Abstract: Single pixel, tropospheric retrievals of HDO and H\textsubscript{2}O concentrations are retrieved from Atmospheric Infrared Sounder (AIRS) radiances using the optimal estimation algorithm developed for the Aura Tropospheric Emission Spectrometer (TES) project. We evaluate the error characteristics and vertical sensitivity of AIRS measurements corresponding to five days of TES data (or 5 global surveys) during the Northern Hemisphere summers between 2006 and 2010 (~600 co-located comparisons per day). We find that the retrieval characteristics of the AIRS deuterium content measurements have similar vertical resolution middle-troposphere as TES but with slightly less sensitivity in the lower-most troposphere, with a typical degrees-of-freedom (DOFS) in the tropics of 1.5 and approximately double the uncertainty. The calculated measurement uncertainty is ~30 per mil (parts per thousand relative to the deuterium composition of ocean water) for a tropospheric average between 750 and 350 hPa, the altitude region where AIRS is most sensitive. Comparison with the TES data also indicate that the uncertainty of a single target AIRS HDO/H\textsubscript{2}O measurement is ~30 per mil. Comparison of AIRS and TES data between 30 degrees South and 50 degrees North indicate that the AIRS data is biased low by ~2.6 per mil with a latitudinal variation of ~7.8 per mil. This latitudinal variation is consistent with the accuracy of TES data as compared to in situ measurements, suggesting that both AIRS and TES have similar accuracy.
Introduction:

Measurements of the isotopic composition of water can help identify the source of the water and provide knowledge about its condensation and evaporation history (e.g. Galewsky et al. and refs therein). Through most of the twentieth century, most isotopic measurements of water have been of precipitation (e.g. Craig, 1961). Near global measurements of the isotopic composition of water vapor became possible with the advent of spectroscopic techniques applied to in situ measurements (e.g., Noone et al., 2011) using lasers and for passive ground based and satellite measurements (e.g. Worden et al., 2006; Frankenberg et al., 2009; Schneider et al., 2012; Lacour et al. 2012). These data have in turn been used to evaluate the role of convection, large scale dynamics, and evapotranspiration on the tropical water cycle (e.g. Worden et al., 2007; Frankenberg et al. 2009; Wright et al. 2017) tropical convection (e.g. Lacour 2018 and refs therein) and the role of plants on global evapotranspiration (Good et al., 2015).

In this paper we demonstrate a retrieval algorithm, based upon the Aura TES optimal estimation retrieval algorithm (e.g. Worden et al. 2012) that can provide robustly characterized measurements of the deuterium content of water vapor (HDO and H2O) from the AIRS measurements. Our goal is to create a multi-decadal Earth Science Data Record (ESDR) using the AIRS and TES data; the TES global record spans ~6 years (2005-2010) and the AIRS data span 17+ years starting in 2002. This ESDR could potentially be used for evaluating the changing water cycle (e.g. Bailey et al., 2017) and its coupling to the carbon cycle (e.g. Zhou et al., 2014; Wright et al., 2017).

We first characterize the vertical resolution and uncertainties for estimates of HDO and H2O, and their ratio, using AIRS radiance observations corresponding to boreal summertime TES global survey’s between 2006 through 2010, which is the time period when TES observations sample the (near) global atmosphere and the calibration approach for TES measurements remained the same. We make only these comparisons due to current processing limitations but expect additional overlap between TES and AIRS data sets in the coming years. We then compare the AIRS and TES data to evaluate the calculated uncertainties of the AIRS data.

1) Description of AIRS and TES instruments

The AIRS instrument is a nadir-viewing, scanning infrared spectrometer (Aumann et al., 2003; Pagano et al., 2003; Irion et al. 2018; DeSouza-Machado et al. 2018) that is onboard the...
NASA Aqua satellite and was launched in 2002. AIRS measures the thermal radiance between approximately 3-12 microns with a resolving power of approximately 1200. For the 8 micron spectral range used for the HDO/H2O retrievals, the spectral resolution is ~1 cm⁻¹ with a gridding of ~0.5 cm⁻¹; the signal-to-noise (SNR) ranges from ~400 to ~1000 over the 8 micron region for a typical tropical scene. A single footprint has a diameter of ~15 km in the nadir; with the ~1650 km swath, the AIRS instrument can measure nearly the whole globe in a single day. The Aqua satellite is part of the “A-Train” that consists of multiple satellites, including TES, in a sun-synchronous orbit at 705 km with an approximately 1:30 pm equator crossing-time.

