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Abstract. In this paper we present the latest refinements brought to the DARDAR-CLOUD product, which contains ice cloud

microphysical properties retrieved from the cloud radar and lidar measurements from the A-Train mission. Based on a large

dataset of in-situ ice cloud measurements, the parameterizations used in the microphysical model of the algorithm – i.e. the

normalized particle size distribution, the mass-size relationship, and the parameterization of the a priori of the normalized

number concentration as a function of temperature – were assessed and refined to better fit the measurements, keeping the5

same formalism as proposed in DARDAR basis papers. Additionally, in regions where lidar measurements are available, the

lidar ratio retrieved for ice clouds is shown to be well constrained by the lidar-radar synergy. Using this information, the

parameterization of the lidar ratio was also refined, and the new retrieval equals on average 35 sr +/- 10 sr in the temperature

range between −60 ◦C and −20 ◦C. The impact of those changes on the retrieved ice cloud properties is presented in terms of

IWC and effective radius. Overall, IWC values from the new DARDAR-CLOUD product are in average 16% smaller than the10

previous version, leading to a 24% reduction in the ice water path. In parallel, the retrieved effective radii increase by 5% to

40%, depending on temperature and the availability of the instruments, with an average difference of +15%. Modifications of

the microphysical model strongly affect the ice water content retrievals with differences that were found to range from -50%

to +40%, depending on temperature and the availability of the instruments. The largest differences are found for the warmest

temperatures (between −20 ◦C and 0 ◦C) in regions where the cloud microphysical processes are more complex and where15

the retrieval is almost exclusively based on radar-only measurements. The new lidar ratio values lead to a reduction of IWC

at cold temperatures, the difference between the two versions increasing from around 0% at −30 ◦C to 70% below −80 ◦C,

whereas effective radii are not impacted.

1 Introduction

Passive and active remote sensing instruments, like visible and infrared (IR) radiometers, cloud radars and lidars, are commonly20

used to study ice clouds. Inferring cloud microphysical properties like extinction (α), ice water content (IWC) and effective
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radius (re) can be done from one instrument only, or from the synergy of several instruments or channels (i.e. wavelengths λ).

Several methods were developed to retrieve ice cloud properties from a single instrument: IR radiometers are commonly used

to retrieve integrated re from a set of brightness temperatures at different wavelengths (Stubenrauch et al. 1999; Guignard et al.

2012; Hong et al. 2012), and lidars and radars are useful to retrieve respectively extinction and IWC (Liu and Illingworth

2000; Vaughan et al. 2004; Heymsfield et al. 2014). However, all of these instruments have shortcomings in different parts5

of the cloud - for instance, due to the attenuation of the lidar signal, the lidar will be blind in the lower part of a thick cirrus

whereas the top of the cloud is invisible to the radar in most cases - resulting in a large spread of values for the retrieved

cloud properties. Hence, there is a need to use several instruments to reduce this uncertainty. Synergetic ice properties retrieval

methods can combine radiometer with lidar or radar (Evans et al. 2005; Garnier et al. 2012, 2013; Sourdeval et al. 2014) or both

lidar and radar (Donovan et al. 2001; Wang and Sassen 2002; Okamoto et al. 2003; Delanoë and Hogan 2008, 2010, hereafter10

referred to as DH0810).

Radar and lidar are active sensors that provide vertical information on cloud structure and are sensitive to different cloud

particle populations. To a first approximation, the radar return signal is proportional to the sixth moment of the particle size;

hence, within a volume it is most sensitive to the largest particles. On the other hand, lidar backscatter is proportional to

the second moment of the particle size and is thus more sensitive to particle concentration and backscattering cross-section.15

Combining the two instruments therefore provides two moments of the particle size distribution. In regions of the cloud

where both instruments are available, this method allows a well constrained retrieval of extinction and IWC, leading to direct

calculation of re at each pixel of the vertical profile obtained by this synergy. The difference in sensitivity of the two instruments

also gives a more complete view of the cloud structure and microphysics (Donovan et al. 2001; Okamoto et al. 2003; Tinel

et al. 2005).20

The A-Train constellation of satellites has considerably improved our knowledge of clouds. Since 2006, CALIPSO (Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Observation) and Cloudsat have acquired cloud vertical profiles globally.

CALIPSO (Winker et al. 2010) carries CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), a lidar operating at

532 nm and 1064 nm with depolarization capabilities on the 532 nm channel (Winker et al. 2007) as well as the Imaging

Infrared Radiometer (IIR) and a Wide Field Camera (WFC). CloudSat carries a Cloud Profiling Radar (CPR) measuring re-25

flectivity at 95 GHz (Stephens et al. 2002). Lidar-radar synergetic methods have been adapted to CloudSat and CALIPSO data

(Okamoto et al. 2010; Delanoë and Hogan 2010; Deng et al. 2010). In this paper, we focus on the DARDAR derived products.

The DARDAR (raDAR / liDAR) project was initiated by the LATMOS (Laboratoire Atmosphères, Milieux, Observations Spa-

tiales) and the University of Reading. It was developped to retrieve ice cloud properties globally from CloudSat and CALIPSO

measurements using a specific universal parameterization of the particle size distribution (Delanoë et al. 2005, 2014) and the30

Varcloud optimal estimation algorithm (DH0810). DARDAR has three products that can be used separately and they are all

hosted and available on the Icare (Interactions Clouds Aerosols Radiations Etc) FTP website ftp://ftp.icare.univ-lille1.fr/. The

first one is the CS-TRACK product which is the collocated processed A-Train product on the CloudSat track. This product

gives the possibility to work on lidar and radar data on the same resolution grid of 1.1 km horizontally and 60 m vertically.

From these profiles of active instruments data, a technique for the classification of hydrometeors (called DARDAR-MASK)35
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has been developed. This technique is used to select the lidar-radar range bins (or pixels) where ice cloud properties retrievals

(DARDAR-CLOUD) can be performed (Ceccaldi et al. 2013). It is important that the classification is as accurate as possible

since including liquid water pixels or noisy pixels in our retrieval could compromise the results. Indeed retrieval techniques are

different for liquid droplets and for ice crystals and a specific analysis should be applied to mixed phase clouds (Hogan et al.

