

***Interactive comment on “Development of a balloon-borne instrument for CO<sub>2</sub> vertical profile observations in the troposphere” by M. Ouchi et al.***

***Anonymous Referee #1 Received and published: 6 March 2019***

***General comments:***

*Ouchi et al. developed a balloon-borne *in situ* CO<sub>2</sub> system for vertical profile observations in the troposphere. The system has been designed to be lightweight (~2kg) and relatively cheap so that it can be flown on a regular basis.*

*The weight limit was met mainly due to the use of lightweight calibration gas bags. As the calibration gas bags may be over pressurized or be exhausted at around 10 km, which determines the upper altitude limit of the measurements by the system.*

*To this end, it is a nice system that has been developed for CO<sub>2</sub> vertical profile measurements. The critical part is the (in)accuracy of the system. The observed average differences between the CO<sub>2</sub> sonde and other aircraft measurements were on the order of 1 ppm up to 7 km, although the differences at individual altitudes could be significantly larger than that. It should be made clear that the differences between the measurements above 7 km were much larger than 1 ppm. That being said, the reviewer is skeptical about the usefulness of the system in the real world where the potential biases in the free troposphere simulated by carbon cycle models are often smaller than 1 ppm.*

*The system may be limited to observe the difference of large signals in the boundary layer. There is certainly a need to further improve the accuracy of such a system before it can be useful for the carbon cycle research. However, given the significant development and the detailed documentation, it is worth considering publication after making the message clear. Perhaps it will be more suitable for a technical note.*

***(Reply)***

Our CO<sub>2</sub> sonde system is suitable for the measurements of the CO<sub>2</sub> concentrations in boundary layer and lower troposphere (< 7 km altitude), where the CO<sub>2</sub> concentrations are varied of the order of 10 ppm due to the anthropogenic and natural emissions, transportation and consumption. In the carbon cycle models these altitudes are critically important. However, no low-cost *in-situ* measurement system was available before. The CO<sub>2</sub> concentrations in the upper troposphere (7-10 km) are relatively stable and the absolute CO<sub>2</sub> concentration in the 7-10 km altitude range is about 20% of that in the 0-7 km range. Since number of the experiments is small, it is difficult to explain the differences between the sonde and CONTRAIL observations at altitude above 7 km. In this article we are focusing on the

altitude range of 0-7 km and have already written as follows:

(L.456-458) The estimated error value up to an altitude of 7 km was  $0.6\pm1.2$  ppm for the CO<sub>2</sub> sonde observation with a 240 m altitude resolution and 3 m s<sup>-1</sup> ascending speed.

(L. 518-522) The CO<sub>2</sub> sonde and CONTRAIL data were consistent. The CO<sub>2</sub> sonde data on January 31st, 2011 was in good agreement with the chartered aircraft data on the same day, but the CO<sub>2</sub> sonde data observed on February 3rd, 2011 was larger by approximately 1.4 ppm, as compared with the chartered aircraft data obtained on the same day from the ground to an altitude of 7 km. The measurement errors of the CO<sub>2</sub> sonde system up to an altitude of 7 km were estimated to be 1.4 ppm for a single point of 80 s period measurements with a vertical height resolution of 240–400 m.

---

***Detailed comments:***

*L28: It is certainly not "accurately".*

(Reply)

We have deleted “accurately” (Line 28).

---

*L34-35: In my opinion, the usefulness of the instrument is not justified.*

(Reply)

Our CO<sub>2</sub> sonde system is suitable for the measurements of the CO<sub>2</sub> concentrations in boundary layer and lower troposphere (< 7 km altitude), where the CO<sub>2</sub> concentrations are varied of the order of 10 ppm due to the anthropogenic and natural emissions, transportation and consumption. In the carbon cycle models these altitudes are critically important. However, no low-cost *in-situ* measurement system was available before.

Actually Inai et al. already obtained scientific results using our CO<sub>2</sub> sonde systems, which was listed in the reference section:

Inai Y., Aoki, S., Honda, H., Furutani, H., Matsumi, Y., Ouchi, M., Sugawara, S., Hasebe, F., Uematsu, M., Fujiwara, M.: Balloon-borne tropospheric CO<sub>2</sub> observations over the equatorial eastern and western Pacific, Atmos. Env., 184, 24-36. doi: 10.1016/j.atmosenv.2018.04.016, 2018.

---

*L141: What's the source of 2 kg based on the legal restriction by the US FAA? The weight limit may be higher.*

(Reply)

This is the 6 lb (2.721kg) rule for unmanned free balloons. Basically, if you fly a payload that is under six lbs, you are exempt from most FAR 101 rules of FAA.

<http://www.chem.hawaii.edu/uham/part101.html>

<http://www.rfgeeks.com/HAB/FAR101/>

<https://stratostar.net/how-much-weight-can-a-high-altitude-weather-balloon-carry/>

---

*L139: Design of the CO<sub>2</sub> sonde: Why was the dehumidifier not placed in front of the pump to avoid a wet pump that may be a contamination source of CO<sub>2</sub>? Does the pump create significant pressure variations in the cell of the CO<sub>2</sub> sensor? It may be useful to monitor the cell pressure.*

**(Reply)**

The constant-volume piston pump with a flow rate of 300 cm<sup>3</sup> min<sup>-1</sup> (Meisei Electric co., Ltd.), which is originally used for ozone sonde instruments, directed the gas flows from the inlets through the solenoid valves into a dehumidifier, a flow meter, and a CO<sub>2</sub> sensor. The flow from the piston pump had pulsation and the dehumidifier vessel also worked as a buffer to reduce the pulsation.

We have added the following sentence in the text:

“The flow from the piston pump had pulsation and the dehumidifier vessel worked as a buffer to reduce the pulsation.” (Line 200 - 201)

---

*L288 Data processing procedures: the use of cubic spline fitting curves for the observation points needs to be justified, e.g. by comparing with a linear interpolation approach to see whether the measurements will be more stable in the laboratory or will compare better with aircraft measurements in the field.*

**(Reply)**

We have modified Table 2, and added the following sentences in the section 3b (Line 218-219).

“The results with both cubic spline and linear interpolation methods were also listed in Table 2 for the balloon-borne experiments on January 31, 2011 in the comparisons with the JAXA-NIES aircraft measurements. This clearly indicates that the cubic spline interpolation method is better than the linear one.”

---

*L388 Comparison with aircraft data: the large difference between CONTRAIL and the CO<sub>2</sub> sonde measurements at certain altitudes, especially above 7000 m in Figure 7&8 could be partially explained by the observed large variations at low pressures seen in Figure 5, but the large part of the difference will remain unexplained.*

**(Reply)**

It is difficult to explain the difference between the sonde and flight observations at altitudes above 7 km, since number of the experiments is small. We are focusing the altitude range of 0-7 km as written in Line 461-463 and 522-527.

(L.461-463) The estimated error value up to an altitude of 7 km was  $0.6\pm1.2$  ppm for the CO<sub>2</sub> sonde observation with a 240 m altitude resolution and 3 m s<sup>-1</sup> ascending speed.

(L. 522-527) The CO<sub>2</sub> sonde and CONTRAIL data were consistent. The CO<sub>2</sub> sonde data on January 31st, 2011 was in good agreement with the chartered aircraft data on the same day, but the CO<sub>2</sub> sonde data observed on February 3rd, 2011 was larger by approximately 1.4 ppm, as compared with the chartered aircraft data obtained on the same day from the ground to an altitude of 7 km. The measurement errors of the CO<sub>2</sub> sonde system up to an altitude of 7 km were estimated to be 1.4 ppm for a single point of 80 s period measurements with a vertical height resolution of 240–400 m.

**General comments:**

*The paper thoroughly describes a useful approach for measuring CO<sub>2</sub> profiles up to an altitude of CO<sub>2</sub> with moderate precision using balloons. The paper is well-organized and clear but has many minor grammatical errors that should be addressed before publication.*

(Reply)

Thank you for your comments.

---

*Magnesium perchlorate is a hazardous material (oxidizer). Are there regulations that describe the maximum quantity that is allowable for this application?*

*Perhaps a nafion membrane could be used instead if not too expensive. If calibration gases and atmospheric samples were both routed through a nafion tube then artifacts would be minimal. Several studies have shown that configurations are possible where humid ambient samples and dry standard gases emerge from a sufficiently long nafion tube with nearly identical humidity so that water-related errors become negligible.*

*The fact that the payload is not recovered and instead "thrown away in the ocean" is unfortunate due to toxic/hazardous batteries and magnesium perchlorate, and styrofoam packaging and other components that are not biodegradable.*

(Reply)

Thank you for your suggestion about the nafion membrane instead of the chemical dehumidifier. These days it is essential to use environmentally friendly materials. In this study, we developed the prototype of a CO<sub>2</sub> sonde system to test the usefulness of the sonde system for the time being, in which some of the materials were not favorable for environment. Now we are replacing them.

The following sentence has been added in the manuscript in the end of the section 2b (Line 218-219):  
“We are trying to use more environmentally friendly materials instead of the chemical dehumidifier

and polystyrene packing etc.”

---

---

*What is the approximate cost per flight (including time to manufacture and test the sensor package)?*

*How does the cost compare to a typical charter aircraft flight such as the NIES/JAXA flights described here?*

**(Reply)**

The costs of the NIES/JAXA observation flights were not open to public. The cost of an airplane observation depends on flight plans, types of the airplane, the degrees of modification and inspection of the airframe. Usually flight measurements cost in several ten thousand to several hundred thousand US dollars. The cost of the CO<sub>2</sub> sonde described here is about four thousand dollars only for the equipment.

---

*More than 20 flights have been performed. Are these data publicly available?*

**(Reply)**

We are now preparing the papers about the results of the balloon-borne flights for the validation of the GOSAT satellite data. The data will be open to the public in future.

---

*Figure 3: It would be nice to include a measure of the uncertainty of the time interpolation (i.e. uncertainty bands on each of the spline curves for the high and low standard.)*

**(Reply)**

Since the balloon-borne instrument is only equipped with one NDIR absorption cell and the balloon ascends continuously, it is not possible to measure the ambient air sample and the two standard gases at the same time and at the same altitude. Therefore, the ambient air and the two standard gases were measured sequentially and the time interpolations were essential for the analysis. We estimated

the overall uncertainties and it was difficult to identify those for the time interpolation.

---

*page 15, line 359 & Figure 5: The vertical error bars are said to represent "the square root of the sum of squares for the standard deviations of the sample and standard gas at each step". Is the the standard deviations of the 30s intervals that are retained for each measurement? Is the ambient air / calibration gas sequence the same as shown for the flight in Figure 3?*

*Is there interpolation of the standards over time?*

*It is not clear whether there is drift in the sensor response over the course of the experiment that should also be taken into account. It would be useful to try to separately estimate random uncertainty and bias.*

#### **(Reply)**

In the chamber experiments, like actual balloon experiments, the ambient air and the two standard gases were measured time sequentially and the time interpolations were essential for the analysis. The chamber pressure was reduced gradually from 1010 hPa to 250 hPa in an hour, as written in Line 351-354. The signal behaviors of the NDIR cell were similar to those in Fig.3. Therefore, it is difficult to separate the random uncertainty and bias.

(Line 351-354) “The pressure of the chamber was gradually and continuously decreased using a mechanical pump from 1010 hPa (ground surface pressure) to 250 hPa (about 10 km altitude pressure) over 60 min, corresponded to a balloon ascending speed of 3 m /s in actual flights, whereas the sample gas was slowly and continuously supplied to the chamber.”

---

*The black dashed line in Figure 5 seems to be quite close to the stated value of the sample gas (377.3 ppm). Was the cylinder measured separately? Or was the value inferred based on this experiment? That is, does this experiment provide information about bias? The errors given on line 361 evidently correspond to the 30-sec measurement periods, and Fig 5 seems to show that some of this variability is random. It would be interesting to see how averaging groups of points (e.g. n=3, n=5) reduces the scatter (information similar to what can be learned from an Allan variance plot).*

**(Reply)**

The chamber pressure was reduced gradually from 1010 hPa to 250 hPa in an hour, as written in L. 351-354. The horizontal axis of Fig. 5 was pressure values. It is not adequate to calculate the Allan variance of time series data, because the experimental conditions were changing with time. The grouping of the points in Fig. 5 is not necessarily meaningful, because each data was obtained under different pressure condition. The grouping procedure corresponds to the reduction of the altitude resolution.

---

*Fig 7 & 8. It would be useful to show the corresponding CO<sub>2</sub> profiles from a CO<sub>2</sub> data assimilation system or inverse model (e.g NOAA's CarbonTracker or the ECMWF/CAMS system for which simulated mole fractions are readily available or other C2 AMTD Interactive comment Printer-friendly version Discussion paper similar product). Since the profiles are not co-located, some differences are to be expected, and it would be interesting to see how the modeled gradients compare to the observations. This is especially true for the case in Feb 2011, where the Contrail flight is on the previous day. Although these models are imperfect, they do a reasonable job of capturing gradients associated with weather systems.*

**(Reply)**

We also think that the comparisons of the sonde observation results with model calculations are very interesting and reasonable, as the reviewer suggested. Since it takes time to do it, we do not present the comparisons in this article. Next time, we will perform such kind of comparisons.

---

*Figure 9 & 10, it would be nice to also show the H<sub>2</sub>O mole fraction in panel c.*

**(Reply)**

We have added the H<sub>2</sub>O mole fraction in the panel c of Figures 9 and 10.

---

*If length is a concern, then the information provided in the Tables could be moved to a supplement.*

(Reply)

We leave the tables in the main body of article, since we think they are important to show the performances of the CO<sub>2</sub> sonde system.

[END]

1           **Marked-up manuscript version showing the changes made**

2           **Development of a balloon-borne instrument**

3           **for CO<sub>2</sub> vertical profile observations in the troposphere**

4

5   **Mai Ouchi<sup>1</sup>, Yutaka Matsumi<sup>1\*</sup>, Tomoki Nakayama<sup>2</sup>, Kensaku Shimizu<sup>3</sup>, Takehiko Sawada<sup>3</sup>,**  
6   **Toshinobu Machida<sup>4</sup>, Hidekazu Matsueda<sup>5</sup>, Yousuke Sawa<sup>5</sup>, Isamu Morino<sup>4</sup>, Osamu Uchino<sup>4</sup>,**  
7   **Tomoaki Tanaka<sup>6,a</sup>, Ryoichi Imasu<sup>7</sup>**

8   <sup>1</sup>Institute for Space-Earth Environmental Research and Graduate School of Science, Nagoya  
9   University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

10   <sup>2</sup>Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi,  
11   Nagasaki, Nagasaki 852-8521 Japan

12   <sup>3</sup>Meisei Electric co., Ltd., 2223 Naganumamachi, Isesaki-shi, Gunma 372-8585, Japan

13   <sup>4</sup>National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan

14   <sup>5</sup>Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki  
15   305-0052, Japan

16   <sup>6</sup>Japan Aerospace Exploration Agency Earth Observation Research Center, 2-1-1, Sengen, Tsukuba,  
17   Ibaraki 305-8505, Japan

18   <sup>7</sup>Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa,  
19   Chiba 277-8568, Japan

20   <sup>a</sup>now at: NASA Ames Research Center, Moffett Field Mountain View CA 94035, USA

21

22   Corresponding author: matsumi@nagoya-u.jp

23

24 **Abstract**

25 A novel, practical observation system for measuring tropospheric carbon dioxide (CO<sub>2</sub>)  
26 concentrations using a non-dispersive infrared analyzer carried by a small helium-filled balloon (CO<sub>2</sub>  
27 sonde), has been developed for the first time. Onboard calibrations, using CO<sub>2</sub> standard gases, is  
28 possible to measure the vertical profiles of atmospheric CO<sub>2</sub> ~~accurately~~ with a 240-400 m altitude  
29 resolution. The standard deviations (1 $\sigma$ ) of the measured mole fractions in the laboratory experiments  
30 using a vacuum chamber at a temperature of 298 K were approximately 0.6 ppm at 1010 hPa and 1.2  
31 ppm at 250 hPa. Compared with in situ aircraft data, although the difference up to the altitude of 7 km  
32 was 0.6±1.2 ppm, this bias and difference were within the precision of the CO<sub>2</sub> sonde. In field  
33 experiments, the CO<sub>2</sub> sonde detected an increase in CO<sub>2</sub> concentration in an urban area and a decrease  
34 in a forested area near the surface. The CO<sub>2</sub> sonde was shown to be a useful instrument for observing  
35 and monitoring the vertical profiles of CO<sub>2</sub> concentration in the troposphere.

