
Author Response to request for major revisions 

We thank the reviewer and editor for their thoughtful input into improvements for this manuscript. In 

particular, going back to textbooks in multivariate analysis was helpful in improving vocabulary use in 

the manuscript. 

Below, we provide details and justifications for changes made to the manuscript in response to the 

concerns. The line numbers in the reviewer’s text refer to the version of the manuscript submitted to 

AMT on April 11 2019. Reviewer’s comments are in blue italics, author’s responses in black.  

This resubmission is accompanied by a revised pdf version of the manuscript, as well as a version that 

tracks the changes made. 

 

 

 

Reviewer: 

To give due consideration to this purpose of the manuscript, it is necessary to further relate the 

presented method to the existing literature. For example: 

• Gnanadesikan, R. (1977) Methods for Statistical Data Analysis of Multivariate 

Observations, Wiley. ISBN 0-471-30845-5 (p. 83–86) 

• Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. ISBN 978-0-262- 

01243-0 (chapter 5, 10) 

Please ensure that already established techniques are described using the proper technical terms where 

applicable. I would argue that the presented method to detect 22deg halos on TSI images is indeed a 

binary classification (as opposed to the statement on P16, L7) but based on statistical (multivariate) 

analysis rather than machine learning. However, there is considerable overlap between both fields 

(statistical analysis vs. machine learning), especially considering training and testing of the algorithm as 

well as the related technical terms. 

From my point of view, the following 3 major points have to be addressed before the manuscript 

can be published: 

(The following comments refer to the revised manuscript and the authors’ comments (AC) on the 

previous review, which are highlighted in blue.) 

1. Training and testing: state-of-the-art techniques exist for “training” and “testing” a classification 

algorithm (see e.g. Alpaydin 2010). The most important requirement is using a new dataset for 

testing the algorithm which was not used for training. The algorithm presented here seems to use 

the same data from March 2018 for both training and testing (cf. P13, L1-3). Please revise the 

manuscript and, if necessary, the presented method accordingly. 



AC: This impression of the reviewer is not reflective of the procedure used. Only a diminutive sample of 

observation vectors (order of 102) are taken from the 105 available observations vectors in March, less 

than 0.1%, which leaves >99.9% of all images in March as a testing set. The text has been amended as 

described below in the more detailed comments to better present this. 

2. Linear classification: the method of assigning a “sky type” or “ice halo score” presented in this study 

seems to be very similar to Fisher’s linear discriminant (Gnanadesikan, p. 83-86) or Linear Discriminant 

Analysis (LDA) (Alpaydin, chapters 5 and 10). Both use feature vectors weighted by the Mahalanobis 

distance and a threshold to assign new data to one of the classes (linear classification). Please discuss 

and add citations where appropriate. 

Moreover, please revise the manuscript using the correct technical terms which can be found in the 

literature (e.g. Alpaydin 2010): e.g. “(expandable) master table” probably refers to “training dataset”, 

which contains “feature vectors”. 

AC: 

There are quite a few textbooks on multivariate normal analysis, reaching back to the 1970s. The 

method was one of the first computer-based image analysis methods, used in facial recognition and 

expanded to a multitude of image classification problems, leading to a slew of publications on the 

method in particular contexts. A few references to theoretical and applied text books were inserted. 

Most applicable for this work is the reference to Flury and Riedwyl. As to nomenclature, the wording 

proposed by the reviewer is used in some of the references, not in others. We inserted the word 

“training set” where appropriate, and clarified the references to training sets as being specific for a class 

of images, all collected in a master table. We also use the word “class” for each targeted image property 

for which an image is analyzed, in addition to “observation vector” for a single property set. 

The described method does not represent a linear discriminant analysis. LDA would add another layer to 

include the definition of hyperplanes that divide the property space into cells for each class of images, 

and deliver yes/no answers for each image class investigated (4 photographic sky types, plus ice halo 

presence). The centroids of the classes have too much overlap for this to be a good approach. It is not a 

method we pursued. Rather, the described method assigns a continuous numeric score for each class, 

basically a probability density. For the PSTS, ten image properties are used. Comparing the four PSTS 

classes, the dominant skytype is assigned by the one with the highest probability – but that does not 

mean the other scores are valueless. Any post-processing decisions that set threshold values are not 

part of the algorithm itself. 

Much of the method description has been revised and reworded as appropriate.  

 

3. Sky type classification: the TSI images in this study were separated into the categories “Cirrostratus” 

and three levels of cloud fraction “Cloudy” (CLD), “Partly Cloudy” (PCL), and “Clear” (CLR), which were 

defined by their visual appearance. This method is different compared to previous studies, which used 

Lidar observations and a temperature threshold to identify ice clouds (Sassen et al. 2003 and Forster et 

al. 2017). Using a different method, makes it very difficult to compare the results (P15, L18-21). As stated 

in the previous review, I see the potential of this study especially in comparing the results to previous 



studies (and different locations). Therefore, the same criteria should be used to define the basic 

population of “cirrus clouds”. 

Furthermore, the choice of sky types does not seem to be very suitable for the described goal of this 

study: “With the goal of using these long-term image records to provide supporting information [to] the 

presence of smooth, hexagonal ice crystals in cirrus clouds from observations of 22deg halos , we 

developed an algorithm that assigns sky type and halo scores to long-term series of TSI images” (P16, 

L15-17). 

Although the majority of 22deg halos coincides with “CS”, a significant amount (44% for Jan and 38% for 

Feb) coincides with “Partly cloudy” and “Cloudy” skies (cf. Tab. 6 “% sky type of all halo instances”). So 

the sky type categories used here are apparently not a good indicator of whether the present clouds are 

able to produce a 22deg halo and are therefore not suitable for drawing conclusions about ice crystal 

microphysics in halo-bearing clouds in general. 

It is mentioned several times throughout the manuscript that the sky type classification of the images is 

used to infer information about the “presence of smooth crystalline habits among the cloud particles” 

(e.g. P15, L28-30). To answer this question, it would be necessary to identify ice clouds and separate 

them from other sky types including clear sky, as it was done in Sassen et al. 2003 and Forster et al. 

2017. 

Nevertheless, it is possible of course to draw conclusions from the frequency of 22deg halos in “CS” skies, 

but it has to be stated explicitly. In the citation above (P16, L15ff), the words “cirrus clouds” would have 

to be replaced by “CS”, for example. Cirrostratus is only a subcategory of Cirrus, as e.g. Cirrocumulus. 

Please address these concerns and revise the manuscript by accurately describing which sky type the 

results actually refer to when interpreting the results, drawing conclusions, and comparing them with 

other studies. Please explain in the manuscript the reasons for choosing these specific sky type categories 

and their merit for the goal of the study.  

AC response: 

The authors understand the concern about the sky type choices, in particular the concern that this 

manuscript does not include a coordination with LIDAR, IR, or other instrumental records that might 

support the assignments in particular of cirrostratus. The manuscript includes multiple statements that 

this algorithm must be complemented by other instrumental records to reach the stated goal of 

contributing to cirrus microphysics understanding, but perhaps it is prudent to be more specific in 

nomenclature. We describe an image analysis algorithm for TSI data, which uses the color-resolved 

radial brightness gradient and its accessories to assign a sky type based on data solely from the analysed 

area in the photographic record. The type of information in the brightness gradient is extensively 

described in section 2.3. It allows to distinguish four types of sky conditions clearly, namely types that 

closely resemble visually any of these: CS, CLD, PCL, and CLR. The reviewer makes the correct point that 

this is not sufficient for a conclusive call about the cloud types present at the image time, since neither 

altitude nor temperature information is included. In a paper that describes a technique to analyse 

photographic images, it is then prudent to specifically name these sky type assignments “photographic 

sky types” (PST). It seems to be a comfortable choice, since it is factually correct, based on the available 



record, self-contained in the stated algorithm, and will be helpful to consider at the time when other 

instrumental records may conflict with the PST.  

 

 

In the following, please find specific remarks to each of the four points summarized above: 

Specific remarks 

1. Training and testing: 

a. P13, L1-3: “The sections of the record in which visual and algorithm differed were inspected again, at 

which point either the visual assessment was adjusted, or the misclassified images were included in the 

Master table in order to train the algorithm toward better recognition.” Apparently, the March dataset is 

used for tuning the algorithm, i.e. for finding the classification threshold. This is not equivalent to testing. 

For the latter, the trained and tuned algorithm is tested against completely new data and should not be 

updated simultaneously. In order to avoid a bias in the assessment of the final classification quality of 

the algorithm, the final trained version should be applied to a dataset which was not used for training 

(cf. literature for state-of-the-art techniques). This implies that the training data set actually contains 80 

+ 44,026 images. Please address this point. 

AC: 

The text in Section 3 that describes the iterative training process has been revised to clarify the points 

misunderstood here. Out of the 44,057 images in March, only 31,398 are classifiable in terms of s PST 

and IHS. Out of these, each image can contribute up to four training sets (4 if all quadrant qualify, 2 if 

the sun is near to the horizon). This means, the month provides about 100,000 potential property sets to 

be used in training the algorithm. As you inspect tables 3 and 4, you will notice that the actual final 

training set for this manuscript contains between 93 and 188 training records for each scored class. So, 

to assume that the 100,000 quadrants of the images in March are all part of the training set is incorrect. 

In fact, the samples taken to train the algorithm are diminutive compared to the number of sets on 

which the algorithm was tested. Perhaps, the new wording clarifies this. 

b. P16, L11: “Further training is easy to incorporate via a master table which provides means and 

covariance matrices to the algorithm.” “Training” the algorithm presented in this study means finding a 

threshold that best separates the two classes. Adding new feature vectors to the “master table” is 

usually referred to as generating training data. 

AC: This passage has been amended already while working on other parts of this response. 

c. P13, L17: "Upon inspection of the numerical values for IHS, it becomes clear that `a cut-off is needed to 

assign an image with a label of halo/no halo. This cut-off value is arbitrary and dependent on factors 

such as w and C0, as well as the quality of the calibration. Our testing places it at around 4000 for the 

month of March.” Which values were used for the other months? To my understanding, training the 

algorithm should result in one threshold value which will be applied to the whole TSI dataset. The 

sentence highlighted above gives the impression that a separate threshold is determined for each month. 



In that case, it will require a lot of work tuning the algorithm for each month separately for this large 

dataset. Please clarify. 

AC: Understood. The threshold is not part of the algorithm. The algorithm assigns a continuous IHS to 

every quadrant, and the average to every image, as a number that can be below 10-10 or above 105, with 

fluid continuous change in consecutive images. The decision on where to place a cutoff is based on the 

behavior of the timeline. Halo images place a significant peak above a “forest” of low-level peaks. The 

discriminator is placed to exclude about 75% of the low-level peaks when data gathering for a count of 

halo incidences. The text has been amended to clarify this. Doing the actual long-term analysis does 

require a lot of work in the calibration alone, and in the final use of the PSTS and IHS output. That is part 

of the reason to present only four months in this manuscript. 

d. AC: Both, C0 and w are arbitrarily chosen, and are passed as a parameter as befits the question. The 

reference to w=4 images is specific for the day data in figure 5. For the evaluation in section 3, w=3.5 

minutes. This limits the time resolution for halo appearances to 3.5 minutes, but smooths out false halo 

singals encountered in the record for that month. The equation references have been corrected in the 

renumbering of equations. This should be explained in the manuscript since it affects the results for the 

mean duration of 22deg halos in Tab. 6. and the histogram in Fig. 8. If a different value for w is used for 

each day, the first bin (0-5 min) in Fig. 8 will be mainly subjected to the this choice (should actually be 4-5 

min?). Why is the choice of w changed? It should be constant throughout the analysis. 

e. P15, L2: “Due to the time-broadening applied via Eqn (16), the display time cannot be resolved below 3 

minutes.” P12, L20: “The broadening w in Eqn (16) was chosen as 4 images for this example,which means 

the Gaussian half width corresponds to 2 minutes.” See previous comment. Please double-check, is it 2, 3, 

3.5, or 4 minutes? 

