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Abstract. Characterization of errors and sensitivity in remotely sensed observations of greenhouse gases is necessary for their 

use in estimating regional-scale fluxes.  We analyze 15 orbits of simulated OCO-2 with the Atmospheric Carbon Observations 

from Space (ACOS) retrieval, which utilizes an optimal estimation approach, to compare predicted versus actual errors in the 

retrieved CO2 state.  We find that the non-linearity in the retrieval system results in XCO2 errors of ~0.9 ppm.  The predicted 10 

measurement error (resulting from radiance measurement error), about 0.2 ppm, is accurate, and an upper bound on the 

smoothing error (resulting from imperfect sensitivity) is not more than 0.3 ppm greater than predicted.  However, the predicted 

XCO2 interferent error (resulting from jointly retrieved parameters) is a factor of 4 larger than predicted.  This results from 

some interferent parameter errors larger than predicted, as well as some interferent parameter errors more strongly correlated 

with XCO2 error than predicted by linear error estimation.  Variations in the magnitude of CO2 Jacobians at different retrieved 15 

states, which vary similarly for the upper and lower partial columns, could explain the higher interferent errors.  A related 

finding is that the error correlation within the CO2 profiles is less negative than predicted, and that reducing the magnitude of 

the negative correlation between the upper and lower partial columns from -0.9 to -0.5 results in agreement between the 

predicted and actual XCO2 error.  We additionally study how the post-processing bias correction affects errors.  The bias 

corrected results found in the operational OCO-2 Lite product consists of linear modification of XCO2 based on specific 20 

retrieved values, such as the CO2 grad del (𝛿∇ைଶ), a measure of the change in the profile shape versus the prior) and dP (the 

retrieved surface pressure minus the prior).  We find similar linear relationships between XCO2 error and dP or 𝛿∇ைଶ, but see 

a very complex pattern of errors throughout the entire state vector.  Possibilities for mitigating biases are proposed, though 

additional study is needed 

1 Introduction 25 

OCO-2 was launched in July 2014 and began providing science data in September, 2014, with the goal of estimating CO2 with 

the "precision, resolution, and coverage needed to characterize sources and sinks of this important green-house gas." (Crisp et 

al., 2004).  Validation of the ACOS/OCO-2 Build 7 (referred to hereafter as v7) data set (Eldering et al., 2017) versus 

measurements from the Total Carbon Column Network (TCCON) (Wunch et al., 2011) shows regional biases of about 0.5 

ppm and standard deviations of 1.5 ppm (Wunch et al., 2017), though these errors are not entirely due to OCO-2 (TCCON and 30 
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colocation errors also contribute). Biases are particularly concerning due to propagation of CO2 biases into flux biases (Basu 

et al., 2013; Chevallier et al., 2014; Feng et al., 2016).  OCO-2 error analysis uses Rodgers (2000) which gives a statistical 

estimate of errors using first-order analysis that assumes that the forward model is linear and estimates errors due to smoothing, 

radiance measurement error, and interferent species.  The predicted XCO2 errors for v7 OCO-2 are typically 0.4 ppm for ocean 

glint and 0.5 ppm for nadir land, which underestimate the actual errors by at least a factor of 2 (Wunch et al., 2017).  The cause 5 

of regional biases is thought to be underestimated interferent error or missing components of error analysis but is not well 

understood.  Connor et al. (2016) found that missing physics in the forward model (e.g. more aerosol types; spectroscopy error; 

instrument error) leads to significantly larger posterior uncertainties than predicted by the current ACOS error analysis, using 

a purely linear error estimation framework.  However, this study finds that non-linear retrievals using this relatively simple 

simulation system (e.g. no spectroscopic errors, no instrument noise, consistent aerosol types between the true and retrieved 10 

states) also shows a similar relationship between predicted and actual errors, with the actual error about twice the predicted. 

 

Cressie et al. (2016) estimates the size of second-order terms of the error analysis.  The second order terms contain derivatives 

of the averaging kernel, gain matrix, and Jacobians with respect to state parameters.  Cressie et al. (2016) estimates the errors 

resulting from second-order error analysis are on the order of 0.2 ppm, but this analysis was dependent on the states and sizes 15 

of deviations used to calculate the second-order derivatives.  Cressie et al. (2016) found that second order terms can cause both 

larger errors and biased results.   

 

This paper explores the errors in the "full physics" retrieval system using a simulated system with no mismatches in the retrieval 

versus true state vector, and no spectroscopy or instrument errors.  The actual errors covariance of (retrieved minus true) for 20 

this retrieval system are about twice the predicted errors.  The linear analysis of Connor et al. (2016) does not explain the 

higher errors in this work, because the simulations in this work do not include unaccounted errors sources.  Cressie et al. (2016) 

also does not explain the higher actual errors, because Cressie et al. (2016) estimates the second-order error as about 0.2 ppm, 

whereas the unaccounted error is about 0.8 ppm in this paper.  In order to identify the source of the unaccounted error, actual 

errors are compared to the predicted linear errors for a series of setups. 25 

 

The ACOS Level 2 (L2) "full physics" retrieval algorithm used to estimate XCO2 from OCO-2 employs optimal estimation 

using 3 near infrared bands: (1) 0.76 μm containing significant O2 absorption ("O2 A-band"), (2) around 1.6 μm containing 

weak CO2 absorption ("weak CO2 band"), and (3) near 2.1 μm containing strong CO2 absorption ("strong CO2 band").  Prior 

to the main retrieval, a series of fast pre-processing steps are performed for quality analysis (primarily to screen out clouds) 30 

and to provide estimates of chlorophyll fluorescence (Frankenberg, 2014). Only soundings that are deemed sufficiently clear 

are selected to be processed by the computationally expensive L2 retrieval.  In the optimal estimation L2 retrieval used in this 

simulation, 45-46 retrieval parameters are simultaneously estimated, including CO2 volume mixing ratios (VMR) at 20 
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pressures, albedos in 3 bands, 4 types of aerosols, meteorological parameters (temperature, water vapor, surface pressure), 

dispersion (frequency offset), wind speed (ocean only), and fluorescence (land only).   

The retrieved CO2 profile is then collapsed into a column, XCO2.  Recent work has alternatively partitioned the information 

into two partial columns (Kulawik et al., 2017).  Post-processing quality screening and linear bias corrections based on various 

L2 retrieved parameters are then performed on XCO2.  The corrections are based on the slope of XCO2 error versus different 5 

retrieved values, where the XCO2 error is estimated from retrieved XCO2 minus either (a) a constant value, in the southern 

hemisphere, "The Southern Hemisphere Approximation", (b) values from surface-based observations from TCCON stations, 

(c) the mean of small areas (less than 1 degree), or (d) a multi-model mean (Mandrake et al., 2015).  We study the effects of 

the post-process bias correction in Section 4.3. The simulations in this paper differ from the operational retrieval in that the 

fluorescence true state is set to zero, although fluorescence is still retrieved; and amplitudes of spectral residual patterns are 10 

not retrieved; except for these minor differences, these simulated retrievals are identical to the operational v7 retrievals. We 

refer the interested reader to O’Dell et al (2018) for a full description of the operational retrieval, including retrieved variables 

and bias correction. 

 

Simulation studies can be used to understand and probe retrieval results.  There are many different ways to assess errors, listed 15 

here in order of increasing complexity and non-linearity:  

 

1) Linear estimates of errors, which assumes moderate linearity of the retrieval system (Connor et al., 2008; Connor 

et al., 2016), useful for surveying impacts of different errors with linear assumptions  

2) Error estimates from non-linear retrievals of simulated radiances using a fast, simplified radiative transfer, called 20 

the surrogate model (Hobbs et al., 2017).  This system does not result in the discrepancy of larger actual versus 

predicted error 

3) Error estimates from non-linear retrievals of simulated radiances generated using the operational L2 forward 

model, called the "simplified true state", which has the advantage that the true state is within the span of the 

retrieval vector and the linear estimate should be valid 25 

4) Error estimates from non-linear retrievals of simulated radiances using a more complex and accurate radiative 

transfer model to generate the observed radiances (e.g. Raman scattering, polarization handling, surface BRDF 

effects) and discrepancies between the true and retrieved state vectors (e.g. aerosol type mismatches between the 

true and retrieval state vector, albedo shape variations) (e.g. O'Dell et al., 2012).   

 30 

This paper uses system (3), which makes it easier to interpret the actual versus expected performance of the retrieval system.  

System (3) was used because preliminary studies seemed to find that the performance of systems (3) and (4) were comparable 

(results not shown).  Note that the observed radiance is generated with slightly different code than the retrieval system but they 

are matched as closely as possible. 
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2 Retrieval system 

2.1 Description of the OCO-2 L2 retrieval algorithm and error diagnostics 

The ACOS optimal estimation approach is described in O'Dell et al. (2012, 2018) and Crisp et al. (2010).  In this section we 

review the parameters in the retrieval vector and the equations for error estimates.  The retrieved parameters for this simulation 

study are shown in Table 1. 5 

  

All non-CO2 parameters are called interferents, and the propagation of errors from these parameters into CO2 is called 

"interferent error". 