36

37

38     **1. Introduction**

39     Atmospheric carbon dioxide (CO<sub>2</sub>) is one of the most important anthropogenic greenhouse gases  
40     for global warming. Certain human activities, such as fossil fuel combustion, cement production, and  
41     deforestation are the major cause of atmospheric CO<sub>2</sub>, making the global average concentration of  
42     atmospheric CO<sub>2</sub> to increase from 280 ppm before the Industrial Revolution to 400.0 ppm in 2015  
43     (World Meteorological Organization, WMO 2016). Over the last 10 years, the rates of atmospheric  
44     CO<sub>2</sub> increase is measured at 2.21 ppm yr<sup>-1</sup> (WMO 2016). Atmospheric CO<sub>2</sub> is measured by ground-  
45     based stations and ships using the flask sampling and continuous instrument methods such as non-  
46     dispersive infrared absorption (NDIR) (Tanaka et al. 1983, Hodgkinson et al. 2013) and cavity ring-  
47     down spectroscopy (CRDS) (Winderlitch et al. 2010). A network of ground-based Fourier transforms  
48     spectrometers (FTS), that record the direct solar spectra in the near-infrared spectral region (Total  
49     Carbon Column Observing Network, TCCON), is used to observe the column-averaged mole fraction  
50     of CO<sub>2</sub> in dry air (total column XCO<sub>2</sub>) (Wunch et al. 2011). These observations have provided an  
51     extensive information, regarding the distribution and temporal variation of CO<sub>2</sub> in the atmosphere  
52     (Pales and Keeling, 1965; Conway et al. 1988; Komhyr et al. 1989; Tans et al. 1989; Conway et al.  
53     1994). Moreover, atmospheric CO<sub>2</sub> measurements data are useful for estimating CO<sub>2</sub> fluxes at the  
54     surface through inverse modeling (Gurney et al. 2004; Baker et al. 2006). Due to the limited number  
55     of observation sites and the limitations of their altitudinal range, a large degree of uncertainty in the  
56     current estimates of the regional CO<sub>2</sub> sources and sinks is noted (Gurney et al. 2002). More  
57     atmospheric CO<sub>2</sub> measurements are needed to reduce the uncertainties in CO<sub>2</sub> fluxes estimation using  
58     an inverse modeling.

59     To address the issues with insufficient CO<sub>2</sub> observational data, satellite remote sensing techniques  
60     have been used to investigate the CO<sub>2</sub> distribution on a global scale (Chédin et al. 2002; Crevoisier et  
61     al. 2004; Dils et al. 2006). The Greenhouse Gases Observing SATellite (GOSAT), which measures the  
62     short wavelength infrared (SWIR) spectra of sunlight reflected by the earth's surface with a Fourier

transform spectrometer and obtains the total column XCO<sub>2</sub>, has been in operation since early 2009 (Yokota et al. 2009; Yoshida et al. 2011; Morino et al. 2011). Since 2014, the Orbiting Carbon Observatory-2 (OCO-2) satellite has also measured the IR spectra of the surface reflected sunlight with a diffraction grating spectrometer and obtains total column XCO<sub>2</sub> (Eldering et al. 2017). However, these satellite observations provide only nadir total column XCO<sub>2</sub>, and do not measure the vertical distributions of CO<sub>2</sub> concentrations, as the observed spectra of the surface-reflected sunlight do not provide enough information to determine the vertical distributions. Furthermore, the satellites overpass a specific earth-based target once several days only at about noon in the solar time because of their sun-synchronous orbits.

The altitude distributions of CO<sub>2</sub> concentrations has been measured using other techniques. For instance, tall towers measure vertical profiles of CO<sub>2</sub> near the ground (Bakwin et al. 1992, Inoue and Matsueda, 2001; Andrews et al. 2014). CO<sub>2</sub> vertical profiles up to 10 km near the airports have been observed by the equipment installed by the commercial airlines, such as the Comprehensive Observation Network for TRace gases by Airliner (CONTRAIL program) (Machida et al. 2008; Matsueda et al. 2008). Measurements by equipment installed on chartered aircrafts have also been undertaken, which include the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER), Pole-to-Pole Observations (HIPPO) program up to 14 km in the altitude spanning the Pacific from 85° N to 67° S (Wofsy et al. 2011), the NIES/JAXA (National Institute of Environmental Studies and Japan Aerospace eXploration Agency) program at an altitude from 2 to 7 km (Tanaka et al. 2012), and the NOAA/ESRL Global Greenhouse Gas Reference Network Aircraft Program (Sweeney et al. 2015). Although these aircraft measurements provided the vertical profiles of CO<sub>2</sub> concentrations, they had the short-term observation campaigns in the limited areas or measurements around a limited number of large airports used by the commercial airlines. The continuation and expansion of airborne measurement programs for CO<sub>2</sub> and related tracers are expected to enhance the estimation of the global carbon cycling greatly (Stephens et al., 2007).

88 Atmospheric CO<sub>2</sub> observations using balloons, to select specific locations unless prohibited or  
89 restricted by aircraft flight paths, are useful for solving the issues associated with the sparseness of  
90 CO<sub>2</sub> vertical data. Balloon-borne observations of stratospheric CO<sub>2</sub> are previously conducted by other  
91 studies. For instance, stratospheric air sampling was conducted using a cryogenic sampler onboard  
92 balloons once a year from 1985 to 1995 over the northern part of Japan (Nakazawa et al. 1995).  
93 Balloon-borne near-infrared tunable diode laser spectrometers have been developed to provide in situ  
94 data for CO<sub>2</sub> in the stratospheric atmosphere (Durry et al. 2004; Joly et al. 2007, Ghysels et al. 2012).  
95 Furthermore, two in situ CO<sub>2</sub> analyzers adopting the NDIR technique, using a modified commercial  
96 detector for stratospheric measurements, have been developed for deployment on the NASA ER-2  
97 aircraft and on a balloon (Daube et al. 2002). These balloon borne instruments described above were  
98 specially designed to measure CO<sub>2</sub> concentrations in the stratosphere.

99 Observation of the CO<sub>2</sub> vertical distribution in the troposphere is essential because the uncertainties  
100 in the estimated fluxes, using the inverse method, can be attributed to the inaccurate representations of  
101 the atmospheric processes in transport models. Misrepresentation of vertical mixing by the transport  
102 models, particularly inside of the boundary layer, which is the layer closest to the ground where CO<sub>2</sub>  
103 is taken up and released, is one of the dominant causes of the uncertainty in CO<sub>2</sub> flux estimation  
104 (Stephens et al. 2007; Ahmadov et al. 2009). Recently, the observation of tropospheric CO<sub>2</sub> was  
105 conducted, using a lightweight unmanned aerial vehicle, such as a kite plane, with a commercial NDIR  
106 instrument. CO<sub>2</sub> profiles were observed in and above the planetary boundary layer up to 2 km to  
107 investigate the temporal and spatial variations of CO<sub>2</sub> (Watai et al. 2006). A passive air sampling system  
108 for atmospheric CO<sub>2</sub> measurements, using a 150 m long stainless-steel tube called an AirCore was  
109 developed (Karion et al. 2010). The AirCore mounted on an airplane or a balloon ascends with  
110 evacuating inside of the tube to a high altitude of 30 km at flight maximum, then, collecting ambient air  
111 by pressure changes along a decrease in altitude. The sampled air in the tube is analyzed with the  
112 precision of 0.07 ppm for CO<sub>2</sub> indicated as one standard deviation in the laboratory and the vertical

113 profile of CO<sub>2</sub> is obtained.

114 In the present study, we have developed a practical CO<sub>2</sub> sonde system that can measure in situ CO<sub>2</sub>  
115 vertical profiles in the atmosphere from the ground to altitudes up to about 10 km with a 240–400 m  
116 altitude resolution by using a small-sized balloon. Although the sonde system is thrown away after  
117 every flight due to the difficulties associated with recovery, the sonde systems are easily prepared with  
118 a relatively low cost. We have tested the sonde flight experiments more than 20 times in Japan. The  
119 CO<sub>2</sub> sonde developed has the following advantages, compared with other measurement techniques  
120 described above: (1) its cost of operation is low and the flight permission is easy to obtain from the  
121 authorities as compared with the aircraft observations; (2) the CO<sub>2</sub> sonde can be easily carried to the  
122 launch sites since the instrument is light; (3) a limited amount of power is required for the operation;  
123 (4) it can generally be launched at any time; and (5) the meteorological data are obtained  
124 simultaneously with CO<sub>2</sub> profile data. In this study, the design of our novel CO<sub>2</sub> sonde and the results  
125 of the comparison experiments with aircraft measurements are described. The target accuracy and  
126 precision in the measurements with the CO<sub>2</sub> sonde are below about 1 ppm CO<sub>2</sub> mole fraction in the  
127 atmosphere of 400 ppm CO<sub>2</sub>, preferable for carbon cycle studies (e.g. Maksyutov et al. 2008). The  
128 developed CO<sub>2</sub> sonde system attained virtually all the targets from the ground to an altitude of about  
129 10 km.

130 Inai et al. (2018) measured vertical profiles of CO<sub>2</sub> mole fraction in the equatorial eastern and  
131 western Pacific in February 2012 and February–March 2015, respectively, by using our novel CO<sub>2</sub>  
132 sondes which are described in this report. They found that the 1–10 km vertically averaged CO<sub>2</sub> mole  
133 fractions lie between the background surface values in the Northern Hemisphere (NH) and those in the  
134 Southern Hemisphere (SH) monitored at ground-based sites during these periods. Their study showed  
135 that the combination of CO<sub>2</sub> sonde measurements and trajectory analysis, taking account of convective  
136 mixing, was a useful tool in investigating CO<sub>2</sub> transport processes.

137

138 **2. Materials and methods**

139 **a. Design of the CO<sub>2</sub> sonde**

140 Many severe restrictions are noted for the operation of balloon-borne CO<sub>2</sub> sondes. First, the weight  
141 of the CO<sub>2</sub> sonde package should be less than about 2 kg, based on the legal restriction by the US FAA  
142 (Federal Aviation Administration) and by the Japanese aviation laws for the payload weight of 2.721  
143 kg for unmanned free balloons. Balloon systems heavier than the above regulation weight are not  
144 useful for the frequent flights because the flight permission from the authorities is much more difficult  
145 to obtain, and the additional safety requirements are more expensive. The balloon system is thrown  
146 away in the ocean after each flight due to a long-distance transportation (100 km or more to the east)  
147 by strong westerly winds in the upper atmosphere of mid-latitude area. This is done to avoid the  
148 accidents associated with a falling onto the urban areas, resulting in high recovery costs. Therefore,  
149 the cost of the CO<sub>2</sub> sonde system should be low for frequent observations. The non-recovery system  
150 implies that every instrument should perform consistently.

151 In this study the NDIR technique was adopted for a detection of CO<sub>2</sub> concentrations. The NDIR  
152 CO<sub>2</sub> measurement techniques have been widely used in many places such as WMO/GAW (Global  
153 Atmosphere Watch) stations. Our target instrumental accuracy and precision of approximately 1 ppm  
154 are less stringent than those of the ground-based instruments ( $\pm 0.1$  ppm) used at the WMO/GAW  
155 stations (WMO, 2016). However, the surrounding conditions for the instrument are substantially  
156 severe during the flight experiments, as the pressure changes from 1,000 to 250 hPa and the  
157 surrounding temperature changes from 300 to 220 K during flights from the surface to an altitude of  
158 10 km in about 60 min.

159 In the NDIR technique for CO<sub>2</sub> measurements, the IR emission from a broadband wavelength source  
160 is passed through an optical cell and two filters, and then the light intensities are detected by two IR  
161 detectors. The one optical filter covers the whole absorption band of CO<sub>2</sub> around 4.3  $\mu$ m, while the  
162 other covers a neighboring non-absorbed region around 4.0  $\mu$ m. provided that the chosen active and

163 reference channel filters do not significantly overlap with the absorption bands of other gas species  
164 present in the application. (Hodgkinson et al., 2013).

165 The Beer–Lambert Law is expressed by Eq. (1), defining the light intensity in the absence of CO<sub>2</sub>  
166 in the cell as  $I_0$  and the light intensity in the presence of CO<sub>2</sub> in the cell as  $I$ ,

167

$$\frac{I}{I_0} = \exp(-\varepsilon C L) \quad (1),$$

168 where  $C$  is the CO<sub>2</sub> concentration in molecules cm<sup>-3</sup>,  $L$  is the optical path length in cm, and  $\varepsilon$  is  
169 the absorption cross-section in cm<sup>2</sup> molecule<sup>-1</sup>. Using the relationship of  $C = X P (k_B T)^{-1}$ , where  $X$   
170 is the CO<sub>2</sub> mole fraction and  $P$  is the pressure of dehumidified ambient air, and the approximation  
171 of  $\exp(-\varepsilon C L) = 1 - \varepsilon C L$ , under the condition of  $\varepsilon C L \ll 1$ , Eq. (1) is rewritten as:

172

$$\frac{(I_0 - I)}{P} = X \frac{I_0 \varepsilon L}{k_B T_C} \quad (2),$$

173 where  $T_c$  is the sample air temperature in the sensor cell and  $k_B$  is the Boltzmann constant. With a 120  
174 mm long absorption cell, the absorption intensity is approximately 3% at 400 ppm CO<sub>2</sub> with our CO<sub>2</sub>  
175 NDIR system, i.e.,  $\varepsilon C L \approx 0.03$  and the approximation of  $\exp(-\varepsilon C L) = 1 - \varepsilon C L$  are well fitted. The  
176 values of  $[I(4.0) - I(4.3)]$  were used instead of  $(I_0 - I)$  to obtain the CO<sub>2</sub> mole fraction values in  
177 the NDIR measurements, where  $I(4.0)$  and  $I(4.3)$  were the signal intensities at the 4.0 μm  
178 wavelength for background measurements and the 4.3 μm wavelength for CO<sub>2</sub> absorption  
179 measurements, respectively. Thus, the value of  $[I(4.0) - I(4.3)]/P$  is thus proportional to the CO<sub>2</sub>  
180 mole fraction  $X$  in the optical cell. The proportional constant is usually determined by the  
181 measurements of the standard gases. In the NDIR measurements at the ground WMO/GAW stations,  
182 carbon dioxide mole fractions are referenced to a high working standard and a low working standard  
183 and are determined by the interpolations of the signals with the two standards, and the calibration with  
184 the two standard gases are carried out every 12 h (Fang et al., 2014).

185

186 **b. System configuration of the CO<sub>2</sub> sonde system**

187 A schematic diagram and photograph of the CO<sub>2</sub> measurement instrument are shown in Fig. 1. The  
188 CO<sub>2</sub> sonde has three inlets installed for ambient air and two calibration gases with mesh filters (EMD  
189 Millipore, Millex-HA, 0.45  $\mu\text{m}$  pore size) to remove the atmospheric particles. Three solenoid valves  
190 (Koganei, G010LE1-21) were used to switch the gas flow to the CO<sub>2</sub> sensor. A constant-volume piston  
191 pump with a flow rate of 300  $\text{cm}^3 \text{ min}^{-1}$  (Meisei Electric co., Ltd.), which is originally used for  
192 ozonesonde instruments, directed the gas flows from the inlets through the solenoid valves into a  
193 dehumidifier, a flow meter, and a CO<sub>2</sub> sensor. The absolute STP (standard temperature and pressure)  
194 flowrate decreased with a decrease in pressure. Since the exit port of the CO<sub>2</sub> sensor was opened to  
195 the ambient air, the pressure of dehumidified outside air and calibration gases in the absorption cell  
196 were equal to the ambient pressure during the flight. Next to the pump, the gases were introduced to a  
197 glass tube filled with the magnesium perchlorate grains (dehumidifier) installed upstream to the CO<sub>2</sub>  
198 sensor to remove the water vapor. Fabric filters were installed on both ends of the dehumidifier, and a  
199 mesh filter was installed downstream of the dehumidifier to prevent the CO<sub>2</sub> sensor from the incursion  
200 of magnesium perchlorate grains to the optical cell. **The flow from the piston pump had pulsation  
201 and the dehumidifier vessel worked as a buffer to reduce the pulsation.**

202 The infrared absorption cell consisted of a gold-coated glass tube, a light source, and a photodetector.  
203 The light source (Helioworks, EP3963) consisted of a tungsten filament with a spectral peak intensity  
204 wavelength of approximately 4  $\mu\text{m}$ . The light from the source passed through a gold-coated glass tube  
205 (length 120 mm, and inside diameter 9.0 mm). The commercial CO<sub>2</sub> NDIR photodetector (Perkin-  
206 Elmer TPS2734) had two thermopile elements, one of which was equipped with a band-pass filter at a  
207 wavelength of 4.3  $\mu\text{m}$  for the measurement of the CO<sub>2</sub> absorption signal, whereas the other was  
208 equipped with a band-pass filter at a wavelength of 4.0  $\mu\text{m}$  for the measurement of the background  
209 signal. The signals from the sensors were amplified by an operational amplifier and converted to 16  
210 bit digital values by an A/D convertor. The signal intensities of the detectors at 4.0 and 4.3  $\mu\text{m}$  without  
211 CO<sub>2</sub> gas were set to the equal levels by adjusting the amplification factors in the laboratory. The electric

212 power for the CO<sub>2</sub> sensor, pump, and valves was supplied through a control board using three 9 V  
213 lithium batteries, lasted for more than 3 h during the flight. The control board connected to the  
214 components regulated the measurement procedures, such as switching the solenoid valves and  
215 processing the signal. As shown in Fig. 1, the measurement system has an expanded polystyrene box  
216 molded specially to settle the optical absorption cell, electronic board, pump, battery and other  
217 components.

