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Author's Response 

No.:  amt-2018-402     Submitted on 16 Nov 2018 

Title: Strategies of Method Selection for Fine Scale PM2.5 Mapping in Intra-Urban Area Under 

Crowdsourcing Monitoring 

Authors: Shan Xu, Bin Zou, Yan Lin, Xiuge Zhao, Shenxin Li, and Chenxia Hu 5 

 

We would like to take this opportunity to thank the editor and the reviewers for their very careful review 

and constructive suggestions. We have revised the manuscript based on the suggestions and provided 

justifications where appropriate. Given below is a summary of the responses and revisions. Meanwhile, 

we misspelled the first name of one author (Hu) in the last version of the manuscript, we corrected it in 10 

the new version. 

Answer to Referee #1  

 

Xu et al describe measurements and spatial modeling of PM2.5. Measurements were conducted with hand-held 

optical particle monitors. The spatial modeling compared multiple methods: ordinary kriging, universal kriging, 15 

and land use regression. The paper suffers from several critical flaws and is not publishable in its current form. 

Below I outline five major problems with the manuscript. 

Major Issue #1: I do not know what the authors mean by a "crowdsourced" data collection. The authors seem to 

define crowdsourcing in lines 27-28 of page 2, but "Crowdsourcing activities based on informal social networks 

and web 2.0 technologies that allowed citizens themselves to produce geospatial data among others" seems more 20 

like corporate jargon than a useful explanation of crowdsourcing. 

Response: we rewrote this sentence as, please see the section of Introduction, Page 1, Lines 25-28. 

 

The sampling approach seems to be short-term saturation sampling - many volunteers simultaneously sampled at 

predetermined locations. This sampling approach does not fit my personal notion of crowdsourcing, which would 25 

be a more informal data collection leveraging people’s normal movements throughout the day. Sending an army of 

students to collect data in an organized fashion seems less like "crowdsourcing" and more like a sampling campaign. 

In that sense, this study has little distinction from the large literature on distributed air quality sampling. 
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What would be the value or longer-term viability of this or a similar sampling approach? This paper focuses on 

two short sampling periods of a few hours each, so the data are unlikely representative of long-term spatial patterns. 

Do the authors expect to deploy an army of distributed samplers on a semi-regular basis in order to build up a 

dataset capable of reproducing longer-term trends? Or to send out volunteers daily to make daily maps? I don’t see 

how the "crowdsourced" aspect of this adds value or novelty; instead it seems like crowdsourcing is being used as 5 

a buzzword.  

Response: In order to explore the spatial variation of PM2.5 concentration for various urban 

microenvironment and compare with the national air quality measurements, the crowdsourced monitoring 

is assumed to cover a certain number of areas. However, persuading the general public in these areas to 

continuously observe and upload PM2.5 concentrations during their activities of daily living through a 10 

designed study is difficult. We therefore employed a batch of volunteers to model their behaviours on the 

general public’s behaviour and simultaneously collect data. Due to the difficulties in implementing the 

campaign (e.g. the financial burdens of volunteers’ recruitment and the extensive investment of time and 

efforts for technology part and procedures to ensuring data quality), we only carried out this sampling for 

two short sampling periods. We agree with the reviewer that this sampling approach is not a complete 15 

crowdsourcing activity, but we believe it is a preliminary practice of crowdsourced monitoring and can 

be further developed and improved by progress in low-cost wearable air quality monitors and automatic 

processing techniques of crowdsourced data. We rewrote the 2.1.3 Sampling and data processing and 

Discussion, sentences about this were added. Please see Page 5, Lines 5-20 and Page 9, Lines 15-27. 

Meanwhile, it has to be claimed that the focus of this study is the ‘strategies of methods’ (e.g. LUR, OK) 20 

selection under crowdsourced monitoring data rather than the discoveries of long-term spatial patterns of 

PM2.5 concentrations. Sentences about this were claimed in the Introduction. Please see Page 3, Lines 

6-11. 

 

Major Issue #2: Data quality. Figure 1 shows one short-term comparison between the handheld PM monitors and 25 

the regulatory monitors. While there is generally good agreement, there is a fair amount of scatter among the 

handheld monitors. This scatter is to be expected given the low cost and the use of optical particle detection. 

However, the authors do not address how uncertainty in the measurements potentially impacts the mapping. Nor 
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do they seem to account for uncertainty in the measurements or make any efforts to correct the measurements (e.g., 

based on hygroscopic growth). 

Response: Although the low-cost sensor and the use of optical particle detection of monitors used in 

sampling may cause inaccuracies in measurements, we have tried to minimum the uncertainty by disusing 

the relatively inaccurate monitors (MRE>5%) through preliminary indoor and outdoor experiments. 5 

Comparison experiments between laser air quality monitors and the national monitoring instruments were 

also conducted at the same positions and heights for two time slots; the weather conditions and air quality 

scenarios of the two time slots were similar to the two sampling periods. In the previous version of the 

manuscript, we thought one comparison result is enough to demonstrate the reliability of sampling data 

to a certain extent, we thank the reviewer for pointing out the inadequacies. Sentences about data quality 10 

and Figure 1d were added. Please see the section of Data and methods, Page 3, Lines 22-30 and Page 

4, Lines 1-19. 

On the one hand, the relative error of PM2.5 observations in preliminary and comparison experiments were 

generally small and fluctuated without distinct trends and leading factors which make it hard to correct. 

On the other hand, the main purpose of this study was to propose strategies of method selection for fine 15 

scale PM2.5 mapping using crowdsourced monitoring, as the three methods we compared were performed 

with the same sampling dataset, the uncertainty in measurements may cause a limited influence on the 

method comparison results. We therefore did not correct the measurements in this study. We agree with 

the reviewer that more efforts are needed in crowdsourced measurements correction and uncertainty 

analysis in air pollution concentration mapping at high resolution for accurate exposure assessment. 20 

Sentences about this were added in the section of Discussion, Page 9, Lines 28-32 and Page 10, Lines 

1-22. 

 

Table 3 and section 3.1 - the crowdsourced data read higher PM than the regulatory data. The authors have not 

convinced me that this is not an artifact of the sensors they have chosen. During some hours there is significant 25 

difference between the mean "crowdsourced" PM and the mean regulatory PM. Since the overall spatial extent of 

the two sampling domains (regulatory and crowdsourced) is roughly similar, I would expect similar mean 

concentrations from each dataset.Line 30 on page 8 calls the national monitoring sites "inaccurate." I am not 

familiar with regulatory measurement policies in China, but if they are anything like the US and Europe, the 
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accuracy standard is high. The spatial pattern derived from these few monitors may be erroneous, but the specific 

measurements are accurate. 

Response: we agree with the reviewer that the instruments of national monitoring stations are more 

accurate and reliable than the potable air pollution monitors, and that is the reason why we conducted the 

comparison experiments between laser air quality monitors and the national monitoring instruments at the 5 

same positions and heights before and after the crowdsourcing sampling. The point we intend to make is 

that the crowdsourced PM2.5 measurements demonstrated obvious spatial variation between urban 

microenvironments, and these variations can hardly be disclosed by sparse national air quality monitoring 

stations. In fact, the overall spatial extent of the two sampling domains (regulatory and crowdsourced) is 

relatively different according to the Figure 3, the colour rendering may be the reason why the difference 10 

is not so significant. We therefore summarized the statistics of PM2.5 concentration. The difference of 

hourly PM2.5 concentrations between the two types of instruments in sampling campaign is possibly 

because of the different sampling heights and the change of the major pollution sources in the study area. 

We thank the reviewer for pointing out this issue. We rewrote these confusing sentences, please see the 

section of Discussion, Page 9, Lines 28-32 and Page 10, Lines 1-22. 15 

 

Major Issue #3: Site selection and sampling strategy. The description of the sampling strategy is insufficient. Were 

all samplers deployed simultaneously at all sites in Table 1? How were the sampling times defined and chosen? 

What are significant differences between period 1 and period 2? 