The Aura TES instrument is a Fourier Transform Spectrometer that originally was designed to measure the thermal infrared (IR) radiances both in the limb and nadir viewing in order to obtain vertically resolved trace gas profiles of ozone, CO, CH4, HDO and H2O, and several ozone pre-cursors such as ammonia, methanol, and PAN (e.g. Beer et al., 2001; Worden et al., 2004; Worden et al. 2006; Luo et al., 2007; Beer et al. 2008; Worden et al., 2012; Payne et al. 2014). Several of these trace gases, such as CO, CH4, and ammonia have also been quantified using AIRS radiances (e.g. McMillan et al., 2005; Xiong et al. 2008; Warner et al., 2016). In comparison to the AIRS instrument, TES has a spectral resolution of ~0.12 cm⁻¹ (apodized) with a spectral gridding of 0.06 cm⁻¹. The SNR is ~300 in the 8 microns spectral region. The Aura TES instrument, after the summer of 2005, observes one nadir scene every 100 km along the orbit path. The effective length of the record is approximately five years, between September 2005 through November 2009, after which instrument degradation problems resulted in interrupts and a decrease in sampling. The AIRS instrument has nearly one thousand times the sampling of TES and near continuous operation between 2002 through the present and therefore can be used to construct several composition based ESDR’s.

3) Description of the Radiative Transfer Forward Model

The radiative transfer forward model used for this work is the Optimal Spectral Sampling (OSS) fast radiative transfer model (RTM) (Moncet et al., 2015; Moncet et al., 2008). The OSS approach is integrated in the operational Cross-Track Infrared Sounder (CrIS, Han et al. 2013) processing system (Divarkala et al., 2014) and has also been utilized for trace gas retrievals from CrIS (e.g. Shephard and Cady-Pereira, 2015). OSS uses a series of approximations tailored to a
specific frequency range and spectral resolution to increase the radiative transfer calculation performance by approximately a factor of 20-100 relative to a line-by-line model used for training. Here, the training threshold was set to 20% of the AIRS noise level. The line-by-line model used as a reference in the training and to build the absorption coefficient lookup tables (LUTs) used by the fast RTM is the Line-By-Line Radiative Transfer Model (LBLRTM) (Clough et al., 2005; Alvarado et al., 2013). The OSS version used in this work is based on LBLRTM v12.4, using the TES_v2.0 spectroscopic line parameter database. The TES_v2.0 line parameter database follows the HITRAN 2012 compilation (Rothman et al., 2013), with the following exceptions:

- H₂O positions and intensities are taken from the aer_v_3.4 line parameter database (http://rtweb.aer.com), closely following the measured and calculated values published in Coudert et al. (2008).
- CH₄ includes first order line mixing coefficients (as supplied in the aer_v_3.4 line parameter database). These were calculated using the approach of Tran et al. (2006).
- CO₂ line parameters are from the database of Lamouroux et al. (2015). This database takes most of its line positions, intensities, and lower state energies from the HITRAN 2012 database, but the values for air-broadening half-widths and their temperature dependences are adjusted from the HITRAN 2012 values to be consistent throughout the bands, and the air-induced pressure shifts (not given for a majority of transitions in HITRAN 2012) were added. The TES_v2.0 database includes first order line mixing coefficients (as supplied in the aer_v_3.4.1 line parameter database), calculated using the software of Lamouroux et al. (2015).

Further information on the AER line parameter databases can be found at http://rtweb.aer.com. OSS is adapted for use with AIRS radiances using the version 4 AIRS spectral response function (SRF) (Strow et al., 2003) that is interpolated to a uniform grid of 0.004 cm⁻¹ centered on the channel center frequencies. The OSS radiative transfer code provides speedup of 20-100x over the original TES operational radiation transfer model (Clough et al., 2006).

4) Description of the Retrieval Approach
The optimal estimation algorithm used in this analysis for quantifying CH$_4$, HDO, H$_2$O, temperature, cloud properties, and emissivity is extensively discussed in Worden et al. (2004), Bowman et al. (2006), and Worden et al (2012). We therefore refer the reader to those papers for a description of the retrieval algorithm, with a suggestion that they start with the Worden et al. (2012) paper; however, we will briefly summarize the retrieval approach here. This retrieval algorithm, now called the MUlti-SpEctra, MUlti-SpEcies, MUlti-Sensors (MUSES) algorithm (Worden et al., 2007b; Fu et al., 2013, 2016, 2018; Luo et al., 2013; Worden et al., 2013), can use radiances from multiple instruments including TES, CrIS, OMI, OMPS, TROPOMI, and MLS to quantify geophysical observables that affect the corresponding radiance.