218 **We are trying to use more environmentally friendly materials instead of the chemical dehumidifier**  
219 **and polystyrene packing etc.**

220 **c. Calibration gas package**

221 Under the wide ranges of temperature and pressure conditions, the CO<sub>2</sub> sensor signal was unstable,  
222 and the calibration of the CO<sub>2</sub> sensor only on the ground before launch was insufficient to obtain the  
223 precise values of the CO<sub>2</sub> concentrations. To solve this problem, an in-flight calibration system was  
224 incorporated into the CO<sub>2</sub> sonde. A calibration gas package was attached to the CO<sub>2</sub> sonde for the in-  
225 flight calibration, as shown in Fig. 2. The calibration gas package consisted of two aluminum coated  
226 with polytetrafluoroethylene (PTFE) bags (maximum volume: 20 L), containing reference gases with  
227 low (~370 ppm) and high (~400 ppm) CO<sub>2</sub> concentrations. In each bag, ~8 L (STP) of the reference  
228 gas was introduced from standard CO<sub>2</sub> gas cylinders just before launch. Since the gas bags were soft,  
229 their inner pressures were equal with the ambient air pressures during the balloon flight. The gas  
230 volumes in the bags increased with the altitude during the ascent of the balloon due to a decrease in  
231 the ambient pressure, while the reference gases were consumed during the calibration procedures. The  
232 optimum amounts of gas in the bags were determined by both the ascending speed of the balloon and  
233 the consumption rate to avoid the bursting of the bags and exhaustion of the gases. The CO<sub>2</sub>  
234 concentrations of the reference gases in the bags were checked by the NDIR instrument (LICOR, LI-  
235 840) before launching. Thereafter, approximately 6 L of the reference gas was left in each bag for a  
236 subsequent in-flight calibration. The change in the CO<sub>2</sub> mole fraction in the bags was less than 1 ppm

237 over a 3 days period, which was negligible over the observations time during the balloon flight. All  
238 measurements were reported as dry-air mole fractions relative to the internally consistent standard  
239 scales maintained at Tohoku University (Tanaka et al. 1987; Nakazawa et al. 1992).

240 Since the gas exit port of the optical absorption cell was opened to the ambient air, the cell pressure  
241 was equalized with the ambient pressure for measuring both the ambient air and two standard gases.  
242 During the balloon-borne flights, the temperatures inside the CO<sub>2</sub> sonde package were measured with  
243 thermistors. The temperature inside the CO<sub>2</sub> sonde package gradually decreased by approximately 5  
244 K, from 298 K on the ground to 293 K at an altitude of 10 km during the flights. Probably due to the  
245 polystyrene box, and the heat produced by the NDIR lamp, pump and solenoid valves, temperature  
246 inside the sonde package remained virtually constant in spite of low ambient temperatures at high  
247 altitudes (~220 K). Within one measurement cycle time (160 s) with the standard gases, the  
248 temperature change was less than 0.4 K in the sonde package. The temperatures of the sample gas in  
249 the tube just before the inlet of the CO<sub>2</sub> NDIR cell were also measured using a thin wire thermistor,  
250 commonly used for ambient temperature measurement in GPS sonde equipment with a quick response  
251 time (shorter than 2 s). The gas temperature change was negligible at the valve change timings between  
252 the standard gas and ambient air (< 0.1 K). The result indicated that the gas temperatures were  
253 relatively constant after passing through the valves, pump, dehumidifier cell, and piping for both the  
254 standard gases and ambient air.

255 The performances of the CO<sub>2</sub> sonde instruments were checked before the balloon launching since  
256 the CO<sub>2</sub> sonde systems were not recovered after the launch experiments were performed. For about 60  
257 min. before the launch, the values of  $[I(4.0) - I(4.3)]/P$  were measured with the valve cycles (each  
258 step 40 s, total 160 s) for two standard gas packages (~370 ppm and ~400 ppm) for calibration and one  
259 intermediate concentration gas package (~385 ppm) as a simulated ambient gas sample.

260

261 **d. Total sonde system**

262 The CO<sub>2</sub> sonde was equipped with a GPS radiosonde (Meisei Electric co., Ltd., RS-06G). The  
263 balloon carried the instrument packages in the altitude with measuring CO<sub>2</sub> and meteorological data  
264 (GPS position and time, temperature, pressure, and humidity). The CO<sub>2</sub> sonde transmitted those data  
265 to a ground receiver (Meisei Electric co., Ltd., RD-08AC) at 1 s intervals, thus it was unnecessary to  
266 recover the CO<sub>2</sub> sonde after the balloon burst. Figure 2 showed an overall view of the CO<sub>2</sub> sonde  
267 developed in this study, which consisted of a CO<sub>2</sub> measurement package, a calibration gas package, a  
268 GPS radiosonde, a balloon, and a parachute. The total weight of the CO<sub>2</sub> sonde was 1700 g, including  
269 the GPS radiosonde (150 g), CO<sub>2</sub> measurement package (1000 g), and calibration gas package (550 g).  
270 The dimensions of the CO<sub>2</sub> measurement package were width (W) 280 mm × height (H) 150 mm ×  
271 depth (D) 280 mm. The size of the calibration gas package was W 400 mm × H 420 mm × D 490 mm.

272 The CO<sub>2</sub> sonde system was flown by a 1200 g rubber balloon (Totex). The ascending speed was  
273 around 4 m / s by controlling the helium gas amount in the rubber balloon and checking the buoyancy  
274 force. In practice, it was difficult to precisely control the ascending speed of the balloon, and the actual  
275 resulting speeds were in the range of 3 - 5 m s<sup>-1</sup>. This corresponds to the height resolution of  
276 approximately 240–400 m for the measurements of the CO<sub>2</sub> vertical profiles.

277 Ascending speed slower than 3 m s<sup>-1</sup> can lead to a collision with a nearby tree and building, result  
278 in equipment falling in the urban areas. With faster ascending speeds, the altitude resolution of the  
279 measurements decreased and the gas standard bag became full and the pressure inside the gas bags  
280 became higher than the ambient pressure because of the lower ambient pressures at higher altitudes.  
281 The high pressure inside the gas bag resulted in the fast flow speed in the optical absorption cell of  
282 NDIR, which shifted the signal values for the pressurized gas sample. Since pressure relief valves for  
283 the bags did not work at low pressures at high altitudes, we did not use the pressure relief valve for the  
284 standard gas bags. When the ascending speed was low, the standard gas bags became empty since they  
285 were consumed by the in-flight calibration procedures during the long ascending time. Since the  
286 measurements after the over-pressurization or the exhaustion of the reference gas bag are useless, this

287 technical problem determines the upper limit (10 km) of altitude for the measurements in this study.  
288 Based on our experiences, this problem generally occurred at an altitude above approximately 10 km.

289

290 **e. Data processing procedures**

291 Since the surrounding conditions of the sonde change significantly during the ascending period,  
292 the NDIR measurement system is calibrated with the two standard gases at every altitudes. However,  
293 since the balloon-borne instrument is only equipped with one NDIR absorption cell and the balloon  
294 ascends continuously, it is not possible to measure the ambient air sample and the two standard gases  
295 at the same time and at the same altitude. Therefore, the measurement cycle during the flights  
296 consisted of the following steps: (1) low concentration standard gas, (2) ambient air, (3) high  
297 concentration standard gas, and (4) ambient air. The measurement time for each step was 40 s. At  
298 switching timings of the valve cycles, the signal became stable within 10 s, and the averages of residual  
299 30-s period signals were used for the calculation of the CO<sub>2</sub> mole fractions. Since the gas exit port of  
300 the NDIR optical absorption cell was opened to the ambient air, the cell pressure was equalized with  
301 the ambient pressure. During the period of the 40 s gas change, the pressure would change about 2 %  
302 when the ascending speed of the balloon was 4 m s<sup>-1</sup>. The temperature of the ambient air and standard  
303 gas samples at the inlet port of the optical cells was measured and found to be constant during each  
304 cycle of the calibration procedure.

305 Figure 3 shows an example of the raw data obtained from the CO<sub>2</sub> sonde experiment. Figure 3  
306 presents the plots of the values of  $[I(4.0) - I(4.3)]/P$  against the altitude, where  $I(4.0)$  and  $I(4.3)$   
307 are the signal intensities at the wavelength of 4.0  $\mu\text{m}$  for background measurements and the 4.3  $\mu\text{m}$   
308 wavelength for CO<sub>2</sub> absorption measurements, as obtained by the NDIR CO<sub>2</sub> sensor on the balloon,  
309 and  $P$  is the ambient atmospheric pressure obtained by the GPS sonde data and pressure  
310 measurements on the ground.

311 The values of  $[I(4.0) - I(4.3)]/P$  are proportional to the CO<sub>2</sub> mole fraction X according to the

312 Beer-Lambert law as expressed by Eq. (2). By using the values of  $[I(4.0) - I(4.3)]/P$ , we can  
313 compensate for the pressure change to determine the CO<sub>2</sub> concentration. As shown in Fig. 3, the  
314 differences in the  $[I(4.0) - I(4.3)]/P$  values between the low and high standard gases remained  
315 relatively constant while ascending to the higher altitudes. However, the  $[I(4.0) - I(4.3)]/P$  values  
316 for the each standard gas did not change linearly but sometimes displayed some curvatures as shown  
317 in Fig. 3. This may be due to the differences between the baseline drift of the two sensors at 4.3 μm  
318 and 4.0 μm in the NDIR detector. Since the measurements were performed alternately for the standard  
319 gases and the ambient air with the NDIR cell and are not performed simultaneously, the values for the  
320 standard gas signals at the time of the ambient air measurement was estimated. Therefore, the cubic  
321 spline fitting curves for the observation points of the 30 s average values (red circles in Fig. 3) of the  
322 same standard gas were used to obtain the low and high calibration points for the calculation of the  
323 mole fractions in the ambient air. In Fig. 3, the cubic spline fitting curves are represented by the red  
324 curves, and the estimated values for the standard gases at the ambient gas measuring time are  
325 represented by the small black dots on the cubic spline curves, which are used for the interpolation to  
326 determine the ambient air concentrations. Linear line fitting between the standard gas values did not  
327 work well because the connection lines of the values sometimes displayed curvatures as shown in Fig.  
328 3. Since there were in-phase fluctuations in the  $I(4.0)$  and  $I(4.3)$  signals during the flights, the  
329 subtraction of  $[I(4.0) - I(4.3)]$  could partly improve the signal-to-noise ratios by canceling in-phase  
330 fluctuations with each other.

331

332 **3. Results and discussion**

333 **a. Laboratory tests**

334 Since the linear interpolation method for the  $[I(4.0) - I(4.3)]/P$  values was used to determine the  
335 ambient air CO<sub>2</sub> mole fractions in the balloon-borne experiments, the deviations from the linear  
336 interpolation process were also investigated. The measurements of various mole fractions gas samples

337 in the laboratory indicated that the linear interpolation error with the two standard gas packages (~370  
338 ppm and ~400 ppm) was less than 0.2 ppm in the range between 360 and 410 ppm. Figure 4 shows the  
339 measurement results of the NDIR cell developed in this study at various CO<sub>2</sub> mole fractions. The outlet  
340 port of the NDIR system was connected to the commercial CO<sub>2</sub> instrument (LICOR, LI-840A) as a  
341 standard device, and the two instrument simultaneously measure the sample gas at 1010 hPa. The  
342 standard gases of 365 and 402 ppm were used for the calibration, and the mixtures of the standard  
343 gases were used for the samples. This indicated the values of  $[I(4.0) - I(4.3)]/P$  of the system were  
344 proportional to the mole fraction of CO<sub>2</sub>. This type of experiment could not be performed at low  
345 pressures, since we did not have a standard device which can be operated under low pressures.

346 Figure 5 shows the results of an experiment using a vacuum chamber in the laboratory, where the  
347 flight pressure conditions were simulated and the performances of the CO<sub>2</sub> sonde instruments was  
348 evaluated. The temperature inside the chamber was not controlled and was about 298 K. In the actual  
349 flights, the temperature inside the sonde package did not change more than 5 K. The CO<sub>2</sub> sonde system  
350 and two standard gas packages were placed in the vacuum chamber. The chamber was filled with the  
351 mole fraction sample gas of 377.3 ppm before the pumping. The pressure of the chamber was gradually  
352 and continuously decreased using a mechanical pump from 1010 hPa (ground surface pressure) to 250  
353 hPa (about 10 km altitude pressure) over 60 min, corresponded to a balloon ascending speed of 3 m / s  
354 in actual flights, whereas the sample gas was slowly and continuously supplied to the chamber. The  
355 values  $[I(4.0) - I(4.3)]/P$  were measured for the two standard gas packages, and the sample gas with  
356 the valve cycles (each step 40 s, total 160 s) as described in the previous section. The mole fractions  
357 of the sample gas in the chamber were calculated by the interpolation of the signals for the two standard  
358 gases. The 30 s signals 10 s after the valve changes were used for the interpolation calculations to  
359 avoid the incomplete gas exchanges in the NDIR optical cell. The black circle in Fig. 5 indicates the  
360 sample gas mole fraction obtained from the linearly interpolated standard gas signals in each  
361 calibration cycle. The vertical error bar in Fig. 5 indicates the square-root of the sum of squares for the

362 standard deviations of the sample and standard gas signals at each step. The errors in the CO<sub>2</sub> mole  
363 fractions were estimated to be 0.6 ppm at 1010 hPa and 1.2 ppm at 250 hPa using the calibration cycles.  
364 The results in Fig. 5 indicated that the determination of the sample gas concentration using the linear  
365 interpolation with the standard gases was appropriate within the error, when the pressure continuously  
366 decreased from 1000 to 250 ppm over 60 min.

367 When the CO<sub>2</sub> sonde instrument was inclined and vibrated in the laboratory, the fluctuations in the  
368 signals were observed. The quantitative correlation between the signal fluctuation intensities and  
369 acceleration speed, measured by a 3-dimensional acceleration sensor, was investigated, but no distinct  
370 correlation was detected. However, the in-flight calibration system partly solved this problem by taking  
371 the signal difference of  $[I(4.0) - I(4.3)]$  and also by measuring alternately the two standard gases  
372 every 40 s during the balloon flights.

373 The temperature characteristics of the CO<sub>2</sub> sensor were also investigated by changing the sensor cell  
374 block temperature from 273 to 323 K at the pressure of ~1010 hPa, using a heater in the laboratory.  
375 The laboratory experiment related to the temperature dependence suggested that the measurement error  
376 is less than 0.2 ppm due to the temperature change during one valve cycle (160 s) in the balloon-borne  
377 experiments.

378 In principle, the absorption intensities  $(I_0 - I)$  in the NDIR measurements are proportional to the  
379 absolute CO<sub>2</sub> concentrations in the sample air in the absorption cell. Therefore, at higher altitudes  
380 where the pressures were lower, the values of  $[I(4.0) - I(4.3)]$  were smaller and the signal-to-noise  
381 ratios of  $[I(4.0) - I(4.3)]/P$  decreased. The error of the CO<sub>2</sub> mole fractions of 1.2 ppm at 250 hPa  
382 corresponds to an absolute CO<sub>2</sub> concentration of  $3.2 \times 10^{13}$  molecule cm<sup>-3</sup>. The equivalent altitude for  
383 this value was 90 km with a CO<sub>2</sub> molar fraction of 400 ppm. As described previously, the purpose of  
384 CO<sub>2</sub> balloon observations is to measure the CO<sub>2</sub> mole fraction within a 1 ppm errors in the atmospheres  
385 around 400 ppm CO<sub>2</sub>. The upper limit of the altitude for the observations with the developed CO<sub>2</sub>  
386 sonde is considered to be ~10 km. Furthermore, as described in section 2d, the problems of the vacancy

387 or over-pressure in the standard gas bags took place around 10 km altitudes, which resulted in large  
388 errors. This also practically determines the upper altitude limit for CO<sub>2</sub> sonde observations.