 

The a priori covariance matrix for CO2 has the dimensions 20x20, and has strong correlations as shown in Fig. 2 of O'Dell et 10 

al. (2012).  The CO2 a priori error is 48 ppm error at the surface, 12 ppm in the mid-Troposphere, and 1.4 ppm error in the 

stratosphere.  The larger variability near the surface allows more variability in the retrieved CO2 profile near the surface.  

However, in the ACOS retrieval, about 8% of the true mid-Tropospheric CO2 variations are incorrectly attributed to surface 

variations based on the bias correction of 𝛿∇ைଶ  (Kulawik et al., 2017).  The a priori errors for other parameters are all 

uncorrelated in the a priori covariance, and can be found in the L2 Product file. 15 

 

The predicted errors, found in the OCO-2 L2 product as "XCO2_error_components", are based on the assumption that the non-

linear, iterative retrievals can be represented as a linear estimate (Connor et al., 2008; Rodgers, 2000), and shown in Eq. 1.   

 

𝐯ො = 𝐯𝒂 + 𝐀𝒗𝒗(𝐯𝒕𝒓𝒖𝒆 − 𝐯𝒂) + 𝐀𝒗𝒆(𝐞𝒕𝒓𝒖𝒆 − 𝐞𝒂) + 𝐆𝒗𝜺      (1) 20 

 

where 

 𝐯ො is the retrieved CO2 profile, size nCO2 (20 for OCO-2). This variable is called "𝐮" in Connor et al., 2008, called 
"v" here so as not to be confused with a different U variable introduced later. 

 va is the a priori CO2 profile, size nCO2 25 
 vtrue is the true CO2 profile, size nCO2 
 Avv is the nCO2 x nCO2 CO2 profile averaging kernel 
 𝐀𝒗𝒆(𝐞𝒕𝒓𝒖𝒆 − 𝐞𝒂) is the cross-state error representing the propagation of error from non-CO2 retrieved parameters, e 

(aerosols, albedo, etc.), into retrieved CO2.  
 𝐞𝒂 is the a priori interferent value, size ninterf. For this work, ninterf is 26(27) for ocean (land) 30 
 𝐞𝒕𝒓𝒖𝒆 is the true interferent value, size ninterf 
 𝐀𝒗𝒆 is size nCO2 x ninterf 
 𝐆𝒗 is the gain matrix for CO2, size nCO2 x nf, where nf is the number of spectral points, and 
 𝜺 is the spectral error, also called measurement error, size nf 

 35 

The full gain matrix, G, maps from spectral signals to retrieval parameter changes, and is: 
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 𝐆 = (𝐊𝐓𝑺𝜺
ି𝟏𝐊 + 𝐒𝐚 

ି𝟏)ି𝟏𝐊𝐓𝑺𝜺
ି𝟏       (2) 

 

where K is the Jacobian (or Kernel) matrix, and Sε is the error covariance of the spectral error, ε. Note that G is size n x nf, 

where n = nCO2+ninterf is the total number of retrieved parameters.  K is a matrix of derivatives giving the sensitivity of the 

radiance at each frequency to each retrieved parameter; e.g. for the CO2 parameter at 800 hPa, 5 

 

 𝐊 =
ௗோௗ

ௗ(ைଶ @ ଼ )
         (3) 

 

An assumption of the ACOS retrieval system is that the Jacobians are fairly invariant during the retrieval process, as is the 

assumption for nearly all optimal estimation retrievals (see e.g. Rodgers, 2000). 10 

 

The averaging kernel, A, is one of the most fundamental and useful quantities in Bayesian inversion theory. It describes the 

predicted linear dependence of the retrieved state on the true state and prior. The diagonal of the averaging kernel gives the 

degrees of freedom for signal for each retrieval parameter.  The averaging kernel is calculated as: 

 15 

 𝐀 = 𝐆𝐊          (4) 

 

As will be shown in Section 3.1, we find that 𝐊𝑪𝑶𝟐 varies depending on the retrieved state (indicating non-linearity), which 

would result in error in retrieved CO2 that is not captured in the predicted errors.   

 20 

The linear estimate describes the response of the retrieval system to instrument errors and incorrect a priori inputs, based on 

the strengths of the Jacobians (representing sensitivity of the radiances to the retrieval state) and constraints (how much 

pressure is applied to parameters to stay near the a priori inputs).  The linear estimate in Eq. 1 is used to estimate the errors, 

and for simulations, where we know all the inputs, it is useful to test each component of Eq 1. 

 25 

After an inversion is complete, the pressure weighting function h (size nCO2) is used to convert the retrieved CO2 profile to 

XCO2 by tracking the contribution from each level to the column quantity; 

 

XCO2 = hXCO2
T 𝐯ො         (5)  

 30 

The predicted errors on the estimated XCO2 arise from 3 separate terms in Eq. 1;  

 

1. 𝐆𝒙𝜺 results from the errors on the measured radiances (measurement error),  



6 
 

2. 𝐀𝒗𝒗(𝐯𝒕𝒓𝒖𝒆 − 𝐯𝒂) results from both imperfect sensitivity and constraint choices (smoothing error) 
3. 𝐀𝒗𝒆(𝐞𝒕𝒓𝒖𝒆 − 𝐞𝒂) results from jointly retrieved species propagated into CO2 (interferent error)  

 

The CO2 profile can also be partitioned into a lower and upper partial column (Kulawik et al., 2017).  These can be calculated 

using equations similar to Eq. 5, with h set for the lower partial column air mass (LMT) by zeroing out the upper 15 levels, 5 

and h set for the upper partial column (U) by zeroing out the lower 5 levels. In this work, the lower and upper partial columns 

are explored to try to understand the reasons behind the underpredicted XCO2 errors, and the effect of the 𝛿∇ை  component 

of the bias correction. 

 

One useful diagnostic is an estimate of how well the modeled radiances match the observed radiances for each of the three 10 

OCO-2 spectral bands; 

 

χௗ
ଶ[𝑏𝑎𝑛𝑑] =

ଵ


∑ ((r௧ – r௦ )/ 𝜺)ଶ

 .      (6) 

Where r௧  is the fit radiance, r௦  is the observed radiance, ε is the radiance error.  

 15 

In reality, Eq. 1 would contain many additional error terms that are not considered in these simulations, e.g. spectroscopy, 

instrument characteristics, aerosol mismatch errors (i.e. picking the wrong aerosol type to retrieve). These are discussed in 

detail in Connor et al. (2016) as linear error estimates. The results reported here only address errors in the full non-linear 

retrieval system for the actual retrieved variables; it does not include errors from unincluded physics or other error sources 

(such as spectroscopy error). In the analysis presented in Section 3, each of the diagnostics given in Equations 1 through 5 will 20 

be used to examine the error estimates on the simulations and compared to previously published results on real OCO-2 data. 

2.2 Description of the simulated dataset 

The simulated data set analyzed in this study is comprised of a set of realistic retrievals using the ACOS b3.4 version of the 

retrieval algorithm. It is a slightly modified version of that described in detail in O’Dell et al. (2012) (which discussed b2.9), 

described more fully in O’Dell et al. (2018). Table 2 shows the most important changes to the L2 retrieval algorithm between 25 

b2.9 and b3.4.  

 

Although newer versions of the OCO-2 L2 algorithm exist (currently b8 as of time of writing), the work presented here was 

initially begun prior to the launch of OCO-2 in July 2014. In addition, certain tests, where the L2 true state is directly related 

to the retrieval vector, were simplified by using the older version of the retrieval algorithm which contains a less complicated 30 

aerosol scheme. In the older L2 algorithm versions (pre B3.5), also used in this work, the state vector for all soundings always 

included the same four aerosol types; cloud water, cloud ice, Kahn 1 (a mixture of course and fine mode dust aerosols) and 

Kahn 2 (carbonaceous mode aerosols) (described more in Nelson et al. (2016)). Both Kahn 1 and 2 types contain some sulfate 
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and sea salt aerosols as well. Newer versions of the OCO-2 L2 retrieval include a more complicated scheme in which each 

sounding includes water and ice, and picks the two most likely aerosol types based on a MERRA monthly climatology for the 

particular sounding location. The aerosol fits use a Gaussian-shaped vertical profile for each of the four types, as described in 

O’Dell et al. (2018). 

 5 

Inputs to the b3.4 L2 retrieval algorithm include simulated L1b radiances and meteorology (taken from ECMWF) that were 

generated using the CSU/CIRA simulator (O’Brien et al., 2009). The simulator is driven by satellite two-line-elements which 

are used to provide the satellite time and position. The code calculates relevant solar and viewing geometry and polarization, 

and takes surface properties from MODIS. Only a single day’s worth of orbits (15 orbits on 17 June 2012) at reduced temporal 

sampling (1Hz instead of the operational 3Hz) and with only 1 footprint per frame (instead of the operational 8) are presented 10 

in this work. This yields approximately 2700 soundings per orbit, totaling about 40,000 soundings. Unlike real OCO-2 viewing 

modes (see Crisp et al. (2017)), the simulations were generated with nadir viewing over land and glint viewing over water. 