AC: We apologize for the confusion. All presented data and figures have been corrected for a 

broadening of w=7 images (or 3.5 minutes), and the locations in the text have been modified 

accordingly. The comment referring to figure 8 is a little confusing. The broadening w does not vary by 

day. The lowest bin (0 to 5 min) appears to be correctly labeled, since the bin size in the histogram is 5 

minutes. The fact that this bin is influenced by the broadening is discussed in the text. 

2. Linear classification: 

a. P10, L22 “An image IHS and STS are assigned as the average over all scoring quadrants.” How were 

the results calculated for each individual quadrant in Tab. 6? By a linear combination as for the Linear 

Discriminant Analysis? 

AC: All scores are computed for quadrants, thus each image first receives four individual quadrant 

scores. The image score is the average of the quadrant scores. The results in Table 6 simply use the 

quadrant scores themselves which are computed using the method described in detail in this 

manuscript. The word “scoring” in this quote refers to the fact that some quadrants may be excluded 

from the averaging since they may not have had a valid score in a class (low sun, over exposure, bird on 

mirror, too low value for F, etc). No changes were made to the manuscript in response to this question.  

b. P16, L7: “The algorithm presented here for TSI data […] does not characterize halos in a binary 

decision, but rather assigns a continuous ice halo score to an image [...]” The presented algorithm does 



classify halos in a binary decision after computing the score. This is true for other classification 

algorithms as well, e.g. for the random forest classifier. Please correct this statement. 

AC: The statement is correct as it is written. Some of the changes made in response to earlier comments 

do elaborate on this. 

3. Sky type classification: 

a. P15, L18-21: “For example, in January we found that 9 % of all cirrostratus skies were accompanied by 

a 22deg halo. In the data for April, this fraction increased to 22% of all cirrostratus skies. We also have 

registered halos for a portion of partly cloudy skies, and for cloudy skies. No halos have been registered 

in any of the clear skies. This is certainly consistent with the observations of Forster et al (Forster et al., 

2017).” The reference of the last sentence “this is certainly consistent with the observations of Forster et 

al” is not quite clear. Does it refer to “No halos have been registered in any of the clear skies” or 22% of 

all cirrostratus skies show halos? If the comparison refers to the fraction of cirrostratus skies 

accompanied by a 22deg halo, this statement is not correct. Sassen et al. 2003 and Forster et al. 2017 

use Lidar data (and a temperature threshold) to identify clouds dominated by ice crystals. So even 

though the resulting numbers are similar for April, the population is different. 

AC: the direct numbers to which this sentence referred were placed a couple of lines above. They have 

been moved to a better position, and the sentence has been modified accordingly (P15 L28ff). The 

reviewer correctly reiterates that we are comparing a photographic record to a Lidar-verified record. 

Language to that extend has been inserted into the manuscript. 

b. A quantity that could be directly compared is the overall frequency of all 22deg halos with >=1/4. 

Could you provide a number? 

AC: The overall frequency of halos is given in table 6, for all sky types. The overall halo frequency varies 

between 3.9% of all images in January 2018 to 9.4% of all images in April 2018. Sassen et al. gives a 

number of 6% of time with a clear and bright 22 halo for the 10-year FARS record, but also indicates a 

fraction of 37.3% of time with any partial or weak indication of 22 halo. That is a very wide range to 

compare to. In addition, Forster noted that this particular statistics is sensitive to the binning interval. If 

1-h intervals are used, then the halo fraction may increase to 50%. A few sentences describing this were 

inserted into the manuscript P16 L5ff. 

Minor comments: 

• P15, L28-30: “One of the conclusion to be made from the relation between STS and IHS concerns the 

confidence in the presence of smooth crystalline habits among the cloud particles, as shown only in a 

one-fifth fraction of all cirrostratus.” Please clarify this sentence: what is the conclusion here? The 

average fraction of 22deg in CS sky types amounts to 16.25%, i.e. rather 1/6 than 1/5. 

AC: This sentence seems to be from an earlier version of the manuscript. The described location 

contains a significantly more detailed description of the observed halos in CS skies, as given by reviewer 

comment 3a above. 

• AC: “[…]I have not been able to visually and reliably discriminate parhelia in any TSI image. An 

algorithm specifically for parhelia was therefore not attempted. With the separation into quadrants, any 

existing parhelia would form right on the boundary between top and bottom quadrant, and basically 



average into the radial intensity of this quadrant. […] The top quadrants, if not overexposed, may give 

halo signals. But again – parhelia can not be visually distinguished in those images. It would be worth 

adding a short sentence to the manuscript, describing that 22deg parhelia could, in principle be mis-

classified as 22deg halo, but due to the coarse image resolution and low brightness, they have not been 

detected so far in the TSI images. 

AC: Inserted a comment to this effect on P3,L29 

• P7, L17 ff: Was the image distortion accounted for in addition to the coordinate transformation in Eq. 

9? If it was assumed negligible, this should be stated in the text and expected errors could be cited from 

Long et al. (cf. Fig. 5) 

AC: This correction was found to be small, and not to significantly disturb the finding of the solar 

position. It has been omitted. Text of the manuscript was adjusted accordingly (P7 L30) 

• Long et al. appears twice in the references. 

AC: corrected. 

• P7, L17: plain -> plane 

AC: Typo was corrected. Thanks. 

• P12, L27: 44,026 images vs. Tab. 6 44,057 images 

AC: The record of month March 2018 contains 44057 images. P12,L27 was corrected. 

• Table 5: It seems that the attempt was made here to combine two tables into one. I would suggest 

limiting the table to the assessment of the algorithm compared to the visual inspection, which has to be 

assumed as “ground truth” here. That means the table should express only the second part of the 

sentence: “86 % of all algorithm CS skies also identify as CS if inspected visually”. The first part of the 

sentence would focus on assessing the visual classification of the images against the algorithm, which is 

not the primary interest here. If the authors consider both results equally important, I would suggest 

separating the results into 2 tables. 

 

AC: The table has been split into two segments, according to reviewer suggestion 
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Analysis Algorithm for Sky Type and Ice Halo Recognition in All-Sky 

Images 

Sylke Boyd, Stephen Sorenson, Shelby Richard, Michelle King, Morton Greenslit  
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Correspondence to: Sylke Boyd (sboyd@morris.umn.edu) 5 

Abstract. Halo displays, in particular the 22 halo, have been captured in long-time series of images obtained from Total Sky 

Imagers (TSI) at various Atmospheric Radiation Measurement (ARM) sites. Halo displays form if smooth-faced hexagonal 

ice crystals are present in the optical path. We describe an image analysis algorithm for long-time series of TSI images which 

identifies scores images with respect to the presence of 22 halos. Each image is assigned an ice halo score (IHS) for 22 halos, 

as well as a photographic sky type score (STSPST), which differentiates cirrostratus (CSPST-CS), partially cloudy (PCLPST-10 

PCL), cloudy (CLDPST-CLD), or clear (CLRPST-CLR) within a near-solar image analysis area. The colour-resolved radial 

brightness behaviour of the near-solar region is used to define the characteristic property spacesdiscriminant properties used 

for to classify STS photographic sky type and IHSassign an ice halo score. The scoring is based on distance from a region in 

that property space, usingthe tools of multivariate Gaussian analysis applied to a standardized sun-centred image produced 

from the raw TSI image, following a series of calibrations, rotation, and coordinate transformation.. A master table of 15 

characteristic properties allows continued training of the algorithmThe algorithm is trained based on a training sets for each 

class of images. Scores are assigned to the standardized sun-centred image produced from the raw TSI image after a series of 

calibrations, rotation, and coordinate transformation. We present test results on halo observations and photographic sky type 

for the first four months of the year 2018, for TSI images obtained at the Southern Great Plains (SGP) ARM site. A detailed 

comparison of visual and algorithm scores for the month of March 2018 shows that the algorithm is about 90% reliable in 20 

discriminating the four photographic sky types, and identifies 86% of all visual halos correctly. Numerous instances of halo 

appearances were identified for the period January through April 2018, with persistence times between 5 and 220 minutes. 

Varying by month, we found that between 9% and 22% of cirrostratus skies exhibited a full or partial 22 halo. 

 

Introduction  25 

Modelling and predicting the Earth’s climate is a challenge for physical science, even more so in light of the already observable 

changes in Earth’s climate system (Fasullo and Balmaseda, 2014; Fasullo et al., 2016; IPCC, 2013, 2014). Global circulation 

models (GCMs) describe the atmosphere in terms of a radiative dynamic equilibrium. The Earth receives solar shortwave (SW) 

radiation and discards energy back into space in form of terrestrial long-wave (LW) radiation. The radiation balance of the 
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earth has been subject to much study and discussion (Fasullo and Balmaseda, 2014; Fasullo and Kiehl, 2009; Kandel and 

Viollier, 2010; Trenberth et al., 2015). Global Circulation Models (GCMs) describe the influence of various parts of the earth 

system in terms of radiative forcing factors (Kandel and Viollier, 2010; Kollias et al., 2007). Clouds may restrict the SW flux 

reaching the surface, but they also influence the LW emissions back into space. While low stratus and cumulus clouds exhibit 

a net negative radiative forcing, high cirroform clouds are more varied in their radiative response, varying between negative 5 

and positive forcing depending on time of day, season, and geographical location (Campbell et al., 2016). The Fifth Assessment 

Report from the IPCC in 2013 (IPCC, 2013) identified ice and mixed clouds as major contributors to the low confidence level 

into the aerosol/cloud radiative forcing. The uncertainty in the aerosol/cloud forcing has implications for the confidence in and 

for the variance of the predictions of global circulation models (Fu et al., 2002; Trenberth et al., 2015). Closing the radiation 

budget of the Earth hinges on reliable cloud data (Hammer et al., 2017; Schwartz et al., 2014; van Diedenhoven et al., 2015; 10 

Waliser et al., 2009). Traditionally, cloud radiative forcing is modelled using a cloud fraction based on sky images (Kennedy 

et al., 2016; Kollias et al., 2007; Schwartz et al., 2014).  Cirrostratus clouds, lacking sharp outlines, pose a challenge to this 

approach (Schwartz et al., 2014). The uncertainty about the role of cirrus in the global energy balance has been attributed to 

limited observational data concerning their temporal and spatial distribution, as well as their microphysics (Waliser et al., 

2009). Cirroform clouds, at altitudes between 5000-12,000 m, are effective LW absorbers. Cloud particle sizes can range from 15 

a few microns to even centimetre sizes (Cziczo and Froyd, 2014; Heymsfield et al., 2013). Methods to probe cirrus cloud 

particles directly involve aircraft sampling (Heymsfield et al., 2013) and mountainside observations (Hammer et al., 2015). 

