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Abstract. Simultaneous measurement of C2H6 and CH4 concentrations, and of the δ13C-CH4 isotope ratio is demonstrated 

using a cavity enhanced absorption spectroscopy technique in the mid-IR region. The spectrometer is compact and has been 

designed for field operation. It relies on optical-feedback assisted injection of 3.3-µm radiation from an Interband Cascade 

Laser (ICL) into a V-shaped high-finesse optical cavity. A minimum absorption coefficient of 2.8 × 10-9 cm-1 is obtained in a 

single scan (0.1 s) over 0.7 cm-1. Precisions of 3 ppbv, 11 ppbv, and 0.08‰ for C2H6, CH4, and δ13C-CH4, respectively, are 15 

achieved after 400 s of integration time. Laboratory calibrations and tests of performance are reported here. They show the 

potential for the spectrometer to be embedded in a sensor probe for in situ measurements in ocean waters, which could have 

important applications for the understanding of the source and fate of hydrocarbons from the seabed and in the water column. 

1 Introduction 

Methane (CH4) is the second most abundant anthropogenic greenhouse gas after carbon dioxide (CO2), but with a 25 times 20 

higher global warming potential. Monitoring and identifying the different sources of CH4 is therefore important, for the future 

climate projections. Among these sources, one can distinguish biogenic and abiogenic processes. Methane is mostly produced 

through biological processes, with the decomposition of organic matter under anoxic conditions. The abiogenic processes 

include biomass burning and thermal breakdown of organic molecules at high temperature in deep reservoirs. CH4 is the main 

component of natural gas, but heavier hydrocarbons (HCs) can also be present in natural gas such as ethane (C2H6) and propane 25 

(C3H8), depending on the gas origin. In addition the carbon isotopic composition of methane (δ13C-CH4 hereafter) differs 

between biogenic and abiogenic sources. While biogenic gas has high concentration of CH4 with respect to heavier HCs and 

a more negative δ13C-CH4 (typically from -60 to -90 ‰), thermogenic gas is characterized by a lower ratio of CH4/C2H6 and 

a less negative δ13C-CH4 signature (-50 to -40 ‰). The combination of these two measurements leads to a quite unambiguous 

identification of the origin of natural gas (Claypool and Kvenvolden, 1983). A significant part of earth’s HC reservoirs lies in 30 
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marine environments, at variable depth below the seafloor. Questions arise about their origin and fate, and notably about their 

contribution through leakage into the ocean. Such leakage contributes to the carbon balance of the oceans, to acidification after 

oxidation in the water column, and possibly to the atmospheric concentration of these HCs if gas flaring from the seabed 

reaches the ocean surface. Therefore it is important to document the origin and fate of methane and ethane present below the 

seabed and dissolved in the water column, for process understanding and for future climate and ocean acidity projections. 5 

Standard techniques for dissolved gas measurements usually rely on discrete sampling of the water column using Niskin 

bottles, followed by laboratory analysis. This method has the advantage of being simple and easy to setup, but it suffers from 

possible artefacts of the measurements due to outgassing of sample during the ascent (particularly for deep water samples). In 

addition, it offers a limited spatial and temporal resolution for probing the variability and mixing of water masses. Thanks to 

significant efforts in miniaturization of analytical instruments, from mass spectrometers (MSs) to optical techniques, in situ 10 

measurements of dissolved gas composition are today feasible (Chua et al., 2016; Grilli et al., 2018; Wankel et al., 2013). Due 

to the complexity and size of isotopic ratio mass spectrometers (IRMSs), today the application of in situ MS is limited to the 

measurement of the abundance of dissolved gas species, while the isotopic analysis is most often still performed in the 

laboratory. On the other hand, modern optical spectrometers can offer similar performance for determining isotopic abundance 

as MSs, while being more compact and easier to use for in situ operations. Cavity based techniques such as cavity ring-down 15 

spectroscopy (CRDS) and cavity enhanced absorption spectroscopy (CEAS) offer detection of a variety of species, 

multispecies detection, and the access to the isotopic signature of small compounds in gas mixtures (Kerstel, 2004). 