Therefore, no nadir-water, glint-land or target mode simulations exist as are found in real OCO-2 data.  The spectral error for 

these simulations assumes Gaussian random noise, following the OCO-2 noise parameterization as described in Rosenberg et 

al. (2017). 15 

 

Although the simulations do include realistic clouds and aerosols from a CALIPSO/CALIOP (Winker et al., 2010) monthly 

climatology, the radiative transfer portion of the simulator code allows clouds and aerosols to be switched off, making it easy 

to generate clear-sky radiances used in this research. The OCO-2 instrument model, described in detail in (Connor et al., 2009), 

was used to add realistic instrument noise to the radiances prior to running the L2 retrieval for the noise-less simulations. The 20 

operational OCO-2 dispersion and ILS values, as well as its polarization sensitivity, were used to sample the top of atmosphere 

radiances. The same solar model as used in the operational retrieval was used in the L1b simulations. In addition, the A-Band 

Preprocessor code described in Taylor et al. (2016) was run on the cloudy-sky L1b simulations to provide realistic cloud 

screening prior to running the L2 retrieval.  It is important to test the system from end-to-end with radiances containing a 

variety of cloud conditions, because the cloud screening is never 100% accurate, sometimes letting through cloudy cases, and 25 

because quality flags can sometimes flag cloudy cases being as good quality without clouds. 

 

This error analysis ideally would use the exact same forward model in both the L1b simulations and the L2 retrieval algorithm, 

as our analysis assumes that Eq. 1 should be valid, without errors from forward model differences.  However, in reality these 

two code bases are very similar but not identical. For example, the number of vertical levels within the two code bases differ. 30 

Reasonable attempts were made to put the L1b simulations on the same footing with the L2 forward model, but minor model 

mismatches may remain. We do not believe these minor differences affect our primary results. 
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Our goal in this work is to compare linearly predicted vs. actual errors in XCO2, specifically in terms of three primary 

contributions to retrieval error discussed above: measurement, smoothing, and interferent error. Several different 

configurations were used to allow the estimation of the true error for each of these error components, as shown in Table 3. The 

"clear results" have no clouds or aerosols in the true state, however the retrieval is free to insert clouds into the retrieved state 

(and given that aerosols are retrieved as ln(AOD), the retrieved states is never fully aerosol-free). 5 

 

Results from different configurations are intercompared to validate the individual measurement, smoothing, and retrieval 

errors.  These predicted errors are compared to the "true" errors resulting from nonlinear retrievals, which are the retrieved 

minus true values. 

2.3 Post-processing quality screening 10 

Similar to retrievals from real observations, the simulated retrieval results need screening to remove cloudy scenes (e.g. see O 

Brien, 2016; Polonsky et al., 2014).  Because pre-screening is not perfect, the XCO2 estimates from some soundings are of 

low quality, even if they converge.  Post-processing screening is handled through calculation of quality flags, taken from Table 

5 of Polonsky et al. (2014). These flags are (a) χௗ
ଶ (defined in Eq. 6) <2 for cases with measurement error, or χௗ

ଶ<1 for 

cases with no measurement error, (b) retrieved aerosol optical depth <0.2, and (c) degrees of freedom > 1.6 (degrees of freedom 15 

are defined near Eq. 4). The 3 bands are averaged to calculate the χௗ
ଶ for the scene.   

 

Table 4 shows the effects of applying post-processing quality screening for the different configurations from Table 3.  The 

results are separated into land and ocean scenes; approximately 1/3 pass post-processing quality screening for cloudy cases; 

about 80% pass post-processing quality screening for cloud-free cases.  For cloudy cases, 11% and 28% of cases passing pre-20 

screening for ocean and land, respectively, and 25% and 43% of cases passing post-screening for ocean and land, respectively.  

These are low compared to OCO-3 simulation studies (Eldering et al., 2018), where 25-30% of cases passed pre-screening, 

and 50-70% of cases passed post-screening.  Some of the quality flags used for the OCO-3 studies (particularly the pre-

processing flags) are not available in our study so it is hard to directly compare throughput.  The lower throughput suggests 

that the cloud cases or other aspects of this study were harder than the OCO-3 simulation studies. 25 

2.4 Comparisons of retrieved values to true 

Table 5 shows XCO2 biases and errors for the different configurations from Table 3. The quantities calculated for Table 5 are 

the bias (the mean retrieved minus true values) and standard deviation (the square root of the second moment of the retrieved 

minus true difference).  These quantities indicate the overall quality of the results for each configuration.  The results in Table 

5 are sorted by standard deviation.  The worst result by far is the cloudy case with no post-processing screening.  This has ~10 30 

ppb error for land and ~3 ppm error for ocean.  Ocean generally does better than land; post-processing screening generally 

does better than no screening; and clear cases do better than cloudy cases.  The addition of measurement error has a negligible 
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effect on standard deviation for this testing.  The bold entry in Table 5 represents the most realistic "real-life" case 

(+measurement error, +clouds, +post-processing screening).  This has 0.8 ppm standard deviation for land and 0.7 ppm 

standard deviation for ocean.   

 

In the screened data, the main concern is the -0.5 ppm bias in the clear land retrieval. We have seen this in other sets of 5 

simulations and it is an unresolved issue at this time. Recently we did find a minor bug in the simulator code that caused a 

small mismatch between the water vapor profile used to calculate the L1b radiances and that written to the meteorology file 

that is then used in the L2 retrieval. It is possible that other minor bugs of this nature are driving the clear-sky bias, with errors 

mitigated by clouds in the cloudy cases. 

 10 

Figure 1 shows a scatter plot of the retrieved versus true XCO2 (both with the a priori subtracted).  The lower panels in Figure 

1 show the histogram of differences, which range from about -1.25 to +1.5 ppm for land and -1.5 to +2 ppm for water 

soundings. Bias correction, discussed in Section 4.3, further improves the land results by 0.1 ppm in the bias and standard 

deviation as seen in Table 5, but does not improve ocean results.  The standard deviation of (retrieved – true) (green dashed 

line) and (retrieved – linear estimate) (blue dashed line) are very similar; the linear estimate does not estimate the results any 15 

better than 0.7 to 0.9 ppm, and gives an estimate of the nonlinearity. 

 

For real OCO-2 v8 data, comparisons to TCCON for single-observation land nadir and ocean glint have errors of 1.0 and 0.8 

ppm, respectively (Kulawik et al., 2019), meaning that the real errors are comparable to these simulated data. Real OCO-2 

data has systematic error on the order of 0.5-0.6 ppm (Wunch et al., 2017; Kulawik et al., 2019).  Correlated biased errors are 20 

seen in real OCO-2 data, with correlations in time, e.g. ~60 days (Kulawik et al., 2019), at small spatial scales, e.g. < 1 degree 

(Worden et al., 2016), and at medium spatial scales, e.g. 5-10 degrees (Kulawik et al., 2019).  Although this dataset cannot 

probe a seasonally dependent bias, as it covers only 1 day of observations, it can be used to probe spatial patterns of the biases.  

However, note that probing very small spatial patterns will be difficult to see because of the small amount of data processed 

in comparison to real OCO-2.  A plot showing the spatial pattern of retrieved minus true is shown in Fig. 2 panel (a), which 25 

shows a high bias near the equator and a low bias near the poles.  Panel (b) of Fig. 2 shows the difference between true XCO2 

and XCO2 with the OCO-2 averaging kernel.  The overall spatial pattern in panel (a) is not affected by the application of the 

averaging kernel, which makes sense because the averaging kernel effect is ~0.2 ppm whereas the differences are on the order 

of 0.9 ppm.  An analysis of the correlation scale length of (retrieved minus true) XCO2 finds a correlated error of 0.3 ppm and 

full-width half-maximum in the bias of ~3 degrees, which is similar to the correlated error of 0.4 ppm and scale length of ~5-30 

10 degrees found in Kulawik et al., 2019.  The simulated data has accurate meteorology (temperature, winds, etc.) that drive 

the simulated true states, but the cloud and aerosol spatial structures are not very accurate, so that the spatial scales are not 

expected to be identical between this simulated dataset and real OCO-2 data.  This analysis shows that correlated biases exist 
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in simulated data, and that simulated data is useful for exploring the characteristics and even more importantly, the cause of 

regional biases. 

3 Validation of errors and non-linearity 

In this section the different error components that were introduced in Section 2.1 are isolated as much as possible to evaluate 

each one separately. The Averaging Kernel and Jacobians, introduced in Section 2.1 are used as diagnostics. In addition, the 5 

linearity, or lack thereof, of the system is explored. 

3.1 System linearity 

To test the system linearity the linear estimate, using Eq. 1, and discussed in Section 2.1 is compared to the non-linear retrieval 

result.  The inputs to Eq. 1 include the instrument noise (if on), a priori covariance, and Jacobians at the final retrieved state.  