2003). In this paper, we only focus on the retrieval of ice crystal properties.5

From collocated profiles of CloudSat and CALIPSO and hydrometeor classification, the DARDAR-CLOUD algorithm per-

forms retrievals of extinction, IWC and re at each pixel of ice cloud detection (even when only one instrument is available)

on the CS-TRACK grid. The main advantage of DARDAR, compared to many other synergetic methods, is that it seamlessly

performs retrievals in cloud regions detected by both the radar and the lidar and in regions detected by only one instrument.

This is achieved using an optimal estimation algorithm, finding the best state vector of cloud properties which minimizes the10

errors on observations (radar reflectivity Z and lidar apparent backscatter βa) compared to measurements simulated using a

forward model. Whenever one of the measurements is missing, the algorithm relies on an a priori estimate of the state vector

derived from the climatology.

The DARDAR-CLOUD product has been widely evaluated and used (Deng et al. 2013; Delanoë et al. 2013; Hong and Liu

2015; Sourdeval et al. 2016; Saito et al. 2017) and a few issued have been identified. For example, Deng et al. (2013) com-15

pared DARDAR-CLOUD with other satellite products and with cloud properties derived from aircraft in-situ measurements

obtained with a 2D-S probe, during the SPARTICUS campaign in 2010. Compared to the other CloudSat-CALIPSO product

and the aircraft observations, the DARDAR-CLOUD product seemed to overestimate IWC in cloud regions where only lidar

measurements were available. Sourdeval et al. (2016) also compared the Ice Water Path (IWP) retrieved with different satellite

products over the year 2008 and highlighted the fact that the DARDAR-CLOUD product tends to overestimate IWP, in par-20

ticular for values below 10 g m−2. As a consequence, adjustments have been made on the algorithm to optimize retrievals as

a function of range and temperature, especially concerning the detection of ice particles and the cloud microphysical model,

keeping the formalism unchanged from DH0810. In the following, the new version of DARDAR-CLOUD resulting from those

changes will be called V3 and the version available on the ICARE website until 2018, namely DARDAR-CLOUD v2.1.1, will

be referred to as V2. It is important, for the consistency of future studies compared to earlier ones, to give information on the25

differences between the two versions and the way they impact the results of the algorithm. After introducing the key features

of the variational scheme in section 2, its recent updates are detailed in section 3 and their effects on the retrieved cloud mi-

crophysical properties are presented in section 4. We will mainly focus on the retrieval of IWC and briefly present the main

differences observed on the retrieved particle sizes.

2 Key features of DARDAR-CLOUD algorithm30

We summarize here the main characteristics of the inverse method used for the DARDAR retrievals; readers interested in

details of the Varcloud algorithm are invited to check on DH0810.
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The method is applied to one profile at a time. We start with a first guess of the state vector on the pixels of the profile where

the retrieval can be performed (i.e. ice-only pixels). A forward model is applied to this state vector to compute simulated values

of the radar reflectivity (Zfwd) and the lidar attenuated backscatter (βfwd) of those ice pixels. The state vector is updated until

convergence is achieved (when Zfwd and βfwd are close enough to Z and βa observations or when iterations do not produce

better results). A priori information about this state vector - derived from a climatology of airborne, ground-based and previous5

satellite measurements - is used to constrain the inverse problem. This is useful when only one measurement is available.

Indeed, in most cases, when a cloud profile is measured by both radar and lidar, the vertical fraction of the cloud detected by

both instruments is often preceded in the upper layers by a region only detected by the lidar and followed by a region detected

by the radar alone in the lower part. In such regions, the algorithm needs additional information to ensure that the state vector

tends towards a physical value.10

The state vector contains the cloud properties that we want to retrieve. In the case of Varcloud, it is composed of visible

extinction (αv) [m−1.sr−1], lidar extinction-to-backscatter ratio (S) [sr] andN ′0 which can be considered a proxy for the particle

number concentration. Contrary to αv , S and N ′0 are not defined at every valid pixel of the cloud profile. The definition of the

N ′0 profile within the state vector is given by DH0810, we will therefore not go into further details. The lidar ratio (inverse of

the value of the normalized phase function at 180 ◦) is a function of many microphysical parameters such as the particle size15

and shape as well as its orientation (Liou and Yang 2016). Those variables are expected to vary through the cloud profile. The

total attenuated backscatter signal alone, measured by CALIOP, is not enough to give information on this height dependence.

However, to account for the variation of S along the cloud profile, the final expression that was set for DARDAR-CLOUD

V2 is based on a parameterization with the temperature. Following Platt et al. (2002), ln(S) is assumed to vary linearly with

temperature (in ◦C):20

ln(S) = alnST + blnS . (1)

This parameterization allows to use the coefficients alnS and blnS to represent S in the state vector and simplify the iteration

process.

A priori information is only necessary for S and N ′0 since the extinction is already well constrained by both the radar and

the lidar. Regarding the lidar ratio, an a priori value is determined for each of the two coefficients alnS and blnS (see Table 1).25

Following DH0810, the a priori of ln(N ′0) is also expressed as a linear function of temperature:

ln(N ′0) = xT + y, (2)

with T in ◦C. Physically, this describes the idea that as the temperature gets warmer, the aggregation processes tend to increase

the size of the particles and reduce their number (x < 0). Values of x and y are given in Table 2.

Errors ascribed to the a priori represent how strong this constraint is: the larger the error on the a priori, relative to the30

measurement error, the less relevant the difference between the actual value of the state vector and the a priori is and the

more the state vector will be allowed to move away from it. The straightforward way to account for the uncertainty on the

a priori information is to use an error covariance matrix with constant diagonal terms, assuming the confidence we have in
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this information is the same everywhere in the cloud profile. When both instruments are available, hopefully the confidence

in the measurements is higher than in the a priori and the algorithm does not rely on this information. On the contrary, in

regions where only one instrument is available, the retrieved values of S and N ′0 would essentially be determined by the a

priori. Therefore, to allow the information from synergistic regions to propagate towards regions where fewer measurements

are available, additional off-diagonal elements are added to the error covariance matrix of the N ′0 a priori. Those off-diagonal5

terms decrease exponentially as a function of the distance and aim at describing a spatial correlation in the difference between

the actual value of N ′0 and its a priori. This spatial correlation in the retrieval of N ′0 is of course transmitted to the other cloud

variables through optimal estimation. More details can be found in Delanoë and Hogan (2008).