For the AIRS retrievals discussed here, we simultaneously estimate not just CH$_4$, CO, HDO, and H$_2$O but also temperature (surface and atmosphere), emissivity (if over land), and a spectrally varying gray body cloud (e.g. Kulawik et al., 2006, Eldering et al., 2008). As in Worden et al. (2006) and Worden et al. (2012) the constraint matrix used to regularize the HDO and H$_2$O components of the retrieval includes off-diagonal components that reflect a priori knowledge about the variability of HDO with respect to H$_2$O in order to ensure that retrieval of the ratio of HDO to H$_2$O is optimized, as opposed to either HDO or H$_2$O alone. The prior information used for this covariance is derived from monthly climatologies using the NCAR Global Climate Model as discussed in Worden et al. (2006). The a priori profile used for the HDO/H$_2$O ratio is set to be constant over the whole globe, and represents the mean tropical a priori profile from the NCAR model. However, the H$_2$O a priori profile is allowed to vary by latitude and is based on re-analysis (Worden et al., 2006); therefore the HDO profile is the mean tropical profile of the HDO/H$_2$O ratio from the NCAR model multiplied by the H$_2$O a priori profile.

We use single pixel radiances that have not been transformed through “cloud clearing” in order to preserve the original, well characterized radiance noise characteristics for use in our estimates (Irion et al., 2018; DeSouza-Machado et al. 2018) and because we find that single-pixel AIRS radiances have sufficient information about cloud pressure and optical depth to be retrieved jointly with the trace gases, as demonstrated empirically through validation of these AIRS-based composition retrievals with TES retrievals (e.g. Figures 1–4). We assume the noise in any given pixel is uncorrelated with those from adjacent pixels. However, these correlations...
are known to exist (e.g. Pagano et al., 2008) and the impact of ignoring them is that our calculated uncertainties will be larger than expected and therefore our noise related uncertainty should be considered a conservative estimate.

A primary difference between the retrieval approach shown in this paper versus the TES methane and HDO retrievals (Worden et al., 2012) and those from previous efforts using AIRS radiances (e.g. Xiong et al., 2008) is that we retrieve these trace gas profiles using the AIRS radiances from ~8 and ~12 microns instead of radiances from the 8 micron region alone in order to provide a stronger constraint on atmospheric temperature and hence reduce uncertainty from knowledge of temperature on the HDO and H_2O retrieval. The 8 micron region used (~1217 to 1315 cm\(^{-1}\)) for these retrievals has the most sensitivity to HDO and H_2O whereas the 12 micron band (~650 to 900 cm\(^{-1}\)) is primarily sensitive to temperature and H_2O. All channels are used within this spectra unless flagged as poor during calibration.

5) Characterization of HDO/H_2O profiles

While H_2O is quantified using radiances from both the 12 micron and 8 micron spectral regions, the primary absorption lines used here to quantify HDO are in the 8 micron region. There are other HDO (and H_2O) lines available to use from the AIRS radiance but for now we only use the 8 micron region to ensure consistency between AIRS and TES data. Figure 1 shows the 8 micron radiance (top panel) and the Jacobian, or sensitivity of the radiance to variations in the (log) H_2O and (log) HDO respectively (middle and bottom panels). These Jacobians are

normalized by the instrument noise. For example, a value of 1 means that it would take a 100% change in the corresponding species to distinguish between two similar radiances (everything about the observed scene and radiance is the same except for the species of interest) above the noise level. A value of ~50 therefore means that only a 2% variation is required (or 1/50).