Table 6 shows the results for cases passing post-processing quality screening, clouds, and no measurement error (Table 3, case 10 

d) using 1) the first two terms on the right side of Eq. 1 (i.e. only the CO2 part of the Averaging Kernel) or 2) all of Eq. 1 (i.e. 

utilizing the interferent terms).  The last term of Eq. 1 is not used for the noise-free case.  The bottom entry in Table 6, showing 

retrieved vs. true XCO2 (without averaging kernel applied).  The comparison of retrieved XCO2 versus the linear estimate have 

biases between 0.2 ppm and 0.9 ppm and standard deviation between 0.6 and 0.9 ppm. The bias is worse if the full averaging 

kernel is used.  Looking through parameter by parameter, the band 3 albedo average causes most of the large bias for the full 15 

averaging kernel for ocean.  The difference between the linear estimate and the non-linear retrieval is an estimate of the non-

linear error in the retrieval system. 

 

Another test of the system linearity is the consistency of the sensitivity of the system to changes in XCO2, i.e., how constant 

are the XCO2 Jacobians (defined in Eq. 3)?  For example, consider if the XCO2 Jacobian weakens when an interferent, e.g. 20 

call it interferent #1, increases.  If interferent #1 is larger than its true value, the XCO2 Jacobian will be weaker than the true 

XCO2 Jacobian.  If the XCO2 Jacobian is weaker than the true Jacobian, then more XCO2 is needed to account for the radiance 

differences observed, resulting in a positive bias in XCO2.  This would result in a positive correlation in the errors of interferent 

#1 and XCO2.  This error correlation would not be predicted by the linear error analysis because the linear error analysis 

assumes that the Jacobians do not vary.  This could explain the stronger error correlations seen  25 

 

To calculate an error resulting from varying Jacobians requires calculating second order terms, like dJacobian[XCO2]/d[H2O 

scaling].  Cressie et al. (2016) calculated non-linear errors, using second order error analysis, and found errors on the order of 

0.2 ppm, which would not fully explain the discrepancy between the predicted and true errors either in the simulation studies 

or real data. 30 
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Figure 3 shows the Jacobian magnitude (the XCO2 Jacobian averaged over all frequencies) for XCO2 versus retrieved "Band 

2 albedo slope".  The Jacobian for the lower (LMT) and upper (U) partial columns (described in Kulawik et al., 2017 and 

Section 2.1) are also plotted, and both partial columns vary the same way, e.g. same slope signs, i.e. the nonlinear interferent 

error would be positively correlated between the two partial columns. 

 5 

The right panel of Figure 3 compares the Jacobian magnitude between matched results from configuration (c) and (d), in Table 

3 for land cases with post-processing screening.  The CO2 Jacobian magnitude difference is up to -4% different for case (c) 

minus (d), and is correlated with the difference in retrieved "H2O Scaling" with correlation -0.75.  Other parameters that had 

strong correlations (> 0.4) are:  aerosol water pressure (0.55), aerosol ice pressure (0.43), surface pressure (0.41).  Mapping 

this correlation to an error in retrieved XCO2 would require the calculation of second order Jacobians as in Cressie et al. (2016), 10 

and then mapping this into an error in XCO2.  A crude way to estimate the XCO2 error resulting from these Jacobian differences 

is to consider the completely linear case, where radiance = K multiplied by XCO2.  In this case, a +1% error in the Jacobian 

would result in a -1% error in XCO2, to fit the radiance.  So, the variations in the XCO2 Jacobians that are seen could explain 

the 0.8 ppm XCO2 differences from the linear estimate. 

3.2 Measurement error 15 

To validate the measurement error, results from runs with and without noise (cases (c) and (b) from Table 3) are analyzed. The 

standard deviation of the XCO2 difference between the runs ("true error") was compared to the predicted measurement error. 

The two runs, which both have clouds and other interferents, as well as smoothing errors, are assumed to be identical other 

than one having measurement error added. The runs are compared after quality screening, which was described in Section 2.4. 

 20 

Figure 4 shows the baseline and predicted measurement error.  For land nadir, the average error is 0.35 ppm and the average 

predicted is 0.29 ppm. For ocean glint, the average error is 0.14 ppm and the average predicted error is 0.21 ppm. The bias 

difference between the runs with and without noise was 0.01 ppm for ocean and 0.03 ppm for land nadir. 

 

The predicted error ranged from 0.14 to 0.70 ppm for land and 0.12 to 0.35 ppm for ocean. The correlation between the 25 

predicted error and the absolute value of the error is 0.27 for land and 0.08 for ocean, so the scene-to-scene variations in the 

predicted error are not very useful. 

 

Adjacent observations are averaged, and then the error of this averaged quantity is calculated.  If the error reduces with the 

square root of the number of observations averaged, then the error is a random, not correlated, error. Random error is highly 30 

desirable for assimilation and other uses. For land nadir the error is shown in Table 7 
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If the error is random, then the n = 9 result should be one third the error for the n = 1 result, and this is what is found. Similarly 

for ocean, the error for n=9 is 1/3 of the n=1 error. The simulated data does not have the data density of actual OCO-2 data so 

while averaging in close proximity would likely behave similarly, there is some uncertainty. 

 

In summary, for these simulated cases, the measurement error is overpredicted for land by 0.06 ppm, and overpredicted for 5 

ocean by 0.07 ppm, but the measurement error appears to average randomly and does not introduce a bias. 

3.3 Smoothing error 

Smoothing error occurs when the averaging kernel deviates from the identity matrix, and is calculated using the averaging 

kernel, the true state and the prior state. The smoothing error terms from Eq. 1 are: 

 10 

𝐯𝒕𝒓𝒖𝒆_𝒂𝒌 = 𝐯𝒂 + 𝐀𝒙𝒙(𝐯𝒕𝒓𝒖𝒆 − 𝐯𝒂)       (7) 

 

Here, v represents the CO2 profile, which is converted to XCO2 using Eq. 5.  To validate the smoothing error, the non-linear 

retrieved XCO2 is compared to the linear estimate, (XCO𝟐)𝒕𝒓𝒖𝒆_𝒂𝒌 = hXCO2
T. 𝐯𝒕𝒓𝒖𝒆_𝒂𝒌, from Eq. 7,  and to XCO𝟐 𝒕𝒓𝒖𝒆 = hXCO2

T 

𝐯𝒕𝒓𝒖𝒆.  The linear estimate should compare better to the non-linear retrieval. Run (a) from Table 3 is used, which does not 15 

contain clouds in the true state (i.e., limited interferent error), and does not have measurement error in the observed radiances.  

 

The predicted smoothing error is 0.12 ppm for ocean glint and 0.16 ppm for land nadir. Comparison between retrieved XCO2 

and true has a mean bias of 0.0 ppm for ocean and a mean bias of 0.46 bias for land (retrieved XCO2 is 0.46 ppm lower than 

true). The standard deviation is 0.33 ppm for land and 0.35 ppm for ocean. 20 

 

Comparison of the retrieved XCO2 versus (XCO𝟐)𝒕𝒓𝒖𝒆_𝒂𝒌  or (XCO𝟐)𝒕𝒓𝒖𝒆  yielded the same biases and standard deviations 

(within 0.02 ppm). Therefore, the use of the OCO-2 averaging kernel and prior for comparisons, using Eq. 7, does not improve 

the comparison quality versus OCO-2. This analysis suggests modelers would do similarly to directly compare to OCO-2 

versus applying the OCO-2 averaging kernel and prior to the model before comparing to OCO-2. However, a previous study 25 

by Wunch et al. (2011) found that for comparisons to TCCON, if the averaging kernel is not applied, it leads to 0.2 ppm 

seasonal biases. The current analysis shows that it does not do harm to apply Eq. 7, but that it does not help either, with the 

caveat that the simulated data does not cover different seasons. 
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3.4 Interferent error 

Previous studies by Merrelli et al. (2015), and O'Brien et al., (2016) have found that clouds and aerosols can contribute errors 

larger than predicted. We look at the relationship between errors in retrieved interferents versus errors in XCO2 and the 

prediction of the relationship as characterized by the averaging kernel. 

 5 

The error in XCO2 from the interferent term of Eq. 1, multiplied by the pressure weighting function, h, estimates the 

propagation of interferent error into XCO2, shown in Eq. 8. 

 

XCO2 interferent error = hxCO2
T

 𝐀𝒙𝒗(𝐯𝒂 − 𝐯𝒕𝒓𝒖𝒆)      (8) 

 10 

This equation predicts that the interferent will only have an impact if the prior is different than the true, and that the impact 

will be proportional to the prior minus true difference, with the constant of proportionality provided by the off-diagonal 

averaging kernel, 𝐀𝒙𝒗.  Many of the interferents, e.g. H2O Scaling, start at their true values for this simulation, and therefore 

are predicted to have no impact on XCO2.  Yet, large correlations in errors are seen, when comparing XCO2 error versus 

interferent error.  Taking the expected standard deviation of XCO2 interferent error from Eq. 8 gives the predicted interferent 15 

error, which averages 0.2 ppm for case (b) from Table 3. 