The optical feedback cavity enhanced absorption spectroscopy (OFCEAS) (Morville et al., 2003, 2014) used in this work, is a 

well-known technique belonging to the  family of CEAS and widely employed in trace gas detection and related fields (Butler 

et al., 2009; Grilli et al., 2014; Landsberg, 2014; Lechevallier et al., 2018; Richard et al., 2018; Romanini et al., 2006). It relies 20 

on the optical locking of the laser emission to a resonance mode of a high finesse optical cavity and it has already been 

demonstrated for distributed feedback (DFB) lasers, quantum cascade lasers (QCLs) (Gorrotxategi-Carbajo et al., 2013; 

Maisons et al., 2010), and interband cascade lasers (ICLs) (Manfred et al., 2015; Richard et al., 2016). In this work we report 

a novel application for the simultaneous measurement of C2H6, CH4, and δ13C-CH4, using an ICL radiation source in the mid-

IR region that could be applied to the in situ measurement of these compounds in seawater. 25 

2 Method 

The OFCEAS spectrometer (Figure 1) is composed of an ICL diode laser (from Nanoplus GmbH), an infrared polarizer 

(ColorPol MIR), two aluminum steering mirrors, and two photodiodes (PCI-2TE-4), all mounted on a stainless-steel optical 

cavity block. The V-shaped cavity (6-mm internal channel diameter) is composed of two 40-cm long arms, resulting in a free 

spectral range (FSR) of the optical cavity of 187.4 MHz. The cavity mirrors (Lohnstar Optics) have a reflectivity of 99.9584%, 30 

which provides a ring-down time (lifetime of the photons inside the resonator) of 3.20 µs  (~1km optical path length) in absence 

of intracavity absorption (i.e., if the cavity is filled with zero air). This design allows for feeding back to the laser only the 
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photons that are in resonance with the cavity, without any parasitic feedback, such as that from reflections off the entrance 

mirror. This modifies the laser dynamics, leading to spectral narrowing of the laser emission and forcing its oscillation to 

match the cavity resonance frequency (Morville et al., 2005). The optical feedback phase matching condition imposes that the 

laser is placed at a distance from the input mirror equal to an integer number of cavity-arm lengths (in this case equal to one). 

Fine phase adjustment and continuous phase lock is obtained by a piezo-electric transducer (PZT) mounted on one of the two 5 

injection steering mirrors. The phase error was retrieved by analyzing the symmetry of the cavity modes during the acquisition, 

as explained in (Morville et al., 2005).  The diode laser is stabilized in temperature and a current ramp is applied in order to 

produce a scan over a narrow frequency region (typically of a few tenths of nanometers, with a scanning rate of ~0.2 nm × 

mA-1 for ICL lasers) and to temporarily lock the laser emission to successive TEM00 longitudinal cavity transmission modes. 

The interest of the technique is to achieve high signal to noise ratio thanks to the narrowing of the laser emission and therefore 10 

to a more efficient power coupling to the high-finesse cavity. It also provides an intrinsically linear frequency scale fixed by 

the cavity geometry (FSR = c / (2 N n L)), where c is the speed of light, L the cavity arm length, N the number of arms and n 

the index of the media. The instrument is simultaneously recording the signal from the two photodiodes (before and after 

injection) in order to obtain transmission spectra that are subsequently converted to absorption units (absorption coefficients 

as a function of cavity transmission frequency or wavelength) using a measurement of the ring-down time performed at the 15 

end of each scan (Morville et al., 2014). This ring-down event is produced by rapidly switching off the laser emission, and 

acquiring the exponential decay of the light leaking out of the cavity. 