389

390 **b. Comparison with aircraft data**

391 Two types of aircraft measurement data, the NIES/JAXA chartered aircraft and the CONTRAIL  
392 data, were used for comparison with the CO<sub>2</sub> sonde measurement data. The NIES/JAXA chartered  
393 aircraft measurements were conducted on the same days as the CO<sub>2</sub> sonde observations (January 31st,  
394 2011 and February 3rd, 2011). The chartered aircraft observations were performed as a part of the  
395 campaign for validating the GOSAT data and calibrating the TCCON FTS data at Tsukuba (36.05°N,  
396 140.12°E) (Tanaka et al., 2012). The chartered aircraft data were obtained using an NDIR instrument  
397 (LICOR LI-840) that had a control system of constant pressure and had the uncertainty of 0.2 ppm.  
398 On both January 31st and February 3rd, the chartered aircraft measured the CO<sub>2</sub> mole fractions during  
399 descent spirals over Tsukuba and Kumagaya (Fig. 6). Because the air traffic was strictly regulated near  
400 the Haneda and Narita international airports, the aircraft observations at altitudes above 2 km over  
401 Tsukuba were prohibited. Therefore, the descent spiral observations were conducted over Kumagaya  
402 at altitudes of 7–2 km and over Tsukuba at altitudes of 2–0.5 km. Tsukuba is located approximately 20  
403 km northeast of Moriya, whereas Kumagaya is located approximately 70 km northwest of Moriya.

404 Seven profiles based on the CONTRAIL measurements, obtained during the ascent and descent of  
405 aircrafts over Narita airport and had passage times close to the CO<sub>2</sub> sonde observations, were available  
406 within two days after or before the dates of the CO<sub>2</sub> sonde measurements (Table 1). The CO<sub>2</sub> sonde  
407 observations were conducted on January 31st and February 3rd, 2011 from Moriya. One set of  
408 CONTRAIL data, obtained from the flight from Hong Kong to Narita (data set name: 11\_060d), was  
409 available on January 31st, but no CONTRAIL data were available for February 3rd. Therefore, the  
410 CONTRAIL data, obtained from the flight from Hong Kong to Narita on February 2nd (data set name:  
411 11\_062d), were used for comparison with the February 3rd CO<sub>2</sub> sonde data. Figure 6 also shows the

412 CONTRAIL 11\_060d and 11\_062d flight paths and the CO<sub>2</sub> sonde launched at Moriya on January 31st  
413 and February 3rd, 2011. On January 31st, the flight time of the CONTRAIL 11\_060d over the Narita  
414 airport and the launch time of the CO<sub>2</sub> sonde at Moriya were relatively close to one another. The flight  
415 path of the CONTRAIL 11\_062d data on February 2nd, 2011 was close to that of the CO<sub>2</sub> sonde on  
416 February 3rd, 2011 and both observations were conducted in the early afternoon. The CONTRAIL  
417 data referred in the present study was obtained using the Continuous CO<sub>2</sub> Measuring Equipment  
418 (CME) located onboard commercial airliners (Machida et al. 2008; Matsueda et al. 2008). The typical  
419 measurement uncertainty ( $1\sigma$ ) of the CME has been reported as 0.2 ppm (Machida et al. 2008).

420 Figure 7 shows the vertical profiles of CO<sub>2</sub> observed by the CO<sub>2</sub> sonde at Moriya, the chartered  
421 aircraft at Kumagaya and Tsukuba, and the CONTRAIL over the Narita airport on January 31st, 2011.  
422 The overall vertical distribution of the CO<sub>2</sub> sonde data resembled with those of the chartered aircraft.  
423 The vertical profiles of the CONTRAIL 11\_060d flight on January 31st at the 5.3–6.8 km altitude  
424 range consisted of the missing data because of the CME calibration period.

425 Figure 8 shows the comparison of the CO<sub>2</sub> vertical profiles obtained by the CO<sub>2</sub> sonde over Moriya,  
426 NIES/JAXA chartered aircraft over Kumagaya and Tsukuba on February 3rd, 2011, and the  
427 CONTRAIL on February 2nd, 2011 over Narita. The shape of the vertical profile obtained by the  
428 chartered aircraft on February 3rd resembled that obtained by the CO<sub>2</sub> sonde, although the profile from  
429 the chartered aircraft was shifted to the lower CO<sub>2</sub> concentration side compared to that of the CO<sub>2</sub>  
430 sonde.

431 Table 2 lists the comparisons of the CO<sub>2</sub> concentrations measured by the balloon CO<sub>2</sub> sonde and  
432 NIES/JAXA chartered aircraft on January 31st and February 3rd, 2011. The averaged values of the  
433 aircraft measurement over the range of each balloon altitude  $\pm$  100 m are listed in Table 2, since the  
434 altitude resolution of the aircraft measurements is higher than that of the CO<sub>2</sub> sonde. From the February  
435 3rd measurements, the height of the boundary layer around an altitude of 1 km was different between  
436 the CO<sub>2</sub> sonde and the NIES/JAXA aircraft measurements as shown in Fig. 8. Therefore, the data

437 below 1 km on February 3rd are not included in Table 2. From the data on January 31st, the averaged  
438 value of the differences between the CO<sub>2</sub> sonde and the NIES/JAXA aircraft was relatively small (0.42  
439 ppm), which corresponded to the bias of the measurements. The standard deviation of the differences  
440 was 1.24 ppm. From the February 3rd data, the bias was large (1.41 ppm), whereas the standard  
441 deviation of the differences was not so large (1.00 ppm), which corresponded to the similar but shifted  
442 vertical profiles in shapes between the CO<sub>2</sub> sonde and aircraft measurements as shown in Fig. 8. The  
443 difference between the CO<sub>2</sub> sonde data and the NIES/JAXA chartered aircraft data on February 3rd is  
444 nearly equal to the difference between CONTRAIL data on February 2nd and the NIES/JAXA  
445 chartered aircraft data on February 3rd. **The results with both cubic spline and linear interpolation**  
446 **methods were also listed in Table 2 for the balloon-borne experiments on January 31, 2011 in the**  
447 **comparisons with the JAXA-NIES aircraft measurements. This clearly indicates that the cubic spline**  
448 **interpolation method is better than the linear one.**

449 Table 3 lists the comparisons of the CO<sub>2</sub> concentrations measured by the balloon CO<sub>2</sub> sonde and  
450 CONTRAIL aircraft, 11\_060d on January 31st and 11\_062d on February 2nd, 2011 up to the altitude  
451 of 7,000 m. The averaged values of the aircraft measurements over the range of each balloon altitude  
452  $\pm 200$  m are listed in Table 3. The biases between the CO<sub>2</sub> sonde and the CONTRAIL aircraft results  
453 were relatively small, 0.33 and 0.35 ppm, and the standard deviations of the differences were 1.16 and  
454 1.30 ppm for the results on January 31st and February 3rd, respectively.

455 From the comparison between the CO<sub>2</sub> sonde data and the aircrafts (NIES/JAXA and CONTRAIL)  
456 data, it was found that the CO<sub>2</sub> sonde observation was larger than those of aircrafts by about 0.6 ppm  
457 on average. The standard deviation of the difference from the CO<sub>2</sub> sonde and aircraft observations was  
458 1.2 ppm ( $1\sigma$ ). If the 4 sets of aircraft measurement data obtained by the NIES/JAXA and CONTRAIL  
459 observations were accurate within the published uncertainties, ignoring the differences in the flight  
460 time and geographical routes, the measurement error of the CO<sub>2</sub> sonde system was estimated from the  
461 standard deviations of all the difference values in Tables 2 and 3. The estimated error value up to an

462 altitude of 7 km was  $0.6 \pm 1.2$  ppm for the CO<sub>2</sub> sonde observation with a 240 m altitude resolution and  
463 3 m s<sup>-1</sup> ascending speed. The root mean square value (1.3 ppm) from all the difference value in Table  
464 2 and 3 indicated that the CO<sub>2</sub> sonde could measure the CO<sub>2</sub> vertical profiles within 1.3 ppm on average  
465 compared to the aircraft observations.

466

#### 467 **c. CO<sub>2</sub> sonde observations over a forested area**

468 Figure 9 shows the vertical profiles of the CO<sub>2</sub> mole fraction, temperature, and relative humidity  
469 obtained from the balloon-borne experiments of the CO<sub>2</sub> sonde at Moshiri (44.4°N, 142.3°E) on  
470 August 26, 2009. The launch site is in a rural area of Hokkaido, Japan and is surrounded by forests.  
471 The CO<sub>2</sub> sonde was launched at 13:29 LST and ascended with a mean vertical speed of approximately  
472 3 m s<sup>-1</sup>. The CO<sub>2</sub> sonde reached an altitude of 10 km after 56 min. The wind horizontally transported  
473 the CO<sub>2</sub> sonde distances of 10 km and 21 km northeast when the CO<sub>2</sub> sonde reached the altitudes of 5  
474 km and 8 km, respectively. The CO<sub>2</sub> sonde rapidly moved 52 km southeast at an altitude of 16 km.  
475 Finally, the CO<sub>2</sub> sonde reached an altitude of 28 km before the balloon burst and the subsequent fall  
476 of the sonde was directed by the parachute into the Sea of Okhotsk located 80 km east of the launch  
477 site. The error bars for the CO<sub>2</sub> mole fraction in Fig. 9a were calculated from the deviation of the signal  
478 intensities from the CO<sub>2</sub> sensor during the 40 s measurement periods for the ambient air and the two  
479 standard gases.

480 The vertical temperature profile in Fig. 9b indicated the existence of three inversion layers of the  
481 altitudes of approximately 2.0, 3.2, and 4.3 km. The relative humidity from the ground to the first  
482 inversion layer at 2.0 km and between the second and third inversion layers from 3.2 to 4.3 km were  
483 higher compared with those observed from 2.0 to 3.2 km and from 4.3 to 7.5 km. The CO<sub>2</sub> mole  
484 fraction was the lowest near the ground (~373 ppm) and increased to approximately 384 ppm at an  
485 altitude of 4–5 km around the third inversion layer before reaching a value of 387 ppm in the upper  
486 troposphere (5–9 km). Significant decreases in the CO<sub>2</sub> mole fractions were observed in the two lower

487 layers from the ground to 3.2 km. Considering the clear weather on the day of the balloon experiment,  
488 these results are explained by the uptake of CO<sub>2</sub> near the surface by plants in the forests through  
489 photosynthesis processes in the daytime hours, and the diffusion and advection of the air mass  
490 containing low CO<sub>2</sub> concentrations in the upper altitudes.

491 Because the CO<sub>2</sub> mole fraction for the vertical profiles near the surface is critically important to  
492 estimating the flux around the observation point, the vertical profile data taken by our CO<sub>2</sub> sonde is  
493 useful.

494

#### 495 **d. CO<sub>2</sub> sonde observations over an urban area**

496 Figure 10 shows the vertical profiles of the CO<sub>2</sub> mole fraction, temperature, and relative humidity  
497 obtained by the CO<sub>2</sub> sonde at Moriya (35.93°N, 140.00°E) on February 3rd, 2011. The launching time  
498 was 13:10 LST and the sonde ascended with a mean vertical speed of approximately 2.9 m s<sup>-1</sup>. Moriya  
499 is located in the Kanto region and is 40 km northeast of the Tokyo metropolitan area. The launching  
500 site was surrounded by the heavy traffic roads and residential areas. As seen in Fig. 10a, high CO<sub>2</sub>  
501 mole fractions were observed from the ground up to an altitude of 1 km. The average CO<sub>2</sub> volume  
502 mole fraction in this layer was higher than that measured in the free troposphere approximately above  
503 15 ppm. A small temperature inversion layer appeared at approximately 1 km, and the maximum  
504 relative humidity was observed just below this inversion layer (Figs. 10b and c). These results  
505 suggested that the CO<sub>2</sub> emitted from anthropogenic sources in and/or around the Tokyo metropolitan  
506 area accumulated in the boundary layer at altitudes below 1 km.

507 An analysis of Figs. 9 and 10 indicated that there were a clear local consumption and emission of  
508 CO<sub>2</sub> from the comparison of the levels of CO<sub>2</sub> concentration in the free troposphere, which suggested  
509 a decoupling with the boundary-layer and synoptic inversion layers (Mayfield and Fochesatto, 2013).  
510 When a small increase in a column XCO<sub>2</sub> value is observed by a satellite, it is difficult to estimate  
511 which part of the atmosphere is responsible for the increase in XCO<sub>2</sub>, the boundary layer with strong

512 CO<sub>2</sub> emission in the nearby area, or the free troposphere. Considering this fact, the vertical profile data  
513 obtained by the CO<sub>2</sub> sonde around urban areas should provide more useful information than the column  
514 averaged observations obtained by the satellites and FTS measurements to estimate the flux of  
515 anthropogenic CO<sub>2</sub> emitted in and/or around the urban areas.

516

#### 517 **4. Conclusion**

518 The CO<sub>2</sub> sonde is shown to be a feasible instrument for CO<sub>2</sub> measurements in the troposphere. The  
519 laboratory test with a vacuum chamber has shown the precision of the CO<sub>2</sub> sonde at ~1010 hPa for 0.6  
520 ppm and at ~250 hPa for 1.2 ppm. Comparisons of the CO<sub>2</sub> vertical profiles obtained by the CO<sub>2</sub> sonde  
521 with two types of aircraft observations, the CONTRAIL and the NIES/JAXA chartered aircraft, were  
522 carried out. The CO<sub>2</sub> sonde and CONTRAIL data were consistent. The CO<sub>2</sub> sonde data on January  
523 31st, 2011 was in good agreement with the chartered aircraft data on the same day, but the CO<sub>2</sub> sonde  
524 data observed on February 3rd, 2011 was larger by approximately 1.4 ppm, as compared with the  
525 chartered aircraft data obtained on the same day from the ground to an altitude of 7 km. The  
526 measurement errors of the CO<sub>2</sub> sonde system up to an altitude of 7 km were estimated to be 1.4 ppm  
527 for a single point of 80 s period measurements with a vertical height resolution of 240–400 m. We  
528 conducted the field CO<sub>2</sub> sonde observations more than 20 times in Japan and successfully obtained  
529 CO<sub>2</sub> vertical profiles from the ground up to altitudes of approximately 10 km.

530 Our results showed that low-cost CO<sub>2</sub> sondes could potentially be used for frequently measurements  
531 of vertical profiles of CO<sub>2</sub> in any parts of the world providing as useful information to understand the  
532 global and regional carbon budgets by replenishing the present sparse observation coverage. The CO<sub>2</sub>  
533 sondes can detect the local and regional transport evidence by determining CO<sub>2</sub> concentrations in the  
534 air layer trapped between elevated inversion layers. Also, the CO<sub>2</sub> sonde observation data will help  
535 improve the inter-comparison exercise for inverse models and for the partial validation of satellite  
536 column integral data. In future, the CO<sub>2</sub> sonde data will be used for the validation of satellites and the

537 calibration of ground-based observations of sunlight spectroscopic measurements for column values  
538 of CO<sub>2</sub> concentration.

539

540

541 **Acknowledgments**

542 We would like to thank N. Toriyama, M. Kanada, H. Jindo, M. Sera, H. Sasago, T. Ide, S. Takekawa,  
543 M. Kawasaki, G. Inoue (Nagoya Univ.), M. Fujiwara, Y. Inai (Hokkaido Univ.), S. Aoki, and T.  
544 Nakazawa (Tohoku Univ.) for their assistance and useful suggestions in the development of CO<sub>2</sub> sonde  
545 and the observations. This work was partly supported by the Grant-in-Aid for Scientific Research  
546 (KAKENHI 20310008 and 24310012), Green Network of Excellence, Environmental Information  
547 (GRENE-ei) program from the Ministry of Education, Culture, Sports, Science and Technology  
548 (MEXT), Development of Systems and Technology for Advanced Measurement and Analysis Program  
549 from Japan Science and Technology Agency (JST), and the joint research program of the Solar-  
550 Terrestrial Environment Laboratory (Now new organization: the Institute for Space-Earth  
551 Environmental Research), Nagoya University.

