by

:
a
::::::
simple

::::
noise

::::::
model

::::::
arising

::::
from

:::::::
GeoCarb

:::::::
specific

::::::
design

:::::::::
parameters.

::::
The

:::::
signal

::
to

:::::
noise

::::
ratio

::
is

:::
then

::::::::::
propagated

::::::
through

::
to

::::::::::
uncertainty

:::::
using

:
a
::::::
simple

::::::::::::::
parameterization

:::
that

::::
was

::::::
trained

::
on

:::::::
retrieval

::::::
results

:::::
from

::::::::
simulated

::::
data.

:

:::
The

::::::::
radiance observed by GeoCarb is an aggregate of insolation and atmospheric and land surface processes that absorb,25

reflect, and scatter photons. The impact of these processes is parameterized using a simple model
:
,
::
I ,

:
from Polonsky et al.

(2014) that incorporates the effects of surface albedo and attenuation by aerosols over the sun-Earth-satellite path described by

the solar zenith angle (SZA ) and the sensor zenith angle (ZA):
::::
SZA

:::
and

:::::
VZA:

:

I = Fsunαcos(SZA)e−AFτ nW(cm2 sr cm−1)
−1 (1)

where Fsun is the band-specific solar irradiance, α is the band-specific surface albedo, and τ is the optical depth (OD) of30

atmospheric scatterers (e.g. aerosols). For our simple model, we assumed a ,
::::::::

aerosols,
:::::::

water).
::
A cloud-free atmosphere

::
is

:::::::
assumed

:::
for

:::
this

::::::
simple

::::::
model, whereas in the operational environment, clouds play a major role in retrieval quality due to
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poorly understood 3-D scattering effects. As can be readily verified, larger zenith angles lead to reduced signal for constant

scatterer OD, as does smaller surface albedo. Note that τ is a quantity with significant spatial and temporal variability, as

aerosol concentrations are modified by atmospheric dynamics, emissions, and chemistry. Typical values of τ in successful

retrievals for OCO-2 are less than 0.6 for nadir soundings near the equator and decrease as AF increases. Similarly, surface

albedo varies with land cover type on small spatial scales, and throughout the year with vegetation density. The OD term was5

set to τ = 0.3 as it was previously found to be a reasonable estimate for a "clear" sky retrieval (Crisp et al. (2004), O’Dell et al.

(2012)).

An important indicator of observation quality is the signal-to-noise ratio (SNR). In the case of GeoCarb, the signal is referred

to as
:::::::
modeled

::
as,

:
I , and the instrument noise equivalent spectral radiance

:::::
model, N , as

N(I) =

√
N0

2 +N1I nW(cm2 sr cm−1)
−1

::::::::::::::::
(2)10

where N0 and N1 ::
(in

::::
units

::::::::
nW(cm2

::
sr

:::::::::
cm−1)−1)

:
are parameters that empirically capture the effects of the instrument de-

sign (e.g.,
:

telescope length, detector noise) on overall instrument noise (O’Dell et al. (2012)). The O
::::
Weak

::::
CO2 A-band

(0.763
::::
band

:::::
(1.61µm) specific constants , N0 = 0.1819 and N1 = 0.003295

:::
that

::::::::
represent

:
a
::::::::::::::::

signal-independent
:::::
noise

:::::
floor

:::::::
radiance,

::::::::::::
N0 = 0.1296,

:::
and

::::
shot

:::::
noise

:::
due

::
to
::::::::
observed

:::::
signal

::::::::
radiance,

::::::::::::
N1 = 0.00175

:
are used in the noise model, which are

:::
Eq.

:
2
:::
to

::::
later

:::::::
calculate

:::::
SNR.

::::
N0 :::

and
:::
N1:::

are
:::::::
updated

:
figures derived from

::
the

:
airborne trials with the Tropospheric Infrared15

Mapping Spectrometers (TIMS) by Lockheed Martin (Kumer et al. (2013)), that were
:::
and later revised in Polonsky et al.

(2014). The SNR is then defined as I
N .

In O’Brien et al. (2016), the authors fitted an empirical model to predict the observational uncertainty
::::::::
posterior

:::::
errors,

:::
σ,

::::::::
estimated

::
by

:::
the

:::
L2

:::::::
retrieval

::::::::
algorithm

:
as a function of the measurement SNR. They

::
In

::::
their

:::::
case,

::
σ

:::
was

:::::::
derived

::::
from

:::
the

:::
L2

:::::::
retrieval

::::::::
algorithm

:::::::
posterior

::::::::::
covariance

::::
given

:::
by20

Ŝ = (KtS−1
ε K +S−1

a )−1

:::::::::::::::::::::
(3)

:::::
where

::
Sε::

is
:::
the

:::::::::
covariance

:::
of

:::
the

:::::::::
instrument

:::::
noise,

:::
Sa::

is
:::
the

:::::::::
covariance

::
of

:::
the

::::::::::
distribution

:::::
about

:::
the

::::
prior

:::::
state,

:::
and

:::
K

::
is

:::
the

:::::::
Jacobian

::
of

:::
the

:::::::::::::
transformation

::::
from

:::::
states

::
to

:::::::::::::
measurements.

::::
This

:::::::::
uncertainty

:::::::::
represents

:::
the

:::::::
impacts

::
of

:::
the

:::::
noise

::
on

:::
the

:::::
fitted

::::::
spectra

::
as

::::
well

::
as

::::::::::::
nonlinearities

::
in

:::
the

::::::::
radiative

:::::::
transfer

::::::
model.

::
It

::::
does

:::
not

:::::::
account

:::
for

:::::::::
systematic

::::::
errors

:::
that

:::::::
account

:::::
from

:::::
model

::::::::::
deficiencies

::
or

::::::::::
instrument

:::::::::::::::::
mis-characterization,

:::::
which

:::
are

:::::::
beyond

:::
the

:::::
scope

::
of
::::

this
:::::
work.

::::::::::::::::::
O’Brien et al. (2016) found25

that the function

σ =
1

1
14 + (0.0039)SNR

.

best captures the observation error distribution as SNR increases.
::::
solid

::::::
curves

::::
that

::::
best

::
fit

:::
the

::::::::
posterior

:::::
errors

::
in
::::

the
:::::
Weak

::::
CO2 ::::

band
::::
were

:::
of

:::
the

::::
form

::::::::::
σ = a

1+bxc ,
:::::
where

::
x

:
is
:::
the

:::::
SNR

:::
and

:::::
a,b,c

:::
are

:::
real

:::::::::
constants.

:::
For

:::::
CO2,

::
σ

::::::::
represents

::::::::::
uncertainty

::
in

::::
ppm.

:::
For

::
a
::::
SNR

::
of

::::::
x= 0,

:::
the

:::::::
function

:::::
takes

::
its

:::::::::
maximum

::::
value

:::
of

::
a.

::::::::
Therefore,

::
a
:::::::::
represents

:::
the

::::
prior

::::::::::
uncertainty.

::::
With

:::::
large30

:::::
values

::
of

::
x,
:::

the
::::::::

constant
:
c
:::::::::
determines

:::
the

::::
rate

::
of

::::::
decay

::
for

:::
σ.

::::::
Setting

::::::
a= 14

::::
ppm

::
to

:::::::
express

:
a
:::::::::::
conservative

::::
prior

::::::::::
uncertainty

6



::
on

::::::::
retrieved

::::
CO2 :::

and
:::::
c= 1,

:::
the

::::::::
resulting

::::::::
empirical

:::::
model

::::
was

σ =
14

1 + (0.0546)x
ppm.