Table 1 - A better description of each type of site is needed. For example, Dust surfaces seem to be defined as "dust 20 

surfaces," which is not helpful to readers. What qualifies as a dust surface? Some entries in this table have "A" and 

"U". What do those designations mean? 

Response: Table 1 presents the rules to determine the potential PM2.5 sampling sites that we would like 

to monitor. At each potential monitoring site, the volunteer lifted the monitor (~2 metres above the ground) 

and held it for at least 60 seconds to measure the PM2.5 concentration. Those observations were uploaded 25 

twice to four times hourly using a smart phone application (App) that we developed. So technically, 

samplers were not deployed simultaneously. For each hour, we eliminated the sampling sites with less 

than three observations. The valid observations were then averaged at each site. Meanwhile, because some 

volunteers quit after the sampling of the first period, the final number of samples for each hour were 
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different. Compare with period 1, sampling sits in period 2 were mainly concentrated in the central study 

area. In period 1, the official air pollution levels were “Good” and “Moderate”, in period 2, the Changsha 

Meteorology Bureau released an Orange warning signal of haze (i.e. the official air pollution level was 

“Heavily Polluted”).  

Dust surfaces refer to natural and artificial bare surfaces with vegetation cover less than 10% that are easy 5 

to produce atmospheric particulate matters. “U” and “A” are subset of the set of potential PM2.5 sampling 

sites and the subset of the union of supporting data. More details for supporting data of site selection were 

added. 

We rewrote these confusing sentences of Data and methods and Table 1, please see Page 4, Lines 25-

33 and Page 5, Lines 1-3. 10 

 

Major Issue #4: Modeling and interpretation. The modeling aspect of this paper is not novel. Since the sampling 

method seems to be a straightforward saturation sampling campaign, using the resulting data to build spatial models 

is not a novel contribution. Numerous papers have already done this for PM2.5, as noted by the authors. 

One main conclusion seems to be that the modeling approaches work. This is not all that novel - it is more a 15 

statistical finding than an atmospheric measurement technique. Numerous papers have shown that LUR and kriging 

models can be fit to spatially distributed measurements. Another conclusion is that the models work better when 

provided with more training sites. Again, this seems like an obvious outcome, especially for the kriging approaches. 

Response: we agree with the reviewer that the modeling methods themselves were not novel, but the 

main purpose of this study was to propose strategies of method selection for fine scale PM2.5 mapping 20 

using crowdsourced monitoring, not to develop a new model. As we mentioned in the manuscript, the 

optimal mapping method for conventional sparse fixed measurements may not be suitable for this new 

high-density monitoring way, and the results were rather different from previous studies as we expected. 

OK interpolation performs best under conditions with non-peak traffic situation in light-polluted period, 

while the RK modelling can perform better in heavy-polluted period and for conditions with the peak 25 

traffic and relatively few sampling sites (less than ~100) in light-polluted period. Additionally, this study 

for the first time found and pointed out that the LUR model demonstrates limited ability in estimating 

PM2.5 concentrations at very fine spatial and temporal scale which challenges the traditional point on LUR 

model’s good performance in air pollution mapping.  
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We would not call “modeling approaches work “and “the models work better when provided with more 

training sites” the main conclusions of this study, but we do admit that some sentences of the abstract in 

previous version of the manuscript may make this wrong impression on the readers. We thank the 

reviewer for pointing out this issue. We rewrote the abstract, please see Page 1, Lines 9-29. 

 5 

A more relevant analysis would be to evaluate if the models (and measurements) make physical dense. In Figure 5 

there is a PM hotspot in the northwestern part of the domain on Day 1 and in the center of the domain on Day 2. 

Do these hotspots make sense given the distribution of sources and the climatology? 

Response: we thank the reviewer for the suggestion and sentences addressing this were added in the 

section of Discussion. The PM hotspot in the northwestern part of the domain on Day 1 may be attributed 10 

to the dust deposition from construction activities promoted by a high RH in this newly developed zone, 

while the PM hotspot in the center of the domain on Day 2 may relate to the larger number of factories 

and high-density of roads. Sentences about this were added in the section of Discussion, Page 11, Lines 

29-34. 

 15 

Major Issue #5: The paper needs a thorough review and edit for English grammar. There are many grammar errors 

(too many to count or enumerate here), and in other places the language is hard to follow. 

Response: we thank the reviewer for the suggestion. Meanwhile, this manuscript was edited for proper 

English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified 

native English speaking editors at American Journal Experts. The certificate may be verified at 20 

www.aje.com/certificate with a certificate verification key of E57E-12C6-6B0F-0300-999B. 

 

 

Answer to Referee #2  

 25 

General comments: Overall this is an interesting paper comparing methods for estimating spatial concentrations of 

PM2.5 using crowd sourced low-cost sensor measurements. I think it will be highly valuable for many researchers 

in the field interested in spatial variation. However, I think there is a lack of discussion of the limitations of low-

http://www.aje.com/certificate
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cost optical particle sensors especially with the limited performance evaluation presented in this manuscript. I 

suggest major revisions for this paper. There are a number of places where the text is unclear and the authors should 

take care to thoroughly edit the next draft of this paper. 

 

Specific comments: 5 

Abstract: It’s not clear what the different periods are referring to, morning versus afternoon? Line 19: I don’t think 

that a range is the best statistic to show that 2 sets of numbers are “clearly different”. Line 48: What do you mean 

by: “and a promising access to the prevention of exposure risks for individuals in their daily life.” 

Response: period 1 was between 8:00 and 12:00 on December 24; period 2 was between 14:00 and 18:00 

on December 25. In period 1, the official air pollution levels were “Good” and “Moderate”, in period 2, 10 

the Changsha Meteorology Bureau released an Orange warning signal of haze (i.e. the official air 

pollution level was “Heavily Polluted”).  

Line 19: The statistic of range was replaced by Mean±SD.  

Line 48: It means that If individuals could consciously choose the location and time of their outdoor 

activities based on detailed knowledge about the spatiotemporal variation in PM2.5 concentration, then 15 

their health protection could be improved 

We rewrote these confusing sentences of abstract, please see Page 1, Lines 9-29. 

 

Page 3 line 24-25: What does “data consistency” mean? Can you please elaborate. Also, where do you get the 

resolution data from? The manufacturer? Lab studies? Please cite.  20 

Response: “data consistency” means the relative errors between monitors are rather small; resolution data 

came from the monitor manual provided by the manufacturer. 

we rewrote these confusing sentences and more details about this monitor were added in the section of 

Data and methods, please see Page 3, Lines 22-30. 

 25 

Page 3 Line 30: Why would you only select 30 monitors to collocate? Without the collocation data from the other 

monitors you have no idea what the bias is of the other measurements. 
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Response: In fact, the 86 portable laser air quality monitors we used in the sampling were selected from 

115 monitors through preliminary indoor and outdoor experiments. The relative errors between each other 

were no larger than 5%, which guaranteed the reliability of sampling data of the other measurements to a 

certain extent. Sentences about this were added in 2.1.1 Measurement instrument, Page 4, Lines 1-4. 

Under the circumstance that the national monitoring stations do not have enough room for more laser 5 

monitors to conduct the comparison experiments, we only randomly selected 30 monitors.  

 

Section 2.2.1: Can you mention if these monitors or internal sensors are commercially available or have been 

evaluated in any other studies, etc. Oh, I see in the supplement they are SDL307 but I think this may be important 

to add to the text. 10 

Response: added. 

 

Page 3 Lines 28-29: This is confusing to me. I don’t see K factors anywhere when I look at the figure. Please clarify 

this sentence and/or move the figure reference to a more appropriate location. 

Response: made the changes as the reviewer suggested in the revised manuscript, please see Page 3, 15 

Lines 26-30. 