Ground- and satellite-based indirect radar and LIDAR measurements (Hammer et al., 2015; Hong et al., 2016; Tian et al., 

2010) give reliable data on altitudes, optical depths, and particle phase. Even combined, these methods leave gaps in the data 

for spatial and temporal composition of ice clouds. The analysis of halo displays as captured by long-term total sky imagers 20 

may provide further insight and allow to close some of the gaps.  

Optical scattering behaviour is influenced by the types of ice particles, which may be present in very many forms, including 

crystalline hexagonal habits in form of plates, pencils and prisms, hollow columns, bullets and bullet rosettes, and amorphous 

ice pellets, fragments, rimed crystals and others (Bailey and Hallett, 2009; Baran, 2009; Yang et al., 2015). Only ice particles 

with a simple crystal habit and smooth surfaces can lead to halo displays (Um and McFarquhar, 2015; van Diedenhoven, 25 

2014). Usually, this will be the hexagonal prism habit, which we can find in plates, columns, bullet rosettes, pencil crystals, 

etc. If no preferred orientation exists, a clear tell-tale sign for their presence is the 22 halo around a light source in the sky, 

usually sun or moon. More symmetry in the particle orientations will add additional halo display features such as parhelia, 

upper tangent arc, circumscribed halo, and others (Greenler, 1980; Tape and Moilanen, 2006). As shown in theoretical studies 

(van Diedenhoven, 2014; Yang et al., 2015), halos form in particular if the ice crystals exhibit smooth surfaces. In that case, 30 

the forward scattered intensity is much more pronounced as in cases of rough surfaces, even if a crystal habit is present. If 

many of the ice particles are amorphous in nature, or did not form under conditions of crystal growth- for example by freezing 

from super-cooled droplets, or by riming – the forward scattering pattern will be weaker, and similar to what we see for liquid 

droplets: a white scattering disk surrounding the sun, but no halo. In turn, roughness and asymmetry of ice crystals influence 
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the magnitude of backscattered solar radiation, thus influencing the radiative effect of cirrus clouds (van Diedenhoven, 2016). 

If the particles in the cirroform cloud are very small, e.g. a few microns (Sassen, 1991), diffraction will lead to a corona. We 

believe that a systematic observation of the optical scattering properties adds information to our data on cirrus microphysics 

and cirrus radiative properties. The authors observed the sky at the University of Minnesota Morris, using an all sky camera, 

through a five-month period in 2015, and found an abundance of halo features.  5 

There are a few studies pursuing a similar line of inquiry (Forster et al., 2017; Sassen et al., 2003).  

The study by Sassen et al (Sassen et al., 2003) showed a prevalence of the 22 halo, full in 6% and partial in 37.3% of cirrus 

periods, based on a ten-year photographic and LIDAR record of mid-latitude cirrus clouds, also providing data on parhelia, 

upper tangent arcs, and other halo display features, as well as coronas. The photographic record was taken in Utah, and based 

on 20-minute observation intervals; cirrus identification was supported by LIDAR. The authors found an interesting variability 10 

in halo displays, related to geographical air mass origin, and suggest that optical displays may serve as tracers of the cloud 

microphysics involved. Forster et al. (Forster et al., 2017) used a sun-tracking camera system to observe halo display details 

over the course of  several months in Munich, Germany, and a multi-week campaign in the Netherlands in November 2014. A 

carefully calibrated camera system provided high-resolution images, for which a halo detection algorithm was presented, based 

on a decision tree and random forest classifiers. Ceilometer data and cloud temperature measurements from radiosonde 15 

measurements were used to identify cirrus clouds. The authors report 25% of all cirrus clouds also produced halo displays, in 

particular in the sky segments located above the sun. The fraction of smooth crystals necessary for halo display appearance is 

at a minimum 10% for columns, and 40% for plates, based on an analysis of scattering phase functions for single scattering 

events (van Diedenhoven, 2014). While this establishes a lower boundary, it is correct to say that the observability of a halo 

display allows to conclude that smooth crystalline ice particles are present and single-scattering events dominate. The 20 

consideration of the percentage of cirrus clouds that display optical halo features allows therefore, upon further study, 

inferences about the microphysical properties of the cloud. This raises interest in examining existing long-term records of sky 

images. 

Long-term records of sky images have been accumulated in multiple global sites. The Office of Science in the US Department 

of Energy has maintained Atmospheric Radiation Measurement (ARM) sites. These sites, among other instruments, contain a 25 

Total Sky Imager (TSI), and have produced multi-year records of sky images. In this paper, we introduce a computational 

method to analyse these long-term records for the presence of halo displays in the images. We are introducing an algorithm to 

analyse long sequences of TSI dataimages. , andThe algorithm produces a time record of near-solar photographic sky type 

(PST), differentiated as cirrostratus (PST-CS), partly cloudy (PST-PCL), cloudy (PST-CLD), and clear (PST-CLR) sky types, 

as well as assign an ice halo score (IHS). The resolution and distortion of the TSI images restricts the halo search to the 30 

common 22 halo. Other halo features, such as parhelia, can occasionally be seen in a TSI image, but often are too weak or 

too small to reliably discriminate them from clouds and other featuresor 22 halos. If present they would be classified by this 

algorithm as part of a 22halo. Coronas are obscured by the shadow strip, and often also by over-exposure in the near-solar 
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area of the image. The algorithm offers an efficient method of finding 22 halo incidences, full or partial. Since ARM sites 

also have collected records of LIDAR and radiometric data, the TSI halo algorithm is intended to be compared to other 

instrumental records from the same locations and times. This will be addressed in future work. 

Section 1 describes the TSI data used in this work. Section 2 presents the details of the image analysis algorithm, including 

subsections on algorithm goals, image preparation, and sky type and halo scoring. Section 3 applies the algorithm to the TSI 5 

data record of the first four months of 2018, and examines effectiveness and types of data available for this interval. Summary 

and outlook are given in Sect. 4. 

1 TSI images 

Images used in this paper were obtained from Atmospheric Research Measurement (ARM) Climate Research Facilities in 

three different locations: Eastern North Atlantic (ENA) Graciosa Island, Azores, Portugal; North Slope Alaska (NSA) Central 10 

Facility, Barrow AK; and Southern Great Plains (SGP) Central Facility, Lamont, OK (ENA, 2018; OLI, 2018; SGP, 2018). The 

ranges and dates vary by location, as listed in Table 1Table 1. The images were taken with Total Sky Imagers, which consist of a 

camera directed downward toward a convex mirror to view the whole sky from zenith to horizon. A sun-tracking shadow band is 

used to block the sun, which covers a strip of sky from zenith to horizon. Images were recorded every 30 seconds. The longest series 

was taken at the Southern Great Plains (SGP) location, reaching back to July 2000. The images, in JPEG format, have been taken 15 

continuously during day time. Aside from night time and polar night, there are some additional gaps in the data, perhaps due to 

instrument failure or other causes. Camera quality, exposure, mirror reflectance, image resolution, and image orientation varies over 

time as well as by location. For example, an image from SGP taken in 2018 has a size of 488 by 640 pixels. The short dimension 

limits the radius of the view circle to at most 240 pixels. A pixel close to the center of the view circle corresponds to an angular sky 

section 2.8⁰ wide and 0.24⁰ tall. At SGP, the solar position never reaches this point. Close to the horizon, one pixels averages a sky 20 

section that is 0.24⁰ wide and 1.24⁰ tall. Best resolution is achieved at zenith angle 45⁰, in which case every pixel represents a sky 

region of 0.33⁰ by 0.33⁰. The image perspective distortion is largest for sky segments close to the horizon due to perspective distortions 

of the sky. We used a sampling of eighty images taken from across the TSI record and across all available years to define and 

train the algorithminitiate the training set (ENA, 2018; NSA, 2018; SGP, 2018). This included images visually classifiedidentified 

from the images as photographic sky types CS, PCLPCL, CLDCLD, CLRCLR, and halo-bearing. Descriptions of these PSTsky types 25 

are provided in Table 2. The 80 sample images were used to develop the algorithm and define a suitable set of characteristic properties 

for STS and IHS. This set will be referred to as seed images since they also initialize the master table described below. 
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2 Algorithm 

2.1 Goal and Strategy 

The algorithm aims to process very large numbers of images, and return information about the presence of 22 halos, as well 

as the general sky conditions. The program is written in C++ and uses the opencv library for image processing. If given a list 

of image directories, the algorithm proceeds to sequentially import, process, and score TSI images compared to training sets 5 

gleaned from representative images for each scored classresulting in a sky type score (STS) and an ice halo score (IHS). We 

define four classes of photographic sky types (PSTs), listed in Table 2, and a halo class. The factors that determine these 

choices are discussed in Sect. 2.3.1 and 2.3.3. The algorithm assigns a numeric photographic sky type score (PSTS) and a 

numeric ice halo score (IHS). For all image classes, sets of discriminant image properties have been defined which differ 

between ten distinct properties for PST classes, and 31 distinct properties for the halo class.  10 

Multivariate analysis is one of the standard methods in image analysis, applied in a wide variety of problems.In order to 

discriminate the sky types listed in Table 2, for example, or to single out the relatively weak halo signature from an image we 

use a multivariate Gaussian analysis. Numerous text books provide introductions to this method in theoretical background 

(Harris, 1975; Gnanadesikan, 1977), as well as in an application-oriented manner (Alpaydin, 2014; Alpaydin and Bach, 2014; 

Flury, 1988). A set of NP discriminant properties of the image is chosen, selected to be characteristic for a particular sky type 15 

or the presence of a halo. Let this set of properties be the observation vectorThis begins with the definition of a set of NP 

properties of the image, selected to be characteristic for a sky type or a halo. Let this set of properties be a vector 

 

𝑋 = {𝑥𝑖}𝑖
𝑁𝑝

 

(1) 20 

For each class, a training set is created. The training set is a set of Nt observation vectors for images that have been visually 

assigned to the class. A training set defines an ellipsoidal centroid in the property space of X, centred at the mean observation 

vector 

A master table is created from Nmaster images that visually exhibit the target feature, i.e. a halo or a clear sky. This set defines 

an ellipsoidal region in the property space of X. The region is centred at the vector of mean values 25 

𝑀𝑀 = {𝜇𝑖}𝑖=1
𝑁𝑃  

  (2) 

𝜇𝑖 =
1

𝑁𝑡𝑚𝑎𝑠𝑡𝑒𝑟
∑ 𝑥𝑖𝑘

𝑁𝑚𝑎𝑠𝑡𝑒𝑟

𝑘=1
 

(3) 

The centroid’s extend is described by the NP  NP covariance matrix 30 

Σ = (𝑋 − 𝑀)(𝑋 − 𝑀)𝑇 = (
𝜎11 𝜎12 …
𝜎21 𝜎22 …
… … …

) 
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The stochastic ellipsoid is described by the NP  NP covariance matrix 

Σ == 

 (4) 

with elements  

𝜎𝑖𝑗 =
1

𝑁𝑡
∑ 𝑥𝑖𝑘𝑥𝑗𝑘 − 𝜇𝑖𝜇𝑗

𝑁𝑡

𝑘=1
 5 

evaluated for the sets in the master table. The elements of the covariance matrix are computed as  

= 

(5) 

The observation vector of any further image X’ will then be referenced with M and  in form of a multivariate normal 

distribution 10 

𝐹 = 𝐶0𝑒𝑥𝑝 (−
1

2
(𝑋′ − 𝑀)𝑇Σ−1(𝑋′ − 𝑀)) 

The property vector of any further image Ximage will then be referenced with M and  in form of a multivariate normal 

distribution 

= 𝑒𝑥𝑝 

 (6) 15 

in which the quadratic form in the exponent is known as the square of the Mahalanobis distance in property space. The closer 

an image places to the centroid of a class, the higher its score Eq. (6) will be. The Mahalonobis distance is expressed in units 

of standard deviations, eliminating the influence of the units of the discriminant properties and the need for weights. It is 

interesting to note that the average Mahalonobis distance for a class is equal to the number of discriminant properties. The pre-

factor C0 in Eq. (6) is different for the photographic sky type scores (PSTS) and the ice halo score (IHS) since the 20 

dimensionality of the observation vectors for these two class types is different. It is chosen to place the values for 𝐹 into a 

convenient number range. The value 𝐹 for each class of images is akin to a continuous numerical probability that the image is 

located close to the centroid of this particular class. 