:::::::::::::::::::

(4)

The same model is used to connect SNR and uncertainty for later scanning strategy distributions. The
::::::::
evaluating

::::::::
scanning

::::::::
strategies

::::
later

::
in

:::
this

::::::
paper.

:::
For

:::
the

:::::::
purpose

::
of

:::
our

:::::::::::
experiments,

:::
the

:
distribution of σ is treated as the metric against which a

particular scanning sequence is evaluated.5

3.4 Objective Function

Examining the definition of SNR, it is easy to see that

SNR=
I

N
≈ k
√
I , where k is a constant.

Since the goal is to ultimately maximize
:::::::::::
SNR≈ k

√
I ,

:::::
where

::
k
::
is

:
a
::::::::
constant.

::::::::
Therefore

::
it

::
is

:::::::
sufficient

::
to
:::::
focus

:::
on

::::::::::
maximizing

I , we define .
:::::::::::
Maximizing

:
I
::

is
:::::::::

equivalent
:::

to
::::::::::
minimizing

::
its

::::::::::::
multiplicative

:::::::
inverse,

::

1
I .

:::::::::
Therefore,

:
an objective function that10

minimizes its multiplicative inverse
:::
was

:::::::
defined

::::
that

::
is

::::::::::::
approximately

:::::::::::
proportional

::
to

::

1
I :::

on
:::
the

:::::::::
parameters

::::
AF

:::
and

:::::::
surface

:::::
albedo. In addition to minimizing SNR, two constraints were included in the objective function to prevent erratic behavior

in the scanning strategy
:::::::
scanning

::::::::
behavior. An overlap term

:
,
::
φ,

:
was introduced to minimize repeated coverage of regions. A

distance term, δ, was also included , which is the squared
::
to

::::::
prevent

::::::
erratic

::::::::
scanning

::::::::
behavior.

:
δ
::
is

:::
the

:::::::
shortest linear distance

from the boundary of the last selected scan block to a candidate scan block. The objective function, c, to be minimized is given15

by

c(s, t) = median(eAF (s,t,x,y)α(x,y)−1)ψ
:

(1 +
(s∩ I) + δ2

s∩E
φ+ δ2

β
:::::

), (5)

where

s= A candidate
::::::::
Candidate scan block.

t= Time.20

E = Uncovered land mass
::::
β =

::::
Area

::
of

:::::::::
uncovered

::::
land

::::
mass

:::::::
covered

:::
by

:::
the

::::::::
candidate

::::
scan

:::::
block

I = The set of selected scan
:::
φ=

::::
Area

:::
of

::::::::::
overlapping

:::::::
coverage

::::
with

:::::::
selected

:
blocks

α(x,y) = Surface albedo of a point in scan block.δ = Distance from last selected scan block .
::::
ψ =

::::::
Median

:::
of

:::::::
eAFα−1

::::
over

:::
the

:::::
entire

::::
area

::
of

:::
the

::::::::
candidate

::::
scan

:::::
block

AF (s, t,x,y) = Airmass factor
:::
α=

::::
The

::::::
surface

::::::
albedo of a point in

:::::
within

:
a scan blockwith respect to time. .

:
25

The median of eAF (s,t,x,y)α(x,y)−1
::::
terms

::
φ,
:::
β,

::::
and

:
δ
:::
are

:::::::::
illustrated

::
in

::::
Fig.

::
2
:::
for

::::::
clarity.

::::
The

::::::
median

:::
of

:::::::
eAFα−1

:
is used

because we assume
:
it
::
is
::::::::
assumed that the distributions of airmass factor and surface albedo are non-Gaussian within the scan

blocks
:::
due

::
to

:::
the

::::
long

:::::::
viewing

:::
slit. The high variability of both parameters are described in Section 3.4.2

::::
3.4.2.

:
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3.4.1 Surface Albedo

The MCD43C3 Version 6 White Sky Albedo MODIS band 6 data set (Schaaf and Wang (2015)) was utilized for obtaining

surface albedo, α. The MODIS BRDF/Albedo product combines multiband, atmospherically corrected surface reflectance data

from the MODIS and MISR instruments to fit a Bidirectional Reflectance Distribution Function (BRDF) in seven spectral

bands at a 1 km spatial resolution on a 16-day cycle (Lucht et al. (2000)). The White Sky Albedo measure is a bihemispherical5

reflectance obtained by integrating the BRDF over all viewing and irradiance directions. These albedo measures are purely

properties of the surface, therefore they are compatible with any atmospheric specification to provide true surface albedo as an

input to regional and global climate models. The native data was aggregated to the 0.5◦ spatial resolution, and interpolated in

time to daily resolution.

3.4.2 Seasonal Variation of Parameters10

Since AF is affected by the sun’s position and albedo is affected by the density of vegetation, there are large seasonal variations

in both of these variables, shown in Fig
:::
Figs. 3 and 4. However, there is little to no variation between day-to-day comparisons of

these variables. It suffices then, and gives an added advantage of being computationally efficient, to calculate separate scanning

strategies for each month rather than day.

3.5 Optimization Algorithms15

The time-dependency of the scanning strategy requires the solutions to be represented as ordered scan blocks of the candidate

set
:::::::::
discretized

::::::::
candidate

:::
set

::::::::
described

::
in

::::
Sect.

:::
3.1

:::
and

::::::
shown

::
in

:::
Fig.

::
1. Therefore, the sum of permutations

∑135
k=1

135!
(135−k)! gives

approximately 7× 10230 possible solutions. Since it is computationally intractable to evaluate all possible solutions, a Greedy

heuristic algorithm was employed to find a minimal covering set as a lower-bound estimate for set cardinality, and then it was

::
the

::::
size

::
of

::
a
:::::::
solution

:::
set.

::::
The

::::::
Greedy

:::::::::
algorithm

:::
was

::::
then

:
modified to an Incremental Optimization

:::::::::
incremental

:::::::::::
optimization20

(IO) algorithm to find a scanning strategy optimizing for SNR.

3.5.1 Greedy Algorithm

Viewing the North American and South American land masses as a uniform space to be covered without considering any

additional constraints, the problem is a Geometric Set Cover
::::::::
geometric

:::
set

:::::
cover problem where the goal is to find a minimal

cardinality
:::
size

:
covering set that we will call optimal. It is well-known that there are no known analytical solutions to the Set25

Cover
:::
set

:::::
cover problem, as it is one of Karp’s 21 NP-Complete problems, and the optimization version is NP-Hard (Karp

(1972)). However, there exists a heuristic method for finding a solution called the Greedy algorithm that selects the cover with

the largest intersection with the uncovered space recursively until the space is covered (Hetland (2014)). The pseudo-code
::
of

::
the

:::::::
Greedy

::::::
routine

:
is shown in Algorithm 1. The Greedy algorithm is computationally efficient, though

:::
but it is difficult to

verify that the solution it finds is the optimal
::::::
optimal solution. The Greedy algorithm is suitable for our application

:::
the

:::::::
purpose30

::
of

::::::
finding

:::
the

:::::::
smallest

::::
size

:::::::
scanning

:::::::
strategy

:
because it reduces the set of candidate blocks at each iteration by removing the

8



selected scan blocks and this ensures
::
to

::::::
ensure that there are no repeated scan blocks in a scanning strategy

:::::::
solution. Running

the Greedy heuristic with no objective function shows that the area of interest can be covered using 83 scan blocks. Therefore,

we took this
:::
this

::::
was

:::::
taken as the lower bound of covering set size.