Finally, a microphysical model is needed. First of all, an equivalent diameter for ice crystals Deq has to be used. It corre-

sponds to the diameter the particle would have if it was a spherical liquid droplet of the same mass M . It can be expressed as10

follows:

Deq =
6M

πρw

1/3

, (3)

with ρw = 1000 kg m−3 the density of water. To be able to determine Deq for any ice crystal, we introduce a relationship

giving the mass of a particle as a function of its maximum diameter. This relationship is usually described as a power-law of

diameter:M(D) = γDδ (Brown and Francis 1995; Mitchell 1996; Lawson and Baker 2006; Heymsfield et al. 2010; Erfani and15

Mitchell 2016). For DARDAR-CLOUD V2, a combination of (Brown and Francis 1995) and (Mitchell 1996) for hexagonal

columns is used. This relationship will be referred to as “BFM” in the rest of the paper. Its expression can be found in Table 3.

A particle size distribution (PSD), describing the concentration of particles as a function of diameter, N(D), is then defined

as a function of Deq . To do so, following Delanoë et al. (2005), both diameter and concentration are scaled so that it is possible

to find a functional form F fitting any measured PSD appropriately normalized:20

N(Deq)

N∗0
= F

(
Deq

Dm

)
. (4)

The equivalent diameter is scaled by the mean volume weighted diameter, Dm, defined as the ratio of the fourth to the third

moments of the PSD, in terms of Deq:

Dm =

∫∞
0
N(Deq)D

4
eqdDeq∫∞

0
N(Deq)D3

eqdDeq

(5)

and the number concentration is scaled by N∗0 [m
−4] which can be written as follows:25

N∗0 =
44

6

(
∫∞
0
N(Deq)D

3
eqdDeq)

5

(
∫∞
0
N(Deq)D4

eqdDeq)4
. (6)

N∗0 is also linked to N ′0 via the relationship N ′0 =N∗0 /α
b
v , with b a coefficient determined from in-situ microphysical measure-

ments. The b values used for V2 and V3 can be found in Table 2.

The function in equation 4 can be approximated by a two-parameter modified gamma shape F(αF ,βF ), the two parameters

being determined by a statistic of in-situ measurements (see Delanoë et al. (2014) for the detailed expression of F and Table30
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4 for the values of αF and βF ). With this normalized particle size distribution and for a given range of Dm, it is then possible

to create a one-dimensional look-up table (LUT) linking all the cloud microphysical variables to the ratio of αv to N∗0 . This

LUT is used in the forward model within the iterative process, in particular to retrieve Z/N∗0 from αv/N
∗
0 . The reflectivity is

defined following equation 7:

Z =

∫
N(D)σ(D)dD, (7)5

with the scattering cross-section σ(D) obtained by the T-matrix method and Mishchenko et al. (2004) spheroid approximation

for randomly oriented particles. Once the optimized cloud profile has been determined, this same LUT is also needed to retrieve

additional features of the profile, such as the IWC and effective radius.

The general method described above has remained unchanged since the creation of the DARDAR-CLOUD V2 products. In

this paper, we only show improvements that were made in the parameterizations of the microphysical model and the a priori10

relationships.

3 New parameterizations

This article presents the upgrade of the DARDAR-CLOUD product after the DARDAR-MASK product was modified (Ceccaldi

et al. 2013). In this section we describe the improvements on the lidar ratio a priori and the microphysical model used in the

retrieval method, before quantifying their impacts in the next section.15

3.1 A priori information for the lidar ratio

In DARDAR-CLOUD V2 the a priori relationship linking S to the temperature was ln(S) =−0.0237T +2.7765, with T in
◦C. This was found to produce values of S that are too large at cold temperatures (up to 120 sr) compared to the climatology.

Indeed, several studies on semi-transparent cirrus clouds were performed with elastic lidars in the visible, either from airborne

(Yorks et al. 2011), groundbased (Platt et al. 1987, 2002; Chen et al. 2002) or spaceborne (Garnier et al. 2015) instruments.20

In all cases, retrieved lidar ratios were found around an average value of 25− 30 sr and rarely exceeded 50 sr. In addition,

more studies were made on cloud optical properties, including measurements performed in the UV by Raman ground-based

lidars, showing similar values for the retrieved lidar ratios (Whiteman et al. 2004; Thorsen and Fu 2015). In order to rectify this

problem and produce more sensible retrievals, a new a priori relationship was determined for S. To do so, a linear regression is

performed on the distribution of the retrieved lnS as a function of temperature, using only lidar-radar synergistic areas. In such25

regions, the retrieval of S is expected to be well constrained by the measurements. To be even less dependent on the a priori,

the old parameterization is kept, but with an error on the slope coefficient (alnS) multiplied by 10. To produce the statistic of

lidar ratio used in this study, the Varcloud algorithm was run on 10 days of CloudSat-CALIPSO observations of the year 2008.

The results of the regression are presented in Figure 1. The regression was performed on the logarithm of S. The large majority

of points is located in regions where the temperature ranges from −55 ◦C to −20 ◦C, which are the temperatures for which30

synergistic measurements are statistically most likely to be found. In this domain of temperatures, one can see that the mean
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and median values of lidar ratio for the different temperature bins are almost identical and fairly close to the first mode of the

distributions, which allows for a good assessment of the lidar ratio, as shown by the result of the linear fit. On the contrary,

except for the warmest temperatures (above −30 ◦C), the old parameterization clearly overestimates the lidar ratio. For colder

and warmer temperatures (below −55 ◦C and above −20 ◦C, respectively) the slope of the mean curve changes, with lidar

ratio shifting to values <30 sr. This leads to a rather low correlation coefficient (-0.3) for the linear regression. Indeed, the5

fitting process is mainly constrained by the central region where most of the data is found, and therefore cannont account for

the different behaviour of the lidar ratio at the edges of the temperature domain. This illustrates the fact that the variation of

the lidar ratio along the cloud profile cannot only be described by the temperature. The comparison of this study to the one

from Garnier et al. (2015) confirms this: they are in good agreement where the temperature domains overlap. But as only cold

semi-transparent cirrus measured by the lidar and the radiometer are represented in Garnier et al. (2015), the behaviour is10

different and the lidar ratios retrieved at temperatures below −60 ◦C are lower (up to 50% lower at −70 ◦C).

Additionally, multiple scattering is not accounted for the same way. Based on the work from Platt (1973), Garnier et al.

(2015) define a multiple scattering factor to correct the two-way transmittance from the contribution of multiple scattering.