Figure 2 shows the averaging kernel matrix for the HDO component of the joint retrieval. The averaging kernel describes the response of the estimate, or log(HDO), relative to variations in the true state; consequently it can also be used to evaluate the vertical resolution and sensitivity of the estimate. For example, if HDO varies by 100% at 908 hPa, then the AIRS estimate would be able to observe about 30% of the variability because the averaging kernel is approximately 0.3 at that level. The averaging kernel at 908 hPa also depends on the deuterium
content at several other pressure levels below and above indicating that the estimate at 908 hPa depends on the deuterium content variations at these other levels. Not shown are the dependencies of the (log) HDO estimate to those from the (log) H2O estimate. These dependencies between the HDO averaging kernels and with the H2O averaging kernels are accounted for when constructing the HDO/H2O ratio; however a residual uncertainty called the “smoothing” error is imparted when comparing the HDO/H2O ratio to independent data; this smoothing error is part of the error budget shown in Figure 3. As discussed in Worden et al. (2012) and Schneider et al. (2012), the sensitivity of the estimated HDO/H2O ratio is limited by the sensitivity of the estimate to HDO. Users of these data should note that this ratio is typically used with that of H2O in order to better evaluate their joint variation (HDO/H2O, H2O) against simple mixing and rainfall models (Noone et al. 2011). However, the sensitivity of the radiance to H2O variations is much stronger than that for HDO, although the altitude region of the HDO sensitivity typically overlaps with the H2O sensitivity. Schneider et al. (2012) discusses how to created HDO/H2O, H2O pairs to mitigate this component of the smoothing error when comparing these data against the simple models described in Noone et al. (2011). For comparison to more complex global climate models the user of these data also needs to apply the HDO and H2O averaging kernels to the corresponding model fields (e.g. Risi et al., 2012). Figure 3 (top panel) shows the tropospheric deuterium content (or HDO/H2O ratio) derived from AIRS observations on July 1 2006. Despite the improved computational performance of the OSS radiative transfer calculation relative to the TES algorithm line-by-line calculation (Clough et al. 2005), the retrieval is still sufficiently expensive such that we can only process a sub-set of the AIRS retrievals. Considering the computational cost, for the purpose of constructing a record we currently only process AIRS retrievals from between 45 degrees South to 65 degrees North that coincide with the nearest TES observation but with an additional two observations within 100 km of the TES track over the continents; this ad hoc sampling strategy is based on experience with previous studies using the TES deuterium and methane measurements. The traditional notation for this quantity is called “delta-D”, or “δ-D” with units of “per mil” or parts per thousand relative to the Standard Mean Ocean Water (SMOW) deuterium content which is 3.11 x 10^-4 molecules of HDO per molecule of H2O. The observations shown represent the deuterium content for the pressures between 750 hPa and 350 hPa, where we find the AIRS and TES observations have maximal overlap in their vertical resolution.
The errors are calculated during the optimal estimation retrieval (Bowman et al. 2007; Worden et al. 2012) and depend on the expected noise of the AIRS radiances and the parameters that are co-retrieved with the AIRS HDO/H$_2$O ratio such as temperature, surface emissivity, clouds, and methane. As noted in Worden et al. (2012) these co-retrieved parameters affect both the precision and accuracy whereas the noise only affects the precision. The total error (middle panel) is given in units of per mil and ranges between 25 to 30 per mil. The DOFS, or trace of the averaging kernel, are shown in the bottom panel and indicate that many of the HDO/H$_2$O retrievals can resolve different parts of the troposphere, at least in the tropics, because (as demonstrated in Figure 2) the rows of the averaging kernels are separated between the boundary layer region (surface to ~750 hPa) and the free-troposphere (~600 to 300 hPa). However, these observations cannot completely resolve the total variability in these two regions of the atmosphere because the total DOFS is typically 1.5 or less and for the measurement to be able to resolve the variability (to within the calculated error) of the two regions there would need to be at least 2 DOFS.

6) Comparison of AIRS and TES HDO/H$_2$O retrievals

Figure 4 shows a comparison between overlapping AIRS and TES estimates of the HDO/H$_2$O ratio for June 1 2006. The AIRS and TES measurements effectively overlap in space and within a few seconds in time as the instruments are in the same orbit. However not all the comparisons shown in Figure 4 overlap as retrievals may be rejected due to poor quality. We therefore compare all data that are within 200 km in the free troposphere. We do not expect substantive error to occur due to spatial mismatch of 2 degrees or less because air parcels in the free-troposphere have length scales that are several hundred kilometers long (e.g. Worden et al. 2013). The average between approximately 750 hPa and 350 hPa are shown for when the DOFS are larger than one for this altitude region. There is a slight bias of -2.7 +/- 1.5 per mil between TES and AIRS as shown in the top panel. The calculated and actual (RMS difference between AIRS and TES) uncertainties are shown and are approximately 30 per mil, primarily driven by the uncertainty in the AIRS based estimates as the TES based estimates have an uncertainty of approximately 15 per mil. Figure 5 shows a direct comparison of the AIRS and TES data. The correlation is about 0.89 and the one-to-one line (solid line) overlaps this distribution. However
the lowest values likely diverge from the one-to-one line, possibly because the spatial distribution in the sensitivity depends on the amount of HDO and hence we should expect differences between the TES and AIRS deuterium measurements for these lower-sensitivity retrievals.