 

Page 3 Line 30-Page 4 Line 3: I think the performance needs more discussion. How do the monitors compare to 

each other? If you are looking at spatial variability, bias/error between different monitors will be important. Were 

all monitors at the reference site for the same period? Is this 1-hr data shown in the plot or some other averaging 20 

time? Knowing the bias of individual monitors is very important because it will help determine at what threshold 

you can say there is likely spatial variation versus just bias in the sensor measurements. In addition, RH is known 

to significantly influence optical PM measurements. RH should be reported throughout. If RH is >75% during one 

of the periods (1,2, or comparison) this may be an issue. In addition, you have no data above ∼100 ug/m3 but 

during your second period the concentrations are in the 170-180 range. I think it is important to know how the 25 

sensors perform at these high concentrations if you are going to try to draw conclusions. Has any previous work 

evaluated these sensors at high concentrations? You cannot assume that just because they work well from the 40-

100 range they will work the same below and above that. 

Response: Comparison experiments between laser air quality monitors and the national monitoring 

instruments were also conducted at the same positions and heights for two time slots; the weather 30 
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conditions (including RH) and air quality scenarios of the two time slots were similar to the two sampling 

periods. In the previous version of the manuscript, we thought one comparison result is enough to 

demonstrate the reliability of sampling data to a certain extent, we thank the reviewer for pointing out the 

inadequacies. Sentences about data quality and Figure 1d were added, please see the section of Data and 

methods, Page 3, Lines 22-30 and Page 4, Lines 1-19. 5 

On the one hand, the relative error of PM2.5 observations in preliminary and comparison experiments were 

generally small and fluctuated without distinct trends and leading factors which make it hard to correct. 

On the other hand, the main purpose of this study was to propose strategies of method selection for fine 

scale PM2.5 mapping using crowdsourced monitoring, as the three methods we compared were performed 

with the same sampling dataset, the uncertainty in measurements associated with monitors and RH may 10 

cause a limited influence on the method comparison results. We therefore did not correct the 

measurements in this study. We agree with the reviewer that more efforts are needed in crowdsourced 

measurements correction and uncertainty analysis in air pollution concentration mapping at high 

resolution for accurate exposure assessment. Sentences about this were added in the section of Discussion, 

Page 9, Lines 28-32 and Page 10, Lines 1-22. 15 

 

Page 5 lines 17-18: Meteorological data with a spatial resolution of roughly 0.4 sites per 100 km2 (wind speed, 

atmospheric pressure, relative humidity, temperature) that-I think it might be clearer to just list the number of 

stations you had in total over your sampling area. 

Response: changed the sentence as the reviewer suggested, Page 6, Lines 14-17. 20 

 

Section 2.1.2: I’m not clear how this data is crowdsourced can you please include more information about how 

each monitor got to each monitoring point. 

Response: In order to explore the spatial variation of PM2.5 concentration for various urban 

microenvironment and compare with the national air quality measurements, the crowdsourced monitoring 25 

is assumed to cover a certain number of areas. However, persuading the general public in these areas to 

continuously observe and upload PM2.5 concentrations during their activities of daily living through a 

designed study is difficult. We therefore employed a batch of volunteers to model their behaviours on the 

general public’s behaviour and simultaneously collect data. Due to the difficulties in implementing the 
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campaign (e.g. the financial burdens of volunteers’ recruitment and the extensive investment of time and 

efforts for technology part and procedures to ensuring data quality), we only carried out this sampling for 

two short sampling periods. We believe it is a preliminary practice of crowdsourced monitoring and can 

be further developed and improved by progress in low-cost wearable air quality monitors and automatic 

processing techniques of crowdsourced data. We rewrote the 2.1.3 Sampling and data processing, Page 5 

5, Lines 5-20. 

Sentences about this were added in the section of Discussion, Page 9, Lines 15-27. 

 

Page 6 lines 19-21: Is this the highest and lowest one-hour average from a single site and single monitor? Why are 

these and the times they occurred important? Line 20: These what? Averages? Line 20-21: I don’t know what the 10 

numbers in parenthesis are please clarify  

Lines 25 and 26: Is there more traffic at noon than at morning rush hour? Also is the average concentration at the 

different hours significantly different? 

Response: lines 19-21: this is the highest and lowest one-hour average for all crowdsourced sampling 

sites, we tended to present the rather large range of crowdsourced PM2.5 observations.  15 

Line 20: “These” are the maximum and minimum values of crowdsourced PM2.5 concentrations. Rewrote 

the confusing sentence. 

Line 20-21: “numbers in parenthesis” are the mean values and SD of the PM2.5 concentrations and the 

maximum and minimum values of national monitoring PM2.5 concentrations. Rewrote the confusing 

sentence. 20 

Lines 25 and 26: There may be more traffic at morning than at noon, the higher PM2.5 concentrations at 

noon than at morning may relate to the peaked cooking emission of stir-fry at noon. The average 

concentration at the different hours in the same period is rather close. Sentence about these were added 

or replaced. 

Sentences about these were rewrote, please see the section of Results, Page 7, Lines 14-23. 25 

 

Figure 3. Does each of these points represent a single monitor? Why are they fewer monitors during period 2? 

Response: each point represents a single sampling site with no less than three observations for each hour. 

Because some volunteers quit after the sampling of the first period, sampling sits in period 2 were mainly 
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concentrated in the central study area and thus fewer than in period 1. Sentences about this were added in 

section 2.1.3 Sampling and data processing as mentioned before, Page 5, Lines 12-20. 

 

Line 13: I don’t understand what you are comparing that increased. What is the first set of numbers versus the 

seconded set of numbers? Line 14: What do you mean significant and steady decrease? Decreased by hour by the 5 

same amount? 

Response: the first set of numbers are the average validation R2 of OK with the smallest number of 

training sites for each hour; the seconded set of numbers are the average validation R2 of OK with the 

largest number of training sites for each hour; rewrote these confusing sentences. 

We thank the reviewer for pointing out the fault in line 14; rewrote the confusing sentence.  10 

Please see the section of Results, Page 8, Lines 4-21. 

 

Page 7 Line 30: Since readers can see the individual R2 on the figure it may be easier to digest if you just include 

an average or range instead of so many lists of numbers. 

Page 8 Line 5: I read this paragraph a couple times and I’m still a bit confused which method performs the best. 15 

Can you add a summary sentence at the end just stating the conclusion? Or reorganize more clearly. 

Response: we thank the reviewer for the suggestion. These confusing sentences were rewritten. 

Please see the section of Results, Page 8, Lines 22-28. 

 

Section 3.3: Can you clarify: did you use 90% training sites for only the sensor measurements and then only 90% 20 

of the reference stations? As far as I could tell previously you only used withholding from the sensor data and 

didn’t evaluate the models using the reference data? 

Response: the method that performed best with 90% training sites was chosen as the mapping method. 

Using this method, the spatial distributions of the PM2.5 concentration for each hour were estimated with 

all samples. Spatial distributions of PM2.5 concentration for each hour with measurements of 10 national 25 

monitoring stations were estimated using the same method for comparison.  

We rewrote these confusing sentences in section 2.3 PM2.5 concentration mapping and corresponding 

results. Please see Page 7, Lines 6-11, Page 8, Lines 30-31 and Page 9, Lines 1-2. 
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Page 8 line 9: “Significant difference can be found between two sources,” what do you mean? Page 8 Line 13: 

What do you mean three-step growth? 

Response: line 9: It means that the hourly PM2.5 concentrations for the crowdsourced sampling sites and 

the national monitoring stations were rather different.  5 

Line 13: It means gradual growth.   

We rewrote these confusing sentences. Please see Page 9, Lines 3-10 

 

Page 8 Line 15: I don’t understand based on the figure it seems like there are almost no factories and roads in the 

top left corner but that is where most of the pollution is. 10 

Response: relatively high concentration in the northwest corner of the study area with few factories in 

Period 1 may be attributed to the dust deposition from construction activities promoted by a high RH in 

this newly developed zone.  Sentences addressing this were added in the section of Discussion, Page 11, 

Lines 29-34. 

 15 

Page 8 Line 30-Page 9 Line 3: I think you need to mention though the limitations of low-cost monitors and the 

inaccuracies in these measurements compared to federal methods. Page 9 Line 10: It seems likely the low-cost 

sensors may have been saturated at the high concentrations and this may have led to the difference between the 

sensors and the reference methods. 

Response: we thank the reviewer for the suggestion. Sentences about this were added. Please see the 20 

section of Discussion, Page 9, Lines 28-32 and Page 10, Lines 1-22. 