An OFCEAS spectrum acquisition covers more than 100 longitudinal cavity modes (0.7 cm-1) and is repeated at a rate of 10 

Hz. For a precise retrieval of the absorption profile, and therefore of the molecular density in the cell, the cavity is precisely 

temperature and pressure stabilized at respectively ~308.15 K and 30 mbar. The cell is heated by two resistive heating bands 20 

controlled via a PID regulation and a PT1000 sensor positioned at the center of the cell, glued on the stainless-steel block. A 

second PID loop is used for pressure regulation by acting on a solenoid proportional valve (FAS, Norgren Fluid Controls). The 

inner pressure in the optical cell is measured by a Wika, 0-250 mbar pressure gauge. The temperature and current of the laser 

and the temperature and pressure of the cell are controlled by a single electronic card developed by the company AP2E, which 

by means of a micro-processor, also ensures the fast acquisition of the two photodiode signals (340 kHz per channel). The 25 

cavity with the optical assembly, reported in Figure 1, is suspended by two vibration-isolation dampers and placed in an 

insulated aluminium casing. 

3 Spectral Region and Model Fit 

In the infrared region, two fundamentals bands are available for detecting CH4: the ν3 mode between 2800 and 3100 cm-1 and 

the ν4 mode from 1200 to 1300 cm-1. Several reasons make the ν3 transition more suitable for trace gas sensing, and notably: 30 

(1) ICLs are today available at this wavelength and they require less effort to cool compared to room-temperature QCLs; and 

(2) photodetectors have better sensitivity in this spectral region. For this work, the selected laser is centred at 3.325 µm and 

operates between 8°C and 12°C, allowing it to cover the spectral region from 3005.4 to 3009.2 cm-1. This region has been 
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selected to best accommodate the absorption intensities of the species to be detected at a specific range of concentrations 

(around 200 ppmv for CH4 and 30 ppmv for C2H6) and for the possibility to access the ‘best’ isolated absorption lines. For 

applications in dissolved gas measurements, the selected wavelength region offers access to water absorption lines, required 

for the characterization of the dissolved gas extraction system (Grilli et al., 2018).  

The selected absorption window reports a relatively large overlap of absorption features, requiring a rigorous optimization of 5 

the fit parameters. Here, a multi-component fit routine is used where line parameters (intensity, position, Lorentzian and 

Gaussian widths and the νVC parameter for collision-induced velocity change inducing a so called Dicke narrowing (Dicke, 

1953)) are fitted for each absorption transition using a speed-dependent Rautian profile (Varghese and Hanson, 1984). (some 

of the parameters are linked together between lines of the same species to reduce the number of degrees of freedom of the 

spectral fit procedure). A total number of 46 absorption lines are included in the fit, with 17, 3, 23 and 3 lines for 12CH4, 13CH4, 10 

C2H6 and H2O, respectively. In order to reduce the degrees of freedom of the fitting routine and allowing a real-time fit for 

each acquired spectrum, some of the parameters have been pre-optimized and fixed or linked together. The remaining free 

parameters are: 1) the spectrum position: the positions of all lines are linked together and only one parameter (which 

corresponds to the mode-shift) is used to adjust the fit with respect to the acquired spectra; 2) the four intensities of 12CH4, 
13CH4, C2H6 and H2O from which concentrations are retrieved, and all lines belonging to one of these molecules are fixed in 15 

relative intensity to pre-optimized values, with a single intensity scaling parameter for all of them; 3) the coefficients of the 

polynomial function for drawing the baseline of the fit (here corresponding to three parameters for a second order polynomial 

function); 4) one extra parameter can be added per optical fringes that the operator may want to fit. In this case we only have 

one optical fringe which has been identified between the output cavity mirror and the signal photodiode. The Gaussian and 