The algorithm is outlined in Figure 1, together with the respective references to this text. Both, M and -1, are computed a 

priori from the training sets via Eqs. (2) and (4). In order to score a time series of property vectors X, one only needs to import 25 

M and -1 for each class once at the start of the analysis run. The training sets for each class of images are started using the set 

of 80 images described in Sect. 1, and are expanded as needed. This allows to continually train the algorithm toward 

improvement of scoring. This basic algorithm structure is used on a standardised local sky map, described in 2.2. The details 

of PSTS and IHS will be described separately below. The code and accessories can be accessed at a GitHub repository (Boyd 

et al., 2018).in which the exponent is known as the square of the Mahalanobis distance in property space. The closer an image 30 

places to the region of interest, the higher its score will be. For the image properties we chose in STS and IHS computation, 

the elements of Ximage lie within one order of magnitude of each other. Hence, no weighing became necessary for this 
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application. In order to score a time series of property vectors Ximage, one only needs to import M  and -1 once at the start of 

the analysis run. Both, M  and -1, are computed a priori in a master table via Eqs. (2) and (4). We are using a spreadsheet for 

this purpose, allowing the addition of reference property vectors as more images are analysed. This allows to continually train 

the algorithm toward improvement of scoring. The pre-factor C0 in Eq. (6) is chosen later to place the values for F into a 

convenient number range. This basic algorithm structure is used on a standardised local sky map, described in 2.2. The 5 

algorithm is outlined in Figure 1, together with the respective references to place in the text in which the steps are described. 

The details of STS and IHS will be treated separately below. The code and accessories can be accessed at a GitHub repository 

(Boyd et al., 2018). 

2.2 Image preparations and local sky map (LSM) 

The goal of the image preparation is to create a local sky map centred at the sun, in easy-to-use coordinates, after a minimal 10 

colour calibration, and after extraneous image parts have been masked. The image preparations include the following steps: 

(1) a colour correction, (2) an alignment calibration, (3) a removal of the perspective distortion, (4) masking and marking of 

the solar position, and (5) rotation and crop to create a Local Sky Map (LSM). Some sample steps in the image preparation are 

illustrated in Figure 2. The figure includes the original image, the image after preparation step (4), and the LSM after 

preparation step (5). The two sample images in Fig. 2 were taken at the Southern Great Plains ARM site in March and April 15 

of 2018 (SGP, 2018). One of the images contains a solar 22 halo, the other one is a partly cloudy sky without any halo 

indications.  

Step (1) is a colour correction. Both original images in Fig. 2 have a slightly green tinge, which is typical for images from the 

TSI at this location, in particular after an instrument update in 2010. This is noticeable in particular if images are compared to 

earlier TSI data from the same location, and can become a problem for the planned analysis, in particularespecially for the use 20 

of relative colour values. Since the algorithm is intended for multiple TSI locations and records taken over long time, including 

device changes, it is necessary to consider the fact that no two camera devices have exactly the same colour response, even if 

of same type (Ilie and Welch, 2005). The colour calibration used in this algorithm is based on sampling of clear-sky colour 

channels to define weighed scaling factors for a whole series of images. Every pixel in a TSI image exhibits a value between 

0 and 255 for each of the three colour channels blue (B), green (G), and red (R).  The colour values represent the intensity of 25 

the colour channel registered for the particular pixel, varying between 0 (no intensity) and 255 (brightest possible). In a 

discoloured series, measurements of BGR were taken in clear-sky images (indexed CLRPST-CLR), and a scaling factor and 

weight for each colour channel defined based on this information: 

𝛽𝐵 = 1.00

𝛽𝐺 =
𝐺𝑟𝑒𝑓

𝐺𝐶𝐿𝑅
×
𝐵𝐶𝐿𝑅
𝐵𝑟𝑒𝑓

𝛽𝑅 =
𝑅𝑟𝑒𝑓

𝑅𝐶𝐿𝑅
×
𝐵𝐶𝐿𝑅
𝐵𝑟𝑒𝑓}

 
 

 
 

 with  (𝐵𝑟𝑒𝑓 , 𝐺𝑟𝑒𝑓 , 𝑅𝑟𝑒𝑓) = (180, 120, 85) 
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 (7) 

The reference values are based on colour values for clear sky images from the TSI records listed in Table 1Table 1. Near-

zenith, clear blue sky provides a reproducible colour reference in all the locations. Once these colour-scaling factors are 

determined for a series, every image was then tinted by generating an average colour (�̅�, �̅�, �̅�) for a small near-zenith sky-

sample and applying  5 

𝐵′ = [𝐵 + 𝛼(𝛽𝐵𝐵 − 𝐵)]

𝐺′ = [𝐺 + 𝛼(𝛽𝐺𝐺 − 𝐺)]

𝑅′ = [𝐵 + 𝛼(𝛽𝑅𝑅 − 𝑅)]

 

 (8) 

to each colour channel and pixel, respectively, followed by a simple scaling to preserve the total brightness of the pixel 𝐼 =

√𝐵2 + 𝐺2 + 𝑅2. For the series SGP 2018, these factors were  = (0.9, 0.78, 1) and =0.4. The coefficient  regulates the 

strength of the tinting such that =0 leads to no tint, and =1 produces an image of a single colour. This tinting is minimal, 10 

and linear colour behaviour is a reasonable assumption.  

Step (2) is a stretch-and-shift process that identifies the horizon circle. Occasionally, a slight misalignment of camera and 

mirror axis leads to an elliptical appearance of the sky image. A calibration is necessary in such cases to stretch the visible 

horizon ellipse to circular shape, and to centre the horizon circle as close to the zenith as possible. A north-south alignment 

correction may also have to be applied. Both calibrations will ensure successful identification of the solar position in the next 15 

step. These calibrations become necessary if the TSI was not perfectly aligned in the field. They need to be readjusted after 

any disturbances occurred to the instrument, such as storms, snow, instrument maintenance, etc. Typically, this can be once 

every few months, or sometimes several times per month. It is important to check the calibrations regularly by sampling across 

the series whether the solar position was correctly identified after calibration. In addition, the horizon circle is placed at a 

zenith angle smaller than 90, often between 85 and 79, to eliminate the strong view distortion close to the horizon, and in 20 

some cases, objects present in the view. As explained earlier, the zenith anglezenith angle resolution per pixel exceeds 1.2 

close to the horizon. The information value for a solar zenith angle (zenith anglesSZA) larger than 80 is diminished. These 

pixels are excluded from the analysis. Practically, this is a very thin ring cut from the original image but does help eliminate 

false signals at low sun angles. The current process requires to find these calibrations for a small sampling of images in a 

series, and to then apply them to all images in the series.  25 

Step (3) removes the perspective distortion. The projection of the sky onto the plaine of an image introduces a perspective 

distortion, as described in Long et al (Long et al., 2006). A coordinate transformation is performed to represent the sky within 

the horizon circle in terms of azimuth and zenith angleszenith angle. The azimuth is the same in both projections. Zenith 

angleZenith angle  relates to the radial distance 𝑟 in the original image from the centre of the horizon circle as 𝑟 = 𝑅 sin 𝜃. 

While R is not determined, image horizon radius 𝑅𝐻  and horizon zenith angle 𝜃𝐻  provide one known point to allow for 30 
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proportional scaling.  The coordinate transformation represents the sky circle in a way in which radial distance from zenith 𝑠𝑧 

scales with zenith angular coordinate zenith angle  as 

𝑠𝑧 =
𝑅𝐻
sin 𝜃𝐻

× 𝜃 

(9) 

Long et al. {Long, 2006 #180}(Long et al., 2006) discuss a further image distortion introduced by the particulars of the optics 5 

of the system of convex mirror and camera. The authors give an empirical correction curve for the SZA transformation. This 

correction is small; it has been omitted in this algorithm. One of the visible effects of this transformation concerns 22 halos: 

in the original TSI image, a halo appears as a horizontal ellipse; after the transformation it will have a shape closer to a circle.  

Step (4) identifies the solar position and masks non-sky details. The position of the sun is marked based on the geographical 

position of the TSI and the Universal Time (UTC) of the image. Extraneous details, such as the shadow strip, the area outside 10 

the horizon circle, the camera, and the camera mount, are masked. The centre panel of Fig. 2 shows the image produced by all 

these adjustments up to step (4). Since often the position of the sun is detectable in the image, the marked sun position serves 

to refine the calibrations described above.  

In step (5), the standardized local sky map (LSM) is created. A sketch of the layout of the LSM is provided in Figure 3Figure 

3. The LSM provides a standard sky section, centred at the sun, oriented with the horizon at the bottom, and presented in the 15 

same units for all possible TSI images (independent on the resolution of the original). Units of measurement in the LSM are 

closely related to angular degrees, but do not match perfectly due to a zenith-angle dependence of the azimuth arc length. The 

LSM is generated by rotating and cropping the image from step (4) to approximately within 40 of the sun, with the sun at its 

centre.  

The side length of the LSM in pixels scales with the previously determined horizon radius 𝑅𝐻 in pixels and the corresponding 20 

maximum zenith angle 𝜃𝐻 in  as  

𝑤𝐿𝑆𝑀(𝑝𝑖𝑥𝑒𝑙𝑠) =
𝑅𝐻(𝑝𝑖𝑥𝑒𝑙𝑠)

𝜃𝐻(𝑑𝑒𝑔𝑟𝑒𝑒𝑠)
× 40° 

(10) 

Equation (10) provides a unit transformation between pixel positions and LSM units. For a TSI image of size 480640 pixels, 

the LSM will have a size of approximately 240240 pixels. For the earlier, smaller TSI images, the LSM has a size of 25 

approximately 140140 pixels. The unit scaling includes the calibration choices 𝑅𝐻 and 𝜃𝐻, hence there is a slight variation in 

LSM side lengths. We eliminate the influence of the LSM sizes by performing all algorithm operations in standardized LSM 

units, which roughly correspond to angles of 1. In other words, all LSM are equivalent to each other in terms of their LSM 

units, but not in terms of pixel positions. At  = 45, the arc length of azimuth angle  is equivalent to the arc length of  of 

same size; however, if  > 45 the azimuth arc is stretched, requiring an additional horizontal compression to ensure 30 

equivalence of horizontal and vertical angular units. The LSM is divided into quadrants, shown in Figure 3Figure 3 3, which 

are analyzed and classified separately by the algorithm described in the next section. 