 

Technical corrections: Suggest rewording the title for clarity, possibly: Strategies of method selection for Fine 

Scale PM2.5 mapping in an intra-urban area using crowdsourced monitoring  

Response: changed as the reviewer suggested. 25 

 

Fine particulate matter (particulate matter singular remove s) 

Response: corrected. 
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Line 9: to “the” public – there are a number of grammatical errors throughout the text and I have not had a chance 

to identify them all in this review. Please review for grammar. 

Page 6 Line 20 ug/m3 formatting  

Page 7 Line 4: Remove “had” assuming you are talking about this work where the sites experienced extreme PM 5 

Response: we thank the reviewer for the suggestion. Meanwhile, this manuscript was edited for proper 

English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified 

native English speaking editors at American Journal Experts. The certificate may be verified at 

www.aje.com/certificate with a certificate verification key of E57E-12C6-6B0F-0300-999B. 

 10 

 

Answer to Referee #3  

 

In this manuscript, the authors presented strategies of method selection for efficiently and effectively PM2.5 

concentration mapping with increasing training sites based on a crowdsourcing sampling campaign. This study 15 

found that Ordinary Kriging (OK) interpolation performed best under conditions with non-peak traffic situation in 

lightpolluted period, the Universal Kriging (UK) modeling performed better for conditions with the peak traffic 

and relatively few sampling sites in heavy-polluted period, and the Land Use Regression (LUR) model 

demonstrated limited ability in the estimation PM2.5 concentrations at very fine scale. Overall, the the manuscript 

is well-written and scientifically sounds good, and can be accepted after minor revision.  20 

The authors should really redefine all acronyms in conclusions: : :Conclusions should broadly read as if the reader 

hadn’t read the rest of the paper. Thus, the authors reintroduce everything, including hypothesis and research plan. 

Response: we thank the reviewer for the suggestion. Rewrote the section of Conclusions and redefine all 

acronyms, please see Page 12, Line 8-12. 

 25 

 

http://www.aje.com/certificate
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Answer to Referee #4 

 

This study used in situ PM2.5 measured by portable laser sir quality monitors to replace traditional PM2.5 

data collected by ground monitoring stations or derived from remote sensing images and developed a new 

hybrid (land use regression plus geostatistical) method to map PM2.5 concentrations in an urban area. 5 

Generally, this manuscript is well organized and clearly written, even though a few of sentences need to 

be rephrased and more details need to be supplemented. I recommend the editor to accept this manuscript 

after a minor or moderate revision. 

The authors developed a hybrid model in which the deterministic component of the PM2.5 concentration 

was fitted by LUR and the stochastic component (i.e. residual) was interpolated by kriging. Thus this is a 10 

typical LUR based REGRESSION kriging but not universal kriging. Please see Liu et al. (2018). 

Incorrectly naming the method is my biggest concern for the manuscript. 

Liu, Y. et al., 2018. Improve ground-level PM2.5 concentration mapping using a random forests-based 

geostatistical approach. Environmental Pollution, 235, 272-282. 

Response: the naming of this method followed Mercer et al. (Atmospheric Environment 2011). They 15 

proposed a 2-step approach in which simple kriging is applied to the residuals from LUR. This approach 

is similar but not identical to UK. Thus, we agree with the reviewer that the Regression Kriging is more 

appropriate and thank him/her for the suggestion. We implemented the changes in the revised manuscript. 

 

Mercer, L. D., Szpiro, A. A., Sheppard, L., Lindström, J., Adar, S. D., Allen, R. W., Avol, EL., Oron, A. 20 

P., Larson, T., Liu, L. J., and Kaufman, J. D.: Comparing universal kriging and land-use regression for 

predicting concentrations of gaseous oxides of nitrogen (NOx) for the multi-ethnic study of 

atherosclerosis and air pollution (MESA Air), Atmos Environ, 45, 4412–4420, 

doi:10.1016/j.atmosenv.2011.05.043, 2011. 

 25 

I am afraid that the Abstract from line 16 to 27 is not clear for a new reader especially who has not read 

the Method section. What do the “Period 1” and “Period 2” represent? 
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Response: “Period 1” and “Period 2” represent the light-polluted period and heavy-polluted period. We 

rewrote the Abstract, please see Page 1, Lines 9-29. 

 

(Page 2, line 19) The authors should cite Liu et al. (2018) that is a typical study combining two 

technologies to estimate PM2.5 concentrations. 5 

Response: Liu et al. (2018) adopted a random forests-based regression kriging approach which integrates 

recent advancements of machine learning with conventional kriging methods in geostatistics. We thank 

the reviewer for the suggestion and cited this article in the revised manuscript.  

 

In the Measurement Instrument section, the authors may add more details for their portable air quality 10 

monitors, e.g. the company producing the equipment and other practical uses of the portable monitor. 

Response: more details were added as the reviewer asked, please see Page 3, Lines 22-30. 

 

(Page 4, lines 13-20). The sentences here are unclear and the authors may need to rewrite them. “Sampling 

was carried out in two time periods in the winter of 2015…” I am wondering whether the authors can 15 

provide a specific time periods (e.g. from November 1 to December 31) to replace “the winter”. “The 

second period was between 14:00 and 18:00, when Orange warning signals of haze were released by 

Changsha Meteorology Bureau…” I guess Orange warning signal was not released every day, but from 

your last sentence “The first period was between 8:00 and 12:00, representing a light-polluted period” it 

seems the Orange warning signal is released every afternoon. So please make it clear whether you 20 

measured PM2.5 concentrations during the two time slots all days or only Orange days. Additional, I 

suggest using “time slots” to replace “time periods”. The “period” may be used for the days when you 

collected the PM2.5 concentration samples. 

Response: In fact, due to the difficulties in implementing the campaign (e.g. the financial burdens of 

volunteers’ recruitment and the extensive investment of time and efforts for technology part and 25 

procedures to ensuring data quality), we only carried out this sampling between 8:00 and 12:00 on 

December 24 and 14:00 and 18:00 on December 25. In the first period, the official air pollution levels 

were “Good” and “Moderate”, in the second period, the Changsha Meteorology Bureau released an 
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Orange warning signal of haze (i.e. the official air pollution level was “Heavily Polluted”). We rewrote 

these confusing sentences, please see Page 5, Lines 5-20. 

 

(Page 4, line 20). “The official observations at 10 national monitoring sites stations.” 

Response: corrected. 5 

 

(Page 6, lines 21-22) “Clearly, the average PM2.5 concentrations of Period 2 were two times higher than 

those of Period 1…” I wonder why the authors emphasized “two times” higher here. It gave me a deep 

impression that “two times” implied something, but I have not seen any explanation for the “two times” 

in the following text. I would simply say: the average PM2.5 concentrations of Period 2 were much higher 10 

than … 

Response: we thank the reviewer for the suggestion and rewrote this sentence. 

 

(Page 9, lines 1-10) I cannot accept the authors’ discussion in this paragraph whatsoever. Compared with 

the authors’ cheaper potable air pollution monitors, I more trust instruments from national monitoring 15 

stations. “This suggests the inconvenient truth (what a strong word! It is just a possible.) that the exposure 

risk remains relatively high for the public when official air pollution levels are “Good” and “Moderate” 

and this risk …” I completely understand what the authors intend to express, but if the government 

intentionally falsified the air quality data, it was more likely to lower the heavy- rather than light-pollution 

data. I thought of another possibility: the authors’ portable monitors were not sensitive for the low PM2.5 20 

concentrations and are proneto be saturated in the heavy-pollution days. In that case, it will also get the 

result the authors showed in the manuscript. The authors intended to emphasize that the large error 

(difference) on PM2.5 concentrations over the city is due to the relatively small number of national 

monitoring stations and thus their method using portable monitors to collect PM2.5 data is useful. 