Lorentzian widths as well as the νVC parameter for Dicke narrowing are optimized line by line and then fixed to their optimum 20 

values. The total number of free parameters for the fit is 9 for a spectrum composed by 48 individual points. A typical spectrum 

is reported in Figure 2 for concentrations of 72 ppmv of methane and 20 ppmv for ethane in dry air. The temperature and 

pressure of the cell are 35°C and 30 mbar, respectively. The fit is optimized using an interlaced spectrum in order to increase 

the spectral resolution. The latter is obtained by slightly scanning linearly the temperature of the cavity (0.02 °C of excursion), 

which causes a shift of the cavity mode positions with respect to the absorption lines, due to the mechanical elongation of the 25 

cell together with a change in the refractive index of the gas sample. This interlacing is only used for fit optimization, while in 

normal operation the spectra are only composed by data points separated by the cavity FSR (187.4 MHz) with a total of 48 

fitted spectral points. The interlacing is computed by a custom Labview routine that recognize after how many consecutive 

spectra a complete scan of the cavity FSR is complete. The spectra are then homogeneously distributed within the one FSR 

span to originate the interlaced spectrum. For the spectrum of Figure 2 (experimental data: black and green lines), 200 30 

consecutive spectra are interlaced to achieve a resolution of 935 kHz. In the top panel of the figure, the 12CH4 and 13CH4 (red 

and blue spectrum, respectively) are the simulated spectra according to the HITRAN 2016 database (Gordon et al., 2017). This 

has been carried out for a clearer visualization of the line positions of the two isotopologues. A disagreement between 

experimental data and the HITRAN database was found for the two superposed lines of 12CH4 at 3008.39 cm-1, which are 
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16.5% weaker in amplitude in the simulated spectra with respect to the experimental data. The arrows indicate the best isolated 

absorption lines, which are used for calculating the isotopic ratio of methane (red and blue spectra) and the ethane concentration 

(green spectrum). Optical interference fringes are visible on the baseline, with the major fringe corresponding to the optical 

path between the output cavity mirror and the photodiode. Improvement in the photodiode alignment and the use of an 

additional spherical mirror at the cavity output for focusing the light into the detector (as shown in Figure 1) significantly 5 

decreased the amplitude of the optical fringe. 

The standard deviation of the fit residuals for the spectrum obtained with 72 ppmv of methane and 20 ppmv of ethane in dry 

air is 5.8 × 10-8 cm-1 for a single acquisition, which corresponds to a precision of 140 ppbv, 1.3 ppbv, 37 ppbv and 1.5‰ for 

12CH4, 13CH4, C2H6, and δ13C-CH4, respectively. For the determination of the precision of 13CH4, its natural abundance was 

taken into account. A contribution from small imperfections of the fit parameters is still present, since the standard deviation 10 

of the absorption baseline in absence of absorber (i.e. cavity filled with 30 mbar of zero air) is 2.8 × 10-9 cm-1 for a single 

acquisition. A more comparative way of describing the performance of the instrument consists of defining the figure of merit 

normalized by the square-root of the bandwidth of the measurement (10 Hz) and the number of spectral elements (48) (Moyer 

et al., 2008).  This leads to a figure of merit (Noise Equivalent Absorption Sensitivity, NEAS) of 1.28 × 10−10 cm−1 Hz−1/2 per 

spectral element without account for fit imperfections and 2.6 × 10−9 cm−1 Hz−1/2 per spectral element for a typical spectrum 15 

of 72 ppmv of CH4 and 20 ppmv of C2H6 in dry air. 

4 Results: The Performance of the Spectrometer 

The stable carbon isotopic ratio (δ13C) is normally expressed as a comparative measurement with respect to an international 

reference, in this case Vienna Pee Dee Belemnite (VPDB; for the Belemnitella Americana fossil carbonate). It is described by 

Eq. 1, in which R is the abundance ratio of each isotopologue in the sample material, and RVPDB the corresponding abundance 20 

ratio in the standard material. In the linear absorption regime, the number density of the molecule is proportional to the 

absorption and related to it via the absorption cross-section. Therefore, the retrieval of the isotope ratio with respect to a 

standard gas of known isotopic composition is relatively straightforward (Kerstel, 2004). The δ13C-CH4 gas standards used for 

the experiments are from Isometric Instrument and certified on the VPDB scale with an uncertainty of ±0.2‰. 
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Because of the complexity of the spectral fit and the discretization on the wavelength or frequency scale dictated by the cavity 