This correction factor equals 1 in the single-scattering limit and varies from 0.5 to 0.8 as a function of temperature for the

CALIOP instrument. In the Varcloud algorithm, multiple scattering is accounted for in the lidar backscatter forward model that15

was developed by Hogan (2008). This forward model uses a fast, approximate analytical method based on the representation of

the photon distributions by their variance and covariance to infer multiple scattering effect at each gate of the measured profile.

However, this approximation appears to be legitimate in the lidar-radar areas and is considered valid as a priori information

on the entire profile, even though larger errors can be expected in lidar-only regions. The final coefficients are chosen to be:

alnS =−0.0086 and blnS = 3.18, as reported in Table 1. Reducing the slope coefficient should prevent the occurrence of too20

high values for S at the coldest temperatures.

3.2 The microphysical model

The microphysical model is based on three main parameterizations: the normalized PSD, the a priori of N ′0 and the mass-

diameter relationship.

For DARDAR-CLOUD V2, the parameterizations of the PSD and the a priori of N ′0 were determined using the in-situ25

dataset described by Delanoë et al. (2005). The main caveat of this study is that it did not use direct measurements of IWC,

which may question the reliability of the validation of the microphysical model. The idea here is to assess and refine these

parameterizations, using a more comprehensive and accurate dataset of ice cloud in-situ measurements.

Delanoë et al. (2014) present a large in-situ dataset collected during several ground-based and airborne campaigns between

2000 and 2007. During those campaigns, direct measurements of IWC were performed with a Counterflow Virtual Impactor30

or a Cloud Spectrometer and Impactor (CVI/CSI). Such instruments provide valid measurements in the range from 0.01 g m−3

to 2 g m−3. For a better quality control of the measured PSD, the shattering effect was also considered in this study.

Using the same in-situ dataset, a series of M(D) relationships have been derived by Heymsfield et al. (2010) for specific

cloud conditions. Delanoë et al. (2014) compared the measured bulk IWC to the retrieved IWC obtained by the combination
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of the measured PSD and one of those power laws, which allowed to select for each campaign the M(D) relationship giving

the best match to the measured IWC. A description of the selected M(D) is given in Delanoë et al. 2014, Table 3. The

general mass-size parameterization, specific to this dataset and made of different power-laws as a function of the measurement

campaign, will be referred to as the “RETRIEVED” parameterization.

The BFM mass-size relationship used in DARDAR-CLOUD V2 was validated on direct measurements of IWC, using a5

Total Water Content probe combined with a Fluoresence Water Vapor Sensor. However, those measurements were restricted

to a couple of flights performed in April, 1992 over the North Sea and to the southwest of the UK, providing a dataset of less

than 3000 points recorded at temperatures between −30 ◦C and −20 ◦C. Other relationships are described in the literature, for

specific types of clouds, specific crystal habits or temperature range (see Heymsfield et al. 2010 and Erfani and Mitchell 2016).

To account for the dependency of the relationship between D and M on temperature and particle size, Erfani and Mitchell10

(2016) propose to use a δ coefficient depending on temperature. However, temperature is not the only parameter that matters

for the determination of M(D). In order to accurately fit this relationship to each and every cloud situation, we would need

more information on cloud type, particle size, that are not straightforward to derive from the CloudSat-CALIPSO synergy. In

addition, it is difficult to change M(D) in the retrieval scheme upon the cloud type and the meteorological conditions without

risking to bring discontinuity on the retrievals. As a result, in the case of the DARDAR-CLOUD product, we decided to focus15

on statistical results and assume a single M(D) relationship which can work for most of the situations.

In the following, we detail how the dataset presented by Delanoë et al. (2014) was used to refine the microphysical model of

the Varcloud algorithm.

3.2.1 The normalized PSD

The normalized particle size distribution is updated with the new coefficients determined by Delanoë et al. (2014) using a20

least square regression on two moments of the PSD, namely the visible extinction, αv , and the radar reflectivity, Z. To do

so, a mass-size relationship had to be assumed and the “RETRIEVED” parameterization was chosen. Figure 2 compares the

shape of the normalized PSD for the two version of DARDAR-CLOUD, V2 and V3. The different coefficients are reported

in Table 4. The new coefficients mainly impact the very small diameters and the tail of the distribution. The center of the

distribution (around Deq/Dm = 1) remains almost unchanged. However, the new normalized PSD is now characterized by25

higher values of normalized number concentration for the largest particles. This could increase the impact of the change in the

mass-diameter relationship. Additionally, it is reminded here that in a first-order approximation, the radar reflectivity is more

sensitive to the size of the particles whereas the lidar backscatter depends mainly on the concentration. As a result, if the weight

on the large particles is increased, a higher sensitivity can be expected in regions detected by the radar. However, as presented

by Delanoë et al. (2014), the majority of the data is concentrated in the area where Deq/Dm = 1. The change in M(D) is30

therefore expected to be of more importance than the modification of the normalized particle size distribution.
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3.2.2 The a priori of N ′
0

As mentioned previously, the a priori value for N ′0 is obtained via a parameterization as a function of the temperature. Three

parameters (x,y,b) have to be determined. The first two are used to link N ′0 to the temperature and the last one, b, relates

N ′0 to the normalized number concentration N∗0 . To do so, several linear regressions are performed between N ′0 and T to

identify the x and y parameters for different values of b. The values of N∗0 and αv are retrieved from the measured PSDs and5

the “RETRIEVED” M(D) laws. The final set of parameters (x,y,b) is chosen with the highest coefficient of determination

R2. For this study, the “Subvisible” class in the dataset presented in Delanoë et al. (2014) has been removed as it consists in

very small crystals associated to very cold temperatures and we considered that it was too far from the main common radar-

lidar domain in terms of temperature conditions. The data points measured at temperatures above −15 ◦C during the MPACE

campaign have also been removed.10

Figure 3 shows the result of the regression and the coefficients are reported in Table 2. The new a priori parameterization

for ln(N ′0) as a function of T is very close to the old version (Figure 3, b). The main difference is for the b coefficient which

leads to an increase in the corresponding value of N∗0 of almost 2 orders of magnitude.