 

We look at (retrieved minus true XCO2) versus (prior minus true interferent) or (retrieved minus true interferent) in Fig. 5, 

using run (b) from Table 3, which has clouds but no measurement error.  The red line shows hxCO2
T

 𝐀𝒙𝒗(𝐯𝒂 − 𝐯𝒕𝒓𝒖𝒆), the 

predicted relationship between the XCO2 error and the prior minus true difference.  For both "band 2 albedo slope", left, and 20 

"H2O scaling", right, there is no predicted relationship but a strong correlation is seen.  This could be explained by the results 

from Section 3.1, showing that the XCO2 Jacobian strength varies with the retrieved albedo or retrieved water, whereas the 

error analysis assumes that the Jacobian strength does not vary. 

 

Figure 6 shows the predicted versus true errors, including correlations.  The true error is calculated from  𝐄𝐫𝐫𝐨𝐫𝒊𝒋 =25 

𝒎𝒆𝒂𝒏((𝒓𝒆𝒕𝒓𝒊𝒆𝒗𝒆𝒅 − 𝒕𝒓𝒖𝒆)𝒊(𝒓𝒆𝒕𝒓𝒊𝒆𝒗𝒆𝒅 − 𝒕𝒓𝒖𝒆)𝒋) for all cases with good quality.  The true errors are much larger and 

show more correlations than predicted.  Both matrices are normalized using the equation 𝐄𝐫𝐫𝐨𝐫𝒊𝒋 = 𝐄𝐫𝐫𝐨𝐫𝒊𝒋/

ඥ𝐄𝐫𝐫𝐨𝐫𝟎𝒊𝒊 ∗ 𝐄𝐫𝐫𝐨𝐫𝟎𝒋𝒋  , where 𝐄𝐫𝐫𝐨𝐫  is the error covariance of interest and 𝐄𝐫𝐫𝐨𝐫𝟎 is the predicted error covariance.  To 

further analyze the interferent error, we looked at the diagonal terms of the error covariance and the correlations to XCO2 in 

Table 8.  In order for the error correlations between XCO2 and interferents to be assessed, the CO2 profile is mapped to XCO2 30 

using Eq 5.  Table 8 shows the predicted and true errors for all interferents, for all good quality land cases.  The error factor 

(EF) is calculated as: 
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EF = ට(𝜎௧௨
ଶ + bias௧௨

ଶ) 𝜎ௗ௧ௗ
ଶൗ        (9) 

where the predicted standard deviations come from the predicted errors and the "true" standard deviation and bias come from 

the true errors.  The error factor is found to be greater than 1 for almost all parameters.   

 

Another useful diagnostic of interferent error is the predicted error correlation between each interferent and XCO2, calculated 5 

by: 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  =  𝐸𝑟𝑟𝑜𝑟/ඥ𝐸𝑟𝑟𝑜𝑟 ∗ 𝐸𝑟𝑟𝑜𝑟        (10) 

 

which can be compared to the actual error correlation.  Table 8 shows that for most interferents both the errors and the 10 

correlations are underpredicted.  The parameters that are both underpredicted and significantly correlated (>0.25) to XCO2 

errors are shown in bold.   

 

The true effect of interferent error on XCO2 can be crudely estimated by the actual slope of XCO2 error (not shown in Table 

8, but, the actual slope shown in Fig. 5) multiplied by the interferent error.  This estimate cannot distinguish between correlation 15 

and causation.  The standard deviation of this estimate is shown as the last column of Table 8. "Impact on XCO2". The 

interferent error estimated with a more simplified "surrogate" model was much smaller in Hobbs et al. (2017) 

4 Post processing bias corrections 

Post-processing analysis of real ACOS OCO-2 retrieval results has uncovered linear relationships between XCO2 error and 

various parameters such as the retrieved surface pressure, liquid water optical depth, and 𝛿∇ைଶ (an estimate of the profile 20 

curvature) (Wunch et al., 2011). Similar correlations have been found between the above parameters and the lower partial 

column (Kulawik et al., 2017). The standard operational procedure that has been adopted by the ACOS algorithm team for 

both OCO-2 and GOSAT data is to perform a bias correction of the estimated XCO2 based on the linear correlations of the 

difference in XCO2 compared to various truth metrics with certain retrieved parameters. In this section, we look specifically 

at the behavior of  𝛿∇ைଶ (defined in Section 4.1) and dP (defined in Section 4.2) bias correction in the simulated system. The 25 

purpose of the analysis of this section is to answer the following questions: 

(1) Do the bias correction for dP and 𝛿∇ைଶ behave similarly in the simulation system as in real OCO-2 retrievals? 
(2) What is the effect of bias correction on CO2 errors? 

 

The bias correction is determined using this simulated dataset, and then applied to the same dataset, which is somewhat circular, 30 

since the true is both used to determine the bias correction and to check the bias correction, but it is important to know whether 

the relationships exist.  For example, what causes the spatial patterns seen in the bias in Fig. 2. 
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4.1 The retrieved profile gradient 

𝛿∇ைଶ is defined as delta[20] – delta[13] where delta is the retrieved CO2 profile minus the prior CO2 profile, [20] is the surface 

level, and [13] is 7 levels above the surface, i.e., 0.63*(surface pressure).  𝛿∇ை  represents gradient of the retrieved CO2 

profile that differs from the prior.  It has been found that the slope of XCO2 error versus 𝛿∇ைଶvaries depending on the a priori 

covariance that is used in the retrieval system, with a more evenly varying covariance having less dependency of XCO2 error 5 

versus 𝛿∇ைଶ (O'Dell, unpublished result).  The standard OCO-2 constraint is very loose at the surface (e.g. with 50 ppm a 

priori variability) and tighter in the mid-Troposphere (with ~10 ppm a priori variability).  Most CO2 variability does occur near 

the surface near the primary sources and sinks, but the apriori constraint used in the retrieval algorithm would favor variations 

at the surface even in cases when the variations occur at a higher level due to the weighting due to the prior covariance. 

 10 

Figure 7 shows errors in XCO2, LMT (the lower tropospheric column, approximately up through 2.5 km), and U (the upper 

partial column, approximately from 2.5 km through the top of the atmosphere) (LMT and U are described in Kulawik et al., 

2017 and Section 2.1) versus 𝛿∇ைଶ for configuration (b).  In the simulated retrievals, the values of the slope of delta xCO2 

versus 𝛿∇ை  is -0.001 and -0.008 for land and ocean, respectively.  It is clear that there are significant errors in the partitioning 

between the lower (LMT) and upper (U) partial columns that are correlated to 𝛿∇ைଶ.  The slope of LMT versus 𝛿∇ை  is 0.23 15 

and 0.22 for land and ocean, respectively and -0.07  and -0.08 for for U land and ocean, respectively. For real ACOS-GOSAT 

(b3.5) data, Kulawik et al. (2017) found a slope of 0.39 for land and 0.31 for ocean for LMT and -0.11 and -0.09 for U land 

and ocean, respectively, which are similar values as seen in this simulated data. 

 

These results naturally lead to the question; what is the effect of placing CO2 at the wrong pressure level?  The mean Jacobian 20 

for the U partial column (upper 15 layers) is only about 60% (0.62) of the mean value for the lowermost 4 layers.  Therefore 

a molecule in the LMT partial column is equivalent to about 1.6 molecules in the upper partial column.  Therefore, a molecule 

mistakenly placed in the lower 4 layers and moved to the upper layers in the post-processing step needs to be exchanged for 

1.6 molecules in the upper partial column to have the same impact on the radiances at the new level.  At 𝛿∇ைଶ of 35, for land, 

LMT is high by ~8.4 ppm.  For an even exchange, moving 8.4 ppm from the LMT partial column to the U partial column 25 

results in +2.5 ppm in the U partial column ONLY from the effects of air mass (because the U partial column has more air 

mass; = 8.4 ppm *.23 LMT airmass / 0.77 U airmass).  Considering the difference in sensitivity, and multiplying by 1.6, this 

corresponds to +4.0 ppm in the U partial column.  The net effect on XCO2 of this bias correction is the sum of the partial 

columns times the air mass, -8.4*.23 + 4.0*.77 = 1.1 ppm.  This is at 𝛿∇ைଶ of 35, so that would mean that the slope for XCO2 

error versus 𝛿∇ை  is 0.031.  For real OCO-2 v7 data, the slope of XCO2 error versus 𝛿∇ைଶ is +0.0280 and -0.077 for land, 30 

ocean, respectively (Mandrake et al., 2017).  This analysis explains a positive slope in XCO2 versus 𝛿∇ைଶ; but would not 

explain a negative slope.  The negative slope would result from additional correlations or errors acting in addition to this effect. 
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4.2 The retrieved surface pressure 

The quantity dP is the difference between retrieved and prior surface pressure and is used as a post-processing bias correction 

for OCO-2.  In this section, we explore results from dP in the simulated dataset to try to understand why bias correction based 

on this parameter is useful.   