FSR, the position of the cavity modes with respect to one of the absorption lines affects the results of the fit.  This is due to 

small imperfections of the fit model relative to the real spectrum which is sampled by the cavity modes. As these move and 

trace out the real spectrum profile, the model spectrum defects translate into varying errors or biases of the fit parameters 

which are optimized to match the model to the data at each time. We thus observed a dependency of the retrieved line surfaces 30 

(areas underneath the absorption line) on the cavity mode positions with respect to the absorption features, which affects the 
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isotope ratio determination (also observed and discussed in Favier, 2017). The drift in the cavity mode position is mainly due 

to mechanical instability and temperature fluctuations. Pressure may also play a role: even if stabilized at ±10 µbar the sensor 

may experience drifts with respect to the absolute pressure due to, for instance, fluctuations of temperature. In order to 

compensate for these drifts, we locked the cavity modes position to the absorption lines position by dynamically acting on the 

cavity temperature. The aim of the lock is not to better stabilize the cavity temperature, but to acting on this temperature 5 

regulation in order to maintain the cavity comb always at the same position with respect to the position absorption lines and 

compensate for electronic drifts occurring on the circuit for reading pressure and temperature of the cavity. Figure 3 reports 

long term measurements for two situations: in red, where the temperature of the cavity is stabilized at 35 (±0.0015) °C and the 

cavity modes are free to move, and in black, where the cavity modes are locked by acting on the temperature setpoint (the shift 

reported corresponds to the MHz-size excursion of the cavity modes with respect to the absorption feature). Measurements 10 

were obtained by continuously flushing the cavity at a gas flow of 10 sccm (standard cubic centimeters per minute) with a 

sample containing 72 ppmv of CH4 and 20 ppmv of C2H6 in dry air. 

Without the locking of the cavity modes position we observed a drift of 20 MHz h-1 of the cavity modes, while with the servo 

loop a stabilization of the mode positions better than 620 kHz was obtained. In the unlocked dataset, a fluctuation in the 

temperature stabilization occurred around 17h30 local time, and the corresponding section of data has been removed for the 15 

analysis. The spectral fit was conducted for both situations and an Allan-Werle (AW) statistical analysis (Werle, 2010) was 

performed on the δ13C-CH4 signal (Figure 3). From the log-log plot, where the AW standard deviation (σAW-SD δ13C) is plotted 

against the averaging time (t), a tenfold improvement of the long-term stability was observed which translates into an extension 

of the optimum integration time of the system for the case of temperature locking of the cavity mode positions.  

Afterwards, the system was further improved with a better optimization of the fitting parameters and of the optical setup 20 

resulting in a reduction of the optical interference fringes. A second AW statistical analysis was therefore conducted on the 

simultaneous detection of δ13C-CH4, 12CH4, and C2H6 with the same experimental conditions as for Figure 3. More than four 

hours of continuous measurements were used to produce the log-log plot (Figure 4). At short times, the measurement is mainly 

dominated by white noise with the σAW-SD decreasing proportional to t-0.5. The optimum integration time corresponds to 400 s, 

reaching precisions of 0.08 ‰, 11 ppbv, and 3 ppbv for δ13C-CH4, 12CH4, and C2H6, respectively. For longer integration times, 25 

due to the rise of 1/f noise (drifts), the σAW-SD starts to increase, leading to a degradation of the precision. In order to fix the 

accuracy of the instrument at its optimal precision below 0.1‰ for the δ13C-CH4, injection of a standard gas with a known 

isotopic composition should thus occur every 400 s. This allows overcoming the instrumental drifts, and to maintain the 

accuracy of the measurement at about the same level of precision obtained at the optimum integration time. If not, instrument 

drifts will dominate with a degradation of the accuracy as reported and explained below. A comparison of the two statistical 30 

analysis for the δ13C-CH4 measurements (between Figure 3 and Figure 4) highlights how the improvement on the optical setup 

allowed to shift the entire AW curve to lower values (with a decreasing of the σAW-SD by a factor of four), however we could 

not obtain the long integration time as reported in Figure 3. This is probably due to the fact that the arise of frequency dependent 



7 
 

noise is dominated by others instabilities, limiting the best precision of the δ13C-CH4 to a value close to 0.1‰. Nevertheless, 

the benefit of the improvements is clearly visible, with the improved setup approaching the same precision than the previous 

one ten times faster. 