10 

 

2.3 Computing Photographic Sky Type and Halo Properties  

2.3.1 Average radial intensity (ARI) 

Halos, as sun-centred circles, are creating a brightness signal at a scattering angle of 22. We found it useful to analyse the 

radial brightness I(s) with s being the radial distance from the sun in the image plane, similar to the halo detection algorithm 

by Forster (Forster et al., 2017). The term intensity refers to the colour values of any of the colour channels, and varies between 5 

0 and 255. There is a physical reason for using I(s) in cloud PST and halo assessment. The presence of scattering centres in 

the atmosphere influences the properties of sky brightness in the near-sun sky section. A very clear atmosphere, for example, 

exhibits an exponential decline, but with relatively high intensity values in the blue channel due to Rayleigh scattering. In case 

of cirrostratus, the increased forward scattering of larger particles (in this case ice crystals) leads to a decreased gradient of 

radial brightness, with more evenly distributed intensities in the red, green, and blue channels. In a partially cloudy sky, we 10 

would find sharp variations in I(s), varying with colour channel. An overcast sky, on the other hand, may exhibit no decline in 

radial brightness, and will generally have low intensity values across all colour channels. A sketch of the LSM is given in 

Figure 3Figure 3 3. The radial intensity I(s) is computed using the colour intensity values of the image (0 to 255), separated 

by colour channel. The LSM is divided into four quadrants: TR = top right, BR = bottom right, BL = bottom left, TL = top 

left, analysed separately for quadrant scores, and then recombined for the image scores. The division into quarters allows to 15 

accommodate partial halos, low solar positions, and the influence of low clouds in partially obstructing the view to cirrostratus. 

The algorithm uses various properties of I(s) to assign numeric PSTS and IHS, as detailed below.  

The average radial intensity I(s) is computed as an average over pixels at constant radial distance s from the sun. Due to the 

low resolution of the LSM, and due to some noise in the data, we average I(s) over a circular ribbon with a width of 4 pixels, 

centred at s. Computing I(s) over a thin ribbon addresses issues encountered when averaging over a circle in a coarse square 20 

grid, allowing continuity where otherwise pixilation may interrupt the line of the circle. Figure 4Figure 44 shows the radial 

intensity of the red channel (R) in the bottom right quadrants of the LSMs featured in Fig. 2. Panel A includes I(s), a linear fit, 

as well as the running average 𝐼6, plotted versus radial distance s. The running average is taken as the average of I(s) over a 

width of 6 LSM units centred at s: 

𝐼6(𝑠) =
1

𝑁
∑ 𝐼(𝑠)

𝑠+3𝐿𝑆𝑀𝑢𝑛𝑖𝑡𝑠

𝑠−3𝐿𝑆𝑀𝑢𝑛𝑖𝑡𝑠
 25 

 (11) 

The clear-sky image exhibits a lower red intensity overall than the halo image. The halo presents as a brightness fluctuation at 

about 21 LSM units. The analysis of I(s) is undertaken in an interval between 15 and 26 LSM units, called the radial analysis 

interval (RAI). The RAI is marked in Figure 3Figure 3. A linear fit yields a slope and intercept value used for the STS. We 

define the radial intensity deviation as  30 

𝜂(𝑠) = 𝐼(𝑠) − 𝐼6(𝑠) 

 (12) 
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Panels B in Figure 4Figure 4 show (s) for both situations. The details of the halo signal in (s) contribute in particular to the 

computation of the IHS.  

2.3.2 Photographic Sky Ttype score (PSTS) 

Properties The training sets for the properties of I(s) were computed started for the set of 80 seed images mentioned in Section 

1. Twenty images for each sky type were divided further by sky quadrants, yielding between 60 and 80 property sets for each 5 

sky type to initiate the master tabletraining sets. Some quadrants were eliminated by horizon-near solar positions. These image 

training quadrants were used to apprise the utility of I(s)properties in making sky type assignments, with focus on the radial 

analysis interval (RAI) between 15 and 26 LSM units. The ten image properties used to compute the numeric PSTS are listed 

in Table 3. Also listed are the components of M their average values andtogether with their standard deviations as, computed 

from a later and more complete version of the master tabletraining sets. The ten image properties include the slope and intercept 10 

of the line fit to I(s) for each colour channel, where the slope characterizes a general brightness gradient, and the intercept 

gives access the overall brightness in the RAI. The line fit alone will not allow to differentiate partially cloudy skies from other 

sky types. However, the presence of sharply outlined clouds leads to a larger variation in intensity values, even for the same 

radial distance from the sun. The areal standard deviation (ASD) is an average of the standard deviation of I(s) for each radial 

distance s, averaged over all radii separated by colour channel. To set apart clear skies, the average colour ratio (ACR) in the 15 

analysis area is computed as  

𝐴𝐶𝑅 =  
𝐵2

𝐺𝑅
 
𝐵2

𝐺𝑅
 

(13) 

In Figure 5Figure 5, the PSTS property set is represented graphically, including means, standard deviations, and extreme values 

as observed in the master tablefor the completed training set. Clearly, no single property alone will suffice to assign sky typea 20 

PST reliably. There is overlap in the extreme ranges. Relations between the colour channels are influential, as well. We are 

using the mechanism described in Section 2.1, Eqs. (1) through (6). The training sets for each class are collected in a master 

table, where  computes the mean value vector M and , see Eq. (2), and inverse covariance matrix -1, see Eq. (4), for each sky 

typePST are computed. The mean values for M are given in Table 3, together with their standard deviations for the training set 

of images. As a new image is processed, its PSTS property vector X, Eq. (1), is computed for each sky quadrant. Subsequently, 25 

a numeric score is computed for each sky type using Eq. (6). The coefficient C0 in Eq. (6) is arbitrary. In thefor the PSTS 

computation, a value of is chosen as 103 was used for C0 which places a rough separator of order 1 between images that match 

closely a particular sky type, and those which do not. The raw values of Fimage in Eq. (6) vary greatly even between similar 

looking images, hence the PSTS is computed as a relative contribution between 0 and 100% for each sky type and each 

quadrant. For the CSPST-CS score this would mean: 30 

𝑃𝑆𝑇𝑆_𝐶𝑆 =
𝐹𝐶𝑆

𝐹𝐶𝑆+𝐹𝑃𝐶𝐿 + 𝐹𝐶𝐿𝐷 + 𝐹𝐶𝐿𝑅
× 100% 
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(14) 

and equivalent for all other PTS classes. This means, aA single image quadrant can carry scores of 45% for CSPST-CS, 35% 

for PCLPST-PCL, and 20% for CLDPST-CLD. The dominant sky type then is CSPST-CS for this quadrant, since it contributes 

the largest score. The PSTS for the image is assigned as the average over all quadrants. If the raw scores F for all PSTssky 

types were smaller than 10-8 the images quadrant is classified as N/A. It simply means that its properties are not close to any 5 

of the sky typePST categories. Such conditions may include overexposed imagesquadrants, horizon-near solar positions, a bird 

sitting on the mirror, and other conditions that produce images very different from the sky typesPST sought after. Also 

classified as N/A are quadrants in which the average radial intensity lies above 253 (overexposure), or contains a large fraction 

of horizon (bottom quadrants in low sun positions). A one-day sample of sky type data is shown in Figure 6, for 10 March 

2018. The day was chosen for its variability, including periods of each of the sky typesPST, as well as clearly visible halo 10 

periods. The central panel tracks the PSTS for all photographic sky types through the day, taken for all four LSM quadrants 

combined. It is important to note that the sky typePST only can be representative of the section of sky near to the sun. The 

white areas of 25 or 50 % are introduced when the solar position nears the horizon, eliminating the two bottom quadrants of 

the LSM from analysis. Some of the late-day images in Figure 6 contain quadrants that were eliminated due to overexposure. 

The white scattering disk around the sun near the horizon does not allow for analysis, exemplified in the sample image at 15 

22:53:00 UTC included in Fig. 6. For large portions of the day, the dominant sky types have been classified as CSPST-CS and 

PCLPST-PCL, and the images corroborate this. The 14:36:00 image shows a thicker cloud cover, and the algorithm correctly 

responds by increasing the CLDPST-CLD score. At 21:00:00, the algorithm indicates an increased CLRPST-CLR score, 

consistent with the visual inspection of the TSI image at the time. Given the simplicity and physical relevance of this 

photographic sky type assessment, we believe that this a radial scattering analysis around the sun has the potential to address 20 

some of the challenges that have been encountered using a simple photographic cloud fraction in radiation modelling (Calbó 

and Sabburg, 2008; Ghonima et al., 2012; Kollias et al., 2007). The variation in radial intensity gradient as scatterers are 

present along the optical path can provide an alternative assessment for the presence of cirroform clouds, solving problems of 

classifying near-solar pixels using a colour ratio and/or intensity value only (Kennedy et al., 2016; N. Long et al., 2006){Long, 

2006 #180}. That will be a direction to discuss and explore in the future.  25 

2.3.3 Ice halo score (IHS) 

The 22 halo is a signal in the image that can be obscured by many other image features, including low clouds, partial clearings, 

inhomogeneous cirrostratus, regions of over-exposure, and near-horizon distortions. The appearances of 22 halos span a wide 

variety of sky conditions, ranging from almost clear skies to overcast altostratus skies, with the majority of halo phenomena 

appearing in cirrostratus skies. The challenge to extract the halo from such a wide variety of sky conditions is formidable. 30 

While the statistical approach described in Section 2.1 will again form the core of the approach, the challenge shifts to defining 

a set of suitable discriminating properties of the image. In addition to the properties used in sky type assignment, the halo 

scoring must seek features in (s), Eq. (12), that are unique in halo images, such as a minimum followed by a maximum at 
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halo distance from the sun. The absolute values of (s) are dependent on various image conditions. Due to the variety of sky 

conditions, and variations in calibration and image quality, the values of maximum and minimum alone are not sufficient to 

reliably conclude the presence of a halo. We have found instances in which (s) does exhibit the halo maximum, but does not 

dip to negative values first. However, the upslope – crest – downslope upslope-crest-downslope sequence is consistently 

present in all cases of 22 halo. The halo search is undertaken for a sequence of upslope – crest – downslope in terms of radial 5 

positions and range of slopes. All three characteristics present clearly in the derivative of the (s), the radial intensity deviation 

derivative ’(s). This derivative of the discrete series (s) is approximated numerically by a secant methods as 

 

𝜂′𝑖 ≈
𝜂𝑖+1 − 𝜂𝑖−1
𝑠𝑖+1 − 𝑠𝑖−1

 

 (15) 10 

In Figure 7 7, both (s) and ’(s) are shown for the bottom-right quadrant of the green channel of the halo image in Figure 2. 