552

- 553 **References**
- 554 Ahmadov, R., Gerbig, C., Kretschmer, R., Körner, S., Rödenbeck, C., Bousquet, P., and Ramonet, M.: Comparing high resolution WRF-VPRM simulation and two global CO<sub>2</sub> transport models with coastal tower measurements of CO<sub>2</sub>, *Biogeosciences*, **6**, 807–817, doi:10.5194/bg-6-807-2009, 2009.
- 558 Andrews, A. E. and Coauthors: CO<sub>2</sub>, CO, and CH<sub>4</sub> measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, *Atmos. Meas. Tech.*, **7**, 647-687, doi:10.5194/amt-7-647-2014, 2014.
- 562 Baker, D. F. and Coauthors: TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO<sub>2</sub> fluxes, 1988–2003, *Global Biogeochem. Cycles*, **20**, GB1002, doi:10.1029/2004GB002439, 2006.
- 565 Bakwin, P. S., Tans, P. P., Zhao, C., Ussler III, W., and Quesnell, E.: Measurements of carbon dioxide on a very tall tower, *Tellus* **47B**, 535-549, 1995, doi:10.1034/j.1600-0889.47.issue5.2.x, 2002.
- 567 Chédin, A., Serrar, S., Armante, R., Scott, N. A., and Hollingsworth, A.: Signatures of annual and seasonal variations of CO<sub>2</sub> and other greenhouse gases from comparisons between NOAA TOVS observations and radiation model simulations, *J. Climate*, **15**, 95-116, doi:10.1175/1520-0442(2002)015<0095:SOAASV>2.0.CO;2, 2002.
- 571 Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Masarie, K. A., and Gammon, R. H.: Atmospheric carbon dioxide measurements in the remote global troposphere, 1981–1984, *Tellus B*, **40**, 81–115, doi:10.1111/j.1600-0889.1988.tb00214.x., 1988.
- 574 Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A. and Zhang, N.: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network, *J. Geophys. Res.*, **99**(D11), 22,831–22,855, doi:10.1029/94JD01951, 1994.

- 578 Crevoisier, C., Heilliette, S., Chédin, A., Serrar, S., Armante, R. and Scott, N. A.: Midtropospheric  
579 CO<sub>2</sub> concentration retrieval from AIRS observations in the tropics, *Geophys. Res. Lett.*, **31**,  
580 L17106, doi:10.1029/2004GL020141, 2004.
- 581 Daube, B. C., Boering, K. A., Andrews, A. E. and Wofsy, S. C.: A high-precision fast-response  
582 airborne CO<sub>2</sub> analyzer for in situ sampling from the surface to the middle stratosphere, *J.  
583 Atmospheric Ocean. Technol.*, **19**(10), 1532-1543, doi:10.1175/1520-0426(2002)019  
584 <1532:AHPFRA>2.0.CO;2, 2002.
- 585 Dils, B. and Coauthors: Comparisons between SCIAMACHY and ground-based FTIR data for total  
586 columns of CO, CH<sub>4</sub>, CO<sub>2</sub> and N<sub>2</sub>O, *Atmos. Chem. Phys.*, **6**, 1953–1976, doi:10.5194/acp-6-1953-  
587 2006, 2006.
- 588 Durry, G., Amarouche, N., Zéninari, V., Parvitte, B., Lebarbu, T. and Ovarlez, J.: In situ sensing of  
589 the middle atmosphere with balloon borne near-infrared laser diodes, *Spectrochimica Acta Part A*,  
590 **60**, 3371–3379, doi:10.1016/j.saa.2003.11.050, 2004.
- 591 Eldering, A. and Coauthors: The Orbiting Carbon Observatory-2: first 18 months of science data  
592 products, *Atmos. Meas. Tech.*, **10**, 549-563, doi:10.5194/amt-10-549-2017, 2017.
- 593 Fang, S. X., Zhou, L. X., Tans, P. P., Ciais, P., Steinbacher, M., Xu, L., and Luan, T.: In situ  
594 measurement of atmospheric CO<sub>2</sub> at the four WMO/GAW stations in China, *Atmos. Chem. Phys.*,  
595 **14**, 2541–2554, doi:10.5194/acp-14-2541-2014, 2014.
- 596 Gurney, K. R. and Coauthors: Towards robust regional estimates of CO<sub>2</sub> sources and sinks using  
597 atmospheric transport models, *Nature*, **415**, 626-630, doi:10.1038/415626a, 2002.
- 598 Gurney, K. R. and Coauthors: Transcom 3 inversion intercomparison: Model mean results for the  
599 estimation of seasonal carbon sources and sinks. *Global Biogeochem. Cycles*, **18**, GB1010,  
600 doi:10.1029/2003GB002111, 2004.
- 601 Ghysels, M., Durry, G., Amarouche, N., Cousin, J., Joly, L., Riviere, E. D., and Beaumont, L.: A  
602 lightweight balloon-borne laser diode sensor for the in situ measurement of CO<sub>2</sub> at 2.68 micron in

- 603 the upper troposphere and the lower stratosphere, *Appl. Phys. B*, **107**(1), 213-220,  
604 doi:10.1007/s00340-012-4887-y, 2012.
- 605 Hodgkinson, J., Smith, R., Ho, Wah On, Saffell, J. R.. Tatam, R. P.: Non-dispersive infra-red (NDIR)  
606 measurement of carbon dioxide at 4.2  $\mu\text{m}$  in a compact and optically efficient sensor, *Sensors and*  
607 *Actuators B*, **186**, 580– 588. doi: 10.1016/j.snb.2013.06.006, 2013.
- 608 Inai Y., Aoki, S., Honda, H., Furutani, H., Matsumi, Y., Ouchi, M., Sugawara, S., Hasebe, F.,  
609 Uematsu, M., Fujiwara, M.: Balloon-borne tropospheric CO<sub>2</sub> observations over the equatorial  
610 eastern and western Pacific, *Atmos. Env.*, **184**, 24-36. doi: 10.1016/j.atmosenv.2018.04.016, 2018.
- 611 Inoue, H. Y., and Matsueda, H.: Measurements of atmospheric CO<sub>2</sub> from a meteorological tower in  
612 Tsukuba, Japan. *Tellus*, **53B**, 205–219, doi:10.1034/j.1600-0889.2001.01163.x, 2001.
- 613 Joly. L., Parvitte, B., Zeninari, V. and Durry, G.: Development of a compact CO<sub>2</sub> sensor open to the  
614 atmosphere and based on near-infrared laser technology at 2.68  $\mu\text{m}$ , *Appl. Phys. B*, **86**, 743–748,  
615 doi:10.1007/s00340-006-2568-4, 2007.
- 616 Karion, A., C. Sweeney, P. Tans, and T. Newberger, 2010: AirCore: An innovative atmospheric  
617 sampling system, *J. Atmos. Oceanic Technol.*, **27**, 1839–1853, doi:10.1175/2010JTECHA1448.1.
- 618 Komhyr, W. D., Harris, T. B., Waterman, L. S., Chin, J. F. S. and Thoning, K. W.: Atmospheric  
619 carbon dioxide at Mauna Loa Observatory 1. NOAA global monitoring for climatic change  
620 measurements with a nondispersive infrared analyzer, 1974–1985, *J. Geophys. Res.*, **94**, 8533–  
621 8547, doi:10.1029/JD094iD06p08533, 1989.
- 622 Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N., Goto, K., Ishikawa, K.,  
623 Nakazawa, T., and Ogawa, T.: Worldwide measurements of atmospheric CO<sub>2</sub> and other trace gas  
624 species using commercial airlines, *J. Atmos. Oceanic Technol.*, **25**(10), 1744–1754,  
625 doi:10.1175/2008JTECHA1082.1, 2008.
- 626 Maksyutov, S., Nikolay, K., Nakatsuka, Y., Patra, P. K., Nakazawa, T., Yokota, T., and Inoue, G.:  
627 Projected Impact of the GOSAT observations on regional CO<sub>2</sub> flux estimations as a function of

628 total retrieval error. *J. Remote Sensing Soc. Japan*, **28**, 190-197, doi:10.11440/rssj.28.190, 2008.

629 Matsueda, H., Machida, T., Sawa, Y., Nakagawa, Y., Hirotani, K., Ikeda, H., Kondo, N., and Goto,

630 K.: Evaluation of atmospheric CO<sub>2</sub> measurements from new flask air sampling of JAL airliner

631 observations. *Pap. Meteor. Geophys.*, **59**, 1–17, doi:10.2467/mripapers.59.1, 2008.

632 Mayfield J. A. and Fochesatto, G. J.: The Layered Structure of the winter Atmospheric Boundary Layer in the

633 Interior of Alaska. *J. Appl. Met. Climatol.*, **52**, 953-973, doi.org/10.1007/s00703-013-0274-4, 2013.

634 Morino, I. and Coauthors, 2011: Preliminary validation of column-averaged volume mixing ratios of

635 carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra, *Atmos.*

636 *Meas. Tech.*, **4**, 1061–1076, doi:10.5194/amt-4-1061-2011.

637 Nakazawa, T., Murayama, S., Miyashita, K., Aoki, S., and Tanaka, M.: Longitudinally different

638 variations of lower tropospheric carbon dioxide concentrations over the North Pacific Ocean,

639 *Tellus*, **44B**, 161–172, doi:10.3402/tellusb.v44i3.15438, 1992

640 Nakazawa, T., Machida, T., Sugawara, S., Murayama, S., Morimoto, S., Hashida, G., Honda, H. and

641 Itoh, T.: Measurements of the stratospheric carbon dioxide concentration over Japan using a

642 balloon-borne cryogenic sampler, *Geophys. Res. Letter*, **22**, 1229–1232, doi:10.1029/95GL0118,

643 1995.

644 Pales, J. C., and Keeling, C. D.: The concentration of atmospheric carbon dioxide in Hawaii, *J.*

645 *Geophys. Res.*, **70**(24), 6053-6076, doi:10.1029/JZ070i024p06053, 1965.

646 Stephens, B. B. and Coauthors: Weak northern and strong tropical land carbon uptake from vertical

647 profiles of atmospheric CO<sub>2</sub>, *Science*, **316**, 1732–1735, doi:10.1126/science.1137004, 2007.

648 Sweeney, C. and Coauthors: Seasonal climatology of CO<sub>2</sub> across North America from aircraft

649 measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network, *J. Geophys. Res.*,

650 **120**, 5155-5190, doi:10.1002/2014JD022591, 2014.

651 Tanaka, M., Nakazawa, T. and Aoki, S.: High quality measurements of the concentration of

652 atmospheric carbon dioxide. *J. Meteor. Soc. Japan*, **61**, 678-685, doi:10.2151/jmsj1965.61.4\_678,

- 653 1983.
- 654 Tanaka, M., Nakazawa, T. and Aoki S.: Time and space variations of tropospheric carbon dioxide  
655 over Japan, *Tellus*, **39B**, 3–12, doi:10.3402/tellusb.v39i1-2.15318, 1987.
- 656 Tanaka, T., Miyamoto, Y., Morino, I., Machida, T., Nagahama, T., Sawa, Y., Matsueda, H., Wunch,  
657 D., Kawakami, S., and Uchino, O.: Aircraft measurements of carbon dioxide and methane for the  
658 calibration of ground-based high-resolution Fourier Transform Spectrometers and a comparison to  
659 GOSAT data measured over Tsukuba and Moshiri. *Atmos. Meas. Tech.*, **5**, 2003–2012,  
660 doi:10.5194/amt-5-2003-2012, 2012.
- 661 Tans, P. P., Conway, T., and Nakazawa T.: Latitudinal distribution of the sources and sinks of  
662 atmospheric carbon dioxide derived from surface observations and an Atmospheric Transport  
663 Model, *J. Geophys. Res.*, **94**, 5151–5172, doi:10.1029/JD094iD04p05151, 1989.
- 664 Watai, T., Machida, T., Ishizaki, N. and Inoue, G.: A lightweight observation system for atmospheric  
665 carbon dioxide concentration using a small unmanned aerial vehicle, *J. Atmos. Oceanic Technol.*,  
666 **23**, 700–710 doi:10.1175/JTECH1866.1, 2006.
- 667 Winderlich, J., Chen, H., Gerbig, C., Seifert, T., Kolle, O., Lavrič, J. V., Kaiser, C., Höfer, A., and  
668 Heimann, M.: Continuous low-maintenance CO<sub>2</sub>/CH<sub>4</sub>/H<sub>2</sub>O measurements at the Zotino Tall  
669 Tower Observatory (ZOTTO) in Central Siberia, *Atmos. Meas. Tech.*, **3**, 1113–1128,  
670 doi:10.5194/amt-3-1113-2010, 2010.
- 671 WMO: The state of greenhouse gases in the atmosphere using global observations through 2015,  
672 WMO Greenhouse Gas Bull., **12**, 1–8, 2016.
- 673 Wofsy, S. C., the HIPPO science team and cooperating modellers and satellite teams: HIAPER Pole-  
674 to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important  
675 atmospheric gases and aerosols, *Phil. Trans. R. Soc. A*, **369**, 2073–2086,  
676 doi:10.1098/rsta.2010.0313, 2011.
- 677 Wunch, D., Toon, G. C., Blavier, J. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W.

678 T., Sherlock, V. and Wennberg, P. O.: The Total Carbon Column Observing Network. *Phil. Trans.*  
679 *R. Soc. A*, **369**, 2087–2112, doi:10.1098/rsta.2010.0240, 2011.

680 Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H. and Maksyutov, S.: Global  
681 concentrations of CO<sub>2</sub> and CH<sub>4</sub> retrieved from GOSAT: First preliminary results, *Sci. Online Lett.*  
682 *Atmos.*, **5**, 160–163, doi:10.2151/sola.2009–041, 2009.

683 Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I., and Yokota, T.:  
684 Retrieval algorithm for CO<sub>2</sub> and CH<sub>4</sub> column abundances from short-wavelength infrared spectral  
685 observations by the Greenhouse gases observing satellite, *Atmos. Meas. Tech.*, **4**, 717–734,  
686 doi:10.5194/amt-4-717-2011, 2011.

687

688 **Table 1.** CONTAIL flight data near to the CO<sub>2</sub> sonde measurements on 31 January and 3 February

689 2011.

690

691

| Data set name | Date                               | Time (LST) <sup>a</sup> |
|---------------|------------------------------------|-------------------------|
| 11_057a       | CONTRAIL (29 January)              | 19:01                   |
| 11_058d       | CONTRAIL (30 January)              | 15:06                   |
| 11_059a       | CONTRAIL (30 January)              | 18:46                   |
| 11_060d       | CONTRAIL (31 January)              | 15:07                   |
| 11_061a       | CONTRAIL (1 February)              | 18:46                   |
| 11_062d       | CONTRAIL (2 February)              | 14:58                   |
| 11_063a       | CONTRAIL (4 February)              | 18:58                   |
|               | CO <sub>2</sub> sonde (31 January) | 13:06                   |
|               | CO <sub>2</sub> sonde (3 February) | 13:10                   |

692

693 <sup>a</sup> Time for the CONTRAIL data represents the flight time in Japan Standard Time at an altitude of 1  
694 km over the Narita airport. Time for the CO<sub>2</sub> sonde data represents the launching time at Moriya.