A comparison of the AIRS and TES HDO/H$_2$O ratio for five single global surveys taken between 2006 and 2010 (one global survey per year during boreal summer) is shown in Table 1 and indicates that the overall bias varies between -2.7 to 3.7 per mil. Using all 5 TES global surveys that are summarized in Table 1 we can construct how AIRS and TES compare as a function of latitude as shown in Figure 6. Figure 6 is constructed by averaging the difference between TES and AIRS observations within 5 degree latitudinal bins. The mean bias across latitudes is ~2.6 per mil. The error bars shown on the difference is the error on the mean, which is the Root-Mean-Square (RMS) of the differences divided by the square root of the number of colocated observations; as this error bar is a measure of precision for each latitude bin, this comparison demonstrates that there are variations in the comparison that are larger than the precision and are therefore related to systematic errors in either the TES data or AIRS data or both. Variations in these systematic errors can be seen in the latitudinal variability, which has an RMS variation of ~7.8 per mil for the different latitude bins but can vary by as much as ~15 to ~+15 per mil in the tropics. Typically these variations are due to a combination of uncertainties in the spectroscopy along with temperature, water vapor, and surface properties; they may also be due to “smoothing error” which is related to how differences in the vertical resolution affect the tropospheric average of the deuterium content shown in these figures (e.g. Worden et al. 2004). This 7.8 per mil variation across latitudes is about the same as the reported accuracy of the Aura TES delta-d observations that are based on comparisons of TES data with surface and aircraft measurements (Worden et al. 2011; Herman et al. 2014). We therefore report the current accuracy of the AIRS data to be ~7.8 per mil. We expect future comparisons between these data and those from aircraft or revisions to the AIRS retrieval approach will modify this estimate of the accuracy.

8) Conclusion
This paper describes the vertical resolution and error characteristics of retrievals of the deuterium content (or the HDO/H₂O ratio) of water vapor using AIRS radiances and then evaluates the consistency between AIRS and TES retrievals of HDO and H₂O. We find that the AIRS and TES deuterium content for the lower-troposphere (750 – 350 hPa) are consistent, or within their calculated uncertainties, for the 5 year period in which TES observations span the globe (2006-2010). We find the total uncertainty for a single AIRS observation is ~30 per mil with an accuracy of ~7.8 per mil. These uncertainties can be compared to the observed total variability, which can range from approximately -350 to +50 per mil over the whole globe, as observed by the Aura TES data (Worden et al. 2006) and shown in Figure 3 for AIRS data.

While only five days of comparisons are shown here for the purpose of evaluating the retrieval approach and error characteristics of these AIRS retrievals, we expect to produce a record of the AIRS-based deuterium content retrievals from the start of the mission (2002) through the present. Because of computational limitations, we expect to process data from 45 degrees South to 65 degrees North at approximately four times the sampling of the Aura TES measurements and with increased sampling (~3x) over the continental regions with the goal of increasing this sampling once the initial record is completed and as additional resources become available.

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Table 1: Comparison between averaged TES and AIRS HDO/H₂O ratio (750-350 hPa). The units are in parts per thousand relative to Standard Mean Ocean Water. The last row shows the average and RMS for the mean differences in the far right column. Date

Moved down [2]: Table 1: Comparison between averaged TES and AIRS HDO/H₂O ratio (750-350 hPa). The units are in parts per thousand relative to Standard Mean Ocean Water. The last row shows the average and RMS for the mean differences in the far right column.
References

Risi, C., Noone, D., Frankenberger, C. and Worden, J.: Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water

Risi, C., Noone, D., Frankenberger, C. and Worden, J.: Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water

Table 1: Comparison between averaged TES and AIRS HDO/H2O ratio (750-350 hPa). The units are in parts per thousand relative to Standard Mean Ocean Water. The second column shows the expected RMS based on the uncertainties of the TES and AIRS data. The third column shows the actual RMS difference between TES and AIRS. The last column shows the mean difference.