In Figure 5, the dependency of the isotopic ratio with the concentration of methane is reported. This dependency is not caused 

by isotopic fractionation due to the sample handling, but more probably related to the discretization of the spectra and the 5 

precise location of the measurement points with respect to residual optical fringes in the spectrum. The tendency is well 

reproducible, can be fitted with an exponential function and used for calibration propose. The same behaviour was also 

observed using the same technique but for H2O and H2S isotopic measurements (Favier, 2017; Landsberg, 2014), as well as 

with an instrument based on off-axis integrated cavity output spectroscopy (ICOS), as reported by Wankel et al., 2013. With 

a comparable amplitude variation of the absorption intensity, a similar effect (but less pronounced) was also observed with 10 

respect to C2H6 concentrations. By monitoring the carbon isotopic ratio of methane with and without 22.5 ppmv of ethane in 

the gas mixture, a difference on the δ13C-CH4 of 2.55 ‰ was observed. For this relatively small effect, a linear correction was 

applied.  

The reproducibly of the system was estimated by conducting three measurements per day during four days at two methane 

concentrations (9 and 90 ppmv in dry air). Before each measurement the system was completely switched off. No calibration 15 

using a standard gas was carried out before each measurement. Therefore, the resulting reproducibility corresponds to the 

intrinsic accuracy of the system affected by long term instabilities. Results are represented by the two histograms of Figure 5 

showing the reproducibility for δ13C-CH4, which is reported on a relative scale (i.e., with respect to an arbitrary reference 

value). At CH4 concentrations of 9 and 90 ppmv the isotopic ratio is retrieved with an accuracy of ±11.8 ‰ and ±2.9 ‰, 

respectively (both 1-σ). By injecting a standard gas before each measurement for calibration proposes, the accuracy at high 20 

concentrations should approach the expected precision of < 0.1 ‰ after 5 min of integration. 

For the purpose of further validating the stability of the system, long term measurements were made while regularly switching 

between two samples with different isotopic composition. The two standard mixtures that were used had a composition of 79.4 

ppmv of CH4, with a carbon isotopic composition of -54.5 ‰, and of 56.9 ppmv with δ13C-CH4 = -38.3 ‰ (with manufacturer 

certified uncertainties of ±0.2 ‰). The gas flow was fixed at 2 sccm and the standard gas samples were switched every five 25 

minutes during 3 hours using a manual three-way two-position valve. In Figure 6, the measurements of the carbon isotopic 

ratio are reported. Since the two samples had different CH4 contents, a correction following the curve reported in Figure 5 was 

applied in order to account for the dependency of δ13C on the CH4 concentration. The -38.3 ‰ sample was employed as the 

“known” standard gas, and the isotopic composition of the second sample was then retrieved. Drifts on the isotopic signature 

of only 0.6 ‰ were observed after 3 hours of continuous measurements (which is in agreement with the AW analysis). The 30 

response time of the instrument at 2 sccm gas flow is estimated to be 15 sec (single exponential), entirely attributed to the 

renewal of the gas sample in the measurement cell. The standard deviation of the raw measurement (at 10 Hz) is ± 1.9 ‰, 

while after averaging the results over 20 s (blue curve) the noise decreases to ±0.5 ‰. 
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5 Comparison with existing instruments 