695

696

697

698 **Table 2.** Comparisons of the CO<sub>2</sub> concentrations between the balloon CO<sub>2</sub> sonde and NIES/JAXA  
 699 chartered aircraft measurements on 31st January and 3rd February 2011.  
 700

| JAXA-NIES Chartered Aircraft (31 January 2011) |                                                   |                                                   |                                             |                                      |                                      | JAXA-NIES Chartered Aircraft (3 February 2011) |                                                   |                                             |                                      |
|------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------|--------------------------------------|
| Altitude (m) <sup>a</sup>                      | Balloon CO <sub>2</sub> (ppm) spline <sup>b</sup> | Balloon CO <sub>2</sub> (ppm) linear <sup>c</sup> | Aircraft CO <sub>2</sub> (ppm) <sup>d</sup> | Difference (ppm) spline <sup>e</sup> | Difference (ppm) linear <sup>f</sup> | Altitude (m) <sup>a</sup>                      | Balloon CO <sub>2</sub> (ppm) spline <sup>b</sup> | Aircraft CO <sub>2</sub> (ppm) <sup>d</sup> | Difference (ppm) spline <sup>e</sup> |
| 849                                            | 399.05                                            | 400.92                                            | 397.62                                      | 1.43                                 | 3.30                                 | 1324                                           | 396.60                                            | 394.45                                      | 2.15                                 |
| 1202                                           | 398.16                                            | 399.58                                            | 397.53                                      | 0.63                                 | 2.05                                 | 1612                                           | 394.65                                            | 393.03                                      | 1.62                                 |
| 1610                                           | 398.00                                            | 399.99                                            | 397.17                                      | 0.83                                 | 2.82                                 | 1917                                           | 394.86                                            | 394.10                                      | 0.76                                 |
| 2038                                           | 396.50                                            | 401.35                                            | 396.95                                      | -0.45                                | 4.40                                 | 2223                                           | 395.77                                            | 393.54                                      | 2.23                                 |
| 2291                                           | 398.03                                            | 401.83                                            | 396.04                                      | 1.99                                 | 5.79                                 | 2539                                           | 395.41                                            | 393.95                                      | 1.45                                 |
| 2463                                           | 396.54                                            | 396.45                                            | 395.65                                      | 0.89                                 | 0.80                                 | 2867                                           | 394.71                                            | 395.11                                      | -0.40                                |
| 2844                                           | 393.44                                            | 394.15                                            | 395.24                                      | -1.79                                | -1.09                                | 3215                                           | 394.99                                            | 392.99                                      | 2.00                                 |
| 3329                                           | 395.45                                            | 398.68                                            | 394.15                                      | 1.30                                 | 4.53                                 | 3543                                           | 393.59                                            | 393.07                                      | 0.52                                 |
| 3732                                           | 393.51                                            | 396.87                                            | 393.63                                      | -0.12                                | 3.24                                 | 3764                                           | 393.69                                            | 393.40                                      | 0.28                                 |
| 4161                                           | 395.47                                            | 396.99                                            | 393.54                                      | 1.93                                 | 3.45                                 | 3938                                           | 395.15                                            | 393.11                                      | 2.04                                 |
| 4575                                           | 394.62                                            | 396.38                                            | 392.94                                      | 1.68                                 | 3.44                                 | 4169                                           | 393.83                                            | 392.68                                      | 1.15                                 |
| 4918                                           | 393.24                                            | 396.00                                            | 393.64                                      | -0.41                                | 2.36                                 | 4458                                           | 396.57                                            | 393.51                                      | 3.06                                 |
| 5273                                           | 392.41                                            | 395.02                                            | 393.25                                      | -0.84                                | 1.77                                 | 4750                                           | 394.88                                            | 393.69                                      | 1.19                                 |
| 5654                                           | 393.02                                            | 395.31                                            | 393.47                                      | -0.45                                | 1.84                                 | 5047                                           | 396.53                                            | 394.01                                      | 2.53                                 |
| 6083                                           | 391.87                                            | 395.19                                            | 392.91                                      | -1.04                                | 2.28                                 | 5214                                           | 395.91                                            | 393.45                                      | 2.46                                 |
| 6510                                           | 392.76                                            | 395.44                                            | 391.65                                      | 1.11                                 | 3.79                                 | 5383                                           | 396.78                                            | 393.58                                      | 3.20                                 |
|                                                |                                                   |                                                   |                                             | Average =                            | 0.42                                 | 5565                                           | 395.83                                            | 393.67                                      | 2.15                                 |
|                                                |                                                   |                                                   |                                             | Std Dev <sup>g</sup> =               | 1.16                                 | 5781                                           | 395.18                                            | 393.39                                      | 1.80                                 |
|                                                |                                                   |                                                   |                                             | RMS <sup>h</sup> =                   | 1.20                                 | 6092                                           | 391.75                                            | 392.83                                      | -1.09                                |
|                                                |                                                   |                                                   |                                             |                                      |                                      | 6287                                           | 392.44                                            | 392.42                                      | 0.02                                 |
|                                                |                                                   |                                                   |                                             |                                      |                                      | 6467                                           | 393.67                                            | 392.23                                      | 1.44                                 |
|                                                |                                                   |                                                   |                                             |                                      |                                      | 6639                                           | 395.07                                            | 392.42                                      | 2.65                                 |
|                                                |                                                   |                                                   |                                             |                                      |                                      | 6815                                           | 394.00                                            | 393.00                                      | 1.00                                 |
|                                                |                                                   |                                                   |                                             |                                      |                                      | Average = 1.41                                 |                                                   |                                             |                                      |
|                                                |                                                   |                                                   |                                             |                                      |                                      | Std Dev <sup>d</sup> = 1.00                    |                                                   |                                             |                                      |
|                                                |                                                   |                                                   |                                             |                                      |                                      | RMS <sup>e</sup> = 1.62                        |                                                   |                                             |                                      |

- 701 a. Altitudes of the balloon-borne experiments using the in-flight calibration with 40-s time intervals.  
 702 b. Balloon measurement results calculated using the cubic spline fitting method.  
 703 c. Balloon measurement results calculated using the linear fitting method.  
 704 d. Averaged values of the aircraft measurement results over the range of the balloon altitudes  $\pm$  100 m.  
 705 e. Difference values of [balloon CO<sub>2</sub>](cubic spline fitting) - [Aircraft CO<sub>2</sub>]

706 f. Difference values of [balloon CO<sub>2</sub>] (linear fitting)- [Aircraft CO<sub>2</sub>]  
 707 g. Standard deviation of the differences ( $1\sigma$ ).  
 708 h. Root mean square values. **Table 3.** Comparisons of the CO<sub>2</sub> concentrations between the balloon CO<sub>2</sub>  
 709 sonde measurements on 31 January and CONTRAIL aircraft CME on 31 January (11\_060d) and  
 710 between the CO<sub>2</sub> sonde on 3 February and CONTRAIL on 2 February (11\_062d) up to the altitude of  
 711 7 km. The annotations are same as Table 2.

712

| CONTRAIL 11_060d (31 January 2011) |                               |                                |                  | CONTRAIL 11_062d (2 February 2011) |                               |                                |                  |
|------------------------------------|-------------------------------|--------------------------------|------------------|------------------------------------|-------------------------------|--------------------------------|------------------|
| Altitude (m)                       | Balloon CO <sub>2</sub> (ppm) | Aircraft CO <sub>2</sub> (ppm) | Difference (ppm) | Altitude (m)                       | Balloon CO <sub>2</sub> (ppm) | Aircraft CO <sub>2</sub> (ppm) | Difference (ppm) |
| 849                                | 399.05                        | 398.21                         | 0.84             | 1917                               | 394.86                        | 396.59                         | -1.73            |
| 1202                               | 398.16                        | 399.56                         | -1.40            | 2223                               | 395.77                        | 396.45                         | -0.68            |
| 1610                               | 398.00                        | 398.77                         | -0.76            | 2539                               | 395.41                        | 395.71                         | -0.30            |
| 2038                               | 396.50                        | 397.07                         | -0.57            | 2867                               | 394.71                        | 394.67                         | 0.04             |
| 2291                               | 398.03                        | 395.97                         | 2.06             | 3215                               | 394.99                        | 393.34                         | 1.65             |
| 2463                               | 396.54                        | 394.55                         | 1.99             | 3543                               | 393.59                        | 394.25                         | -0.66            |
| 2844                               | 393.44                        | 393.41                         | 0.04             | 3764                               | 393.69                        | 394.33                         | -0.64            |
| 3329                               | 395.45                        | 394.25                         | 1.20             | 3938                               | 395.15                        | 394.69                         | 0.46             |
| 3732                               | 393.51                        | 393.58                         | -0.07            | 4458                               | 396.57                        | 394.09                         | 2.48             |
| 4161                               | 395.47                        | 393.86                         | 1.61             | 4750                               | 394.88                        | 395.02                         | -0.14            |
| 4575                               | 394.62                        | 393.18                         | 1.44             | 5047                               | 396.53                        | 396.55                         | -0.01            |
| 4918                               | 393.24                        | 393.62                         | -0.38            | 5214                               | 395.91                        | 396.01                         | -0.10            |
| 5273                               | 392.41                        | 392.76                         | -0.35            | 5383                               | 396.78                        | 394.78                         | 2.00             |
| 6866                               | 392.31                        | 393.26                         | -0.96            | 5565                               | 395.83                        | 393.69                         | 2.14             |
|                                    |                               |                                |                  | 5781                               | 395.18                        | 393.79                         | 1.39             |
|                                    |                               |                                |                  | 6092                               | 391.75                        | 393.57                         | -1.82            |
|                                    |                               |                                |                  | 6287                               | 392.44                        | 393.32                         | -0.88            |
|                                    |                               |                                |                  | 6467                               | 393.67                        | 392.89                         | 0.78             |
|                                    |                               |                                |                  | 6639                               | 395.07                        | 392.84                         | 2.23             |
|                                    |                               |                                |                  | 6815                               | 394.00                        | 393.11                         | 0.90             |
|                                    |                               |                                |                  | Average = 0.35                     |                               |                                |                  |
|                                    |                               |                                |                  | Std Dev = 1.30                     |                               |                                |                  |
|                                    |                               |                                |                  | RMS = 1.31                         |                               |                                |                  |

713

714

715 **Figure captions**

716 **Figure 1.** Left: Schematic diagram of the CO<sub>2</sub> measurement package, where F1 and F2 represent the  
717 band-pass filters at wavelengths of 4.0  $\mu\text{m}$  and 4.3  $\mu\text{m}$ , respectively. The outlet port of the CO<sub>2</sub> sensor  
718 is opened to ambient air. Details of the system are described in the text. Right: Photograph of the inside  
719 of the CO<sub>2</sub> sonde package. The components were placed in a specially modeled expanded polystyrene  
720 box.

721 **Figure 2.** Photograph of the CO<sub>2</sub> sonde developed in this study before launching. a. CO<sub>2</sub>  
722 measurement package is shown in Fig. 1, b. GPS sonde, and c. Calibration gas package.

723 **Figure 3.** Raw data obtained by the CO<sub>2</sub> sonde launched on September 26, 2011 at Moriya, Japan. The  
724 vertical axis is the difference between the 4.0  $\mu\text{m}$  and 4.3  $\mu\text{m}$  signal intensities divided by the ambient  
725 pressure. The black line indicates the observation results during the balloon flight with calibration  
726 cycles. The red circle indicates the 30 s average values in each step of the calibration. Red curve  
727 indicates the cubic spline fitting curves for the observation points of the 30 s average values of the  
728 same standard gas. The small black dots on the cubic spline curves indicate the estimated values for  
729 the standard gases at the ambient gas measuring timing, which were used for the interpolation to  
730 determine the ambient air concentrations.

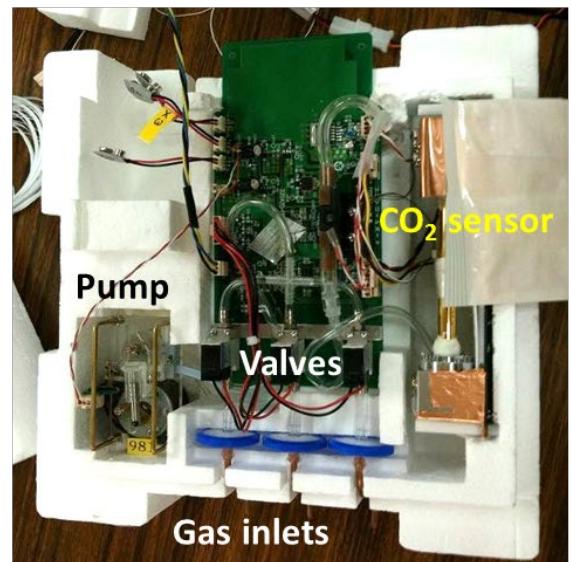
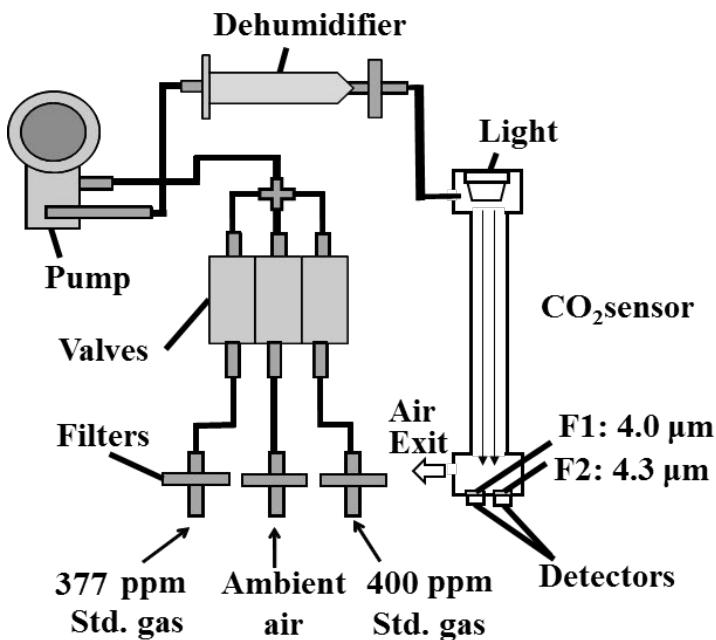
731 **Figure 4.**  $[I(4.0) - I(4.3)]/P$  values versus CO<sub>2</sub> mole fraction, where  $I(4.0)$  and  $I(4.3)$  are the  
732 signal intensities at the 4.0  $\mu\text{m}$  wavelength for background measurements and the 4.3  $\mu\text{m}$  wavelength  
733 for CO<sub>2</sub> absorption measurements, obtained by the NDIR CO<sub>2</sub> sensor, and  $P$  is the ambient  
734 atmospheric pressure. CO<sub>2</sub> mole fractions were measured with a standard NDIR instrument (LICOR,  
735 LI-840A) connected to the balloon sensor in series. The pressure while carrying out the  
736 measurements was constant at 1010 hPa.

737 **Figure 5.** Results of a chamber experiment of the CO<sub>2</sub> sonde. Pressure in the chamber was reduced  
738 from 1010 hPa (ground level pressure) to 250 hPa (about 10 km altitude pressure) at a temperature of  
739 about 298 K. The black circles indicate the value of the CO<sub>2</sub> mole fraction of the sample air in the

740 chamber, which was obtained from the interpolation of the standard gas values in each calibration  
741 cycle. Vertical error bars indicate the square-root of sum of squares for the standard deviations of  
742 the sample and standard gas signals at each step in the calibration cycle. The black dashed line shows  
743 an average of all the values obtained for the sample gas. See the text for more details.

744 **Figure 6.** Flight paths of the CO<sub>2</sub> sonde observations launched at Moriya on January 31st (blue solid  
745 line) and February 3rd (red solid line), 2011, the CONTRAIL 11\_060d data on January 31st, 2011  
746 (black solid line) and 11\_062d data on February 2nd, 2011 (black dashed line) from Hong Kong to  
747 Narita, and the NIES/JAXA chartered aircraft experiment on January 31st (green solid line) and  
748 February 3rd (purple dotted line). The altitudes of the flight paths are also indicated.

749 **Figure 7.** The CO<sub>2</sub> vertical profiles obtained by the CO<sub>2</sub> sonde (circles connected with blue lines),  
750 NIES/JAXA chartered aircraft data (dots connected with green lines), and the CONTRAIL data  
751 (diamonds connected with black lines) on January 31st, 2011.

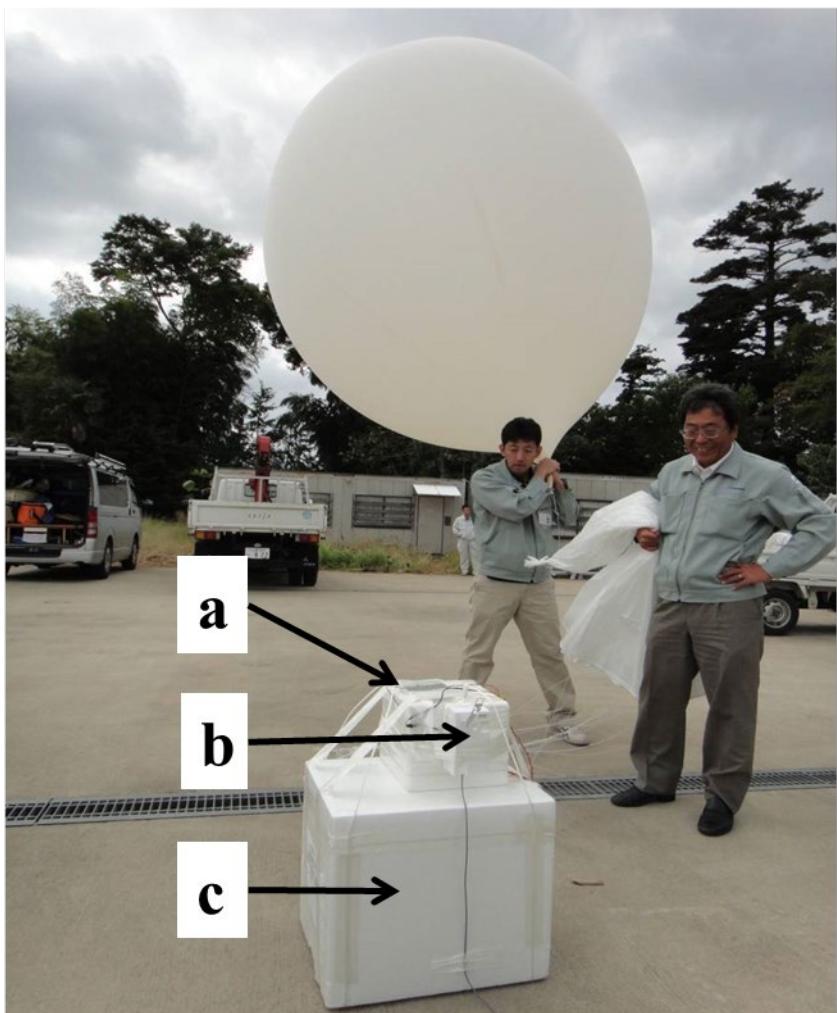


752 **Figure 8.** The CO<sub>2</sub> vertical profiles obtained by the CO<sub>2</sub> sonde (circles connected with red lines),  
753 NIES/JAXA chartered aircraft data (dots connected with purple lines) on February 3rd, and  
754 CONTRAIL data (diamonds connected with black lines) on February 2nd, 2011.