Algorithm 1 Greedy Algorithm

E← Space to be covered

S← Set of scan blocks where E ⊆
⋃
si ∈ S

I←∅

while E( I do

Find s∗ ∈ S such that s∗ ∩E is maximal for all si ∈ S

Append s∗ to I

Remove s∗ from S

end while

3.5.2 Incremental Optimization

The Greedy algorithm was modified to select the scan block that minimizes the objective function at each iteration to satisfy5

operational constraints. Presented in Patra and Maksyutov (2002), this modification to the Greedy algorithm makes it an

Incremental Optimization
::
is

:::::
called

:::
an

::::::::::
incremental

::::::::::
optimization

:
(IO) algorithm because its goal is to minimize the objective

function at each increment of time to find the global optimum. Like the Greedy algorithm, IO has the advantage of being

computationally inexpensive. However, it may find local optima only and produce sub-optimal solutions depending on the

nature of the problem. Usually to avoid this issue, it is common to introduce small perturbations
::::
small

:::::::::::
perturbations

::::
are10

:::::::::
introduced at each increment, such as

:
is

::::
done

:
in evolutionary algorithms (i.e.

:::
e.g.,

:
simulated annealing and genetic algorithm).

It has been shown that IO yields results that are nearly as good as evolutionary algorithms while using a fraction of the

computational power (Nickless et al. (2018)).

For GeoCarb’s application, we were looking at the global distribution of errors, σ, and therefore were not concerned about

local optima. An additional constraint was added that requires
::::::
required

:
the algorithm to cover South America before switching15

to North America to further prevent erratic scanning behavior. The pseudo-code procedure of the
:
of

:::
the

:::
IO algorithm is shown

in Algorithm 2.

3.6 Evaluating the Optimized Scanning Strategy
:::::::::
Parameter

::::::::::
Exploration

To determine a "best" algorithm-selected scanning strategy, the global distribution of error, σ (Eq. (4)), of the algorithm-selected

strategy is compared to a baseline scanning strategy that we considered the "obvious" choice if chosen by a human, shown in20

Fig. 5. We say the baseline strategy is the "obvious" choice because it tracks the sun’s path and covers the entire area of interest

in five coherent regions in the order of Tropical South America East, Tropical South America West, Temperate South America,

Tropical North America, and Temperate North America. For scanning start and stop times of the baseline strategy, the same

9



Algorithm 2 Incremental Optimization Algorithm

E← North American and South American land masses between 50◦N and 50◦S

S← Set of 5-minute east-to-west scan blocks where E ⊆
⋃
si ∈ S

I←∅

C← Objective Function

while E( I do

Find s∗ ∈ S such that C(s∗) is the minimum of the set {C(si) : si ∈ S}

Append s∗ to I

Remove s∗ from S

end while

times used by the IO algorithm are used for the baseline strategy (1230 UTC for the Autumn Equinox and 1315 UTC for the

Summer Solstice).

3.7 Parameter Exploration

In Equation
:::
The

::
IO

:::::::::
algorithm

::::::::
calculates

::
a

:::::::
scanning

::::
start

::::
time

:::::
from

:
a
::::::::
specified

:::::::
starting

:::
AF

::::::::
threshold,

:::::::::
described

::
in

::::
Sect.

::::
3.2,

:::
but

:
it
::::
was

::::::::
unknown

:::::
what

::::::
overall

:::::
effect

:::
the

:::
AF

::::::::
threshold

::::
had

:::
on

:::
the

::::::
overall

:::::::::::
performance

::
of

:::
the

::::::::
resulting

:::::::
scanning

::::::::
strategy.5

::
In

:::
the

::::::::
objective

:::::::
function

::::
(Eq.

:
(5)

:
), the overlap and distance terms have equal weighting in the objective function

:::
had

:::::
equal

::::::::
weighting

:::
and

::::::::
different

:::::::::
weightings

:::::
were

:::::
tested

::
to

:::::::::
understand

::::
their

::::::
effects

::
as

:::::
well.

::
A

::::::
Monte

:::::
Carlo

:::::::::
experiment

::::
was

:::::::::
performed

::
to

::::::::
determine

:::
the

::::::::::
distribution

::
of

::::::
sample

::::
error

::::::::
statistics

:::::
across

:
a
:::::
range

::
of

:::::::
possible

:::::::
starting

:::
AF

:::::::::
thresholds

:::
and

:::::::
weights

::
for

:::::::
overlap

:::
and

:::::::
distance. The effects of weighting these

:::::::
different

:::::::::
weightings

:::
of

:::
the

:::::::
distance

:::
and

:::::::
overlap terms on the global distribution

of errors were investigated
:::::::::
specifically by adding (wo,wd) constant weight terms to Eq. (5) as new input parameters resulting10

in Eq.

c(s, t,wo,wd) = ψ(1 +
woφ+wdδ

2

β
).

::::::::::::::::::::::::::::::

(6)

::::::::
Applying

:::::::
Equation

:
(6) . Utilizing Equation 6, the algorithm now has three inputs

:
to

:::
the

:::::::::
algorithm

:::::
gives

:::
the

:::::::
operator

:::::
three

:::::
inputs

::
to

:::::::
specify, wo, wd, and the starting airmass factor threshold. A Monte Carlo experiment was performed to explore

the parameter space of weights and determine the distribution of sample error statistics across the range of possible starting15

thresholds.
:::
AF

::::::::
threshold.

:
For both wo and wd, 1000 weights each were randomly sampled from a uniform distribution between

0 and 10. This process was repeated for
:::
the

:::::::
Summer

:::::::
Solstice

::::
and

:::::::
Autumn

:::::::
equinox

:::
for

:
starting AF thresholds starting from

2.5 increasing by 0.1 to 3.5 and found that the
:::
for

:
a
::::
total

::
of

:::::::
22,000

::::::::::
experiments.

::::
For

::::
these

:::::::::::
experiments,

:::
the

::::::::::
contiguous

::::
land

::::::
masses

::
of

:::::
North

::::
and

:::::
South

:::::::
America

:::::
were

:::::::
scanned

::::
with

:::::
equal

::::::::::
importance.

::::
The minimum variance of predicted errors occurs

when the
::::
with

::::::
respect

::
to

:
starting AF threshold is

:::::::
occured

::
at 2.6 for the Summer Solstice and 2.7 for the Autumn Equinox ,20

shown in Fig. 6.
::::
Both

:::::::::::
distributions

::
of

::::::
median

::::
and

:::::::
variance

::
of

:::::
errors

::::::::
averaged

:
a
:::::

0.01
::::
ppm

:::::
spread

::::
over

:::
all

:::::
values

:::
of

::
wo::::

and
:::
wd

:::::
tested.

:::::::::
Therefore,

::
it

::::
was

::::::::
concluded

::::
that

:::
the

::::::
effects

::
of

::::::::
different

:::::::::
weightings

::
of

:::
the

::::::::
distance

:::
and

:::::::
overlap

:::::
terms

::::
were

:::::::::
negligible

10



::
on

:::
the

::::::
overall

::::::::
aggregate

:::::
error

:::
and

:::::::::
weighting

:::::
terms

::::
were

::::::::
excluded

::::
from

:::
the

::::::::
objective

::::::::
function.

::
A

::::::::
sensitivity

:::::::
analysis

::::
was

::::
also

::::
done

::
to

:::::::
quantify

:::
the

::::::
effects

::
of

:::::
these

:::::
results

::::
and

:::
can

::
be

::::::
found

::
in

::::::::
Appendix

::
A.

:

c(s, t,wo,wd) = median(eAF(s,t,x,y)α(x,y)−1)(1 +
wo(s∩ I) +wdδ

2

s∩E
).

4 Results

3.1 Global error5

Based on the parameter exploration results , the global

3.1
:::::::::

Evaluating
:::
the

:::::::::
Optimized

:::::::::
Scanning

::::::::
Strategy

:::
For

::::::::
evaluating

:::
the

:::::::::::
performance

::
of

::
an

::::::::::::::::
algorithm-selected

:::::::
scanning

:::::::
strategy,

:::
the

::::::::
empirical distributions of errorwere investigated

for simulations during
:
,
::
σ

:::
(Eq.