However, based on the authors’ statement, large differences on PM2.5 concentrations have existed even 25 

if concentrations are measured by the instruments of the national monitoring stations and the portable 

equipments of the authors at the same location. 
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Response: we agree with the reviewer that the instruments of national monitoring stations are more 

accurate and reliable than the potable air pollution monitors, and that is the reason why we conducted the 

comparison experiments between laser air quality monitors and the national monitoring instruments at the 

same positions and heights before and after the crowdsourcing sampling. The point we intend to make is 

that the crowdsourced PM2.5 measurements demonstrated obvious spatial variation between urban 5 

microenvironments, and these variations can hardly be disclosed by sparse national air quality monitoring 

stations. The difference of hourly PM2.5 concentrations between the two types of instruments in sampling 

campaign is possibly because of the different sampling heights and the change of the major pollution 

sources in the study area. We thank the reviewer for pointing out this issue. We rewrote these confusing 

sentences, please see the section of Discussion, Page 9, Lines 28-32 and Page 10, Lines 1-22. 10 

 

I suggest the authors cautiously using some very strong adjectives and adverbs, such as clearly, 

significantly, tremendous, etc. (Abstract, line 25) “This method selection strategy provides solid 

experimental evidence for method selection of …” I will say “this study provides empirical evidence 

for …” Although generally clear for me, it is better to further polish the English of this manuscript, 15 

especially in the Results and Discussion sections. 

Response: we thank the reviewer for the suggestion. Meanwhile, this manuscript was edited for proper 

English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified 

native English speaking editors at American Journal Experts. The certificate may be verified at 

www.aje.com/certificate with a certificate verification key of E57E-12C6-6B0F-0300-999B. 20 

 

  

http://www.aje.com/certificate
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Relevant changes made in the manuscript: 

No. Relevant changes 

1 Authors, Page 1, line 3  

2 Abstract, Page 1, lines 9-29 

3 Introduction, Page 2, lines 3-4, 6, 8-9, 10-11, 20, 24-28 

4 Data and methods, Measurement instrument, Page 3, lines 22-30, Page 4, lines 1-19 

5 Data and methods, Sampling design, Page 4, lines 25-33, Page 5, lines 1-3 

6 Data and methods, PM2.5 concentration mapping, Page 7, lines 6-7 

7 Results, Descriptive statistics of PM2.5 concentrations, Page 7, lines 14-25 

8 Results, Model performance for OK, LUR and RK, Page 8, lines 4-28 

9 Results, Spatial patterns of crowdsourced PM2.5 concentration,  

Page 8, lines 30-31, Page 9, lines 1, 3-6, 9 

10 Discussion, Page 9, lines 15-32, Page 10, lines 1-22, 25-27, 34,  

Page 11, lines 9-12, 21-22, 29-34 

11 Conclusions, Page 12, lines 1-3, 8-13 
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Abstract. Fine particulate matter (PM2.5) is of great concern to the public due to its significant risk to human health. Numerous 

methods have been developed to estimate spatial PM2.5 concentrations in unobserved locations due to the sparse number of 10 

fixed monitoring stations. Due to an increase in low-cost sensing for air pollution monitoring, crowdsourced monitoring of 

fine exposure control has been gradually introduced into cities. However, the optimal mapping method for conventional sparse 

fixed measurements may not be suitable for this new high-density monitoring approach. This study presents a crowdsourced 

sampling campaign and strategies of method selection for hundred metre-scale level PM2.5 mapping in an intra-urban area of 

China. During this process, PM2.5 concentrations were measured by laser air quality monitors and uploaded by a group of 15 

volunteers via their smart phone applications during two periods. Three extensively employed modelling methods (ordinary 

kriging (OK), land use regression (LUR), and regression kriging (RK) were adopted to evaluate the performance. An 

interesting finding is that PM2.5 concentrations in micro-environments significantly varied in the intra-urban area. These local 

PM2.5 variations can be effectively identified by crowdsourced sampling rather than national air quality monitoring stations 

(light-polluted period: (69.67±18.81) – (76.45±14.55) µg m-3 vs. (36.9±10.97) – (41.2±8.68) µg m-3; heavy-polluted period: 20 

(162.72±15.96) – (171.89±21.5) µg m-3 vs. (177.8±16.91) – (188.3±22.4) µg m-3). The selection of models for fine scale PM2.5 

concentration mapping should be adjusted according to the changing sampling and pollution circumstances. Generally, OK 

interpolation performs best in conditions with non-peak traffic situations during a light-polluted period (hold-out validation 

R2: 0.47–0.82), while the RK modelling can perform better during the heavy-polluted period (0.32–0.68) and in conditions 

with peak traffic and relatively few sampling sites (less than ~100) during the light-polluted period (0.40–0.69). Additionally, 25 

the LUR model demonstrates limited ability in estimating PM2.5 concentrations on very fine spatial and temporal scales in this 

study (0.04–0.55), which challenges the traditional point about the good performance of the LUR model for air pollution 

mapping. This method selection strategy provides empirical evidence for the best method selection for PM2.5 mapping using 

crowdsourced monitoring, and this provides a promising way to reduce the exposure risks for individuals in their daily life. 

 30 
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1 Introduction  

Fine particulate matter (PM2.5) has been associated with an increased risk of morbidity and mortality in both the long-term and 

the short-term (Beverland et al., 2012; Cohen et al., 2017; Di et al., 2017; Lelieveld et al., 2017). The persistent cumulative 

effects from exposure in daily activities, especially daily travelling, are critical (Kingham et al., 2013; Hankey et al., 2017). If 

individuals could consciously choose the location and time of their outdoor activities based on detailed knowledge about the 5 

spatiotemporal variation in PM2.5 concentration, then their health protection could be improved. 

In situ measurement is the most reliable way to capture the PM2.5 concentrations across every corner of a city in real time. 

However, fixed monitoring stations in conventional air quality monitoring networks are sparse. As a result, site-based 

observations encounter challenges in capturing spatiotemporal variations of air pollutants, especially in intra-urban areas with 

unevenly distributed emission sources and dispersion conditions (Kumar et al., 2015; Zou et al., 2016; Apte et al. 2017). Spatial 10 

mapping methods, including air dispersion modelling, spatial interpolation, satellite remote sensing (RS), and empirical models, 

have been increasingly employed to estimate concentrations of PM2.5 in unobserved locations over the past two decades (Jerrett 

et al., 2005; Henderson et al., 2007; El-Harbawi, 2013; Kim et al., 2014; Rice et al., 2015; Fang et al., 2016; Zou et al., 2017; 

Zhai et al., 2018; Xu et al., 2018; Liu et al., 2018). The outputs of a dispersion model considerably depend on detailed emission 

inventories and meteorological information, which are not usually available for many cities. The coarse spatial resolution (≥1-15 

10 km) of satellite instruments and the data missing problem due to the cloud cover prohibit the widespread use of RS in PM2.5 

concentration mapping in urban environments (Zou et al., 2015; Apte et al., 2017).  

Conversely, geostatistical and empirical models can estimate concentrations at high spatial resolution with a rather low 

requirement for data. The most commonly employed models are ordinary kriging (OK) interpolation and land use regression 

(LUR) modelling. Some studies have improved the estimating accuracy by combining these two technologies (Mercer et al., 20 

2011; De Hoogh et al., 2018). While they have been successfully applied to map the spatial variability of PM2.5 concentrations 

in various geographic areas, their accuracy varies as the concentration levels and sample sizes change (Wang et al., 2012; 

Mercer et al., 2011; Lee et al., 2014; Zou et al. 2015; Gillespie et al., 2016; Choi et al., 2017; De Hoogh et al., 2018).  

Due to an increase in low-cost sensing for air pollution monitoring, the real-time strategies for fine exposure control in cities 

have been further developed (Kumar et al., 2015). Crowdsourced monitoring that enables citizens to produce geospatial data 25 

is constantly growing and shows considerable potential (Heipke, 2010). Large and diverse groups of people who lack formal 

training can easily describe their environments with a mobile phone or smart phone and upload data via informal social 

networks and web technology. Unlike traditional fixed monitoring stations that are usually mounted on roofs (i.e., 3 to 20 

metres above the ground) for the sake of instrument protection, crowdsourced monitoring provides real-time PM2.5 monitoring 

that reflects the real exposure for individuals who live and work on the ground. Although crowdsourced monitoring tends to 30 

produce observations with questionable quality, it enables us to obtain measurements of ambient air pollution in dense 

networks at relatively low cost. Some studies have employed these data to display the air pollution concentration and 

investigate the exposure risks (Thompson, 2016; Miskell et al., 2017; Jerrett et al., 2017). These observations are still point 
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measurements that are only representative of the limited area around the site and cannot satisfy the demand of obtaining the 

air pollution concentration whenever and wherever we want.     