The sequence of radial halo markers is illustrated in Figure 7. The algorithm computes ’(s) and seeks the positive maximum 

and the subsequent negative minimum, plus the radial position of the sign-change between them. This produces a sequence of 

radial locations sup, smax, and sdown which basically outline the halo bump in width and location. There are often multiple maxima 

of ’(s) contained in the RAI. A halo image typically has fewer maxima than a non-halo image, but of larger amplitude. 15 

Therefore, the number of maxima as well as the upslope value ’up and down-slope derivative ’down join the set of halo 

indicators. If multiple maxima are found, the dominant range is used. Lastly, a radial sequence should be consistent across all 

three colour channels. The resolution of the TSI images only allows to resolve 0.4 to 1.2 with certainty; in addition variations 

in calibration and zenith angle SZA do influence deviations from the expected 22 position. The separation of colours observed 

in a 22 halo display is not resolved with statistical significance, therefore this was not used as a criterion for halo detection. 20 

The standard deviation of all three radial positions across the three colour channels was added to the halo scoring set of 

properties. We arrive at a set of 31 properties for the computation of the IHS, listed in Table 4, together with their means and 

standard deviations. The mean value vector M and the inverse covariance matrix -1 are computed in the master table and then 

imported by the halo searching algorithm for use in Eq. (6). The coefficient C0 in Eq. (6) is arbitrary. In the IHS computation, 

a value of 106 was chosen for C0 which places a rough separator of order one between image quadrants that do have a halo, 25 

and those which do not. While the individual scoring of individual images works very well for true halo images, it does trigger 

the occasional halo score for images that do not exhibit a halo. This may occur due to inhomogeneities in a broken cloud cover, 

or other isolated circumstances. These false halo scores often occur on isolated images. We utilize the factor of residence time 

of a halo to address this. In a 30-s binned series of TSI images, the halo will appear usually in a sequence of subsequent images, 

often in the order of minutes or even hours. We added a Gaussian broadening to the time series of halo scores Fi, taken at times 30 

ti with a broadening w 
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𝐼𝐻𝑆(𝑡) = ∑ 𝐹(𝑡𝑖) exp [−
(𝑡𝑖 − 𝑡)

2

2𝑤2
]

𝑡𝑖=𝑡+3𝑤

𝑡𝑖=𝑡−3𝑤

 

      (16) 

This de-emphasizes isolated instances, and enforces sequences of halo scores, even if they individually exhibit weak signals 

or gaps. This procedure reduced the false halo identifications significantly. Just as for the sky typePSTS, the training set for 

the IHS in the mMaster table is being complemented as more images are analysed. The raw halo score F is computed for each 5 

of the four quadrants of an individual image, their average is used to assign the raw score for the whole image. The broadening 

in Eq. (16) was chosen as w=4 7 images for the IHS in Figure 6throughout. The Gaussian half width corresponds thus, 

corresponding to 2 3.5 minutes. In Figure 6, tThe clear 22 halo between 19:00 and 20:00 UTC produces a strong IHS. There 

are a few weaker halo signals, and upon inspection of the images we find that these correspond to partial halos (like at 

17:07:00), or halos in a more variable sky.  10 

3 Results for January through April 2018 

We chose the record of the month of March of 2018 at the SGP location for a thorough comparison of algorithm results to 

visual image inspection, as well as an expansion of the training set. The complete month TSI record, starting at 1 March 2018 

0:00:00 UTC and ending at 31 March 2018 23:59:30 UTC, contains 44,026 057 images. Only 31,398 of were classifiable in 

terms of their PST. Exclusions occur due to large SZA, overexposure, or low PSTS. 15 

An imageThe algorithm and the current training set (starting with the eighty sets discussed above) is used to assign an image 

IHS and a set of four image PSTS, are assigned as the averageaveraging over all scoringthe quadrant IHS and PSTS valuess. 

Both of these score sets are continuous numerical values, resulting in a time-resolved scoring for all PSTS and IHS values as 

shown in Figure 6, across the month of March. In order to manage comparison to a visual classification of these images, and 

to learn how both score sets behave in terms of numerical values, the following two procedural steps are added in the post-20 

processing: (1) For the PST, the sky type with the maximum contribution is taken as the image sky type; (2) an IHS 

discriminator is used to assign a halo/no halo designator to an image. Upon inspection of the numerical values for IHS, it 

becomes clear that `a cut-off is needed to assign an image with a label of halo/no halo in the post-processing. This cut-off 

valueIHS discriminator is arbitrary, not part of the image analysis algorithm, and dependent on factors such as w and C0, as 

well as the quality of the calibration, and the quality and relevance of the training set. Our testing, minimizing false negatives 25 

and maximizing correct positives, places it at around 4000 for the month of MarchThe algorithm assigns a continuous IHS to 

every image as a number varying between 10-10 and 106, with fluid continuous change in consecutive images. The decision on 

the value of the discriminator is based on the behaviour of the timeline. Halo images generate a significant peak above a 

population of low-level peaks. The discriminator is placed to exclude about 75% of the low peaks when analysing for a count 
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of halo incidences. Our testing, minimizing false negatives and maximizing correct positives, places it at around 4000 for the 

month of March.. 

 Visual image classification for so many images poses a considerable challenge, which we approached in form of an iteration. 

For each of the 31 days of March, an observer assigned sky classifications to segments of the day by inspecting the day series 

as an animation. This can easily be done by using an image viewer and continuously scrolling through the series. Then, the 5 

day would be subjected to the algorithm. The sections of the record in which visual and algorithm differed were inspected 

again, at which point either the visual assessment was adjusted, or the samples of the misclassified images were included in 

the Master table in order to train the algorithm toward better recognitionadded to the training set. Adjustment to visual 

classifications often occurred at the fringes of a transition. For example, when a sky transitions from cirrostratus to altostratus 

to stratus, the transitions are not sharp. The observer sets an image as the point in which the sky moved from CSPST-CS to 10 

CLDPST-CLD, but the criteria in the algorithm would still indicate CSPST-CS. This can affect up to a hundred images at 

transition times, which then were reclassified. On the other hand, if a clearly visible halo was missed by the algorithm in form 

of a low numerical IHS, this would be a case for adding new property lines to the Master table in order to capture the particular 

conditionsa couple of new lines were added to the training set, selected from the few hundred quadrant cases in which this 

particular halo had scored low. The IHS discriminator is not part of the algorithm itself, but follows in the post-processing 15 

from the general behaviour of the IHS across the month. It is a tool to allow a comparison, but not an ultimate answer to halo 

strength. Halo strength could be assessed by the IHS. After each change in the Master tableto the training set, the algorithm 

would be repeated, and recalibrations to the visual record, as well as to the Master table itselftraining set were made. The 

process was repeated several times until no more gains in accuracy were observed. The training sets at the end of this process 

contained between 93 and 188 property records, of which up to 50% were taken from March 2018. Compared to the number 20 

31,398 of classifiable images in March (after exclusion of high-SZA, overexposure, and other), and considering that each of 

these images contributes up to four individual property sets, the number of training sets is indeed diminutive. These adjustments 

were done by SB.  

The resulting time lines for PSTS and IHS for the month of March are plotted in Figure 8. Many of the images exhibit strong 

indicators for multiple sky typesPST. The largest PSTS is used to assign a sky typePST to an image. The IHS was computed 25 

using a half width broadening in time of w=3.5 minutes, Eq. (16). As expected, the high halo scores coincide with strong 

CSPST-CS signals. Noteworthy is also, that there are a number of days in which CSPST-CS does not carry a 22 halo, indicated 

by very small IHS values.. Upon inspection of the numerical values for IHS, it becomes clear that `a cut-off is needed to assign 

an image with a label of halo/no halo in the post-processing. This cut-off value is arbitrary and dependent on factors such as 

w and C0, as well as the quality of the calibration. Our testing, minimizing false negatives and maximizing correct positives, 30 

places it at around 4000 for the month of March.  

In Table 5Table 5, visual and algorithm results of the sky type assignments are cross-listed for SGP March 2018. It is worth 

reminding the reader that sky types PST are assigned only for the radial analysis interval indicated in Figure 3Figure 3. Table 

5Table 5A uses the denominations %alg and %vis to distinguish two possible reference cases.lists the percentage of visually 
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assigned sky types that correspond to the algorithm-assigned PTS; B lists the percentage of algorithm-assignet PTS that also 

have been identified as a visual sky type. For exampleCS, 88%vis means that of all visual CS skies, the algorithm correctly 

identifies 88 % of all visual CS skies of casesas PST-CS (part A);. The number 86%alg means that 86% of the images classified 

as CSPST-CS by the algorithm also have been visually classified as CSCS (part B). Cloudy skies arePST-CLD is reliably 

identified by the algorithm. A small percentage (3%) of visual CLDPST-CLD skies trigger a PCLPST-PCL signal, mostly due 5 

to inhomogeneities in cloud cover. The algorithm classifies 95% of all visual CLRPST-CLR skies correctly. Differentiating 

between CSPST-CS and PCLPST-PCL is very successful. However, these two sky types pose some difficulties. For example, 

8.5% if visual CSPST-CS skies scored a CLRPST-CLR signal, and 10% of images classified as CSPST-CS were visually 

assigned a PCLPST-PCL sky type. In these cases we often found that the algorithm assignment might be more persuasive than 

the visual assignment – a visual assignment is a subjective call, and open to interpretation of the observer. Combined with 10 

image distortion and resolution limits, it is quite possible that the visual assignments carry a considerable uncertainty. Some 

of the visual CSPST-CS skies, for example, present to the eye as CLRPST-CLR, but reveal the movement of a thin cirrostratus 

layer if viewed in context of time-development (animation). Similarly, cirrostratus may present as an inhomogeneous layer in 

transition skies, triggering a PCLPST-PCL assessment in the algorithm. Low solar positions are prone to larger image 

distortion, which may lead to misinterpretation. It is worth noting that every image quadrant receives an PSTS for all classes 15 

of sky typesPST from the algorithm. In cases of mismatch, we often find that the two sky types at conflict both contribute 

significantly to the PSTS of the image quadrant. If the solar zenith angle is above SZA > 68, no sky typePST assignments 

were made. Most of the 397 CLRPST-CLR images that presented as CSPST-CS to the algorithm were taken at very low sun, 

with a significant over-exposure disk in near-solar position. Table 5Table 5 also lists a comparison of visual halo identifications 

with the algorithm scores. According to this assessment, the algorithm correctly calls 85 % of visual halo images, while not 20 

diagnosing 15 % of them. On the other hand, 12 % of all halo signals do not correspond to a halo in the image. One can 

improve the correct identification rate by lowering the cut-off score, on the cost of an increase in the signal from false 

identifications. Balancing the false positive and false negatives yields a reliability of about 12 to 14 %. Some of the false 

negatives arise from altocumulus skies, in which the outlines of cloudlets may trigger halo signals by their distribution and 

size. These are very difficult to discriminate from visual halo images. Some images were flagged with an IHS by the algorithm, 25 

and the presence of a weak halo revealed itself only after secondary and tertiary inspection of the image. Caution is advised in 

relying heavily on visual classifications of TSI images alone. The visual sky type and halo assignments themselves have an 

uncertainty due to subjectivity. While it is easy to distinguish a partially cloudy sky from a clear sky, this may become difficult 

for the difference between thick cirrostratus and stratus. Their visual appearances may be quite similar. Sometimes, an 

assignment can be made in context of temporal changes. Some clear-appearing skies reveal a thin cirrostratus presence if 30 

viewed in a time series instead of in an individual image. It is therefore a future necessity to combine the visual assignments 

of sky types with LIDAR data for altitude, optical thickness, and depolarization measurements to make an accurate assessment 

of the efficacy of the sky typePST identification, following closely the processes described by Sassen et al. (Sassen et al., 

2003) and Forster et al. (Forster et al., 2017). 
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We applied the algorithm to the TSI record for the first four months of 2018 for the SGP ARM site. It is worth noting that this 

paper is not intended to present a complete exploration of the ARM record concerning 22 halos. We are, however, including 

a demonstration of capacity of the algorithm presented here. Table 6 summarizes our findings. It lists the percentages for the 

four sky typesPST by month. A portion of the images has not been assigned with an PSTS. The conditions under which this 

occurs have been alluded todescribed earlier, and include horizon-near solar positions, images with over-exposure in the RAI, 5 

and images for which the raw PSTS for each sky type was numerically too low to be considered a reliable assessment. 