::::
(4)),

:::::
were

::::::::
compared

:::::::
between

:::
the

:::::::::
optimized

:::::::
strategy

:::
and

:
a
:::::::
baseline

::::::::
scanning

:::::::
strategy

::::::::
proposed

::
in

::::::::::::::::
Moore et al. (2018).

:::
An

:::::::
example

:::
of

:::
the

:::
two

::::::::
strategies

:::
are

::::::
shown

::
in

::::
Fig.

::
5.

:::
The

::::::::
baseline

::::::
strategy

::::::
tracks

:::
the

::::
sun’s

::::
path

:::::
from10

:::
East

::
to
:::::
West

:::
and

::::::
covers

:::
the

:::::
entire

:::
area

:::
of

::::::
interest

::
in

:::
five

::::::::
coherent

::::::
regions

::
in

:::
the

::::
order

:::
of

:::::::
Tropical

:::::
South

:::::::
America

:::::
East,

:::::::
Tropical

:::::
South

:::::::
America

:::::
West,

:::::::::
Temperate

:::::
South

::::::::
America,

:::::::
Tropical

:::::
North

::::::::
America,

::::
and

:::::::::
Temperate

:::::
North

::::::::
America.

:::
The

:::::
same

::::::::
scanning

:::
start

:::::
times

::::
used

:::
by

:::
the

:::
IO

::::::::
algorithm

:::
are

::::
used

:::
for

:::::::::
evaluating

:::
the

::::::::::
performance

::
of

:::
the

:::::::
baseline

::::::::
strategy.

:::
The

:::::
times

:::
are

:::::::::
calculated

::
by

:::
the

:::::::::
algorithm,

:::::
based

::
on

:
a
:::::::
starting

:::
AF

:::::::
threshold

::::::::
supplied

::
by

:::
the

::::
user,

::::
were

:::::
1230

::::
UTC

:::
for

:::
the

:::::::
Autumn

:::::::
Equinox

::::
with

:
a
:::::::
starting

:::
AF

:::::::
threshold

:::
of

:::
2.6

:::
and

:::::
1315

::::
UTC

:::
for

:::
the

:::::::
Summer

:::::::
Solstice

::::
with

:
a
:::::::
starting

:::
AF

::::::::
threshold

::
of

::::
2.7.15

::
In

:::::::
practice,

::
a

:::::::::::::
post-processing

::::
filter

:::::
(PPF)

::
is
:::::::
applied

::
to

::::::::
retrieved

::::::
satellite

::::
data

::::
and

:::
the

::::
data

::
is

::::::
marked

::::
with

::
a
::::::
quality

::::
flag

::
to

:::::
notify

:::
the

:::::::
end-user

:::
of

::
its

::::::
overall

:::::::::
usefulness.

::::
For

:::
this

::::::
study,

:
a
::::::::
threshold

::
of

::::
100

::
on

:::
the

:::::
SNR

::
is

::::
used

::
as

::::
our

::::
PPF

::
to

::::::::
determine

::
a

:::::::
"usable"

::::::::
sounding.

::::
This

::::::::
threshold

:::::
limits

:::
the

:::::::::
predicted

::::
error

::
to

::
a

::::::::
maximum

:::
of

::
∼

:
2
:::::
ppm,

::::
(Eq.

::::
(4)),

:::
and

::
is
::::::
within

:::
the

::::::::
accuracy

:::
per

::::::
sample

::::::::::
performance

:::::::::::
requirements

::::
laid

:::
out

::
in

::::::::::::::::::
Polonsky et al. (2014)

:
.

4
::::::::::
Experiment

::
1

:
–
::::::
Equal

::::::::::
importance

:::
for

:::
all

::::
land

::::::
masses20

::
In

:::
the

:::
first

::::::::::
experiment,

:::
all

:::::::::
contiguous

:::::
land

::::::
masses

::
of

:::::
North

::::
and

:::::
South

::::::::
America

::::
were

:::::::
scanned

::::
with

:::::
equal

::::::::::
importance.

::::::
Based

::
on

:::
the

:::::::::
parameter

:::::::::
exploration

::::::
results,

::::::::::
simulations

:::::
were

::::::::
performed

:::
for

:
the Summer Solstice with a starting AF threshold of 2.6

and simulations during the Autumn Equinox with a starting AF threshold of 2.7. The algorithm-selected scanning strategies

consistently matched or exceeded the performance of the baseline scanning pattern, shown in Fig
:::
Figs. 8 and 9. The region

where the most significant improvement is seen is in the Amazon during the Autumn Equinox, refer to Fig. 10. Additionally,25

the potential of both scanning strategies to yield observations where the SNR was greater than 100 (yielding a predicted error

of σ = 2.17) was analyzed for both strategies
::::
After

::::::::
applying

:::
the

::::
PPF

::
to
:::

the
::::::::::

simulation
::::::
results,

::
it

::::
was

::::
clear

::::
that

:::
the

:::::::
greatest

::::::::::
performance

:::::::
increase

:::::
from

::
the

::::::::
baseline

::::::
strategy

::::
was

::
in

::::::
usable

::::::::
soundings. During the Summer Solstice, the algorithm-selected
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strategy yielded approximately
::
∼3.79 million usable soundings versus the baseline strategy, which yielded approximately

::
∼3.02 million usable soundings. Similarly during

::::
from

:::::::::
soundings

:::
the

:::::::
baseline

::::::::
strategy.

::::::
During

:
the Autumn Equinox, the

algorithm-selected strategy yielded approximately
:
∼4.31 million usable soundings versus

::
∼3.04 million usable soundings

from the baseline.

:::
Part

:::
of

:::
the

:::::::
increase

::
in

::::::
usable

:::::::::
soundings

:::
can

:::
be

::::::::
attributed

::
to

:::
the

:::::::::
optimized

:::::::
strategy

:::::::::
following

:::
the

:::::::
coastline

::::::
better,

::::::
which5

:::::
results

::
in
::::

less
:::::
scans

::::
over

::::
the

:::::
ocean

::::
and

::::
more

:::::::::::
overlapping

:::::
scans,

:::::
refer

::
to

:::
Fig

::
5.
:::::::::

However,
:::
the

::::::::::
comparison

::
of

:::::
SZA

:::
and

::::
AF

:::::::
between

:::
the

:::::::
baseline

:::
and

:::::::::::::::
algorithm-chosen

::::::
strategy

::::::
shows

:::
that

:::
the

:::::::::
algorithm

:::
also

::::::
selects

:::::
more

::::
scan

::::::
blocks

::::
with

:::
low

::::
SZA

::::
and

:::
low

:::
AF,

:::::
refer

::
to

:::
Fig

:::::
(11). It is important to note that these figures are within

:::::
results

::::
from

::::::::::
simulations

:::::
done

::
in the cloud-free

environment of our modeland
::
the

::::::
model.

:::::::::::
Realistically,

:::::
there

::
is

:
a
:::::

high
:::::::::
probability

::::
that

::::
parts

:::
of

:::
the

:::::::
scanning

:::
slit

::::
will

:::::::
include

:::::
cloudy

:::::::
scenes, we expect the yield of usable soundings to be significantly less during operations, but that will likely affect10

::::
those

::::::
effects

::::
will

::
be

::::
seen

::::::::
similarly

::
in both the baseline and optimal strategies similarly

::::::::
optimized

:::::::::
strategies.