 5 

Although it is typically assumed that the surface pressure is determined solely from the O2A band, the strong and weak CO2 

bands also contribute information.  For land nadir, averaged over cases passing post-processing quality screening, the band-

averaged Jacobian strengths in the weak and strong CO2 bands relative to the O2A band are 0.2 and 0.4, respectively. Based 

on the surface pressure Jacobian and the spectral error, a value of -2 hPa will create a spectral bias 0.2 times the size of the 

spectral error in the O2A band, which, because it is a correlated error, will be an additive error over the band.   10 

 

Figure 8 shows the actual error covariances and biases for 3 different subsets of run (d):  dP < -2 hPa, -1<dP<1hPa ("nominal 

cases"), and dP>1.5hPa.  The errors shown are normalized by the predicted error, using the equation Eij = Eij / sqrt(E0ii*E0jj), 

where E is the error covariance of interest and E0 is the predicted error covariance.  A diagonal value of 1 means that the actual 

error is the same as predicted, and a diagonal value of 4 represents an actual error that is twice (sqrt(4)) as large as predicted.  15 

The errors and error correlations are much larger than predicted for many parameters. In addition, the CO2 parameters show 

less correlation with other parameters for the nominal case.  Also note that the nominal case has less saturation, meaning less 

errors and correlations. 

 

Next we looked at the possibility of screening incorrect surface pressure results using χௗ
ଶ (defined in Eq. 6).  To do this we 20 

used the χௗ
ଶ for land, cloudy cases with dP<-2 vs. -1<dP<0.  The cases with dP<-2 had 0.04, 0.01, and 0.06 higher reduced 

χௗ
ଶ in the 3 bands, respectively.  Although the dP<-2 case fit the spectra worse there was too much overlap to distinguish 

between these cases solely from χௗ
ଶ. 

 

The albedo errors and correlations (purple box) particularly stand out, with correlations with many retrieved parameters.  The 25 

albedo terms are, in order:  O2A mean, O2A slope, weak mean, weak slope, strong mean, strong slope.  Based on the O2A 

mean albedo and the surface pressure Jacobians, a change in retrieved surface pressure of -2 hPa can be compensated by a 

change in the albedo on the order of -0.001, with this analysis based on band averages, and not necessarily implying a good 

fit. However, this analysis indicates that very minute changes in the surface albedo (on the order of 0.1%) can compensate for 

moderate sized errors in the retrieved surface pressure.  The exact relationship can be better studied by examining the radiative 30 

transfer, and looking at how the final transmission of sunlight relates to both the total amount of atmospheric absorption and 

the surface albedo.  
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Error in the retrieved XCO2, lower partial column (LMT) and upper partial columns (U) are plotted versus the error in surface 

pressure in Fig. 9, which all show moderate (R=0.63) to strong (R=-0.98) correlations. The bias found in this work for this 

simulated dataset for the XCO2 bias versus dP is -0.23 for land and 0.15 for ocean.  We can compare these to the OCO-2 v7 

biases of -0.3 for land and -0.08 for ocean.  Note that for the simulated data, the prior surface pressure is set to the true, so 

(surface pressure – prior) is the same as (surface pressure – true).  The bias correction factors are found in Table 4 of the v7 5 

bias correction documentation. 

 

The retrieval system must match the mean photon path length for the O2A channel using retrieved parameters like surface 

pressure, albedo, water, temperature, aerosol pressure heights, and aerosol optical depths. Also note that the O2 volume mixing 

ratio (VMR) is fixed and not retrieved.  Mean photon path length increases with higher albedo and aerosol optical depth 10 

(Palmer et al., 2001).  Additionally, moving aerosols lower in the atmosphere increases mean photon path length, because light 

scattered by the aerosol travels farther, and a larger surface pressure will increase mean photon path length because the path 

length to the surface is longer. The retrieval system varies these parameters to match the observed radiances.  Ideally, the 3 

bands would have the same albedo and aerosol properties, so that getting the O2A band mean photon path length right will 

also get the mean photon path length in the CO2 bands. Real aerosol optical depths tend to be higher in the O2A band then in 15 

the CO2 bands. However, the aerosol optical depth versus frequency is fixed for OCO-2. Therefore, as an example, using a 

too-thick aerosol in the O2A band to compensate for a too-small surface pressure will not balance in the CO2 bands because 

the same too-small surface pressure will be offset by less aerosol.  The relative strengths of the Jacobians for the four aerosol 

optical depths in the O2A versus CO2 bands are 1.5x, 3.3x, 7.2x, and 2.1x, respectively, indicating the dominance of the O2A-

band concerning aerosol information. 20 

 

As seen in Fig. 8b, for dp < -2 hPa, there is a negative bias in surface pressure (because we selected for this), negative biases 

in 3 of the 4 aerosol optical depths (green box, parameters 1, 4, and 10), positive bias in retrieved aerosol pressure (green box, 

parameters 2, 5, 8), and negative biases in the retrieved albedo (purple box, parameters 1, 3, 5).  The error covariances show 

that within this subset of observations, there are also strong negative correlations between retrieved surface pressure error and 25 

errors in albedo and errors in aerosol optical depth and positive correlations between error in aerosol optical depth and errors 

in albedo.   

 

To trace the interferent errors to an error for XCO2 the effect of each bias on mean photon path length for the O2A, weak and 

strong bands needs to be calculated and then the mean photon path length error of the CO2 bands versus the O2A band will 30 

give the error for XCO2.  For example if the O2A mean photon path length is perfect and the CO2 mean photon path length is 

0.5% too large relative to true, then the CO2 retrieved VMR will be 0.5% too small.  Since aerosols are compensating for errors 

in surface pressure, it is not ideal to fix their relationship versus frequency.   
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Figure 8d-f shows the bias patterns for these different groups.  Comparing 7d,e, and f, reveals patterns that could be used for 

screening:  e.g. low bias in Kahn1 aerosol optical depth and a low biases in all albedo means and high biases in all albedo 

slope indicates a negative surface pressure error; whereas a high bias in Kahn1 aerosol pressure and width and a high bias in 

the strong band albedo slope indicates a positive surface pressure error.  In real retrievals, since true is not known; e.g. an 

albedo high bias versus an actual high albedo cannot be distinguished; however a particular pattern of biases versus the priors 5 

would be suspicious. 

 

It is interesting to note that the system appears to be able to compensate and pass post-processing quality screening, using 

albedo and aerosols, for low surface pressure biases down to -4 hPa, but high surface pressure biases only up to +2 hPa. 

4.3 Error correlation and effect of bias correction on errors 10 

Another important question is; how does bias correction within the CO2 column affect errors, particularly the error correlations 

in XCO2 and the partial columns?  Kulawik et al. (2017) found that the predicted error correlation between the LMT and U 

partial columns was -0.7 for land and -0.8 for ocean; whereas the actual error correlation versus aircraft was found to be +0.6 

(with uncertainty in the correlation due to the fact that aircraft do not cover the full U partial column and effects of co-location 

error).  Additionally, Kulawik et al. (2017) found that whereas the XCO2 predicted errors were underestimated by about a 15 

factor of 2, the LMT and U errors were overestimated by about a factor of 2.  Weakening the LMT and U correlations would 

result in higher and more accurate error estimates for XCO2. 

 

The errors for XCO2, LMT, and U for land and ocean for configuration (b) are summarized in Table 9.  The bias correction 

for XCO2 (using only 𝛿∇ைଶ and dP) lowers the XCO2 bias from 0.2 to 0.1 ppm and the error from 0.8 ppm to 0.7 ppm for 20 

land, but has no impact on the ocean error or bias.  The XCO2 error is underestimated by a factor of 2 for these simulation 

results, similarly to what was found with real data. 

 

Similar to findings with real data, the XCO2 error in these simulations is underestimated, whereas the LMT and U errors are 

overestimated. However, the overestimate of the partial column errors are not as large as seen with real GOSAT data.  The 25 

predicted error correlation is -0.91 for the LMT and U errors, whereas the actual error correlation is -0.5.  Using eq. 10c from 

Kulawik et al. (2017), and the LMT and U errors in Table 9, we note two key results. First, the XCO2 predicted error is 0.37 

ppm when the error correlation is -0.91. Second, the predicted XCO2 error is 0.64 (0.71) ppm for ocean (land) when the actual 

correlation is -0.57 (-0.46) for ocean (land).  The second result is close to the actual error of 0.7 ppm.  The estimate of +0.6 

correlation from Kulawik et al. (2017) is probably wrong, and could be due to unaccounted effects of co-location error on 30 

correlation estimates. 
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As seen in Section 3.1, non-linearities from interferents affect both partial columns similarly. This would result in positive 

error correlation (since the correlation is strongly negative and results in a less negative correlation than predicted) and explain 

the larger actual versus predicted XCO2 error.  A high negative correlation is desirable for XCO2 because it asserts that, 

although there is uncertainty in the partitioning of LMT and U, the sum of the two has a smaller uncertainty. 

6 Discussion and conclusions 5 

The 15 orbits of simulated retrievals result in ~10,000 land and ocean scenes for cloud-free runs, and 870 and 680 land and 

ocean cases for runs with clouds, after post-processing quality screening.  Prior to application of quality flags, described in 

Section 2.3, the errors are ~10 ppm for land and ~2 ppm for ocean.  After quality flags, and bias correction are applied, the 

errors are 0.7 ppm, with mean bias errors of 0.1 ppm for both land and ocean.  There is a spatial pattern to the bias, which has 

similar characteristics to the spatial pattern of real OCO-2 biases, with a correlation length of ~3 degrees, similar to the 10 

correlation length of 5-10 degrees for OCO-2 (Kulawik et al., 2019). 