Therefore, sky typePST percentages refer only to all identified images. January and March exhibited a large fraction of clear 

skies. February was dominated by cloudy skies, while April registered a high percentage of CSPST-CS.  - however, oOnly a 

partial month of images was available for April. Sky typeCloud types depends strongly on the synoptic situation. That means 

that no further conclusions should be made from these data without expanding the data set. The 22 halo statistics in Table 6 10 

lists data on the 22 halo, including duration, number of incidents, and data on partial halos. The partial halo data are based on 

the individual quadrant IHS for an image, while the image score is used for duration and incidence information. The number 

of separate halo incidences counts sequences of images for which the IHS did not fall below the cut-off value of 4000. While 

it is worth noting that the number of incidences lies in the order of magnitude of the number of days in a month, it is certain 

that the halo instances are not evenly distributed. Figure 8 does demonstrate this behaviour. However, even on a day of 15 

persistent cirrostratus with 22 halo, interruptions of its visibility can occur. Sometimes low stratocumulus may obscure the 

view of the halo, sometimes the cirrus layer is not homogeneous. This may lead to a large number of separate halo incidences 

in a short time, while none are counted at other times. The mean duration of a halo incident lies between 16 and 34 minutes, 

depending on month. We listed the maximum duration found in each month as well. The longest halo display in the time period 

occurred in April 2018, with nearly 3.5 hours. Mean values are easily skewed by a few long-lasting displays. Figure 9 shows 20 

the distribution of 22 halo durations for the four months. The most common duration of a 22 halo lies between 5 and 10 

minutes, followed by 10 to 15 minutes.  Due to the time-broadening applied via Eq. (16), the display time cannot be resolved 

below 3 minutes. We consider the fraction of images in which a halo was registering. That marker varied between 3.9% for 

January and 9.4% for April.  In accord with findings in (Sassen et al., 2003), we find a low amount of halo display activity in 

January. However, this may be influenced by the large zenith anglesSZA for the sun in January. The closer the sun to the 25 

horizon, the more TSI images have been excluded from the analysis, and the stronger the influence of distortion.  

Occasionally, only partial halos will be seen, depending on positioning of the cirroform clouds and on obstruction by low 

clouds. The division of the LSM into quadrants allows to assess the possibility of fractional halos, as indicated in Table 6. The 

overwhelming portion of halo incidences shows full or 75% halo. This means that in four or three of the quadrants, the IHS 

has exceeded its minimum cutoffcut-off. Quarter halos have only rarely registered in the algorithm. Many of the half halos can 30 

be found for images taken close to sunrise or sunset. That explains their relative frequency in January and February.  

We started the project with the goal to find information on cirrostratus composition, in particular with respect to assessments 

of variation of smooth versus rough crystals. Forster et al (Forster et al., 2017) discuss that the necessary fraction of smooth 
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crystals for a halo appearance lies between 10% and 40%. The authors observe a 22 halo for 25% of all cirrus clouds for a 

2.5-year photographic record taken in Munich, Germany. The bottom part of Table 6 investigates the relation between sky 

type and 22 halo incidences. The first set of data in the Relations section of Table 6 gives the fraction of each sky type, as it 

produced a 22 halo incident. For example, in January we found that 9 % of all cirrostratus skiesPST-CS were accompanied 

by a 22 halo. In the data for April, this fraction increased to 22% of all cirrostratus skies PST-CS. We also have registered 5 

halos for a portion of partly cloudy skiesPST-PCL, and for cloudy skiesPST-CLD. No halos have been registered in any of the 

clear skiesPST-CLR. This The April data areis certainly consistent with the observations of Forster et al (Forster et al., 2017) 

who report. The authors observe a 22 halo for 25% of all cirrus clouds for a 2.5-year photographic record taken in Munich, 

Germany. Differences exist, however, in that the Forster observations verified ice cloud with LIDAR and IR measurements, 

while this current record compares to a photographically assigned sky type. However, wWe must consider reasons for the 10 

PCLPST-PCL and CLDPST-CLD halo incidences. Upon random sampling of these combinations we find the following: The 

PCLPST-PCL indicator has been assigned to images that have a highly varied cirroform sky, including halo appearances. In a 

few instances, low clouds triggered the PCLPST-PCL indicator, however, a CScirroform layer at higher altitude still 

contributed a halo score above the threshold. Many of the halo scores in CLDPST-CLD skies belong to images with an overcast 

appearance, however, most likely belong to a thickening and lowering cirro- or altostratus as often found in warm front 15 

approaches. These are not false signalsscores, but certainly conditioned by the limitations of the PSTsky type classification. 

The second set of numbers in Table 6 shows the fraction of all halos associated with the various sky typesPST. In January, 

49% of all halo incidences occurred in CSPST-CS skies, while in March this number was 87%. As for the overall frequency 

of halo displays, we can refer to Table 6, in which the observed halo frequency for all PST combined is listed. It varies from 

3.9% in January 2018 to 9.4% in April 2018. The closest comparison is the number given by Sassen et al. ({Sassen et al., 2003) 20 

who report a full 22 halo at 6% of the 10-year record of hourly images, while any halo feature was observed at 37.3 % of 

time. For such a comparison, Forster et al. (Forster et al., 2017) is cautioning that a statistics like this may strongly depend on 

the binning interval. 

  #189} 

With the halothis image analysis algorithm used on TSI images to identify the PST and the appearance of 22 halos, the next 25 

useful and logical step will be to relate these data to other instrument records: LIDAR for altitude, particle density, and particle 

phase (solid or liquid), photometric measurements to glean information on radiative flux. ARM sites have accumulated such 

instrumental data. The algorithm proposed here will make such data investigation possible. 

,  and delivers support for crystal identification.  

Finally, it is worth discussing the general approach of the TSI algorithm in comparison to the halo detection algorithm 30 

developed by Forster et al (Forster et al., 2017). Both algorithms utilize features found in the radial intensity 𝐼(𝑠), such as the 

sequence of minimum – maximum at the expected radial positions in order to find halos in an image. The random forest 

classifier approach described in (Forster et al., 2017) is a machine learning approach that arrives at a binary conclusion for an 



19 

 

image in form of halo/no halo. Their algorithm was trained on a visually classified set of images in order to construct a suitable 

decision tree. In addition to 22halos, the Forster algorithm also identifies parhelia and other halo display features in images 

taken by a high-resolution, sun-tracking halo camera. The algorithm presented here for TSI data must work with a much less 

specialized set of images, notably of lower resolution. It does not characterize halos in a binary decision, but rather assigns a 

continuous ice halo score to an image, in addition to photographic sky type scores for four different types of sky conditions. 5 

Similar to the Forster algorithm, the TSI algorithm also was trained on a visually classified set of images. For the algorithm 

presented here, further training is easy to incorporate via the master tablefurther training sets are easily added. Both algorithms 

have overlap. The TSI algorithm makes extensive use of the radial brightness gradient (slope) for the sky type assignments. 

The relation of this gradient to the physical presence of scatterers along the optical path makes this an attractive approach. 

4 Summary 10 

ARM sites have produced long-term records of sky images. We developed an algorithm that assigns sky type and halo scores 

to long-term series of TSI images with the goal of using these long-term image records to provide supporting information the 

presence of smooth, hexagonal ice crystals in cirrus clouds from observations of 22 halos. We described this algorithm in this 

paper, including the image preparation to generate a standardized image section centred at the sun, called the Local Sky Map 

(LSM). A multivariate analysis of selected LSM properties, as supported by a master table, allows the assignment of scores 15 

with respect to photographic sky type and 22 halo presence in the solar-near section of the sky. In particular, we focus on the 

properties associated with the radial brightness behaviour around the sun. Physically, the number and type of scattering centres 

in the atmosphere does influence the radial brightness gradient, thus giving us access to an assessment of cloud type and cloud 

cover. The brightness fluctuation associated with the 22 halo provides a further set of properties specific to the presence of a 

22 halo. We analyse all four quadrants adjacent to the sun separately, then combine the scores into a raw image score. For the 20 

ice halo score, we also apply a Gaussian broadening across the time series. The algorithm has been found to be about 90% in 

agreement with the visually assigned sky type, and 85% in agreement with the visually identified ice halo score. The application 

to the first four months of the TSI records from SGP ARM site indicates periods of halo displays, with a most common duration 

of about 5 to 10 minutes, but lasting up to 3 hours. It allowed to identify the fraction of cirrostratus skiesPST-CS skies that do 

produce halo displays, as well as find such data for other sky typesPST as well. In the future, the algorithm will be applied to 25 

deliver 22 halo data for the long-term TSI records accumulated in various geographical locations of ARM sites, and allows 

further investigation into correlations with other instrumental records from those sites. In particular, LIDAR data for altitude 

and optical thickness measurements, as well as depolarization analysis will be a useful combination with this photographic 

halo display record. It is reasonable to expect that the reference set for sky type determination will improve with the support 

of LIDAR data. The method described here may be suitable to expand to other types of sky analysis on TSI images. 30 
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Table 1. TSI data set properties. Seed images for the algorithm were taken from all three locations. 

Location Dates and times (UTC) 
Image 

interval 
Resolution (pixels) 

Southern Great Plains (SGP, 2018) 

36° 36′ 18″ N, 97° 29′ 6″ W 

2 Jul 2000 0:35:00 15 Aug 2011 01:17:30 30 s 288352 

15 Aug 2011 22:17:30 19 Apr 2018 01:02:00 30 s 480640 

North Slope of Alaska (NSA, 2018) 

71° 19′ 22.8″ N, 156° 36′ 32.4″ W 

25 Apr 2006 21:44:00 2 Nov 2010 21:31:00 30 s 288352 

9 Mar 2011 01:08:30 11 Apr 2018 18:59:30 30 s 480640 

Eastern North Atlantic (ENA, 2018) 

39° 5′ 29.76″ N, 28° 1′ 32.52″ W 

1 Oct 2013 08:13:00 28 May 2018 21:04:00 30 s 480640 
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Table 2. Sky Type descriptionsDescriptions of the photographic sky types (PST) 

Sky type Visual description 

Cirrostratus CSPST-CS Muted blue, no sharp cloud outlines; solar position clearly visible, bright 

scattering disk or halo may be present; changes are gradual and slow (several 

minutes) 

Partly 

cloudy 

PCLPST-

PCL 

Variable sky with sharply outlined stratocumulus or altocumulus; variations 

between sky quadrants; sun may be obscured; changes are abrupt and fast (less 

than two minutes) 

Cloudy CLDPST-

CLD 

Sun is obscured; low brightness; low blue intensity values; stratus, nimbostratus, 

altostratus, or cumulonimbus; changes occur slowly (order of hours) 

Clear CLRPST-

CLR 

Blue, cloud-free sky; sun clearly visible and no bright scattering disk around it; 

changes are slow (order of hours) 

No data N/A This may occur at low sun positions for the bottom quadrants of the LSM, or due 

to overexposure in the near-solar region of the image; it’s the default at night. 