One way to address the previously mentioned challenge is to combine high-density crowdsourced observations with spatial 

mapping methods. An important investigation was performed by Schneider et al. (2017) in Oslo, Norway. They presented a 

universal kriging technique for urban NO2 concentration mapping that combines near-real-time crowdsourced observations of 5 

urban air quality with output from an air pollution dispersion model. However, high-density crowdsourced measurements may 

vary among urban microenvironments with different human daily activities and among sparsely distributed conventional in 

situ measurements. Using the elected mapping methods from previous studies to depict the variation in air pollution on a very 

fine spatial and temporal scale with new monitoring ways may cause the misclassification of exposure and an underestimation 

of risk. As the number of valid crowdsourced observations may significantly change due to instrument faults, human error, 10 

and other quality issues, the applicability of mapping methods to different sampling sizes needs sound scientific evidence. 

In this study, we presented strategies of method selection for PM2.5 concentration mapping based on crowdsourced datasets 

with varying size. The intra-urban crowdsourced sampling campaign was conducted in the city of Changsha, China, over two 

periods in different pollution scenarios. The performance of OK, LUR and regression kriging (RK) in estimating PM2.5 

pollution was evaluated and compared with an increasing number of training sites. The best performing method was employed 15 

to plot the variation in the hourly PM2.5 concentration and identify the pollution hotspots in the intra-urban area. The results 

from this study will provide evidence for the method selection of PM2.5 mapping using crowdsourced monitoring and 

significantly contribute to efficient air pollution mapping and exposure assessment in intra-urban areas. 

2 Data and methods 

2.1 PM2.5 sampling 20 

2.1.1 Measurement instrument 

The portable laser air quality monitor SDL307 (produced by NOVA FITNESS Co., Ltd.) is employed to perform sampling. 

The monitor manual can be downloaded from http://www.inovafitness.com/index.html. This monitor can be conveniently 

carried with a total size of 25×34×14 cm (Fig. 1a). According to the test report provided by the Center for Building 

Environment Test at Tsinghua University, the maximum relative error of this monitor is ±20% compared with a regulatory 25 

monitor in the 20–1000 µg m-3 range and has a resolution of 0.1 µg m-3. The concentration of particulate matter is measured 

using the light-scattering method (Fig. 1b). The monitor contains a special laser module, and the signals are recorded by a 

photoelectric receptor when particulate matter passes through laser light. The count and size of particulate matter are then 

analysed by a microcomputer after the signals are amplified and converted. Their mass concentrations are calculated based on 

the conversion factor between the light-scattering method and the tapered element oscillating microbalance technology. 30 

http://www.inovafitness.com/index.html
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To ensure the data quality of this monitor, we placed 115 laser air quality monitors in the same environment and continuously 

observed them for one week during each of the four seasons. If the relative error between the observation of one monitor and 

the average observations of the other monitors exceeded 5%, this monitor fell into disuse. This procedure was conducted both 

indoors and outdoors. Subsequently, 86 monitors with rather stable performance and a small difference between each 

observation remained. In addition, we randomly selected 30 portable laser air quality monitors to compare with the national 5 

monitoring instruments to further guarantee the reliability of the sampling data. First, for ease of operation, three national air 

quality monitoring stations were selected. Second, for each station, 10 monitors were observed next to the national monitoring 

instrument (~15 metres above the ground in the study area) from 8:00 to 20:00 on December 20–22, 2015 and from 8:00 to 

20:00 on December 29–31, 2015. The weather on December 20–22 was overcast with patchy drizzle and light rain at times, 

and the relative humidity (RH) ranged from 77% to 94%, while the weather on December 29–31 was cloudy with some 10 

sunshine and a RH that ranged from 38%–67%. 

The scatter plots and descriptive statistics of the valid hourly average PM2.5 concentrations from the laser air quality monitors 

and the national monitoring instruments were presented in Fig. 1c and Fig. 1d. The hourly average PM2.5 concentrations for 

two types of instruments generally showed good agreement with a correlation coefficient R2 of 0.89 on December 20–22 and 

0.90 on December 29–31. The root-mean-square-errors (RMSE) for the former time period was lower than the RMSE for the 15 

latter time period (5.63 µg m-3 vs. 5.94 µg m-3), while the mean relative error (MRE) was higher than the MRE for the latter 

time period (6.37% vs. 3.82%). The latter time period demonstrated a smaller difference in hourly average PM2.5 concentrations 

between laser air quality monitors and the national monitoring instruments with mean values and standard deviations (SD) of 

72.99±16.45 µg m-3 vs. 71.89±15.28 µg m-3 and 129.93±18.33 µg m-3 vs. 129.33±17.50 µg m-3.  

2.1.2 Sampling design 20 

The sampling area is located in the Changsha metropolitan area (112°49′–113°14′E, 27°58′–28°24′N), which covers an area 

of approximately 920 km2 and seven districts (refer to Fig. 2). Changsha is the capital of Hunan Province with a population 

that exceeds 7 million people. The area experienced high-level exposure to air pollutants due to an increase in anthropogenic 

activities and intensive energy consumption. 

To ensure that the sampling sites exhibit a relatively even and typical distribution for different urban microenvironments (i.e., 25 

residential community, building site, school, and park), a series of rules were designed to determine the potential PM2.5 

sampling sites based on the distribution of potential emission sources (refer to Table 1). The data that support the sampling 

design consist of important points of interest (POI), dust surfaces, and main road networks. POI data includes industrial parks, 

enterprises, factories, depots, hospitals, schools, and parks. Dust surfaces refer to natural and artificial bare surfaces with 

vegetation that covers less than 10%, which easily produce atmospheric particulate matter, such as construction sites, stacked 30 

substance, and natural bare land. These data were collected from the Information Center of Land and Resources of Hunan 

Province. More than three observations of PM2.5 concentrations are required every hour for each potential sampling site to 

improve the reliability of the sampling data. Given that the number of laser air quality monitors and the distance that a volunteer 
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can walk in one hour are limited, only 2–4 sites can be set in the area in which a monitor can cover during the sampling. 

Therefore, a total of 208 potential PM2.5 sampling sites were selected. The centre of each area covered by a monitor were 

numbered in sequence (i.e., 1–86). The monitors were also numbered and labelled. 

2.1.3 Sampling and data processing 

Sampling was performed in two time periods in the winter of 2015 to examine the effect of air quality grades on the mapping 5 

results. The first period fell between 8:00 and 12:00 on December 24. In this period, the official air pollution levels were 

“Good” and “Moderate” (i.e., Period 1, light-polluted period). The weather was overcast with occasional rain or drizzle, and 

the relative humidity (RH) ranged from 95% to 98%. The second period extended between 14:00 and 18:00 on December 25, 

when an orange warning signal of haze (i.e., official air pollution level was “Heavily Polluted”) was released by the Changsha 

Meteorology Bureau (i.e., Period 2, heavy-polluted period). The weather was cloudy with some sunshine, and the RH ranged 10 

from 39%–43%. 