3.2.3 The mass-diameter relationship

Figure 4 shows the comparison between the measured IWC and the retrieved IWC, for different mass-diameter relationships:15

the “RETRIEVED” parameterization, where a specific power-law is selected for each campaign (left), the parameterization

used in DARDAR-CLOUD V2, namely “BFM”, applied to all the campaigns (middle), and finally the “Composite” parame-

terization, also applied to the entire dataset (right). The “Composite” was developped by Heymsfield et al. (2010) using the

measurements of all campaigns, combining different types of clouds and situations. As we want to keep a single M(D) in our

algorithm, it is interesting to compare this more recent parameterization to “BFM”.20

It is clear that using dedicated parameterizations for specific atmospheric conditions and/or cloud types (that is, the “RE-

TRIEVED” parameterization) gives better results when comparing the model to the measurements. However, in the framework

of our retrieval scheme, we prefer to use one parameterization which gives the best fit, on average. Hence the choice of “BFM”

for DARDAR-CLOUD V2. As presented in Figure 4, panel b, this parameterization critically underestimates the measured

IWC, especially for values above 0.1 g m−3. With the “Composite” relationship on the contrary, it is possible to improve25

the match with the measured IWC (panel c). It was therefore decided to modify Varcloud’s microphysical model and use

“Composite” instead of “BFM”. Details of these two relationships can be found in Table 3. The main difference between the

expressions of “BFM” and “Composite” is the power coefficient: for particles> 100 µm, this coefficient equals 1.9 for “BFM”

and 2.2 for “Composite”. As a result, for a given mass, the “Composite” relationship provides a smaller equivalent diameter

for the ice crystal than “BFM”. This difference increases when the mass and the size get larger. On the contrary, for small30

diameters (6 100 µm), “BFM” creates denser particles with smaller Deq . Referring to Erfani and Mitchell (2016), these δ

coefficients are in the domain of optimal values for ice crystals from continental ice clouds, at temperatures between −60 ◦C
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and −20 ◦C and of size ranging from 100 µm to 1000 µm. Moreover, they showed that the “Composite” M(D) conformed

closely to their fit performed on measurements from the SPARTICUS campaign.

4 Evolution in DARDAR-CLOUD retrievals: comparison between V2 and V3

DARDAR-CLOUD V2 was created using the DARDAR-MASK v1 classification to select the hydrometeors on which to per-

form the retrieval. Since the classification was updated with Ceccaldi et al. (2013) (DARDAR-MASK v2), we will briefly5

show in a first instance the impact of the change in classification on the microphysical properties. In a second instance, we

will present how the modifications of the a priori and the microphysical model presented in the previous section impact the

retrieval of the lidar ratio, IWC and effective radius.

The analysis is made over the same 10 days (~3M profiles) of CloudSat-CALIPSO observations as those used to determine

the new a priori for the lidar ratio. The detail of this dataset is presented in Table 5. All the studies presented in this paper were10

performed using the same set of observations.

4.1 Impact of the new classification

As detailed in Ceccaldi et al. (2013) the new hydrometeor classification (DARDAR-MASK v2) reports fewer ice clouds in the

upper troposphere than DARDAR-MASK v1. This is due to the fact that the new methodology is more restrictive in creating

the lidar mask in order to include as few noisy pixels as possible. On the other hand, it can miss some very thin ice clouds.15

Also, the false cloud tops detected by the radar due to its original resolution have been removed from the radar mask; hence

fewer fake ice pixels are retrieved on radar-only data on top of lidar-radar pixels.

To study the impact of the new classification on the retrieved IWC we run the algorithm with the DARDAR-CLOUD

V2 configuration with both the old and the new classifications. The distribution of derived log10(IWC) as a function of

temperature is then compared.20

The distributions are computed as the histogram of occurrence (as percentage of pixels included in the retrieval) of log10(IWC)

in temperature bins of 0.5 ◦C in the range −88 ◦C to 0 ◦C. The comparison between the two distributions is displayed in Figure

5. We can see that using the new classification globally leads to fewer pixels included in the retrieval, especially for IWC lower

than 10−2 g m−3 (Figure 5, a). Consequently the mean log10(IWC) decreases more rapidly with decreasing temperature than

when using the old classification (Figure 5, b). This observation is consistent with the fact that the new classification is more25

restrictive; lidar noisy pixels and very thin ice clouds pixels producing very low IWC are not included in this distribution

any longer, leading to higher mean values. This is highlighted by the comparison of both distributions in the lidar-only region

(Figure 5, d). It is very clear that fewer pixels are selected in the new version, especially for IWC <10−2 g m−3. There is also

fewer pixels of low IWC in the radar-only regions (panel e) due to the suppression of fake cloud top detection on the radar

signal.30

This new selection of cloud pixels on the lidar signal also affects the synergistic areas. Indeed, if fewer lidar pixels are

detected, then the number of lidar-radar pixels decreases in favor of radar-only pixels. In such regions, most of the pixels that

10



were removed from the lidar cloud mask are suspected to be noisy measurements. Including noise into a variational retrieval

can increase its instability and lead to higher errors. It is therefore safer to have fewer but more reliable pixels in common for

the two instruments. On the other side, the number of higher IWC values (>10−2 g m−3) is slightly enhanced. The way the

new categorization better deals with the radar’s ground clutter could account for more radar and lidar-radar areas detected as

ice clouds close to the ground, with temperatures between −10 ◦C and 0 ◦C.5

When comparing the two configurations pixel by pixel, one can see that no bias is introduced by the new classification as

the histogram of differences is centered on 0%. As a consequence, the increase in the mean of retrieved IWC is solely due to

the removal of pixels of very low IWC values. The 18% of the data showing -100% difference account for pixels that used to

be classified as ice in the old configuration and that are not detected by the new algorithm because they are suspected of being

noisy pixels. Pixels that are not affected by the new classification show in average the same values of IWC. Overall, more10

than 50% of the data show less than 20% difference. Larger differences appear in profiles where ice pixels were removed or

added, which potentially changed the balance between the instruments.

For the following studies, the algorithm is applied to the new classification and both instruments are used whenever available.

4.2 Impact of the new a priori relationship for the lidar ratio

To be more consistent with the extinction-to-backscatter ratio (S) values found in the literature and to account for the as-15

sessment made on the retrieved IWC in high troposphere (Deng et al. 2013), a new a priori was determined using the well-

constrained retrievals from the radar - lidar synergistic areas (section 3.1). To assess the impact of this new configuration on

the retrievals, the Varcloud algorithm was run using one after the other the two different a priori relationships for S.