5
::::::::::
Experiment

::
2

:
–
::::
City

:::::::::
campaign

:
A
::::::

major
:::::::::
advantage

::
of

::::::
having

::
a
::::::::::::
geostationary

:::::::
platform

::
is
::::

the
::::::::
flexibility

::
to
:::::

scan
:::::
areas

::
of

::::
high

:::::::
interest

::
at
:::::

times
:::

of
:::::::
optimal

::::::::
observing

:::::::::
conditions.

:::
In

:::
this

:::::::
section,

::
a

:::::::::
"temporary

:::::::::
campaign"

::::::
mode

::
is

:::::::::::
demonstrated

::::::
where

:::::::
GeoCarb

::::::::
observes

:::
the

:::
ten

:::::
most

:::::::
populous

:::::
cities

:::
in

:::::
North

:::
and

::::::
South

:::::::
America

:::
as

:::::
areas

::
of

::::
high

:::::::
interest,

::::::
which

:::
are

::::
New

::::::
York,

:::::::
Chicago,

::::
Los

::::::::
Angeles,

::::::
Dallas15

:::::::::
Fort-Worth,

:::::::
Mexico

:::::
City,

:::::::
Bogota,

:::
Sao

::::::
Paolo,

::::
Rio

::
de

:::::::
Janeiro,

::::::
Lima,

::::
and

::::::
Buenos

::::::
Aires.

::::
The

::::::::::::
demonstration

::
is

::::
done

::::
for

:::
the

:::::::
Autumn

:::::::
Equinox

::::
with

:
a
:::::::
starting

:::
AF

::::::::
threshold

::
of

:::
2.7.

::::
The

::::
areas

:::
of

::::::
interest

:::
are

:::::
given

:::::
higher

:::::::::
weighting

::
in

:::
the

::::::::
algorithm

:::::::
through

:
a
:::::::
modified

:::::::
version

::
of

:::
Eq.

:::
(5).

::::
The

::::::::::
performance

:::
of

:::
the

:::::::
resulting

::::::::
optimized

::::::::
strategies

:::
are

:::::::::
compared

::
to

:::
the

:::::::
baseline

:::::::
strategy,

::::
both

:::::::
globally

:::
and

:::
for

:::
the

:::
ten

::::
cities

:::
of

::::::
interest.

5.1 Sensitivity Analysis
::::::::
Modified

::::::::
Objective

:::::::::
Function20

::
To

::::
give

::::
these

:::::
areas

::
of

::::::
interest

::
a

:::::
higher

::::::
weight,

::
a
:::::::::::::
time-dependent

::::::
scaling

:::::
factor

:::
was

:::::
added

::
to
:::
the

::::
term

::
ψ

::
in

:::
the

::::::::
objective

:::::::
function

:::
(Eq.

::::
(5))

:::
for

::::
scan

::::::
blocks

:::::::::
containing

:::::
these

:::::
cities,

::::
refer

::
to
::::

Fig.
:::
12.

::::
The

::::::
scaling

:::::
factor

::
is
:::::::
defined

:::
as,

::::
eb−c,

::::::
where

:
b
::
is
:::
the

:::
AF

:::
of

:
a
:::::
point

::::
with

::::::
respect

::
to

::::
time

::::
and

:::::::::::
c= a+ e2−a,

::::::
where

:
a
::

is
:::
the

:::::
daily

::::::::
minimum

:::
AF

:::
of

:::
the

:::::
point.

::::
The

::::
term

:
c
::::
acts

::
as

::
a
::::::::
threshold

::
for

:::
the

::::::::
selection

::
of

:::
the

::::::::
scanning

:::::
block.

::::::
While

:
b
::
is

::::::
greater

::::
than

::
c,

:::
the

::::::
scaling

::::::
factor

::::::::
penalizes

:::
the

:::::::
objective

::::::::
function

::
by

::::::
giving

:
it
::
a

:::::
larger

:::::
value,

::::::
which

:::
tells

:::
the

:::::::::
algorithm

::
to

::::
wait

::
on

::::::::
selecting

:::
the

:::::
block

::::
until

::
it

::
is

:::::::::
reasonably

:::::
close

::
to

::
its

:::::::::
minimum

:::
AF.

:::::
Once25

:
b
:::::::
becomes

::::
less

::::
than

::
c,

:::
the

::::::
scaling

:::::
factor

:::::
scales

:::::
down

:::
the

:::::
value

::
of

:::
the

::::::::
objective

:::::::
function

::
to
:::::
make

:::
the

:::::::::
algorithm

:::::
select

:::
the

::::
scan

::::
block

:::
as

::::
soon

::
as

::::::::
possible.

::::::
Figure

:::
13

:::::
shows

:::
the

:::::::
scaling

:::::
factor

:::
for

:
a
:::::
point

::::
with

::
a
::::::::
minimum

:::::
daily

:::
AF

::
of

::
2.
:::::

Table
::

1
::::::
shows

:::
the

:::::::::
relationship

::::::::
between

::::::::
minimum

::::
daily

:::
AF

:::
and

:::
the

::::::
scaling

:::::
factor

::::::::
threshold

:::
for

:
a
::::::
sample

:::
of

::::::::
minimum

::::
AFs.

::::
The

:::::::
modified

::::::::
objective

:::::::
function

:
is
:

c(s, t) = ψ̃(1 +
φ+ δ2

β
),

:::::::::::::::::::

(7)30

12



:::::
where

::
ψ̃

::
is

:::
the

::::::
median

::
of

:::::::::::
eb−ceAFα−1

::::
over

:::
the

:::::
entire

::::
area

::
of

::
a

::::::::
candidate

::::
scan

:::::
block

:::::::::
containing

:
a
::::
city

::
of

:::::::
interest.

5.2
::::::::
Predicted

:::::
errors

:::
The

:::::::
addition

:::
of

:::
the

::::::
scaling

:::::
factor

:::::
only

::::::
affects

:::
the

::::::::
candidate

::::
scan

::::::
blocks

::::
that

::::::
contain

::
a
:::
city

:::
of

:::::::
interest.

::::::
Hence,

:::::
there

::::::
should

::
be

::
no

:::::::::
significant

::::::::::
degradation

::
in
:::

the
:::::::

overall
::::::::::
performance

::
of

:::
the

:::::::::
optimized

::::::::
scanning

:::::::
strategy.

::::
Fig.

::
14

::::::
shows

:::
that

:::::
there

::
is

:::
still

::
a

::::::::
significant

:::::::
increase

::
in
::::::
usable

:::::::::
soundings,

::::::
∼ 3.97

::::::
million

::::::
versus

:::::::::::::
∼ 3.03million

:::::::
globally.

:
5

:::::::
Looking

::
at

::::
only

:::::::::::
observations

:::::
over

:::
the

:::
ten

::::::
cities,

:::
the

:::::::::
optimized

::::::::
scanning

:::::::
strategy

:::::
shows

:::
an

::::::::
increase

::
of

:::::::
∼ 2000

::::::
usable

::::::::
soundings

::::
over

:::
the

:::::::
baseline

:::::::
strategy,

:::::
refer

::
to

:::
Fig.

:::
15.

::::::
Shown

::
in
::::

Fig.
:::
16,

:::
the

:::::::
baseline

::::::::
strategy’s

::::
city

::::::::::
observations

:::::
have

:
a
::::::
higher

:::::::::::
concentration

::
of

::::
low

::::
SZA

::::::::::
soundings,

:::
but

:::
the

:::::::::
optimized

::::::::
strategy’s

::::
city

::::::::::
observations

:::::
have

:
a
::::::
higher

::::::::::::
concentration

::
of

:::
low

::::
AF

:::::::::
soundings.