<table>
<thead>
<tr>
<th>Date</th>
<th>Expected RMS (per mil / SMOW)</th>
<th>Actual RMS (per mil / SMOW)</th>
<th>Mean (TES-AIRS) (per mil / SMOW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-06-01</td>
<td>31.1</td>
<td>30.6</td>
<td>-2.7 +/- 1.5</td>
</tr>
<tr>
<td>2007-06-02</td>
<td>30.0</td>
<td>31.9</td>
<td>-0.6 +/- 1.5</td>
</tr>
<tr>
<td>2008-06-02</td>
<td>31.5</td>
<td>29.3</td>
<td>0.5 +/- 1.4</td>
</tr>
<tr>
<td>2009-07-06</td>
<td>31.6</td>
<td>27.1</td>
<td>0.7 +/- 1.4</td>
</tr>
<tr>
<td>2010-06-02</td>
<td>31.6</td>
<td>28.2</td>
<td>3.7 +/- 1.2</td>
</tr>
</tbody>
</table>
Figure 1: (top) AIRS radiance at approximately 8 microns for a typical tropical scene. (middle) The total column (log) Jacobian for H\textsubscript{2}O normalized by the AIRS NESR. (bottom) The total column (log) Jacobian for HDO normalized by the AIRS NESR.
Figure 2: The rows of the averaging kernel matrix for the HDO retrieval corresponding to the radiance shown in Figure 1. The different colors and symbols are used to indicate the pressure levels corresponding to each row of the averaging kernel matrix.
Figure 3: (top) The mean tropospheric deuterium content (in “per mil” or units of parts per thousand relative to the deuterium content of the ocean or SMOW) for June 1, 2006 as inferred from AIRS radiance measurements. (middle) The total error for the measurements in the top panel (also in units of per mil relative to SMOW). (bottom) The DOFS for the retrieval.
Figure 4: (top) Comparison of AIRS (red) and TES (black) delta-D for June 1 2006 (~600 co-located observations). (bottom) The differences (after bias subtraction) between TES and AIRS delta-D measurements.
Figure 5: Comparison of the AIRS and TES deuterium content. The solid line is the one-to-one line.
Figure 6: The latitudinal differences between TES and AIRS Delta-D using co-located observations for 5 days (approximately 600 observations per day) of data, spaced over 5 Northern Hemisphere summers between 2006 and 2010.
I would like to greatly thank both reviewers for their detailed review and comments. Reviewing and editing these papers is quite a bit of (effectively voluntary) work and both reviews really went into great detail on fixing the presentation. With respect to the comment on "minimalism", I actually was striving for minimalism in this paper but apparently overshot my goal! For example, I did not want to write (yet) another paper full of the optimal estimation description in all of its glory, or equation detail but instead report on the basic notions... that the AIRS radiances can be used to generation global deuterium content retrievals and that their vertical resolution is about the same as TES but with slightly poorer uncertainties, and that we will soon produce a long record of the data that spans most of the globe and can hopefully produce scientific awesomeness.

Again, thanks for the review. Below are the comments and my responses.

Response to Reviewer 1

General Comment: This study presents the application of an existing retrieval methodology of HDO/H2O vertical profiles originally applied on TES, on AIRS thermal infrared measurements. The authors briefly remind the retrieval methodology, describe the error and sensitivity, and show a comparison with co-located TES retrievals. In my view, this is a welcome study as the capabilities of AIRS sensors for HDO/H2O ratio retrievals were unknown/not tested, and the sampling characteristics of AIRS offer great potential for isotopes related studies. The manuscript is short and generally convincing but the presentation is too minimalist and should be improved. Some discussions on previous improvements in characterizing HDO/H2O-H2O pairs retrieval is missing. I list a few comments which should be easily resolved by the authors.

Specific Comments:

- Introduction: A short introduction on water isotopes, their usefulness and a description on what the remote sensing capabilities to observe HDO/H2O ratios in the free troposphere would be useful to strengthen the importance of this work and to smooth the feeling of reading a purely technical report.

 Response: I added a paragraph at the front that describes a bit of history on water isotope measurements, and how these vapor based measurements have helped address global water / carbon questions.

- P2, Line 19: estimates of HDO/H2O ratios and not HDO

 Response: Added "and their ratio". We actually do retrieve HDO and H2O separately even if the retrieval setup optimizes the ratio.

- P2, Line 20: Why only summertime TES global survey's? Do you mean boreal summertime?

 Response: added boreal and added a statement about current limited processing capabilities
P2, Line 23: “We then compare the AIRS and TES data to evaluate and quantify the calculated uncertainties of the AIRS data”. To evaluate and quantify the calculated uncertainties sound a little odd. This needs to be rephrased.

Response: removed “and quantify”

This paper is relatively short and yet there is a lot of statements about futures publications (P2, L17-18; P2, L23-24; P5, L29 – P6,L8). Some of them could be removed.

Response: Removed most of these references where appropriate and modified some of the language about the utility of the 12 micron band for constraining atmospheric temperature.