Before sampling started, every volunteer received one monitor and went to the corresponding area. At each potential 

monitoring site, the volunteer lifted the monitor (~2 metres above the ground) and held it for at least 60 seconds to measure 

the PM2.5 concentration. The observations were uploaded twice to four times hourly using a smart phone application (App) 

that we developed. The geographic coordinates of the sampling sites were also uploaded. For each hour, we eliminated the 15 

sampling sites with less than three observations. The valid observations were then averaged at each site. As some volunteers 

quit after the sampling of the first period, the sampling sites in period 2 were concentrated in the central study area. A total of 

179-208 samples were successfully collected at each hour in Period 1, and 105-118 samples were successfully collected in 

Period 2. The official observations at 10 national monitoring stations in the study area were also obtained (China Environmental 

Monitoring Center, CEMC: http://106.37.208.233:20035/) and averaged for comparison purposes. 20 

2.2 Mapping method selection 

We divided sampling data into a training set and a validation set (hold-out validation) for each hour to evaluate the performance 

of OK, LUR and RK with an increasing number of training sites. The training data sets were divided into groups based on the 

percentages of 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the total number of monitoring sites. Therefore, a series 

of groups of training samples (36–42, 54–62, 72–83, 90–104, 107–125, 125–146, 143–166, 161–189 sites in Period 1 and 31–25 

35, 42–47, 52–59, 63–71, 73–83, 84–94, 94–106 in Period 2) were extracted using the Subset Features Tool of ArcGIS (version 

10.0). We repeated this process 100 times for each training set size for Period 1 and 50 times for Period 2. Statistics including 

the coefficient R2, RMSE and MRE between the predicted concentrations and observed concentrations of PM2.5 in the 

independent validation set were employed to evaluate and compare their performance. 
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2.2.1 Ordinary kriging 

OK estimates the target variable at an unsampled location as a linear combination of neighbouring observations. OK relies on 

a weighting scheme, where closer observations have a greater impact on the final prediction. The weighting scheme is dictated 

by the variogram (Pang et al., 2010; Zou et al., 2015) and can be described as  

𝑍∗(𝑋0) = ∑ 𝜔𝑖𝑍(𝑋𝑖)
𝑛
𝑖

∑ 𝜔𝑖
𝑛
𝑖 = 1

},                                      (1) 5 

where Z∗(X0)  is the estimation of an unknown sample point; Z(Xi) and ωi  are the value of the ith known sample point 

surrounding the unknown sample point and its corresponding weight, respectively; and n is the number of known sample points. 

2.2.2 Land use regression 

LUR modelling predicts the air pollution concentration by linking measurements of monitoring sites and geographic elements 

around them using the least squares method. LUR is composed of predictor variable extraction and selection and regression 10 

modelling and validation. 

Geographic factors including pollution sources (dust surface and pollution industries), road networks, and land use/cover were 

employed to indirectly characterise the PM2.5 emissions in this study. These data were generated using multiple ring buffers 

with different radii (50–1000 m) at each monitoring site. Meteorological data including wind speed, atmospheric pressure, 

relative humidity, and temperature of 107 sites in and around the sampling area, which may affect the dispersion of PM2.5, 15 

were also obtained. Geographic factors were made available by the Information Centre of Department of Land and Resources 

of Hunan Province. Meteorological data were released by the Hunan Meteorology Bureau. All variables (Table 2) were 

extracted using ArcGIS (version 10.0). The optimal buffer radius for the percentage of dust surfaces and land use, pollution 

industries density, and road density were defined based on the maximum Pearson correlation coefficients. 

An automatic forward-backward stepwise regression procedure was employed to select the best fitting LUR models based on 20 

the screened-out predictors. The final LUR models in this study were determined based on the criteria of the lowest Akaike 

information criterion (AIC) value and the highest fitting R2. The model structure can be expressed as 

𝑃𝑀2.5,𝑠 = 𝑎0 + 𝑎1𝑋1,𝑠 + 𝑎2𝑋2,𝑠 +⋯+ 𝑎𝑛𝑋𝑛,𝑠 + 𝜇,                                   (2) 

where 𝑃𝑀2.5,𝑠 is the estimation of the hourly averaged PM2.5 concentration of site s, 𝑋𝑖,𝑠 (i=1,2,⋯,n) are independent variables, 

𝑎0 is a constant, 𝑎𝑖 (i=1,2,⋯,n) are regression coefficients, and μ is the random error estimated using the least squares method. 25 

This process was conducted in R statistical software (version 3.3.2) (Fox and Weisberg 2011, R Core Team 2016). 

2.2.3 Regression kriging 

RK is a two-stage statistical procedure in this study. First, separate standard LUR models were developed based on 

crowdsourced observations in the training dataset for each hour. Second, the residuals for the LUR models was calculated and 
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interpolated for each hour using OK technology. Finally, the estimations of the residuals at the validation sites were extracted 

and added to the LUR estimations. 

In this study, OK was performed using the Geostatistical Analyst Tool of ArcGIS (version 10.0), and interpolated residuals 

were obtained using the Extract Values to Point Tool. The entire process was implemented with Python scripts. 

2.3 PM2.5 concentration mapping 5 

The method that performed best with 90% training sites was chosen as the mapping method. Using this method, the spatial 

distributions of the PM2.5 concentration for each hour were estimated with all samples. In this study, nearest neighbour 

distances between two sampling sites ranged from 15 to 60 metres for Period 1 and 54 to 98 metres for Period 2. Considering 

the resolutions of the potential predictors, 100 metres was used as the mapping grid size. The spatial distributions of the PM2.5 

concentration for each hour with measurements of 10 national monitoring stations were estimated using the same method for 10 

comparison. 

3 Results 

3.1 Descriptive statistics of PM2.5 concentrations 

Table 3 shows the descriptive statistics of hourly PM2.5 concentrations for the crowdsourced sampling sites and the national 

monitoring stations. Generally, the statistics differed. For Period 1, the mean values and SD of the PM2.5 concentrations for 15 

the crowdsourced sampling sites ranged from (69.67±18.81) to (76.45±14.55) µg m-3. These values were substantially higher 

than those for the national monitoring stations (i.e., (36.9±10.97) – (41.2±8.68) µg m-3). The maximum and minimum values 

of crowdsourced PM2.5 concentrations were higher than the national values. However, the mean values and SD of PM2.5 

concentrations of the crowdsourced sites are lower than those of the national stations in period 2. The former values ranged 

from (162.72±15.96) µg m-3 to (171.89±21.5) µg m-3, while the latter values ranged from (177.8±16.91) µg m-3 to (188.3±22.4) 20 

µg m-3. Although the minimum values of crowdsourced PM2.5 concentrations were also lower than those of the national stations, 

the maximum values were higher. The average PM2.5 concentrations of Period 2 were substantially higher than those of Period 

1, and the highest values occurred when traffic and emissions from cooking had peaked (i.e., 12:00 and 18:00) for both periods. 

Fig. 3 demonstrates the spatial variation in the PM2.5 measurements over the two periods in the study area, and the spatial 

variations between different sampling sites and two periods can be obtained. For Period 1, the PM2.5 concentrations gradually 25 

decreased from north to south and from west to east. Higher concentrations of PM2.5 (> 75 µg m-3) were observed at sampling 

sites in the northwest corner of the study area. The sampling sites in Changsha County with high levels of green vegetation 

cover had lower PM2.5 concentrations compared with the sites in the inner city. For Period 2, conversely, sampling sites in the 

central and eastern parts of the study area had higher PM2.5 concentrations than those in the western part. Monitoring sites had 

PM2.5 concentrations higher than 150 µg m-3 in most areas, with the exception of the western Yuelu district. Particularly, 30 
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sampling sites in areas along the Xiangjiang River, especially in the higher education mega centre experienced extreme PM2.5 

pollution (> 210 µg m-3). 

3.2 Model performance for OK, LUR and RK 

The box plots of Fig. 4 show the variation in the hold-out validation R2 for the three mapping approaches in relation to the 

number of training sites. The average and standard deviation of the RMSE and MRE between the observed concentration and 5 

predicted concentration of PM2.5 in the hold-out validation were presented in the Supporting Information (Table S3–S4). The 

average values and variability ranges of R2 for OK, LUR and RK were positively associated with an increase in the number of 

training sites. RK performed best in Period 2 and at 8:00 and 12:00 of Period 1 with training sites less than ~100. The LUR 

demonstrated the poorest performance for both periods of the models tested. 