 

Comparing runs with and without measurement noise added to the radiances showed that the predicted measurement error is 

accurate.  Comparing the retrieved results to the linear estimate using only the CO2 parameters ("smoothing error") shows that 

the smoothing error is not greater than 0.5 ppm, but due to interferent error and non-linearity this could not be validated more 15 

accurately with the tests used.  A more accurate way to validate this would be to run tests with different priors (e.g. Kulawik 

et al., 2008), which was previously done (unpublished) finding that the smoothing errors are smaller than 0.2 ppm. 

 

The linear estimate does not predict the non-linear retrievals to better than 0.9 ppm (much worse when quality flags are not 

used), indicating this level of non-linearity in the retrieval system.  The interferent error is underpredicted by a factor of 4, 20 

based on the relationship of XCO2 error versus error for each retrieved interferent.  The retrieved interferent error is twice as 

large as predicted for some parameters, and the correlation between the retrieved interferent error and XCO2 error is twice as 

large as predicted for some parameters.  The larger correlation is likely due to the fact that CO2 Jacobian strength is correlated 

with many retrieved interferent values; a wrong interferent value will result in the wrong CO2 Jacobian strength, resulting in 

an error in CO2. 25 

 

Two bias correction terms are explored:  𝛿∇ைଶ, the gradient of the retrieved CO2 profile relative to the priori; and dP, the 

retrieved surface pressure minus the prior.  The  𝛿∇ைଶ bias correction could be explained by 1) a loose CO2 constraint near 

the surface prefers changes near the surface versus changes elsewhere.  2) Since the CO2 Jacobian strength near the surface is 

stronger versus the Jacobian elsewhere in the profile, molecules incorrectly placed near surface are underestimated, because 30 

each molecule has "too much" effect on the observed radiance, 3) this results in an XCO2 column that is too low.  This 



20 
 

explanation would explain the positive bias correction factor seen in OCO-2 v7 land and v8 land and ocean, but would not 

explain the negative correction factor seen in v7 ocean. 

 

The theoretical basis for dP is complicated because so many other retrieval parameter errors are correlated to errors in dP. This 

makes sense from a fundamental radiative transfer perspective which ties together the surface and scattering properties with 5 

the amount of atmospheric column for any particular sounding. The retrieval system appears to use albedo and aerosols to 

compensate for errors in dP.  In these simulated results the dP bias correction has a similar slope as seen in real OCO-2 data 

for land, but not for ocean.  The results with dP errors had marginally higher radiance residuals but not high enough to easily 

screen. 

 10 

Similar to the findings in Kulawik et al. (2017), the XCO2 column error is much higher than predicted, whereas the lower and 

upper partial CO2 column errors, LMT and U, respectively, have errors lower than predicted.  The underprediction of XCO2 

error results because the retrieval system thinks the LMT and U partial column error correlation is -0.91.  The actual correlation 

is -0.5 to -0.6 after bias correction, with the uncorrected results having both higher error and higher correlations in the partial 

columns.  When the actual correlation is used to estimate XCO2 error, the predicted XCO2 error matches the actual error within 15 

0.1 ppm.  The reason why this correlation is off may be due to the fact that both partial column Jacobian strengths vary similarly 

with interferent errors, which are underpredicted in the linear estimates of errors, and would result in less negative correlation 

between the partial columns. 

 

These results suggest a few possible strategies (a) isolating the primary interferent parameters via pre-retrievals of aerosols 20 

with surface pressure, CO2, and albedo fixed, followed by a full joint retrieval. This would allow clouds and aerosols to be 

approximately set without throwing the other retrieved parameters off. A similar technique was employed in the thermal 

infrared to mitigate cloud contamination (e.g. Eldering et al., 2008). A second tactic would be to perform retrievals beginning 

at many different initial states, selecting the result with the lowest radiance residual. This solution however is computationally 

expensive. 25 

 

In summary, the simulated retrievals have many of the same attributes of real data, with the advantage of knowledge of the 

true state and ability to see what is going on under the hood.  These simulation studies suggest attention should be given to 

non-linearity, because the ability to estimate errors and make incremental improvements depends on the accuracy of the linear 

estimate, which has accuracy of only about 0.9 ppm in these simulation studies. 30 
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Table 1.  Retrieved parameters in this simulation study 

Index Parameter 

1-20 20 CO2 volume mixing ratios (VMR) at 20 pressure levels from the surface 

to top of the atmosphere (20) 

 

21 Water vapor scaling factor 

22 Surface pressure 

23 Temperature profile offset 

24, 27, 30, 33 Aerosol optical depth for 4 types 

25, 28, 31, 34 Aerosol pressure height for 4 types 

26, 29, 32, 35 Aerosol width for 4 types (prior uncertainty is very tight) 

36, 38, 40 Albedo mean for 3 bands 

37, 39, 41 Albedo slope for 3 bands 

42, 43, 44 Dispersion offset for 3 bands (frequency offset).   

45 Wind speed (ocean).  In the original files this is index 36, but was moved 

to index 45 so that the albedo indices are consistent between land and 

ocean. 

45, 46 Fluorescence (Land).  The true fluorescence is set to zero for these 

simulations. 
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Table 2.  Updates in the simulated retrieval system since O'Dell et al. (2012) 

B2.10 changes B3.3 changes B3.4 changes 

1) Gaussian aerosol profiles 

2) Sigma pressure levels 

3) Update to prior CO2 profile 

4) Spectroscopy updates 

5) Correction to XCO2 AK 

1) Residual fitting 

2) Reduced p_surf prior 

uncertainty 

3) Prior AOD=0.05 

4) Spectroscopy update 

5) Fluorescence fit land gain H 

(GOSAT) 

1) Ocean surface 

parameterization 

2) Update weak CO2 spectral 

range 

3) Spectroscopy update 
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Table 3. Configurations used in this work. 

Case Measurement Error Clouds+Aerosols Comment 

(a) No No Smoothing only 

(b) No Yes Smoothing + interferent 

(c) Yes Yes Smoothing + interferent + measurement 

error 

(d) No Yes Different water prior/initial 
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Table 4. Number of cases for each configuration.  The "clouds in true==yes" cases contain many fewer soundings than "no 

clouds" because of pre-screening.  The #good is from post-processing screening 

 Clouds in true # # good (post-

screening) 

configuration (from 

Table 3) 

Land (nadir) No 12,097 10,229 a 

Ocean (glint) No 14,265 11,468 a 

Land (nadir) Yes 3,445 868/869/768 c/b/d 

Ocean (glint) Yes 1,560 679/674/620 c/b/d 
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Table 5. Mean bias and standard deviation between retrieved and true, sorted by standard deviation.  The bold entries are the 

nominal cases most closely simulating actual OCO-2 retrievals. 

 

Case 

from 

Table 

3 

Land/Ocean Clouds 

in true 

Post-

processing 

screening 

Meas. 

error 

Mean 

bias 

Standard 

deviation 

(a) Ocean No Yes No -0.1 0.4 

(a) Land No Yes No -0.5 0.4 

(a) Ocean No No No -0.3 0.6 

(a) Land No No No -0.5 0.7 

(b) Ocean Yes Yes No 0.1 0.7 

(c) Ocean Yes Yes Yes 0.1 0.7 

(b) Land Yes Yes No 0.2 0.8 

(c) Land Yes Yes Yes 0.2 0.8 

(b) Ocean Yes No No -0.6 2.7 

(b) Land Yes No No -2.3 10.3 

 

  5 
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Table 6. Difference of linear estimate versus non-linear retrieval, noise-free, cloud, quality-screened cases 

 Land bias Land std Ocean bias Ocean std 

Predicted 0 0.3 0 0.2 

Retrieved vs. CO2 AK -0.2 0.8 -0.2 0.6 

Retrieved vs. full AK -0.4 0.8 -0.9 0.8 

Retrieved vs true 0.2 0.9 0.1 0.7 
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Table 7.  Error versus averaging for measurement error 

n (number averaged) Error land (ppm) Error ocean (ppm) 

1 0.35 0.14 

2 0.25 0.10 

3 0.20 0.08 

9 0.12 0.05 
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Table 8.  Predicted and actual errors for interferents and correlations between interferents and XCO2 for simulated land 

retrievals for case (b) from Table 3.  Bold values are those parameters with interferent errors larger than predicted and large 

actual correlations to XCO2 error (absolute value larger than 0.25). 