4.2.1 S retrievals

With the new parameterization, one can see that the values are, in average, smaller, and more centered around an average value20

of 35 sr (Figure 6a). As a result, contrary to what could be found with the old configuration, the maximum values does not

exceed 60 sr. Panels b) to j) show the distributions (in % of the total number of retrieved pixels) of S for the two different

configurations as well as the distributions of their relative difference
(
S3−S2

S2

)
as a function of temperature. As a consequence

of this new configuration, the retrieved lidar ratio tends to be closer to the a priori value. This new parameterization was

determined using former Varcloud retrievals, therefore it is logical that the fit to the algorithm is better. This is particularly25

visible when comparing panels c) and f) for lidar-only areas.

As the algorithm only returns the two coefficients of the relation linking lnS to T , the retrieved lidar ratio depends on

the measured profile as a whole. For stability reasons, the error applied to the a priori is small. As a result, the lidar ratio

mainly follows the a priori information. But it is allowed to move away from it, especially in synergistic areas where more

information is provided to the state vector by the radar. This explains the two modes observed on the relative differences30

distributions. One mode is closer to 0% difference (between -25 and +25%) and corresponds to profiles where the retrieval of

the lidar ratio can benefit from the synergy of radar and lidar. It is therefore less constrained by the a priori information and the

new parameterization has less impact in these regions. The second mode follows a thin line representing the difference between

11



the two a priori slopes. This mode contains profiles where the a priori has the major influence in determining the lidar ratio

e.g. profiles with lidar measurements alone. The uncertainty in the retrieval of the lidar ratio as well as the influence of the a

priori information in these regions could be further reduced using additional sensors such as IR or/and visible radiometers.

4.2.2 IWC retrievals

These differences in lidar ratio can impact the ice water content via the visible extinction. Differences in log10(IWC) dis-5

tribution are shown in Figure 7. As expected, changing the configuration only impacts IWC below 10−1 g m−3. Indeed, we

expect IWC above this threshold to be found in the lower parts of the clouds, where only the radar can provide measurements

and therefore the impact of the lidar ratio a priori can be neglected. The global distribution of log10(IWC) is shifted towards

lower values, and the lower the IWC, the more differences can be seen.

A more detailed comparison is made in Figure 8. It is clear that IWC tends to increase with temperature as well as its10

variability (Figure 8, a). For lidar-only pixels, information is mainly available at temperatures below −40 ◦C (Figure 8, b). In

most cases, the lidar is strongly attenuated when it penetrates deeper in the cloud to reach higher temperatures. Low level ice

clouds can be detected by the lidar but only if the attenuation is not too strong in the higher levels, which is the case for only

a minority of the cloud scenes detected by the CloudSat-CALIPSO instruments. In cold regions detected by the lidar alone,

IWC values range from 5× 10−4 g m−3 for temperatures below −80 ◦C to almost 10−1 g m−3 around −60 ◦C. Radar-only15

pixels can be found for temperatures above −50 ◦C where IWC from 10−3 g m−3 to 1 g m−3 can be observed, especially in

the warmest regions where T > −20 ◦C (Figure 8 c). Finally, synergetic areas are found in between those two regions (Figure

8 d). When looking at the difference between V2 and V3 (Figure 8 e-h), red areas indicate that more pixels from V3 were found

to fit in the corresponding [IWC −T ] range than from V2. On the contrary, in blue areas, there are fewer pixels from V3. One

can see again that the distribution is shifted towards lower values of IWC no matter where in the cloud and which instrument20

is available. However, the difference is the strongest at the coldest temperatures (<−40 ◦C) which is where we find most

of the lidar-only pixels and where the difference between the two lidar ratio a priori relationships is the largest. At warmer

temperatures, on the contrary, there is almost no change in the log10(IWC) distribution as the retrieval mainly depends on the

radar measurements. Following the behaviour of the lidar ratio, two modes can be distinguished in the distribution of relative

difference in IWC as a function of temperature (Figure 8 i-l). Most of the IWC retrievals present differences less than 25%.25

However, for temperatures between −50 ◦C and −70 ◦C, where most of the lidar-only pixels can be found, the discrepancies

vary between -40% and -50% in average.

4.3 Impact of the new microphysical model

The analysis of a more recent and larger in-situ dataset including bulk IWC measurements allowed the microphysical model

to be refined as explained in section 3.2. In this section, we show the consequences of this new parameterization in the IWC30

retrievals. To do so, the Varcloud algorithm was run using one after the other V2 and V3 LUT and N ′0 a priori, both associated

with the V3 lidar ratio a priori. In the same way as for the study on the new lidar ratio a priori, we can look at the differences

in the distribution of log10(IWC) (Figure 9). The impact of the microphysical model is more complex as its action occurs
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both in the radar forward model and at the end of the process when the IWC is retrieved from extinction and N∗0 thanks to

the 1D-Lookup table. Moreover, the interactions that may exist between the parameters that were refined (the PSD, M(D) and

N ′0 a priori) are likely to have different impacts on the retrieval depending on the physical and microphysical conditions of the

observed cloud region. As a result, we will not try to interpret here the differences observed between the two microphysical

configurations but describe how the retrieval is impacted.5

First of all, when looking at Figure 9, panel a), it seems that the impact of the new microphysics strongly depends on the

temperature, with an increase in the averaged retrieved IWC for temperatures below −40 ◦C and a decrease for temperatures

above −40 ◦C. When pixels are separated in different regions depending on the available instruments (lidar only, radar only or

both), it is clear that the impact of the new model is also very different for the two instruments: the increase in IWC observed

for the cold temperatures is associated with lidar-only pixels (panel b). On the contrary, radar-only pixels are marked by a10

shift of the distribution towards lower values of IWC (panel c). Where both instruments are available, the opposite effects

cancel each other out, which leads to almost no difference in the distribution of log10(IWC) in such regions (panel d). The

differences observed in the retrieved IWC in regions detected by the two instruments barely exceed 10% (panel h). On the

contrary, in regions where only one instrument is available, differences are observed between 0% and 40% for lidar-only pixels

(panel f) and between -40% and 0% for radar-only pixels (panel g).15

For pixels detected by the lidar only, two modes can be observed in the distribution of the differences between V2 and V3,

which overall leads to a decrease in the retrieved ice water path. The main mode is the thin red (strong occurrence) curved line

and accounts for profiles where only the lidar was able to detect a cloud. In such conditions, the extinction is retrieved using

the lidar measurement and the lidar ratio a priori. It is therefore completely independent on the microphysical model. The

normalized concentration number parameter N∗0 is then derived using the extinction and the a priori of N ′0. As a result, the20

retrieved IWC, derived using the extinction and the LUT, depends on the microphysical model in a deterministic way. This

curve is the direct translation of the difference between the two configurations into the relationship between visible extinction

and IWC as it is parameterized in the LUT. It also illustrates the strong dependency of the microphysical parameterization on

the temperature. The second mode presents smaller differences and accounts for the influence of radar measurements deeper

in the cloud profile, which balance the increase in IWC by their opposite effect. For radar-only pixels, the influence of the25

microphysical parameterization is more diffuse as it also plays a role in the iteration process through the radar forward model.