755 **Figure 9.** Profiles of (a) CO<sub>2</sub> mole fraction, (b) temperature (solid line) and potential temperature  
756 (dotted line), and (c) relative humidity (Solid line, %) and water mol fraction (dotted line, unit  
757 1/5000 mol/mol) observed over a forest area, Moshiri in Hokkaido, Japan by the balloon launched on  
758 August 26, 2009 at 13:30 (LST). The black circles with error bars in panel (a) represent the data  
759 obtained by the CO<sub>2</sub> sonde.

760 **Figure 10.** Profiles of (a) CO<sub>2</sub> mole fraction, (b) temperature (solid line) and potential temperature  
761 (dotted line), and (c) relative humidity (Solid line, %) and water mol fraction (dotted line, unit  
762 1/5000 mol/mol) observed over an urban area, Moriya near Tokyo on February 3rd, 2011 at 13:10  
763 (LST).

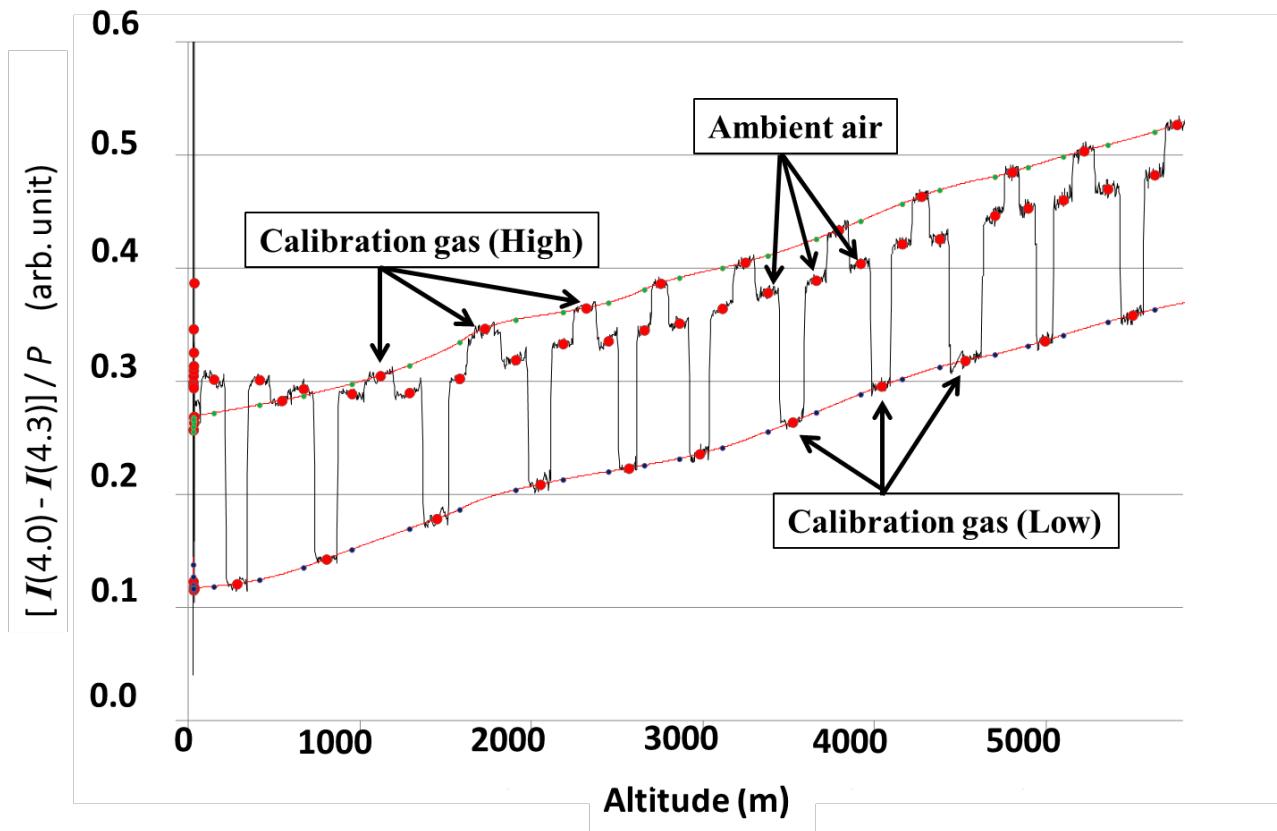
764

765




766

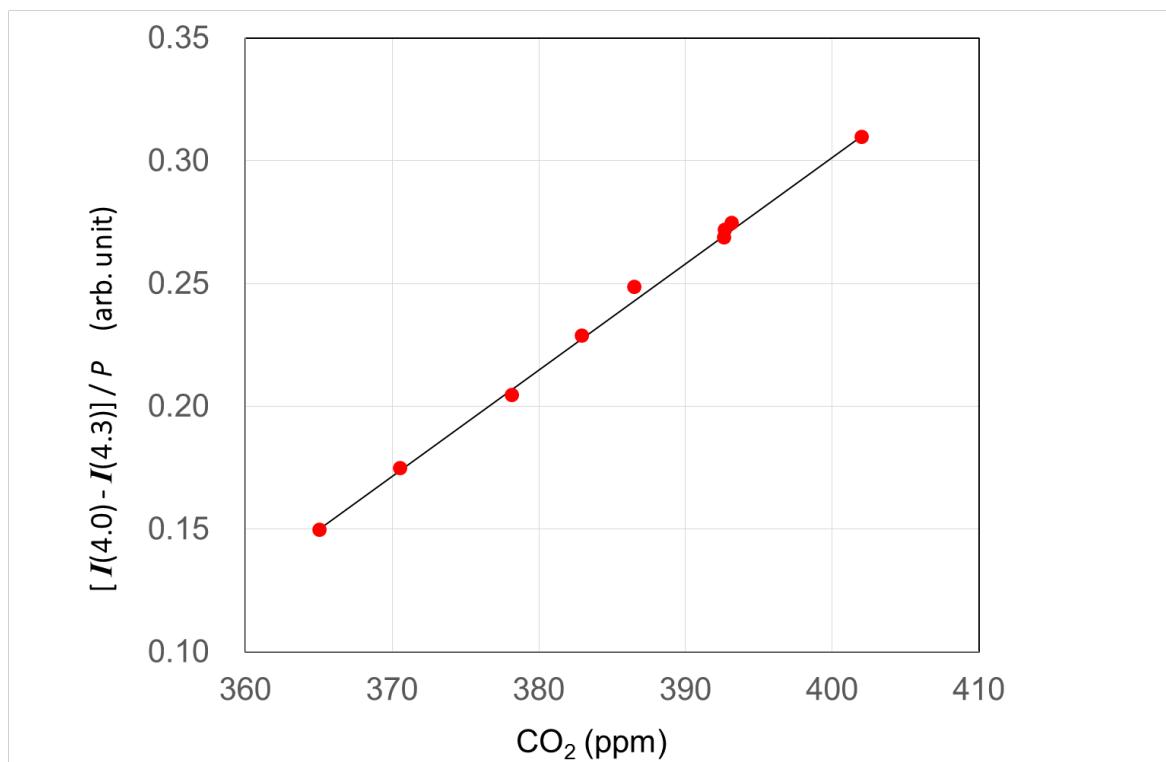
767 **Figure 1.** Left: Schematic diagram of the CO<sub>2</sub> measurement package, where F1 and F2 represent the  
768 band-pass filters at wavelengths of 4.0 μm and 4.3 μm, respectively. The outlet port of the CO<sub>2</sub> sensor  
769 is opened to ambient air. Details of the system are described in the text. Right: Photograph of the inside  
770 of the CO<sub>2</sub> sonde package. The components were placed in a specially modeled expanded polystyrene  
771 box.


772

773



774

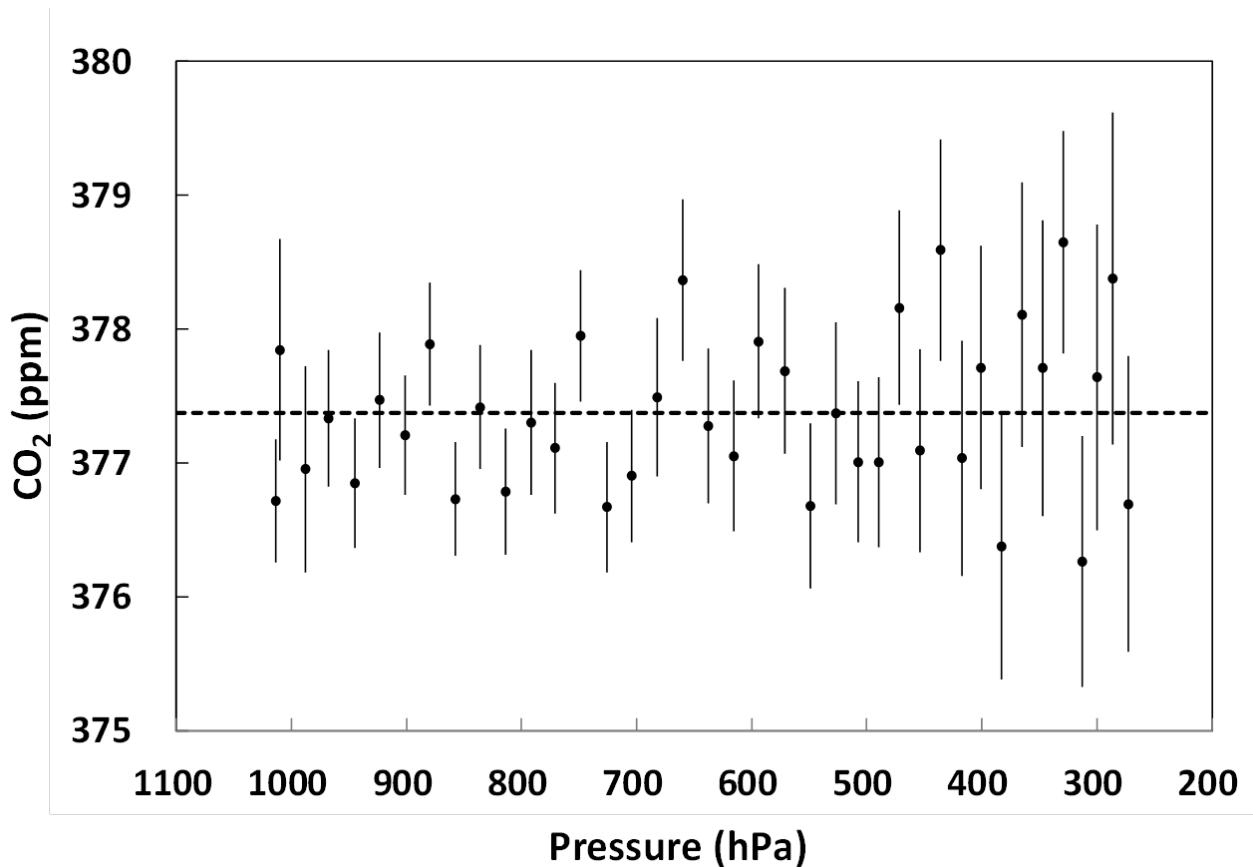

775 **Figure 2.** Photograph of the CO<sub>2</sub> sonde developed in this study before launching. a. CO<sub>2</sub>  
776 measurement package is shown in Fig. 1, b. GPS sonde, and c. Calibration gas package.  
777



778 **Figure 3.** Raw data obtained by the CO<sub>2</sub> sonde launched on September 26, 2011 at Moriya, Japan.  
 779 The vertical axis is the difference between the 4.0  $\mu\text{m}$  and 4.3  $\mu\text{m}$  signal intensities divided by the  
 780 ambient pressure. The black line indicates the observation results during the balloon flight with  
 781 calibration cycles. The red circle indicates the 30 s average values in each step of the calibration. Red  
 782 curve indicates the cubic spline fitting curves for the observation points of the 30 s average values of  
 783 the same standard gas. The small black dots on the cubic spline curves indicate the estimated values  
 784 for the standard gases at the ambient gas measuring timing, which were used for the interpolation  
 785 to determine the ambient air concentrations.

786  
 787

788




789

790 **Figure 4.**  $[I(4.0) - I(4.3)]/P$  values versus CO<sub>2</sub> mole fraction, where  $I(4.0)$  and  $I(4.3)$  are the  
 791 signal intensities at the 4.0  $\mu\text{m}$  wavelength for background measurements and the 4.3  $\mu\text{m}$  wavelength  
 792 for CO<sub>2</sub> absorption measurements, obtained by the NDIR CO<sub>2</sub> sensor, and  $P$  is the ambient  
 793 atmospheric pressure. CO<sub>2</sub> mole fractions were measured with a standard NDIR instrument (LICOR,  
 794 LI-840A) connected to the balloon sensor in series. The pressure while carrying out the  
 795 measurements was constant at 1010 hPa.