  Pred error Actual error Error 

factor 

Pred 

corr 

Actual 

corr 

Impact on 

XCO2 

(ppm) 

Met H2O scaling 0.003 0.005 ± 0.004 5 0.35 0.93 1.2 

Met Surface pressure 0.5 -0.67 ± 1.02 3 -0.38 -0.02 0.0 

Met Temperature offset 0.04 0.25 ± 0.22 9 0.17 0.44 0.6 

Aerosol Aerosol ice OD 0.002 -0.02 ± 0.21 101 0.03 0.81 1.1 

Aerosol Aerosol Ice Pressure  0.09 0.03 ± 0.28 3 -0.01 0.22 0.3 

Aerosol Aerosol Ice Width  0.01 0.01 ± 0.01 2 -0.00 0.13 0.2 

Aerosol Aerosol Kahn1 OD  0.01 -5.0 ± 0.8 4 -0.36 -0.39 0.5 

Aerosol Aerosol Kahn1 

Pressure  

0.3 0.3 ± 0.4 1 0.08 -0.10 0.1 

Aerosol Aerosol Kahn1 Width  0.01 0.04 ± 0.08 9 -0.00 -0.19 0.3 

Aerosol Aerosol Kahn2 OD  0.01 -5.0 ± 0.8 2 0.32 -0.02 0.0 

Aerosol Aerosol Kahn2 

Pressure  

0.4 0.7 ± 0.5 2 -0.02 0.26 0.3 

Aerosol Aerosol Kahn2 Width  0.01 0.1 ± 0.09 17 0.00 0.18 0.2 

Aerosol Aerosol Water OD  0.008 -5.9 ± 1.0 7 -0.06 -0.15 0.2 

Aerosol Aerosol Water 

Pressure  

0.4 0.7 ± 0.5 3 -0.01 -0.06 0.1 

Aerosol Aerosol Water Width  0.01 0.09 ± 0.03 9 0.00 -0.13 0.2 

Albedo Band 1 Albedo ave  0.0008 -0.0002 ± 

0.003 

3 0.19 -0.50 0.7 

Albedo Band 1 Albedo slope  1e-6 1e-6 ± 1e-6 3 -0.26 -0.10 0.1 

Albedo Band 2 Albedo ave  0.0006 -0.002 ± 0.004 7 0.19 -0.54 0.7 

Albedo Band 2 Albedo slope  1e-7 2e-6 ± 2e-6 8 0.10 0.20 0.3 

Albedo Band 3 Albedo ave  0.0007 -0.001 ± 0.005 7 0.04 -0.22 0.3 
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Albedo Band 3 Albedo slope  1e-6 0e-6 ± 2e-6 3 0.14 -0.36 0.5 
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Table 9.  Predicted and actual errors and biases in raw and bias-corrected simulated data run with configuration (b) from Table 

3.  Similar to operational retrievals, bias-corrected XCO2 error is underestimated, whereas the CO2 partial column errors are 

overestimated.  The XCO2 error underprediction results from overestimated error correlations of the partial columns.   

 Ocean pred. 

(ppm) 

Ocean actual 

(ppm) 

Ocean actual 

corrected 

(ppm) 

Land pred. 

(ppm) 

Land actual 

(ppm) 

Land actual 

corrected 

(ppm) 

LMT 2.6 2.6 ± 2.9 0.1 ± 2.3 3.3 2.9 ± 4.2 -0.6 ± 2.6 

U 0.9 -0.6 ± 1.1 0.2 ± 1.0 1.2 -0.6 ± 1.4 0.3 ± 0.9 

XCO2 0.3 0.1 ± 0.7 0.1 ± 0.7 0.4 0.2 ± 0.8 0.1 ± 0.7 

LMT and U 

correlation 

-0.91 -0.67 -0.57 -0.90 -0.68 -0.46 

 

  5 
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Figure captions: 

 

Figure 1. Scatter plots of XCO2 difference from the prior for retrieved versus true on the simulated data. This corresponds to 

dataset (c) with clouds and measurement error, and post-processing screening applied for land (left) and ocean (right), with 

1:1 plots shown on the top panels, and histogram of the differences on the lower panels. 5 

 

Figure 2. (a) Spatial pattern of XCO2 retrieved minus true for case (b) from Table 3 (cloudy but no measurement error), with 

quality screening. Panel (b) shows the difference between true XCO2 with the OCO-2 averaging kernel applied minus true 

XCO2. 

 10 

Figure 3.  XCO2 (black), lower CO2 partial column (red), and upper CO2 partial column (blue) Jacobian band-averaged 

magnitude versus interferent parameters.  Left shows CO2 magnitude versus retrieved "Band 2 Albedo slope", using 

configuration (b) from Table 3; right shows the CO2 Jacobian magnitude difference (in percent) for matched cases from run 

(b) and (d) versus differences in retrieved "H2O scaling".   

 15 

Figure 4. Histogram of difference between XCO2 with noise on and noise off for ocean(left) and land(right), cases (b) and (c) 

from Table 3. 

 

Figure 5. Predicted (red line) and true error (red dots) for two interferents, "Band 2 albedo slope", left, and "H2O Scaling", 

right. 20 

 

Figure 6.  Predicted and true errors.  Left shows the predicted error covariance matrix, for the retrieval parameters listed in 

Table 1, with the CO2 profile collapsed into 2 parameters [LMT and U partial columns]. The blue, orange, green, and purple 

boxes contain CO2, metrological, aerosol, and albedo parameters, respectively. Both matrices are normalized by the diagonal 

of the predicted errors. 25 

 

Figure 7.  Error in retrieved CO2 for XCO2 (black), upper partial column, U (blue) and lower partial column LMT (red) versus 

𝛿∇ைଶ for ocean (left) and land (right) 

 

Figure 8.  Normalized actual error covariances and biases of retrieved parameters for dp<-2 hPa (a, d), -1<dp<1 hPa (b, e), and 30 

dp > 1.5 hPa (c, f) using configuration from Table 3 (d) for land/cloudy.  The purple box surrounds the albedo parameters, the 

green box surrounds aerosol parameters, the red box surrounds metrological parameters, and the blue box surrounds the CO2 

fields, which have been collapsed into lower and upper partial columns.  The errors are normalized by the predicted errors 
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(which are shown in Fig. 5).  The arrow in panel (a) shows correlation between LMT and surface Pressure, which is negative 

(also see Fig. 8b below) 

 

Figure 9.  Error in the lower partial column (LMT), upper partial column (U) and total column (XCO2) versus error in surface 

pressure (with 0.2 hPa bins) for ocean (left) and land (right).  Fhe OCO-2 v7 XCO2 bias versus dP is -0.3 for land and -0.08 5 

for ocean. 
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Figure 1. Scatter plots of XCO2 difference from the prior for retrieved versus true on the simulated data. This corresponds to 

dataset (c) with clouds and measurement error, and post-processing screening applied for land (left) and ocean (right), with 5 

1:1 plots shown on the top panels, and histogram of the differences on the lower panels. 
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Figure 2. (a) Spatial pattern of XCO2 retrieved minus true for case (b) from Table 3 (cloudy but no 

measurement error), with quality screening applied. Panel (b) shows the difference between true XCO2 

with the OCO-2 averaging kernel applied minus true XCO2. 15 
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Figure 3.  XCO2 (black), lower CO2 partial column (red), and upper CO2 partial column (blue) Jacobian band-averaged 

magnitude versus interferent parameters.  Left shows CO2 magnitude versus retrieved "Band 2 Albedo slope", using 

configuration (b) from Table 3; right shows the CO2 Jacobian magnitude difference (in percent) for matched cases from run 

(b) and (d) versus differences in retrieved "H2O scaling".   5 
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Figure 4. Histogram of difference between XCO2 with noise on and noise off for ocean(left) and land(right), cases (b) and (c) 

from Table 3. 

 

  5 
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Figure 5. Predicted (red line) and true error (red dots) for two interferents, "Band 2 albedo slope", left, and "H2O Scaling", 

right. 
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Figure 6.  Predicted and true errors.  Left shows the predicted error covariance matrix, for the retrieval parameters listed in 

Table 1, with the CO2 profile collapsed into 2 parameters [LMT and U partial columns]. The blue, orange, green, and purple 

boxes contain CO2, metrological, aerosol, and albedo parameters, respectively. Both matrices are normalized by the diagonal 5 

of the predicted errors. 
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Figure 7.  Error in retrieved CO2 for XCO2 (black), upper partial column, U (blue) and lower partial column LMT (red) versus 

𝛿∇ைଶ for ocean (left) and land (right) 
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Figure 8.  Normalized actual error covariances and biases of retrieved parameters for dp<-2 hPa (a, d), -1<dp<1 hPa (b, e), and 

dp > 1.5 hPa (c, f) using configuration from Table 3 (d) for land/cloudy.  The purple box surrounds the albedo parameters, the 5 

green box surrounds aerosol parameters, the red box surrounds metrological parameters, and the blue box surrounds the CO2 

fields, which have been collapsed into lower and upper partial columns.  The errors are normalized by the predicted errors 

(which are shown in Fig. 5).  The arrow in panel (a) shows correlation between LMT and surface Pressure, which is negative 

(also see Fig. 8b below) 
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Figure 9.  Error in the lower partial column (LMT), upper partial column (U) and total column (XCO2) versus error in surface 

pressure (with 0.2 hPa bins) for ocean (left) and land (right).  The XCO2 bias versus dP is -0.23 for land and 0.15 for ocean. 
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