Depending on the application, different instrumental developments with a focus on a particular analytical aspect were carried 

out in the past. For instance, the concentration range will vary depending on the application: a high-sensitivity to measure in 

the low concentration range is required for environmental sensing (e.g. atmospheric measurements, paleoclimatology), while 

moderate sensitivity is required to measure in the high concentration range for dissolved gas measurements is seawater, leak 5 

detection, and for oil and natural gas exploration. Some applications would require low sample volumes (such as ice-core and 

dissolved gas analyses). Finally, different constraints such as compactness, robustness, and power consumption, may play a 

role depending on the measurement strategy (laboratory, on site, or in situ measurements). For this propose, a non-exhaustive 

comparison with some of the existing techniques for measuring δ13C-CH4 is reported in Table 1. The comparison highlights 

similar performances, albeit for different conditions, with precisions on δ13C-CH4 below 1 ‰. Up to now, the best performance 10 

in terms of precision and the amount of sample required remains IRMS technique, followed by the CRDS system developed 

by Picarro (Phillips et al., 2013; Schmitt et al., 2014). The QCLAS system of Eyer et al., 2016 based on a multi-pass cell, the 

ICOS from Los Gatos Research (Wankel et al., 2013), and the work reported here are more suitable for high methane 

concentrations. Our development aims at the measurement of dissolved gas in seawater, and therefore was optimized for 

relatively high methane concentrations of ~100 ppmv, achieving precision on the δ13C-CH4 below 1 ‰ after 1 s. This 15 

development sets itself apart by its compactness and portability as required for in situ measurements. Moreover, thanks to the 

low volume of the measurement cell, a small amount of sample (< 1 cm3 of gas at STP) is required, making the spectrometer 

suitable for coupling to a membrane-based extraction system for in situ application in the water column under marine 

conditions. 

Conclusion 20 

In this work we presented a novel optical spectrometer, operating in the mid-IR region and based on the OFCEAS technique, 

for simultaneous measurement of C2H6 and 12CH4 concentrations, and the δ13C-CH4.  The spectrometer achieved a minimum 

absorption coefficient of 2.8 × 10-9 cm-1 over a single frequency scan (0.1 s) over 0.7 cm-1 at low levels of CH4 and C2H6 and 

5.8 × 10-8 cm-1 for a more typical gas mixture (72 ppmv of CH4 and 20 ppmv of C2H6). Precisions of 3 ppbv, 11 ppbv, and 0.08 

‰ for C2H6, 12CH4, and δ13C-CH4, respectively, were demonstrated for an optimum integration time of 400 s. A stability of ± 25 

2.9 ‰ for long term measurements of δ13C-CH4 was obtained without the need of regular injection of known isotopic 

composition standard gas. The latter is needed if an accuracy of the δ13C-CH4 measurement at the level of 0.1 ‰ is required. 

The dependency of the isotopic measurement on the composition of the gas mixture was characterized, with calibration curves 

for both CH4 and C2H6 concentration dependencies. The instrument has the required characteristics of compactness, precision, 

and time resolution to be coupled with a dissolved gas extraction system and to be integrated in an in situ sensor for 30 

continuously monitoring the dissolved gas composition in deep-sea and oceanic environments. A dissolved gas extraction 
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system similar to the one described by Grilli et al., 2018 will provide an adjustable dilution of the gas sample by adding a zero-