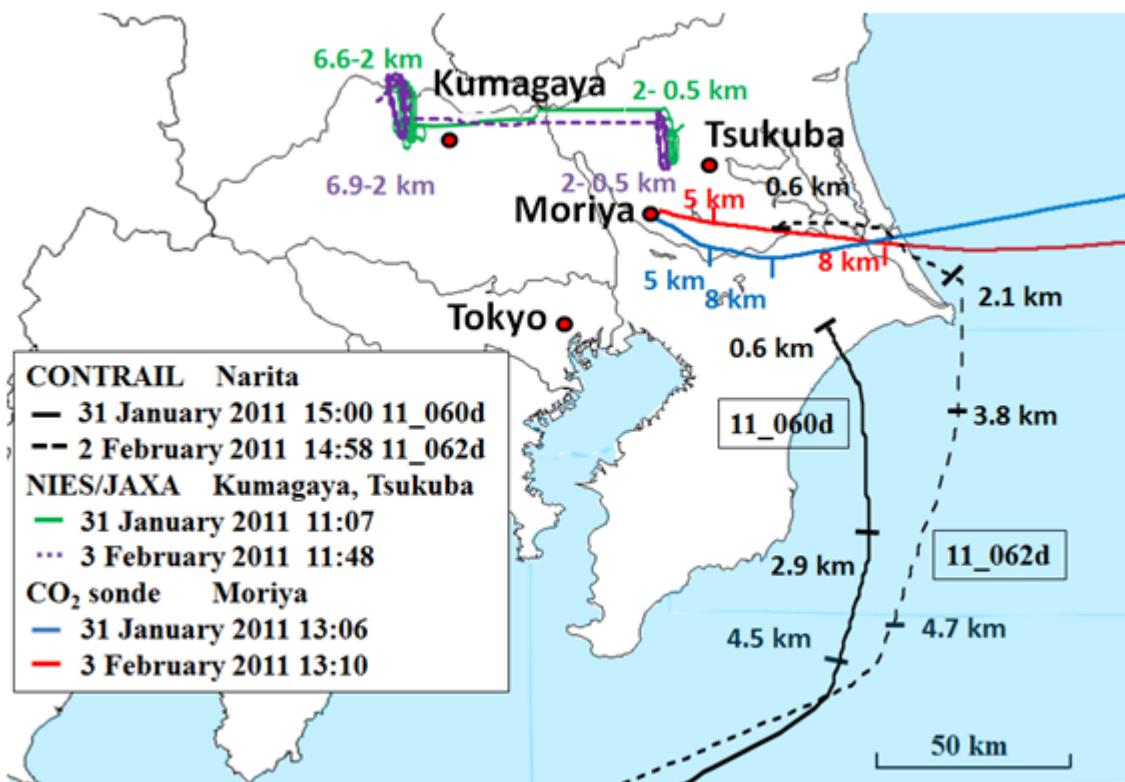
796

797



798

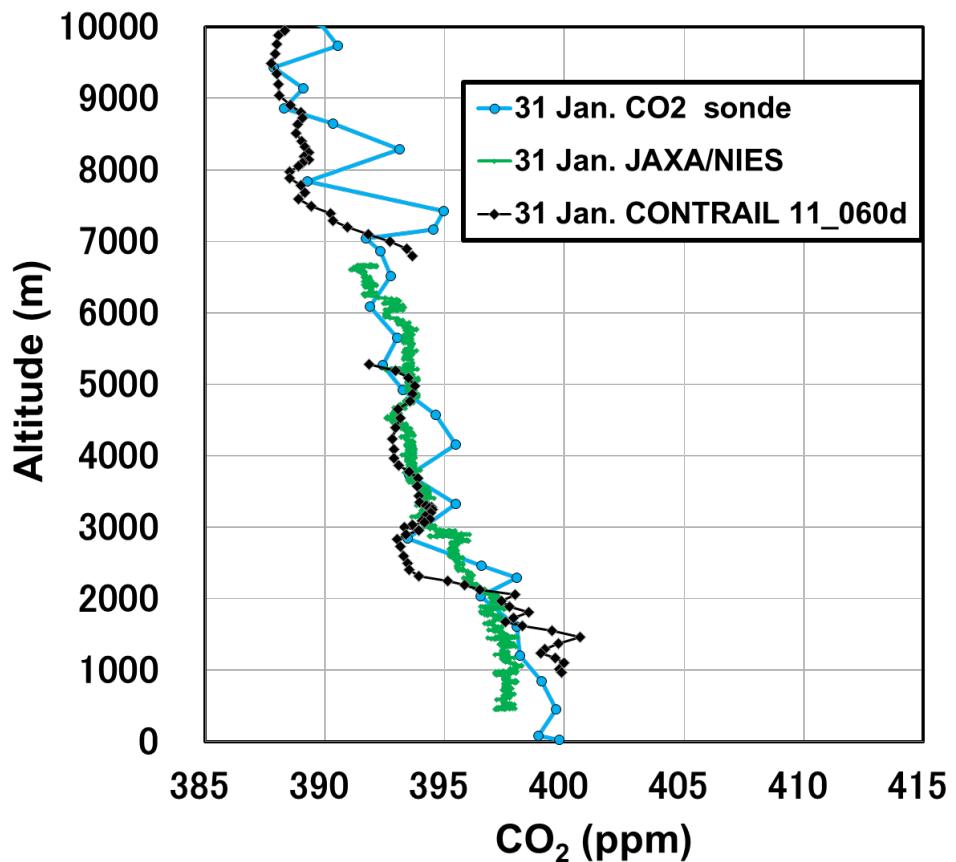
799


800 **Figure 5.** Results of a chamber experiment of the CO<sub>2</sub> sonde. Pressure in the chamber was reduced  
 801 from 1010 hPa (ground level pressure) to 250 hPa (about 10 km altitude pressure) at a temperature of  
 802 about 298 K. The black circles indicate the value of the CO<sub>2</sub> mole fraction of the sample air in the  
 803 chamber, which was obtained from the interpolation of the standard gas values in each calibration  
 804 cycle. Vertical error bars indicate the square-root of sum of squares for the standard deviations of  
 805 the sample and standard gas signals at each step in the calibration cycle. The black dashed line shows  
 806 an average of all the values obtained for the sample gas. See the text for more details.

807

808

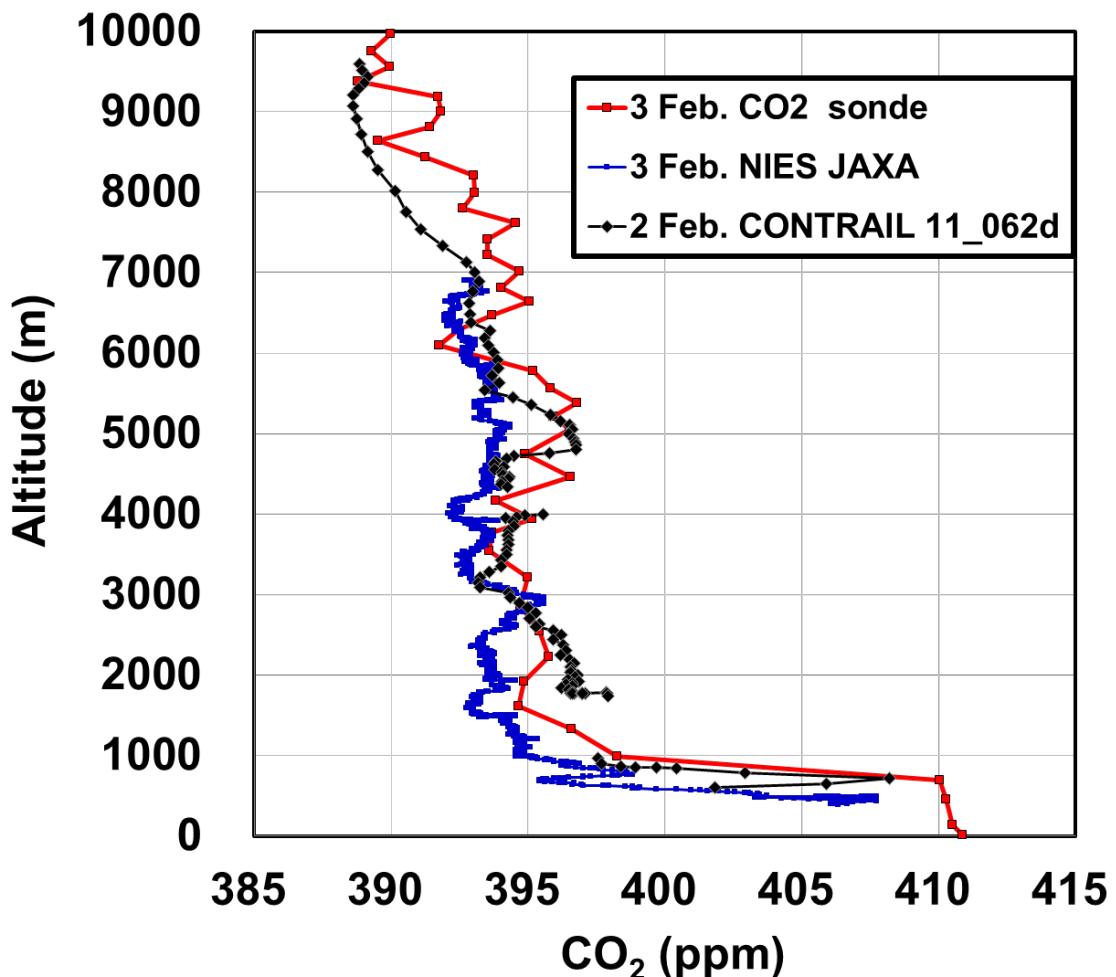
809


810



811

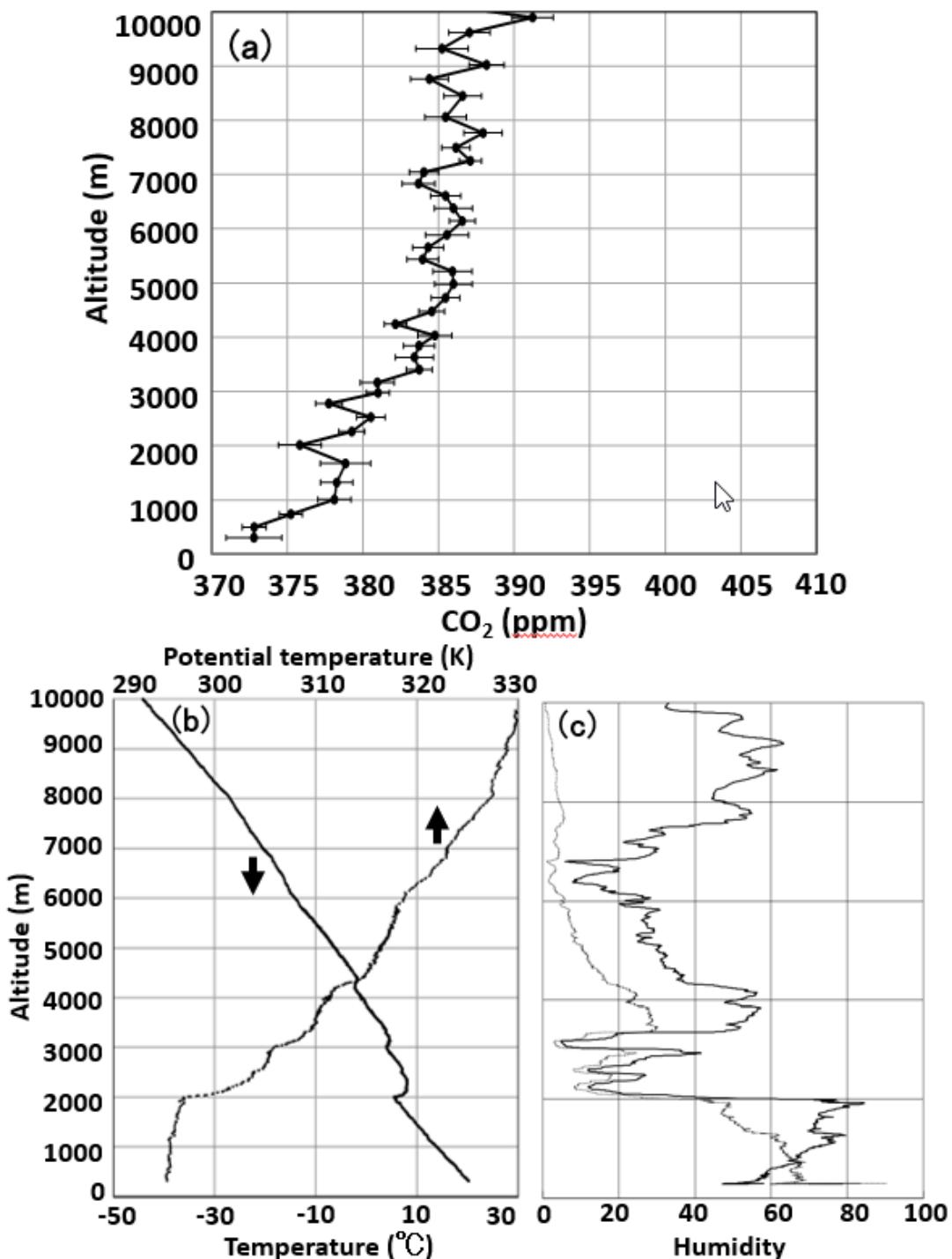
812


813 **Figure 6.** Flight paths of the CO<sub>2</sub> sonde observations launched at Moriya on January 31st (blue solid  
 814 line) and February 3rd (red solid line), 2011, the CONTRAIL 11\_060d data on January 31st, 2011  
 815 (black solid line) and 11\_062d data on February 2nd, 2011 (black dashed line) from Hong Kong to  
 816 Narita, and the NIES/JAXA chartered aircraft experiment on January 31st (green solid line) and  
 817 February 3rd (purple dotted line). The altitudes of the flight paths are also indicated.  
 818



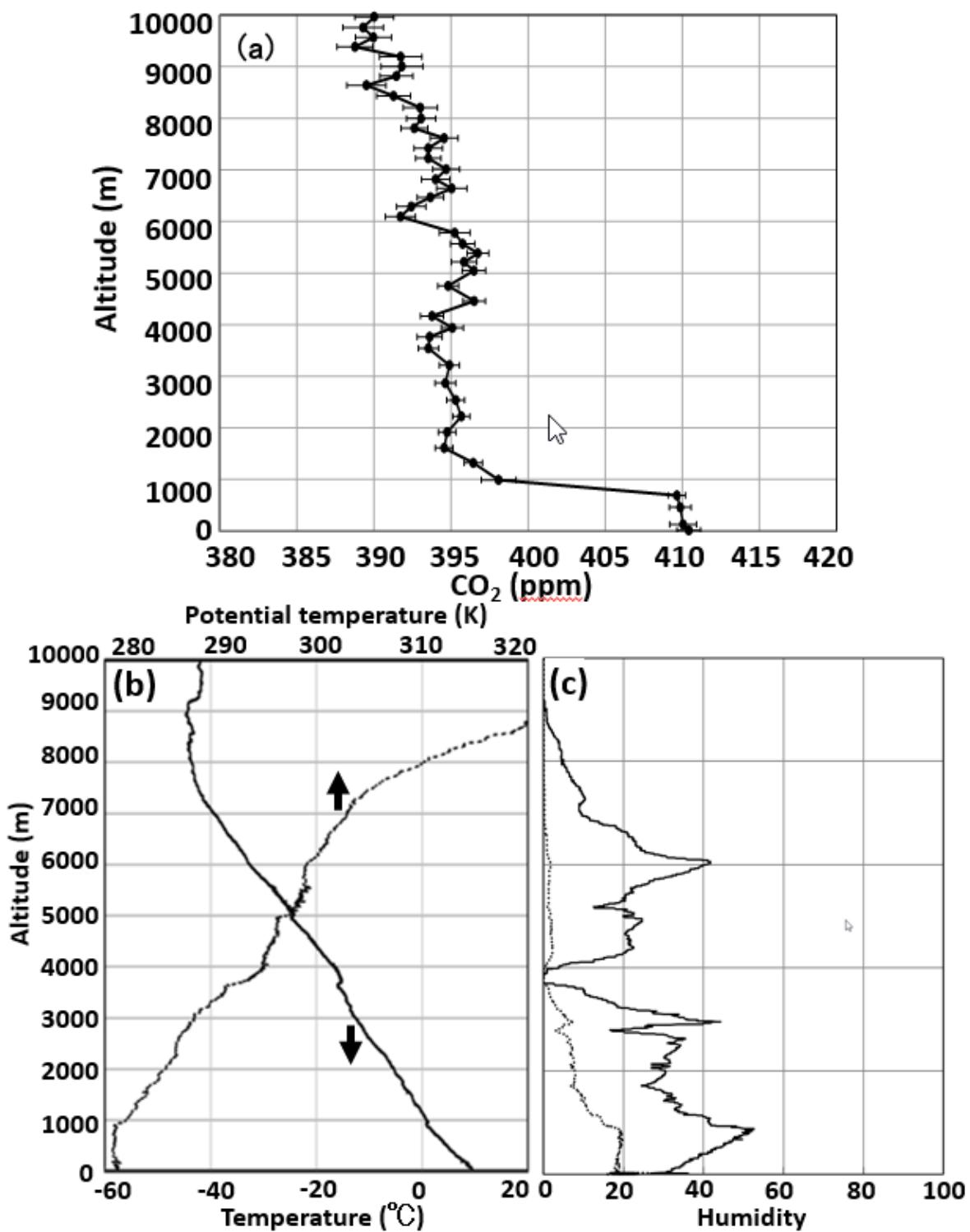
819

820 **Figure 7.** The CO<sub>2</sub> vertical profiles obtained by the CO<sub>2</sub> sonde (circles connected with blue lines),  
 821 NIES/JAXA chartered aircraft data (dots connected with green lines), and the CONTRAIL data  
 822 (diamonds connected with black lines) on January 31st, 2011.


823



824


825

826 **Figure 8.** The CO<sub>2</sub> vertical profiles obtained by the CO<sub>2</sub> sonde (circles connected with red lines),  
 827 NIES/JAXA chartered aircraft data (dots connected with purple lines) on February 3rd, and  
 828 CONTRAIL data (diamonds connected with black lines) on February 2nd, 2011.



829 **Figure 9.** Profiles of (a) CO<sub>2</sub> mole fraction, (b) temperature (solid line) and potential temperature  
 830 (dotted line), and (c) relative humidity (Solid line, %) and water mol fraction (dotted line, unit  
 831 1/5000 mol/mol) observed over a forest area, Moshiri in Hokkaido, Japan by the balloon launched on  
 832 August 26, 2009 at 13:30 (LST). The black circles with error bars in panel (a) represent the data  
 833 obtained by the CO<sub>2</sub> sonde.

834



835 **Figure 10.** Profiles of (a) CO<sub>2</sub> mole fraction, (b) temperature (solid line) and potential temperature  
 836 (dotted line), and (c) relative humidity (Solid line, %) and water mol fraction (dotted line, unit 1/5000  
 837 mol/mol) observed over an urban area, Moriya near Tokyo on February 3rd, 2011 at 13:10 (LST).  
 838