4.4 Conclusions regarding DARDAR-CLOUD new version

4.4.1 IWC retrievals

As a summary of all these modifications in the retrieval code, Figure 10 presents the difference between the new distribution

(V3) of retrieved log10(IWC) and the distribution of DARDAR-CLOUD V2 (panels a to d) as well as the relative differences30

in IWC between the two versions (panels e to h). The new version includes all the updates presented above. Also taken

into account is the update of CALIPSO Level 1 products (v4) consisting of the use of better ancillary data sets: a more

accurate DEM (Digital Elevation Model) and a new reanalysis product for the atmospheric variables (MERRA-2), which
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is shown to allow for more reliable CALIOP calibration coefficients. Information on this update can be found on the NASA

website at the following address: https://www-calipso.larc.nasa.gov/resources/calipso_users_guide/data_summaries/l1b/CAL_

LID_L1-Standard-V4-10.php

When comparing the two distributions of log10(IWC), we can see that the reduction in the number of retrieved IWC

pixels due to the new classification prevails in lidar (panel b) and lidar-radar areas (panel d). On the contrary, in regions where5

only radar measurements are available, more pixels are retrieved (panel c). Different features can be observed in the relative

differences distributions (e-h), which are the combination of the updates in the microphysical model that strongly modify the

retrievals in the radar-only regions and the impact of the new lidar ratio a priori, mainly affecting the lidar-only and lidar-radar

areas. In these areas, the influence of the new LUT is opposed to that of the lidar ratio a priori: the new normalized PSD

associated to the choice of the “Composite” mass-size relationship produces higher values of IWC when lower values of S10

tend to create lower IWC. It appears, however, that the influence of the lidar ratio prevails, visible in the two modes that

can be observed in panel f, similar to the ones discribed in section 4.2. The combination of all the modifications made on

the retrieval algorithm also seems to create larger differences, positive as well as negative, regardless of the pixel location.

However, the probability of occurence for such values is much lower than for the features previously described. The relative

differences shown here are calculated only where ice is detected by both configurations. It is in the synergistic areas that the15

highest probability is found for the smallest differences.

Figure 11 shows the global histogram of the relative difference in IWC between DARDAR-CLOUD V2 and the new version

(a) and the contribution of the different updates. This information was obtained by running the algorithm several times with a

different configuration. Each histogram is a comparison between two retrievals, processed with only one modification in the

algorithm: changing the version of the CALIPSO Level 1 product (b), the DARDAR-MASK classification product (c), the20

parameterization of the lidar ratio a priori (d) or the microphysical model (e). When each contribution is taken separately, it

can be seen that the highest percentage of occurrence is found for differences <5%. However, the combination of the new a

priori for the lidar ratio and the new microphysical model leads to an average reduction of -16% from DARDAR-CLOUD V2

to DARDAR-CLOUD V3. As said previously in section 4.1, the 18% of the data showing -100% difference accounts for the

evolution of the hydrometeors classification (Figure 11, a and c). The new updates on CALIPSO product can also modify the25

classification and the retrieval, although to a lesser extent. Indeed, more than 80% remain with differences <5% (Figure 11,

b). The largest differences are due to the impact of the new classification, which accounts for the broadening of the probability

density observed in Figure 10. This analysis shows that less than 10% of the data remain with differences <5%.

4.4.2 re retrievals

Particle size information is given in DARDAR-CLOUD via the retrieved effectif radii (re). re is defined as the ratio of IWC30

and αv:

re =
3IWC

2αvρi
, (8)
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with ρi the density of solid ice. Figure 12 shows the new distribution (V3) of retrieved re (panels a to d) and its difference

with the distribution of DARDAR-CLOUD V2 (panels e to h). The relative differences in re between the two versions is also

presented (panels i to l). Similarly to IWC, the effective radius tends to increase with temperature as well as its variability.

The influence of temperature is however stronger as the dispersion of the retrieved re is much smaller than that of the retrieved

IWC. The new parameterizations clearly impact the retrieved re: the entire distribution as a function of temperature is shifted5

towards larger values, reaching 140 µm in V3 for the warmest regions when in V2, the highest value of retrieved re was around

100 µm . This effect is due to the change of microphysical model which has the strongest influence on the retrieval of re. The

largest differences (between +20% and +40%) are found in the radar-only regions at the warmest temperatures. For pixels that

benefit from the combined influence of the two instruments, the impact of the configuration change is reduced (differences are

found between +5% and +25%).10

5 Summary and discussion

This paper gives an overview of the main characteristics of the DARDAR-CLOUD new version, describing the modifications

made on the Varcloud algorithm and their consequences on the retrieved ice water content. We have shown that the evolution

of the DARDAR-CLOUD forward model configuration and the DARDAR-MASK hydrometeors classification could lead to

differences in retrieved IWC of up to a factor 2 relative to the earlier release, regardless of the instruments available or15

the temperature range. These very large discrepancies, which are mainly the consequence of the new phase categorization,

represent 5% of the data used for this study. 90% of the IWC values show differences less than 50% with the old configuration.

The change in the microphysical model also affects the retrieved re everywhere along the temperature profile, with differences

ranging from 5% to 40%.

The new values in the parameterization of the lidar extinction-to-backscatter ratio a priori was shown to have little influence20

on the retrieved re. On the other hand, for IWC retrievals, they have more impact for temperatures below −40 ◦C and induce

lower IWC (up to -50% for the coldest temperatures) in every cloud region detected by the lidar. However, their impact is

significantly reduced by the new LUT which introduces opposite modifications in lidar-only regions. Radar-only regions are

mainly influenced by the modifications of the LUT and the a priori of N∗0 , which also reduce the values of IWC up to -40%

for the warmest temperatures. In synergistic areas, the combination of the two instruments seems to mitigate the impact of the25

modifications made in the microphysical model. Nevertheless, differences between -20% and 20% are also found in this region

between −60 ◦C and −20 ◦C. Overall, the new DARDAR-CLOUD version presents retrieved IWC values smaller by 20%,

leading to a reduction in the integrated ice water path (-24% in average).