air carrier gas at the dry side of the extraction unit, therefore increasing the dynamical range of the sensor. 
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Figure 1 : Details of the optical setup with the laser injection and phase control (piezo mounted on the injection steering mirror 
assembly). The polarizer is tilted and its reflection used for acquiring the laser power spectrum before the cavity injection. At the 
cavity output, a spherical mirror is used to focus the light on the second (signal output) photodiode.  
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Figure 2 : (a) A combination of experimental interlaced spectra and spectra simulated using the HITRAN 2016 database at 30 mbar 
and 35°C. HITRAN profiles show the position of 12CH4 (red) and 13CH4 (blue) at 72 ppmv of CH4 in dry air. In green, the interlaced 
spectrum acquired with only 20 ppmv of C2H6 in dry air in the cavity. The full experimental spectrum containing absorptions from 5 
the three species is reported in black. There is a disagreement for the two superimposed lines at 3008.39 cm-1, with a line intensity 
discrepancy between experimental data and the HITRAN 2016 database of ~16% on the amplitude of the absorption lines (this is 
outside the reported HITRAN 2016 uncertainties on the cross sections that are between 2% and 5%). (b) An example of an OFCEAS 
spectrum (black circles) and the corresponding interlaced methane-ethane absorption spectrum and its residue (blue lines). At the 
bottom, the residuals of the OFCEAS spectral fit for one acquisition (0.1 s) and the baseline curve (red) (generated by the fit) are 10 
reported.  
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Figure 3. A comparison of the performance on the measurement of the δ13C-CH4 with (Black) and without (Red) the lock of the 
position of the cavity modes. Without the locking the temperature is stabilized at 35 ± 0.0015 °C and the mode position drifts of 
about 20 MHz h-1. By locking the mode positions by acting on the temperature setpoint, the mode positions are stabilized to 620 kHz. 
The advantage of the locking configuration is visible in the log-log plot, where the AW standard deviation of the δ13C-CH4 signal is 5 
shifted to slightly lower values, with a longer averaging-time stability. Both measurements were performed by continuously flushing 
the cavity with a 10 sccm gas flow of a synthetic air mixture containing 72 and 20 ppmv of CH4 and C2H6 in dry air, respectively.  
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Figure 4 : The Allan-Werle standard deviation for a four-hour time series of measurement with 73.7 ppmv of methane (black) and 
19 ppmv of ethane (blue) in dry air. The best integration time of the system corresponds to ~8 min and the achieved precision is 0.08 
‰, 11 ppbv, and 3 ppbv for δ13C-CH4, 12CH4, and C2H6, respectively. 
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Figure 5. Bottom panel: the dependency of the relative δ13C-CH4 on the CH4 concentration. Two upper panels: Reproducibility 
between discrete measurements made three times a day during one week for 9 and 90 ppmv of CH4 in dry air. Accuracies of ±11.8 5 
‰ and ± 2.9‰ (represented by the dashed lines) were obtained for the two concentrations (1-σ).  The instrument was not calibrated 
before each measurement using a gas standard. For high concentrations, such calibration would make the accuracy approaching 
the expected precision of 0.08 ‰ after 5 min of integration time.  
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Figure 6 : Long-term measurements obtained by repeatedly switching between two methane samples in dry air having different 
stable carbon isotopic composition. The two samples are diluted gas standards from Isometric Instrument with specified δ13C-CH4 
of -54.5±0.2‰ (79.4 ppmv) and -38.3±0.2‰ (56.9 ppmv).  
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Table 1. Non-exhaustive comparison between some of the existing techniques for measuring δ13C-CH4 

  Technique Precision on the δ13C-CH4 Remarks 

Eyer et al. 2016 

TREX-QCLAS (pre-concentration system 

coupled with a dual-QCL instrument with 

a multi-pass cell of 76 m) 

0.1 ‰ in 10 min (750 ppmv of CH4) 

Good performance at high concentration. It requires 

large gas volumes (0.5 L volume cell).Not adapted for 

application where low volumes of gas are available 

(e.g. ice-core, dissolved gases studies). 

Wankel et al. 2013 
ICOS (off-axis integrated cavity output 

spectroscopy), Los Gatos Research, Inc. 

0.8 ‰ in 5 min (>1000 ppmv of 

CH4) 

Proved for applications with small amount of sample 

(i.e. deep water measurements). Designed for high 

concentrations. 

Phillips et al. 2013 
CRDS (cavity ring-down spectroscopy), 

Picarro 
0.8 ‰ in 5 min (>1.8 ppmv of CH4) 

Designed for atmospheric measurements, it provides 

good reproducibility. Adapted to field measurements. 

Schmitt et al. 2014 
IRMS (isotope ratio mass spectrometer), 

IsoPrime 
0.15 ‰ (atmospheric samples) 

Best performances for low volume samples. Not 

adapted for field measurements. 

This work OFCEAS 0.1 ‰ in 5 min (72 ppmv of CH4) 

Designed for in situ measurements and for low 

volume measurements. Degraded performances at 

low concentrations (atmospheric samples) 

 

 