P3, L8: There is a redundancy here of the statement that TES is part of the A-Train, it was just said in the previous sentence.

Response: removed

P5, L9: “This retrieval algorithm can use radiances (…) to quantify and characterize geophysical observables appropriate for the corresponding radiance.” – What is an appropriate geophysical observable? To retrieve different geophysical parameter?

Response: changed “appropriate” to “that affect”. I think this wording is appropriate but terse. I can also add another line such as (e.g. the ozone concentrations affect radiances in the 9.6 micron ozone band) but that seems too wordy.

P5, L16-17: “in order to ensure that [the retrieval of] the ratio is optimized, as opposed (…)”

Response: fixed

P5, L29 – P6,L8: All this part describes the importance of including the 12 microns radiances for the methane retrieval. That is not interesting in the frame of this paper.

Response: (fixed in above response, hopefully 😊).

P6, L17-19: Jacobians have not be defined. What does the -50 threshold represent? How is it calculated?

Response: I added the definition for a Jacobian and changed the language around, basically 2% is equivalent to 1/50… 1% = 1/100 etc.

P6, L22: “(...) partial derivative of the estimate relative to [partial derivative] of the true state”. Or maybe in a language more accessible to potential users not familiar with optimal estimation: “the response of the retrieved state to perturbations of the true state”

Response: changed
• P6, L23: It is confusing to translate the example in terms of HDO/H2O ratios since the averaging kernels are for HDO.

Response: thanks for pointing this one out. I adjusted the language accordingly and added a sentence about how the information about HDO/H2O is limited by HDO; I also added a reference.

• P6, L28-29: Schneider et al., 2012 proposed an a posteriori methodology to characterize the joint retrieval of H2O and HDO. The method allows to transform the products obtained in the log(H2O), log(HDO) space into a proxy state log(H2O),δD which is very useful for characterization. Moreover, the HDO/H2O ratio product is often used in pair with H2O it is therefore important to discuss the differences of sensitivity of H2O and HDO/H2O ratios. This is missing here.

Response: I added language on how the averaging kernels for H2O are different than that for HDO and that Schneider et al discusses an approach to use these data with simple models while accounting for the different sensitivities.

• P7, L13-L15: There are a lot of measurements within the tropics with DOFS between 0.5 and 1, so I wouldn’t generalize this situation to the whole tropics. This might be valid only for the averaging kernels shown.

Response: adjusted the language. now we say “many” which implies “not all”

• P8, L6->L11: All this part would better fit in the error characterization part

Response: moved

• Comparisons of AIRS and TES retrievals - In order to be really convincing this part needs to be completed.

- Would it be possible to show a scatter plot of AIRS versus TES?

• – What is the correlation between AIRS and TES retrievals?

Response: I am not that convinced this is a meaningful figure as it is the difference between AIRS and TES that can be used to determine if the AIRS data is (relatively) well characterized. Having said that I have included it here in case readers find it useful. The correlation for this day is 0.89.

• – Because this kind of product is used in pairs with humidity retrievals it is also interesting to show that both sounders show the same humidity-δD information and not only δD.

Response: I dont think this comparison is of use to this specific paper as it shows that the pairs generated by AIRS are similar to those from TES but slightly different, as expected because the sensitivity and errors are different. For this reason I would prefer not to show here, but will show in subsequent papers when we start looking at the science!
- I didn’t understand the error assessment reasoning. The mean bias across latitude is -2.6 permil, later on the authors assess the RMS to be 7.8 permil, then the authors say the accuracy is 7.8 permil. Is this a mistake or do I miss something? The language between accuracy and precision should be clarified.

- What about the latitudinal variations of the bias which are greater (-15 to 15 permil) than the mean standard error? It looks like there is a latitudinal bias, could it be caused by some dependence on temperature or humidity content?

Response: I attempted to clean up the language here, hopefully it’s a bit more clear! I also added language that the latitudinal variations are typically due to uncertainties in temperature, water vapor, and spectroscopy, as well as differences in the vertical resolution.

- Could you plot the data in Figure 5 until 40°S as in the previous figure?

Response: Done!

- The conclusions could be more developed. One of the interest of this paper lies in the development of a HDO retrieval methodology from AIRS data which was unknown and opens great perspectives for users interested in such measurements. In this context, a word on the future plans of the authors on processing more AIRS data, or not, would be interesting.

Response: Added a paragraph on current and future plans with respect to building an ESDR.

- P9, L8: Please reference the natural variability of δD

Response: Added statement about Figure 3 and cited a TES paper.