6 Conclusions10

:::
We

:::::::
illustrate

:::
an

::::::::
efficient,

::::::
offline

::::::::
technique

::::
that

::::::
creates

::
a
:::::::::::
geostationary

::::::::
scanning

:::::::
strategy

::::
that

:::::::::
minimizes

:::::::
overall

::::::::
predicted

:::::::::::
measurement

:::::
error.

:::::::
Applied

::
in

::
a
:::::::::
simplified

:::::::::
instrument

::::::
model

::
of

:::::::::
GeoCarb,

:::
the

:::
IO

::::::
routine

:::::
gives

::
us

:::
an

:::::::::
optimized

::::::::
scanning

::::::
strategy

::::
that

:::::::
performs

:::::
better

::::
than

:::
the

:::::::
baseline

::::::::
scanning

::::::
strategy

:::::::
relative

::
to

:::
the

:::::
global

::::::::::
distribution

::
of

::::
error

::::
and

::::::
number

::
of

::::::
usable

:::::::::
soundings.

::
In

::::::
Section

::
4,

:::
we

::::::
showed

::::
that

:::
the

::::::::::
incremental

::::::::::
optimization

::
of

:::::
SNR

::::
with

::::::
respect

::
to

:::
the

::::::::
stationary

:::::::
physical

:::::::::
processes,

:::
AF

:::
and

::::::
albedo,

::::::
results

::
in

::
an

::::::
overall

:::::::::::
performance

:::::::
increase

::::
with

:::
the

:::::
region

::
of

:::::::
greatest

:::::::::::
performance

:::::::
increase

::::
seen

::
in

::
the

::::::::
Amazon15

::::
(Fig.

::
9).

::::
We

::::
have

:::
also

::::::
shown

::
in

:::::
Sect.

:
5
::::
that

:::
the

::
IO

::::::
routine

::::
can

::
be

:::::
easily

::::::::
modified

::
for

::
a
:::::::::
temporary

::::::::
campaign

:::::
mode

:::
that

:::::::
focuses

::
on

:::
the

:::
ten

::::
most

:::::::::
populated

:::::
cities

::
of

:::::
North

:::
and

::::::
South

::::::::
America.

:::::
Other

::::::::
examples

::
of

:::::::
possible

::::::::
scenarios

:::
for

:::::::::
temporary

:::::::::
campaigns

::
are

::::::::
wildfires,

::::::::
droughts,

::::
and

:::::::
volcanic

:::::::::
eruptions.

::
At

:::
the

::::::::
moment,

:::
our

:::::
model

::::
does

:::
not

::::
take

::::
into

:::::::
account

:::
the

:::::
effect

::
of

::::::
clouds

::
on

:::::::
retrieval

:::::::
quality.

:
It
::
is
::::::
known

::::
that

:::::
clouds

::::
play

::
a

::::::::
significant

::::
role

::
in

::::::::
scattering

::::::
effects

:::
and

:::::::::
influences

::
τ

::
in

:::
the

:::::::::
calculation

::
of

:::::::
radiance

::::
(Eq.

::::
(1)),

:::
but

::::::::::
quantifying

:::::
these

:::::
effects

::
is
:::
an20

:::::
active

::::
area

::
of

::::::::
research.

::
In

:
a
::::
case

:::::
study

::::::::
including

::::::
clouds

::::
and

:::::::
aerosols

::
in

:::
the

::::::::::
atmosphere

::::::::
performed

:::
by

::::::::::::::::::
Polonsky et al. (2014)

:
,

::
the

:::::::
authors

:::::
found

:::
that

:::
the

:::::::
number

::
of

:::::
usable

:::::::::
soundings

::::::
passing

::::
their

:::::::::::::
post-processing

:::::
filter

:::::
(PPF)

::
of

::::::
aerosol

::::::
optical

:::::
depth

::::::
(AOD)

:::::
< 0.1

:::
was

::::::::
between

::::
8.1%

:::
to

::::
20%

::
of

::::
total

:::::::::
simulated

:::::::::
soundings.

:::
We

::::::
believe

::::
that

:::
an

::::
AOD

:::::::::
threshold

::
of

:::
0.1

::
is

:::
too

:::::
strict

:::
for

:::
the

::::
clear

:::
sky

::::::::::
atmosphere

:::::
used

::
in

:::
our

:::::::::::
simulations,

:::::::
therefore

::::
the

::::::::
threshold

:::
was

:::::::
relaxed

::
to

:::
0.3

:::
to

::::::
capture

::
a
::::::::::
conservative

::::::::
estimate

::
of

:::::
usable

:::::::::
soundings

::
as

:::::::::
previously

:::::
done

::
by

:::::::::::::::::
O’Dell et al. (2012)

:::
and

:::::::::::::::::
Rayner et al. (2014).

:::::::::::::::::
O’Dell et al. (2012)

:::::
found

:::
that

:::::
22%25

::
of

::::
their

::::::::
simulated

:::::::::::
observations

::::
were

::::::::
classified

::::::::
correctly

::
as

::::::
"clear"

:::::
when

::::
they

:::::
used

::
an

:::::
AOD

::::::::
threshold

::
of

::::
0.3.

:::::::
Because

:::
we

:::
set

::::::
τ = 0.3

::
in

:::
our

::::::::::
calculation

::
of

:::::::
radiance

::::
(Eq.

::::
(1)),

::::
our

:::::::
estimate

::
is

:::
that

:::
the

::::
true

:::::::
number

::
of

::::::
usable

::::::::
soundings

::::
will

::
be

::::::
around

:::::
20%

::
of

:::
our

:::::::::
simulated

:::::
usable

:::::::::
soundings

:::
in

::::
Sect.

::
4.
::::::

Going
::::::::
forward,

:::
the

:::::::::::
incorporation

:::
of

:::::
cloud

::::::::
products

::::
from

:::::::::
CALIPSO

::::
will

:::
be

::::::::::
investigated

::
to

:::::
better

:::::::
simulate

:::::::::
operational

:::::::::
conditions

::::
and

:::::::
produce

::::
more

::::::
robust

::::::::
estimates

::
of

:::::
usable

:::::::::
soundings.

:

:::
The

::::::::::::::
SNR-optimized

::::::::
scanning

:::::::
strategy

::::::::::
outperforms

::::
the

::::::::
proposed

:::::::
strategy

:::
for

::::
the

::::::::
GeoCarb

::::::::
scientific

::::::::::
observation

:::::
plan.30

::
An

:::::::::
empirical

:::::
model

::::
that

:::::::::
calculates

::::::::
predicted

::::
CO2::::::::

retrieval
::::::::::
uncertainty,

::
σ,

:::
as

:
a
::::::::

function
::
of

:::::
SNR

::::
was

::::
used

::
to

::::::::
evaluate

:::
the

::::::::::
performance

::
of

:::::::::::::::
algorithm-selected

:::::::::
strategies.

:::
The

:::::::::
optimized

:::::::
scanning

::::::::
strategies

::::::::::
consistently

:::::::
matched

::
or

::::::::
exceeded

:::
the

::::::::
predicted
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::::::::::
performance

::
of

:::
the

::::::::
proposed

:::::::
scanning

:::::::
strategy

::::::
pattern

::::
with

::::::
respect

::
to

::::::::
aggregate

:::::::::
distribution

::
of

:::
σ.

:::::
When

:
a
::::::
simple

:::::::::::::
post-processing

::::
filter

:::::
(PPF)

::
of

:::::
SNR

::
>

::::
100

:::
was

:::::::
applied

::
to

:::::::::
determine

::::
what

::::::::::
constituted

:
a
::::::
usable

:::::::::
sounding,

:::
the

::::::::
optimized

:::::::::
strategies

::::::
yielded

::
a

::::::
∼ 18%

:::::::
increase

::
of

:::::
usable

:::::::::
soundings

::::::
during

:::
the

:::::::
Summer

:::
and

::
a

::::::
∼ 41%

:::::::
increase

:::::
during

:::
the

:::::::
Autumn

::::
over

:::
the

::::::::
proposed

::::::::
scanning

:::::::
strategy.