Trying to find a simple parameterization of the lidar extinction-to-backscatter ratio was shown to be rather challenging and

uncertainties remain high, particularly in regions where synergies are not available. More work could be done on the sub-30

ject, adding radiometric instruments or looking at new instrumental platforms, such as the upcoming ESA/JAXA EarthCARE

satellite, whith a more sensitive radar and High Spectral Resolution Lidar which could help refine our analyses.

15



This sensitivity study was done to help us identify improvements to be considered in the new version that will be made

available at ICARE/AERIS data centre. Our approach here is to use information and datasets validated by the litterature to de-

termine the microphysical assumptions and study the sensitivity of our algorithm to those assumptions. Further improvements

are aimed at, relying on more in situ and satellite observations to make parameterizations and combination of instruments more

efficient benefiting from Calipso-CloudSat extension and EarthCare advent.5
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Figure 1. Linear regression on the probability density distribution of ln(S) as a function of temperature. The corresponding values of S in

steradian are also displayed. The result of the linear regression fit is represented in solid lines and the old a priori relationship in dashed

lines. Red and yellow dots are the median and first mode (respectively). The parameterization obtained with the retrievals from Garnier et al.

(2015) is also displayed for comparison (blue triangles)
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Figure 2. Look-up table parameters: the normalized PSD (DARDAR-CLOUD V2 is represented by the black dashed line and the new

parameterization, V3, is represented by the red solid line).

Table 1. Coefficients used in the parameterization of the a priori of S.

Version alnS blnS

V2 −0.0237 2.7765

V3 −0.0086 3.18

Table 2. Coefficients used in the parameterization of the a priori of N ′0.

Version x y b

V2 −0.090736 22.234435 0.61

V3 −0.095 21.94 0.67

Table 3. Mass-diameter relationships used in Varcloud.

M(D) = γDδ with M in gramms and D in cm

BFM (V2)
D 6 0.01cm 0.01<D 6 0.03cm D > 0.03cm

1.677.10−1D2.91 1.66.10−3D1.91 1.9241.10−3D1.9

Composite (V3) 7.10−3D2.2

21



Figure 3. Determination of the a priori of N∗0 : values of the coefficient of determination R2 for different values of b and values of the

coefficients for the best fit (a), result of the linear regression on ln(N ′0) for the entire dataset as a function of temperature (with b= 0.67) (b)

and corresponding N∗0 for different values of extinction (c).
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Figure 4. Comparison between the measured IWC (horizontal axis) and the retrieved IWC using different mass-diameter relationships (verti-

cal axis): “RETRIEVED” (Delanoë et al. 2014) (a), “BFM” (Brown and Francis 1995 and Mitchell 1996) (b), and “Composite” (Heymsfield

et al. 2010) (c)

Table 4. Parameters of the modified gamma shape used to approximate the normalized PSD.

Version αF βF

V2 −2 4

V3 −0.262 1.754

Table 5. CloudSat-CALIPSO observations used in this study.

Year Month Days

2008

January 01/01/2008; 02/01/2008; 03/01/2008

February 01/02/2008; 02/02/2008

June 01/06/2008; 02/06/2008

July 01/07/2008; 02/07/2008; 03/07/2008
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Figure 5. Comparison of DARDAR-MASK v1 and DARDAR-MASK v2 in terms of IWC retrieved using Varcloud (V2): histograms of

log10(IWC) (a) with the old version of DARDAR-MASK in dashed line and the new version in solid line, the mean of the distribution

of log10(IWC) as a function of temperature (b) for DARDAR-MASK v1.1.4 (dashed line) and DARDAR-MASK v2.1 (solid line), the

histogram of the relative difference IWCv2−IWCv1
IWCv1

between DARDAR-MASK v2 and DARDAR-MASK v1 (c) and the difference between

the two configurations in terms of number of pixels in each [T − log10(IWC)] bin for lidar-only pixels (d), radar-only pixels (e) and pixels

combining the two instruments (f).

24



Figure 6. Comparison of the retrieved lidar ratios for two a priori parameterizations: histograms of S (a) with the old a priori relationship

(dashed) and the new relationship (solid), probability density distributions of S as a function of temperature obtained when using the old

configuration (b-d) and the same results with the new configuration (e-g), probability density distribution of the relative difference between

the two lidar ratios obtained from the two different configurations at each retrieved pixel (h-j). The black line represents the a priori.
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Figure 7. Comparison of the retrieved IWC for two a priori parameterizations of the lidar ratio: panel a) shows the histograms of

log10(IWC) using the old (V2) a priori relationship (dashed) and the new (V3) relationship (solid). Panel b) shows the probability den-

sity distribution of each IWC retrieval relative to the other.

26



Figure 8. Comparison of the retrieved IWC for the V2 and V3 a priori parameterizations of the lidar ratio: probability density distributions of

log10(IWC) as a function of temperature obtained when using the new configuration (V3)(a-d), differences in the log10(IWC) distributions

in terms of number of retrieved pixels for each [log10(IWC)-T] bin (e-h), and finally the distribution of the relative difference between IWC

obtained with the new V3 lidar ratio a priori and IWC obtained with the old V2 configuration, IWC3−IWC2
IWC2

, as a function of temperature

(i-l). First column shows the distributions for all retrieved pixels, second column, for lidar-only pixels, third column, for radar-only pixels

and last columns for lidar-radar pixels.
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Figure 9. Comparison of the retrieved IWC for the two microphysical parameterizations presented in section 3.2 (but with the same lidar

ratio a priori). Panels a-d (e-h) correspond to panels e-h (i-l) of Figure 8, respectively.
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Figure 10. Comparison of the retrieved IWC between V2 and V3: same panels as for Figure 9.
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Figure 11. Histograms, in percentage of occurence, of the relative differences in IWC between V2 and V3 (a) and for every modification

made in the new version: CALIPSO v4 (b), DARDAR-MASK v2 (c), the new a priori for S (d) and the new Look-up table (e).
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Figure 12. Comparison of the retrieved effective radius (re) between V2 and V3: same panels as for Figure 8.
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