Technical corrections

- Abstract, L17: Northern instead of N; P1, L28: a verb is missing (fixed)

- L29, degrees (fixed)

- P4, L30: Description of Retrieval Approach -> Description of the retrieval approach (fixed)

- P5, L29: (e.g. Figures 1-4), (fixed)

- P7, L4: add degrees to latitude (fixed)

- P7, L8: use the delta Greek notation δ (this is stylistic, I have added "or δ" instead)

- Figure 4: A legend is missing, what is TES and what is AIRS? (fixed)
Reviewer 2

General Comment

As this study is targeting the preparation of a new Earth Science Data Record covering AIRS HDO/H2O observations, it clearly has a high scientific significance. The manuscript itself is clear and concise, but I would agree with Reviewer #1 that the presentation is indeed somewhat "minimalistic" and could be extended and improved. Please carefully follow suggestions and comments provided by Reviewer #1 and those listed below so that the paper can be published soon.

Specific comments

- p3, l4: The AIRS swath width is 1650 km (Aumann et al., 2003) rather than 1250 km.

 Response: (fixed)

- p5, l25-26: Although the AIRS noise is characterized well for individual channels, in other work I noticed noise can be spectrally correlated between neighboring channels, which is due to the 1-D linear detector arrays of AIRS sharing the same electric module (Pagano et al., 2008). This may be too specific to discuss in your paper; I just wondered if you considered this?

 Response: We have not explicitly addressed this issue and in fact the same is true with the TES data because the data are apodized but the calculated errors assume the noise is random (or not apodized). On the other hand the apodization is accounted for in the TES retrievals when we calculate the forward model radiance. In contrast with the TES data where we can account for the apodization it is not clear how to account for these noise correlations in the AIRS data. Instead we added a statement that the noise is assumed to be random as we are unable to account for correlations between channels. The effect of this assumption is that the calculated errors will be too large and is therefore a conservative estimate of the uncertainties.

- p7, l20-29: Are the HDO retrieval results correlated with the simultaneous H2O retrievals? Does the AVK matrix show any correlations between these retrieval variables?

 Response: Yes! These correlations are addressed 1) in model comparisons by applying the averaging kernels for both HDO and H2O to the model (e.g. Risi et al., 2013) or 2) by calculating the resulting error (e.g. Worden et al., 2006) and including that in the error budget, or mitigating further by 3) projecting to HDO-H2O pairs as discussed by the first reviewer. I have discussed the pairing approach based on the first reviewers comments and will add the Risi reference as well.
Fig. 2: Maybe show also the integral of the AVKs, to indicate the amount of measurement information in the retrieval results? (Fix "are used to indicate" in the caption.)

Response: Fixed caption. The integral of the AVKs (or trace actually) is shown in the bottom panel of Figure 3 and discussed in the text.

Fig. 4: A legend/definition of the colors used for the plot on the top seems to be missing.

Response: Fixed!

Technical corrections

p1, l17: N. -> Northern (also in other places) (fixed)

p1, l22: ...reduced spectral resolution of AIRS (for clarity?) (removed sentence as it was confusing to have in the abstract)

p1, l24: Suggest to remove reference (Worden et al., 2004) from abstract. p1, l27-28: Please fix incomplete sentence. (see above)

p1, l29: Add degree symbols to "30 S and 50 N" (also in other places)? I have added the word "degrees" instead.

p2, l2: The copyright statement "All rights reserved." is not allowed in the given form. I think, please see https://www.atmospheric-measurement-techniques.net/about/licence_and_copyright.html for details.

Response: I have to use this copyright for JPL during the submission phase. Once / if the paper is accepted I put in another form where JPL puts in a modification to the Copernicus agreement.

p2, l4: "Introduction:" -> "Introduction" p3, l11: PAN, -> PAN

fixed

p3, l22: Earth Science Data Records (ESDR’s) -> ESDR’s (acronym was already introduced)

fixed

p4, l25: "a version of the v4 AIRS" -> "version 4 of the AIRS" (?) (fixed)

p5, l6: will only briefly summarize (?) (fixed)

p5, l9-10: Not sure if "...appropriate for the corresponding radiance." is a good phrase here?

(changed, see comment from reviewer 1)

p6, l4-6: Remove redundant sentence (fixed)
p6, l31: Change date format to "1 July 2016" (also in other places). I think this is a US Versus Europe date thing 😞. Can I keep as is? It's like asking me to drive in the left lane 😪.
p7, l2: we can only (?) (fixed)
p8, l14: indicate s. (fixed)