Data availability. The MCD43C3 MODIS BRDF/Albedo data was retrieved from the online Data Pool, courtesy of the NASA EOSDIS5

Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux

Falls, South Dakota, https://lpdaac.usgs.gov/.

Appendix A:
:::::::::
Sensitivity

:::::::
Analysis

To quantify the algorithm’s sensitivity to input parameters, the method of standardized regression coefficients (SRC) was uti-

lized (Helton et al. (2006)). SRCs are the regression coefficients of a linear model fitted to the standardized dependent variable,10

YZ = Y−Ȳ
σY

, using standardized independent variables, XZ = X−X̄
σX

. The dependent variable in this case is the predicted error

and the independent variables are wo, wd, and the starting AF threshold. The standardization of variables allows for measuring

the effect of the input parameters without their dependency on units (i.e.km2, ppm). The coefficient of determination, R2, of

the SRC model tells us how much of the variability in the sample statistics is explained by the
::::
SRC model. R2 is defined as the

Modeled Sum of Squares (MSS) divided by the Total Sum of Squares (TSS), where15

MSS =

n∑
i=1

(Ŷi− Ȳ )2

TSS =

n∑
i=1

(Yi− Ȳ )2

R2 =
MSS
TSS

and Ŷ = model predicted values, Ȳ = mean Error, Y = observed values, n= number of observations.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Ŷ = model predicted values, Ȳ = mean error, Y = observed values, n= number of observations.

The method of SRC was chosen for the sensitivity analysis by convenience of readily available simulation data from the pa-20

rameter exploration experiment.

In the results,
::::
The

:::::
SRCs

::::
show

::::
that both the median and variance of the global error are found to be sensitive to starting AF

thresholds as seen in Fig
:::
Figs. 6 and 7, and Tables 1 and 2. The starting AF thresholds affect the scanning strategy as a whole

by shifting the scanning time frame
:
2
::::
and

:
3. This sensitivity was expected considering that airmass factors rely

::::::
depend

:
on time

and play a large role in the calculation of radiance (Eq. (1)).
:::
The

:::::::
starting

:::
AF

:::::::::
thresholds

:::::
affect

::
the

::::::::
scanning

:::::::
strategy

::
as

:
a
::::::
whole25

::
by

:::::::
shifting

:::
the

:::::::
scanning

::::
time

::::::
frame.

:
Because SRCs determine the effect of the input parameters in the presence of others, the

SRCs fitted to a linear model of predicted error with respect to wo and wd were also analyzed within the Monte Carlo samples

of starting AF threshold equal to 2.7 for the Autumn Equinox and starting AF threshold equal to 2.6 for the Summer Solstice.
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Within the specified starting AF threshold of 2.7 for the Autumn Equinox, moderate effects of the weights were found on

the sample global error distribution. The values in Table 3
:
4
:
show that the SRC model explains approximately half of the

variability in median of global error distributions, R2 = 0.552, and the parameter with the largest effect on the variance is the

distance, δ. With respect to variance of global error distributions, the SRC model explains less than half of the variability with

R2 = 0.384. Again, the parameter with the largest effect is the distance term.5

Within the specified starting AF threshold of 2.6 for the Summer Solstice, the effects of the weights on the sample global

error distribution are small. The SRC model explains approximately
::::::
around

:
a quarter of the variability in median of global

error distributions, R2 = 0.242, and approximately 15%
:::::
∼ 15%

:
of the variability with R2 = 0.148, shown in Table 4.

:
5.

:
The

parameter with the largest effect is the overlap term for both variance and median of error distributions.

Small R2 values signify little
:::
less

::::
than

:::
0.7

::::::
signify

:::::
small

:
sensitivity to the independent variables or a nonlinear relationship10

between the independent and dependent variables. Visual analysis of the scatter plots of the distributions of sample statistics

versus weights (Fig. A1) does not imply a nonlinear relationship between the weights and sample statistics.

We illustrate an efficient technique that selects a covering set that also minimizes global measurement error. The Incremental

Optimization routine gives us an optimized scanning strategy that performs better than the baseline scanning strategy relative

to the global distribution of error and number of usable soundings. We also found that by optimizing for the global distribution15

of error, we obtained an improvement in regional errors
::
It

::
is

::::::::
important

::
to

::::
note

:
as well, seen in Fig. 9. There may be better

objective functions to optimize, and the structure of the algorithm does allow human intervention beyond the scope of this

work. For example, in the event of natural phenomena such as wildfires, droughts, and volcanic eruptions, the algorithm

can be modified to capture prioritized scanning regions during the minimum predicted error time for those regions.
:::
that

:::
the

::::::::::::::
non-standardized

::::::::
sensitivity

::
of

::::::::
predicted

:::::
errors

::::
with

::::::
respect

::
to

::::::
wo,wd::::::

results
::
in

:
a
::::::
spread

::
of

::::
0.01

::::
ppm

:
in
:::
the

::::::
overall

:::::::::::
performance20

::
of

::
an

:::::::::::::::
algorithm-selected

::::::::
scanning

:::::::
strategy.

:::
We

:::::::
conclude

::::
that

:::
the

::::::::
weighting

:::::
terms

::::::::
contribute

:::::::::
negligible

:::::
effects

::
to
:::
the

::::::::::
algorithm’s

:::::::::::
performance.

At the moment, our model does not take into account the effect of clouds on retrieval quality. It is known that clouds play a

significant role in scattering effects and influences the calculation of radiance (Eq. (1)). In a case study by Polonsky et al. (2014)

that included clouds and aerosols in the atmosphere, they found that the number of usable soundings passing their post-processing25

filter (PPF) of AOD < 0.1 was between 8.1% to 20% of total simulated soundings. We believe that an AOD threshold of 0.1 is

too conservative for a clear sky AOD threshold, therefore it was relaxed to 0.3 as previously done by Rayner et al. (2014) and

O’Dell et al. (2012). In O’Dell et al. (2012), they found that 22% of scenes were classified correctly as "clear" when they used

an AOD threshold of 0.3. Because τ = 0.3 in our calculation of radiance (Eq. (1)), we estimate that the true number of usable

soundings will be around 20% of our original estimates of daily usable soundings in Sect. 4.1. Going forward, cloud products30

from CALIPSO will be incorporated to better simulate operational conditions. This will yield more robust scanning strategies

and estimates of usable soundings.

The SNR-Optimized scanning strategyoutperforms the human-selected strategy first proposed for the GeoCarb scientific

observation plan. The algorithm selects strategies that consistently match or exceed the performance of the baseline scanning

15



pattern with respect to global error. The algorithm-selected strategies yield an 18% increase of soundings with a SNR>100

during the Summer and a 41% increase during the Autumn over the baseline strategy.
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Figure 1. Candidate Scan Blocks.
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Figure 2.
::
A

::::::
diagram

::::::::
explaining

:::
the

:::::::
objective

:::::::
function,

:::::
c(s, t),

::::
used

:
in
:::
the

::
IO

::::::
routine.