 

  

Formatted Table
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Table 3. Discriminant pSTS properties used to classify the photographic sky type. , their aAverages, and standard deviations for the 

training set of each  sky typeclass are listed in the Master table. All units based on colour intensity values and LSM units. The sky 

type assignment is based on visual assessment the images. Number of records for each sky type is indicated in parentheses. 

PSTs property CSPST-CS (155) PCLPST-PCL (99) CLDPST-CLD 

(93) 

CLRPST-CLR 

(96) 

Slope a B  -3.0 1.5 

G  -3.2 1.7 

R  -3.6 1.9 

B  -1.6 2.2 

G  -1.6 2.2 

R  -1.9 2.6 

B  -0.7 1.7 

G  -0.7 1.7 

R  -0.8 1.8 

B  -2.3 1.6 

G  -2.8 1.6 

R  -2.8 1.7 

Intercept b B  276 34 

G  271 33 

R  255 48 

B  248 46 

G  240 53 

R  228 65 

B  193 40 

G  195 44 

R  179 47 

B  248 43 

G  233 47 

R  184 47 

ASD1 
B  13.1 5.3 

G  15.0 6.0 

R  16.6 6.6 

B  20.5 7.0 

G  22.9 7.7 

R  25.5 8.1 

B  14.2 5.0 

G 15.0 5.1 

R  15.8 5.6 

B  15.4 5.2 

G 16.3 5.3 

R  14.8 5.7 

ACR2 1.33 0.36 1.24 0.32 1.08 0.12 2.07 0.11 

1 Areal Standard Deviation; 2Average Colour Ratio 

 5 
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Table 4. Halo scoring propertiesDiscriminant properties used for the ice halo score. These 31 properties define the space in which 

an image is scored for a halo. The Aaverages and standard deviations given are from the master file and include 188 records from 

halo-containing sky quadrants, visually assessed.for a training set of 188 quadrant records are listed. All units based on colour 5 
intensity values and LSM units. 

IHS property B G R 

Slope a -3.3 1.5 -3.3 1.6 -3.8 1.8 

Intercept b 279 35 278 37 268 45 

ASD 12.6 4.7 14.8 6.0 16.2 6.4 

Maximum upslope ’up 2.1 1.3 2.1 1.4 2.5 1.6 

Maximum downslope ’down -1.6 1.0 -1.6 1.0 -1.8 1.1 

Upslope location sup 17.5 1.9 17.8 2.3 17.5 2.1 

Maximum location smax 18.9 1.9 19.1 2.3 18.8 2.1 

Downslope location sdown 20.0 2.1 20.2 2.4 19.9 2.2 

Number of maxima nmax 2.4 2.6 2.5 

BGR consistency 𝜎𝐵𝐺𝑅(𝑠𝑢𝑝) = 0.8 𝜎𝐵𝐺𝑅(𝑠𝑚𝑎𝑥) = 0.8 𝜎𝐵𝐺𝑅(𝑠𝑑𝑜𝑤𝑛) = 0.9 

ACR 1.20.3 
 

 

 

  10 
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Table 5. STS and IHS test results forAlgorithm versus visual classifications for  SGP March 2018. Visual assignments were made 

iteratively in step with the algorithm results as described in section 3. Given are the percentages of images of visual type that have 

been assigned an algorithm type (%vis), and the percentages of the algorithm type that correspond to a visual type (%alg).Part A 5 
shows the percentage of visual assignments corresponding to algorithm assignments; Part B shows the percentage of algorithm 

assignments and how they distribute among the visual assignments. For example, 88% of all visual CSCS skies are also classified as 

CSPST-CS by the algorithm, but only 86% of all algorithm CSPST-CS skies also identify as CSvisual CS if inspected visually. 

Agreement combinations in bold. IHS > 4000 to count an algorithm halo. 

A 
Percentage of visually assigned sky type compared which corresponds to algorithm-assigned PST 

CS PCL CLD CLR 

 N %  N %  N %  N % 

CSPST-CS 6675 8688  683 911  38 01  397 54 

PCLPST-PCL 182 32  5513 9186  176 3  191 32 

CLDPST-CLD 61 1  47 1  6129 9897  0 0 

CLRPST-CLR 641 68  136 12  0 0  10529 9395 

N/A 12597 (40% of all images) 

Percentage of visually assigned halos compared which corresponds to the algorithm assignment  

 22 halo  No 22 halo  

 N %  N %  

22 halo 1996 8885  272 12  

No 22 halo 349 15  41409 99  

 10 

B 
Percentage algorithm-assigned PST that which corresponds to a visually assigned sky type 

CS PCL CLD CLR 

 N %  N %  N %  N % 

CSPST-CS 
6675 

88

86 
 683 

11

9 
 38 10  397 45 

PCLPST-PCL 
182 23  5513 

87

91 
 176 3  191 24 

CLDPST-CLD 
61 1  47 1  6129 

97

98 
 0 0 

CLRPST-CLR 641 86  136 21  0 0  10529 9593 

N/A 12597 (40% of all images) 

Percentage of algorithm-assigned assigned halos corresponding which corresponds to a visual assignment  

 22 halo  No 22 halo  

 N %  N %  

22 halo 1996 8588  272 12  

No 22 halo 349 15  41409 99  
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Table 6. Sky typePST assignments and 22 halo formations during the months of January through April 2018, SGP. Percentages 

are with respect to all classifiable images. Times are UTCTUC.  5 

 Jan 2018 Feb 2018 Mar 2018 Apr 20181 

total number of images 36632 36011 44057 27741 

Number with valid STSPST 21238 23604 31398 20436 

begin date of record 1 Jan 2018 

13:47:00 

1 Feb 2018 

13:36:00 

1 Mar 2018 

0:00:00 

1 Apr 2018 

0:00:00 

end date of record 31 Jan 2018 

23:50:00 

28 Feb 2018 

23:59:30 

31 Mar 2018 

23:59:30 

19 Apr 2018 

1:02:00 

S
k
y
 

ty
p
es

P
S

T
 CSPST-CS 20 % 18 % 25 % 34 % 

PCLPST-PCL 24 % 24 % 19 % 19 % 

CLDPST-CLD 11 % 33 % 20 % 25 % 

CLRPST-CLR 45 % 25 % 36 % 22 % 

2
2
 

h
al

o
s 

Number of separate halo 

incidents 

26 45 34 46 

Mean duration 16 min 22 min 34 min 21 min 

Maximum duration 62 min 136 min 171 min  208 min 

Total halo time 411 min 998 min 1160 min 963 min 

% halo instances with     

4
4⁄   22 halo 29 % 42 % 77 % 42 % 

¾ 22 halo 38 % 31 % 13 % 40 % 

½ 22 halo 32 % 25 % 10 % 18 % 

¼ 22 halo 1 % 1 % 0 % 0 % 

R
el

at
io

n
s 

% halo instances of all sky 

type instances 

    

CSPST-CS 9 % 16 % 18 % 22 % 

PCLPST-PCL 6 % 7 % 6 % 9 % 

CLDPST-CLD 4 % 5 % 10 % 12 % 

CLRPST-CLR 0 % 0 % 0 % 0 % 

All STS 3.9 % 8.5 % 7.4 % 9.4 % 

% sky type of all halo 

instances  
    

CSPST-CS 49 % 60 % 87 % 78 % 

PCLPST-PCL 42% 33 % 9 % 14 % 

CLDPST-CLD 2 % 5 % 3 % 5% 

CLRPST-CLR 0 % 0 % 0 % 0 % 

N/A 7 % 2 % 1 % 3 % 
1incomplete month 
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Figure 1. Flow chart of the algorithm for the analysis of TSI images. 

For each image 

Import  

List of images  Calibration parameters M and -1  from Master table 

Clean-up and close 

Compute and analyze radial intensity I(s) for each image quadrant (Section 2.3.1) 

Compute the discriminant properties of I(s) for each quadrant (as listed in Tables 3 and 4) 

Save STS PST, PSTS, and IHS for all, image and all quadrants 

Compute image PSTS for each sky type and IHS as averages over all quadrants 

Calibrate image for colour, orientation, and distortion (Section 2.2, steps 1, 2, and 3) 

Identify sun position from geographical position and time (Section 2.2, step 4) 

Reposition and crop to generate sun-centered local sky map (Section 2.2, step 5) 

Compute PSTS for each sky type 

(PST-CS, PST-PCL, PST-CLR, PST-CLD) 

by quadrant 

 (Section 2.3.2) 

Compute IHS by quadrant  

(Section 2.3.3) 

Running time average for IHS by 

quadrant, Eq. (16) 
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Figure 2 Two examples for image preparation. The left column develops an image from SGP 17 April 2018 17:45:00 UTC, the right 

image was taken on SGP 3 April 2018 19:09:30 UTC. Top row: original image; centre row: image after colour correction, distortion 

removal, masking of horizon and equipment, and sun mark were applied; bottom row: final local sky map with sun at centre and a 

width of about 80 LSM units. 
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Figure 3. Layout of the local sky map (LSM). The LSM is divided into four quadrants, named according to their position as TR – 

top right, BR – bottom right, BL – bottom left, and TL – top left. The RAI is the Radial Analysis Interval for which STS and IHS 

properties are evaluated. The approximate position of the halo maximum is sketched in light gray. Shadow strip and camera are 5 
excluded from analysis.  
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Figure 4. Average radial intensity of the red channel is shown versus radial distance s, measured in LSM units, for the two images 

of Fig. 2, halo at left. Panel (A) includes the average intensity 𝑰(𝒔), a linear fit, and the running average �̅�𝟔(𝒔) as averaged over a 

width of 6 LSM units. (B) shows the radial intensity deviation 𝜼(𝒔). The halo signal is visible as a minimum at 17 LSM units, 

followed by a maximum at 21 LSM units in the left column. 5 
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Figure 5. Photographic  sSky type properties for the four sky types in the master table. Slope and intercept (top row) for the radial 

fit; areal standard deviation (ASD) of brightness (bottom left); average colour ratio (ACR) (bottom right). Sky types were assigned 

visually. Black circles indicate the mean, grey boxes the range of the first standard deviation, black bars limit the extreme values 5 
found in the master table. 
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Figure 6. One-day example for PSTS and IHS (SGP March 10, 2018). Sample TSI images are included. The middle panel shows 

PSTS versus time of day (N/A excluded). Bottom panel shows the IHS versus time; w=3.5 min. All times in UTC. 
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Figure 7. Radial markers used in halo scoring. The data belong to the green channel of the TSI image from SGP, April 17, 2018, see 

Fig. 2. The top panel shows the radial intensity deviation 𝜼(𝒔); the bottom panel shows its derivative 𝜼′(𝒔). Units are colour value 

units (0 to 255) for the intensity, and LSM units for the radial distance. The sequence of radial locations used in halo scoring is 

indicated, as well as the interpretation of the up- and down-slope markers. 5 
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Figure 8. Time line of Sky type scores (PSTS) and ice halo scores (IHS versus time) for TSI images from SGP March 2018. Left 

panel shows the PSTS: CSPST-CS – black, PCLPST-PCL – light grey, CLDPST-CLD – dark grey, CLRPST-CLR – white. Right 

panel: IHS Pre-factor C=106, broadening w=3.5 minutes. 
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Figure 9. Distribution of observed 22 halo durations for the first four months of 2018 at SGP ARM site.  
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