::::
The

::::
block

::::::
labeled,

:::::
si−1,

:
is
:::
the

:::
last

::::::
selected

:::::
block

:::
and

::
the

:::::
block

::::::
labeled,

::
s,

:
is
:::
the

::::
block

:::
for

:::::
which

::::
c(s, t)

::
is
::::
being

:::::::::
calculated.
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Figure 3. Comparing airmass factors in June
:::::::
September

:
(left) and December

:::
June

:
(right).
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Figure 4. Comparing Surface Albedo during the Autumn Equinox (left) and the Summer Solstice (right).
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Figure 5. The "obvious" choice
::::::
baseline

::::::
strategy

:
(left) compared to an algorithm-selected strategy (right).
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Table 1.
::::
This

::::
table

::::
shows

:::
for

:
a
::::::
sample

:
of
:::::

daily
:::::::
minimum

:::
AFs

:::
the

::::::
distance

:::::::::
relationship

:::::::
between

::
the

::::
daily

::::::::
minimum

::
AF

::
of

::
an

:::::::
observed

:::::
point,

:
a,
:::
and

:::
the

::::::
scaling

::::
factor

::::::::
threshold,

::
c,

:::
used

::
in
:::
the

:::::::
modified

:::::::
objective

::::::
function

::::
(Eq.

:::
(7)).
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Figure 6. Violin plots show the effect of starting threshold on variance of errors: Summer Solstice (top) and Autumn Equinox (bottom).
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Figure 7. Violin plots show the effect of starting threshold on error distribution medians: Summer Solstice (top) and Autumn Equinox

(bottom).
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Figure 8. Global error distribution, baseline strategy (left) and algorithm-selected strategy (right).

Standardized Regression Coefficients, Summer Solstice

Input Parameters Variance Median Expected Usable Ob-

servations

R2 0.939 0.935 0.311

Starting Threshold 0.9679 0.9618 -0.2769

wo 0.0615 -0.0621 -0.0634

wd -0.0040 -0.0716 0.4839
Table 2.

:::
The

:::::
SRCs

::::
show

:::
that

:::
the

::::::
variance

:::
and

::::::
median

::
of

:::::
global

::::
error

:::::::::
distributions

:::
are

:::::::
sensitive

::
to

:::::
starting

:::
AF

::::::::
thresholds.

The SRCs show that the starting AF threshold has major effect on variance and median of global error distributions.
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Figure 9. Comparing the algorithm-selected strategy (right) to the baseline strategy (left).
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Figure 10. There is a significant improvement in predicted errors over the Amazon for the Autumn Equinox.
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Figure 11.
:::
The

::::::::
histograms

::::
show

:::
that

:::
the

:::::::
algorithm

:::::
selects

::::
more

::::
scan

:::::
blocks

::::
with

:::
low

::
AF

::::
(left)

:::
and

:::
low

::::
SZA

:::::
(right)

::::
than

::
the

::::::
baseline

:::::::
strategy.

Figure 12.
::::
Scan

:::::
blocks

::::::::
containing

:::
the

::
ten

::::
most

::::::::
populated

::::
cities

:::
are

::::
given

:::::
higher

::::::::
weighting

::
in

:::
city

:::::::
campaign

:::::
mode.
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Figure 13.
::::::
Scaling

:::::
Factor

::
for

::
an

:::::::::
observation

::::
point

::::
with

:::::::
minimum

::::
daily

::::::
airmass

:::::
factor,

:::::
a= 2.
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Figure 14.
:::::::

Compared
::
to

:::
the

::::::
baseline

:::::::
strategy

::::
(left),

:::
the

::::::
overall

:::::::::
performance

::
of
:::
the

::::::::::::::
algorithm-selected

::::::
strategy

::::::
(right)

:
is
:::

not
::::::::::
significantly

:::::::
degraded

:
in
:::
the

:::
city

::::::::
campaign

:::::
mode.
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Figure 15.
::::::::
Compared

:
to
:::
the

::::::
baseline

::::::
strategy

:::::
(left),

:::
the

:::::::::::::
algorithm-selected

::::::
strategy

::
in
:::
city

::::::::
campaign

::::
mode

:::::
(right)

::::
sees

::
an

::::::
increase

::
of

::::::
approx.

::::
2000

:::::
usable

:::::::
soundings

::::
over

:::
the

::
ten

::::
most

::::::::
populated

::::
cities.
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Figure 16.
::
In

:::
the

:::
city

:::::::
campaign

:::::
mode,

:::
the

::::::::
histograms

:::::
show

:::
that

:::
the

::::::::::::::
algorithm-selected

::::::
strategy

:::
has

::::
more

:::::::::
observations

::::
with

:::
low

:::
AF

:::::
(left),

::
but

:::
the

::::::
baseline

::::::::
strategy’s

:::::::::
observations

::::
have

::::
lower

::::
SZA

::::::
(right).
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Standardized Regression Coefficients, Autumn Equinox

Input Parameters Variance Median Expected Usable Ob-

servations

R2 0.646 0.977 0.208

Starting Threshold 0.7997 0.9770 -0.4473

wo -0.0163 0.0056 -0.0579

wd 0.0757 0.1455 0.0772

Table 3.
::
The

:::::
SRCs

::::
show

:::
that

:::
the

::::::
median

::
of

:::::
global

::::
error

::::::::::
distributions

:
is
:::::::
sensitive

::
to

::::::
starting

:::
AF

::::::::
thresholds.

:::
The

:::
low

:::
R2

:::::
value

::
for

:::::::
variance

::::::
indicates

::::
that

::::
there

:::
may

::
be

::
a

:::::::
nonlinear

:::::::::
relationship

::::::
between

:::::::
variance

:::
and

::::::
starting

::
AF

::::::::
threshold.

:::
Fig.

::
6

::::
shows

::::
that

:::
this

:
is
:::
the

::::
case.

The SRCs show that the starting AF threshold has major effect on median and variance of global error distributions

SRC for Starting Threshold = 2.7, Autumn Equinox

Input Parameters Variance Median Expected Usable Ob-

servations

R2 0.384 0.552 0.497

wo -0.3051 0.2502 -0.2310

wd 0.5450 0.6950 0.6702
Table 4.

:::
The

:::::
SRCs

::::
show

:::
that

:::
the

:::::
median

::::
and

::::::
variance

::
of

:::::
global

::::
error

:::::::::
distributions

:::
are

:::
not

::::::
senstive

::
to

::::::
different

::::::::
weighting

::
of

::
the

:::::::
distance

:::
and

:::::
overlap

:::::
terms.

:::::::
R2 < 0.7

::::::
usually

::::::
signifies

::::::::::
insensitivity

::
to

:::::::::
independent

:::::::
variables.

The SRCs show that the distance term has a moderate effect on the median of global error distributions and some effect on variance of

global error distributions during the Autumn Equinox.

SRC for Starting Threshold = 2.6, Summer Solstice

Input Parameters Variance Median Expected Usable Ob-

servations

R2 0.148 0.242 0.284

wo -0.3481 -0.4833 -0.3911

wd -0.1717 -0.1064 0.3519
Table 5.

:::
The

:::::
SRCs

::::
show

:::
that

:::
the

:::::
median

::::
and

::::::
variance

::
of

:::::
global

::::
error

:::::::::
distributions

:::
are

:::
not

::::::
senstive

::
to

::::::
different

::::::::
weighting

::
of

::
the

:::::::
distance

:::
and

:::::
overlap

:::::
terms.

:::::::
R2 < 0.7

::::::
usually

::::::
signifies

::::::::::
insensitivity

::
to

:::::::::
independent

:::::::
variables.

The coefficients of determination tell us that the weighting has little effect on global error distribution during the Summer Solstice.
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Figure A1. Scatter plots do not indicate a nonlinear relationship between weights and sample statistics.
::
wo::::

and
::
wd:::

are
::::::
indicted

::
as
::::::

w_dist

:::
and

::::::::
w_overlap

:
in
:::
the

:::::
x-axis.
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