For Period 1, the PM2.5 estimating accuracy was generally highest at 9:00 and lowest at 12:00. The average validation R2 10 

ranges for different number training sites of OK at 8:00, 9:00, 10:00, 11:00 and 12:00 were 0.58–0.72, 0.56–0.78, 0.51–0.82, 

0.47–0.71, and 0.24–0.48, respectively. Compared with OK, the accuracy of LUR was substantially lower. The ranges were 

0.26–0.55, 0.29–0.54, 0.16–0.40, 0.16–0.36, and 0.24–0.34. The average R2 for RK were weakly smaller than OK at 9:00, 

10:00, and 11:00 with ranges of 0. 59–0. 69, 0. 50–0.66, and 0. 48–0.60, respectively. The average R2 of RK at 8:00 and 12:00 

were higher than OK when less than ~100 sampling sites were divided into training datasets (8:00: 0.65–0.69 vs. 0.58–0.68; 15 

12:00: 0.40–0.44 vs. 0.24–0.41). For Period 2, the validation R2 from high to low followed the sequence RK > OK > LUR. 

The average validation R2 for a different number of training sites of OK were considerably lower in Period 1. The ranges at 

14:00, 15:00, 16:00, 17:00 and 18:00 were 0.25–0.49, 0.34–0.50, 0.40–0.59, 0.27–0.39, and 0.18–0.27, respectively. The 

average R2 of LUR were even lower; the lowest values were 0.08, 0.07, 0.15, 0.06, and 0.04, and the highest values were 0.22, 

0.25, 0.42, 0.22, and 0.16, respectively. Combining OK and LUR, the performance of RK improved with an average R2 that 20 

ranged from 0.43, 0.44, 0.43, 0.36, and 0.32 to 0.60, 0.68, 0.52, 0.54, and 0.57.  

Fig. 5 shows scatterplots of holdout-validation results with 90% training sites. For Period 1, the lowest total R2 of OK and the 

highest total R2 of OK were 0.46 for 12:00 and 0.82 for 10:00 (Fig. 5a), respectively, while R2 of RK were lower with the 

range of 0.44–0.68 (Fig. 5c); they were both higher than the LUR (0.29–0.53, Fig. 5b). Correspondingly, the RMSE and MRE 

from low to high were OK (5.95–10.36; 6.80%–9.91%) < RK (8.23–10.92; 9.80%–11.91%) < LUR (10.68–13.16; 12.91%–25 

14.97%). For Period 2, however, the RK presented the highest accuracy with a R2 that ranged from 0.45 (17:00) to 0.66 (14:00) 

(Fig. 5f). The OK ranked second (R2: 0.27–0.54, Fig. 5d), while the LUR achieved the poorest performance (R2: 0.06–0.36, 

Fig. 5e).  

3.3 Spatial patterns of crowdsourced PM2.5 concentration 

Fig. 6a and Fig. 6b reveal the spatial distributions of OK interpreted PM2.5 concentrations for Period 1 from the crowdsourced 30 

sampling sites and the national monitoring stations, respectively. Fig. 6c and Fig. 6d demonstrate the spatial distributions of 
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the RK estimated PM2.5 concentrations for Period 2. The crowdsourced hourly PM2.5 concentration maps demonstrate more 

detailed intra-urban variations than the national monitoring maps, especially for Period 1. 

For Period 1, crowdsourced PM2.5 concentrations generally increased from south-east to north-west with multiple hot spots. In 

the central and south regions of the study area, areas with a larger number of factories that experience a relatively higher PM2.5 

concentration than other areas. The national monitoring PM2.5 concentrations, however, were less than 55 µg m-3 with limited 5 

spatial variation. For Period 2, with the exception of 14:00, the national monitoring PM2.5 concentration maps showed high-

east and low-west patterns. PM2.5 concentrations of central Yuelu district were rather low (<175 µg m-3). Crowdsourced PM2.5 

concentrations demonstrate extensive cold spots of PM2.5 concentrations in southern Changsha County and the southern Kaifu 

district, while southern Yuelu and western Tianxin with a high-density of factories and roads were hot spots of PM2.5 

concentration. 10 

4 Discussion 

Aimed at efficiently mapping the PM2.5 concentration in an intra-urban area at a fine scale using crowdsourced monitoring, a 

high-density crowdsourced sampling campaign and strategies of the popular mapping method selection with an increase in 

training sites were presented in China for the first time. 

The number of sampling sites were 18 and 10 per 100 km2 for Period 1 and Period 2, respectively. These data comprise a 15 

considerable improvement compared with a density of approximately 0.015 sites per 100 km2 in the national air quality 

monitoring network in China. As expected, crowdsourced PM2.5 measurements demonstrated detailed spatial variation among 

urban microenvironments, and these variations can hardly be disclosed by sparse national air quality monitoring stations. This 

finding suggests that crowdsourced sampling can effectively improve the density of PM2.5 monitoring at a rather low monetary 

cost and can be supportive of the short-term air pollution exposure assessment for epidemiologic studies at a fine scale. To 20 

explore the spatial variation in the PM2.5 concentration for various urban microenvironments and compare with the national 

air quality measurements, the crowdsourced monitoring is assumed to cover a certain number of areas. However, persuading 

the general public in these areas to continuously observe and upload PM2.5 concentrations during their activities of daily living 

through a designed study is difficult. We employed a batch of volunteers to model their behaviours on the general public’s 

behaviour and simultaneously collect data. This approach is a preliminary practice of crowdsourced monitoring and can be 25 

further developed and improved in the long-term exposure assessment at the fine scale in the future with the progress in low-

cost wearable air quality monitors and automatic processing techniques of crowdsourced data. 

The hourly PM2.5 concentrations between crowdsourced sampling sites and national monitoring stations were rather different; 

this difference varied as the official air quality level changed. The crowdsourced PM2.5 concentrations were substantially larger 

than the national concentrations in Period 1 (light-polluted) and slightly lower in Period 2 (heavy-polluted). One possible 30 

reason is that the national monitoring stations in the study area were installed on the roofs of mid-rise buildings (i.e., ~15 m) 

with ventilation and spaciousness, while crowdsourced sampling was conducted on the real ground (i.e., ~2 m). The change in 
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the major pollution sources and meteorological conditions in the study area may contribute to the difference between two 

periods; the major contribution of local sources, especially the vehicle emission and the very high RH (95%–98%) during the 

light-polluted period, may cause the accumulation of PM2.5 near the ground; and the sources of long-range transport of regional 

pollution during the heavy-polluted period can increase the concentration of PM2.5 on the upper layer. This finding suggests 

that the air pollution exposure risk may remain relatively high for the public on the ground in some urban microenvironments, 5 

even when official air pollution levels are “Good” and “Moderate” and sensitive groups should consider reducing some outdoor 

activities. The results confirm the necessity of developing real-ground high-density crowdsourced PM2.5 monitoring networks. 

Although the low-cost sensor and the use of optical particle detection of monitors in sampling may cause inaccuracies in 

measurements, we have attempted to minimise the uncertainty by disusing the relatively inaccurate monitors (MRE>5%) used 

in preliminary indoor and outdoor experiments. Comparison experiments between laser air quality monitors and the national 10 

monitoring instruments were also conducted at the same positions and heights for two time slots; the weather conditions and 

air quality scenarios of the two time slots were similar to the two sampling periods (i.e., overcast with light rain, RH≥76%: 

December 20–22 vs. Period 1; cloudy with sunshine, RH≤67%: December 29–31 vs. Period 2). The relatively good agreement 

between the hourly PM2.5 concentrations of laser monitors and those of national instruments had guaranteed the reliability of 

sampling data to a certain extent. The relative humidity may have slightly influenced the crowdsourced PM2.5 concentrations 15 

in the light-polluted period since December 20–22 yielded a slightly lower R2 and RMSE than those of December 29–31 but 

a higher MRE than that of December 29–31. However, the relative error of PM2.5 observations in preliminary and comparison 

experiments were generally small and fluctuated without distinct trends and leading factors. During the following procedure 

of mapping method selection, three methods were performed with the same dataset, which caused a limited influence of 

uncertainty in measurements on the method comparison results; therefore, we did not correct the measurements in this study. 20 

However, more efforts are needed in crowdsourced measurements correction and uncertainty analysis in air pollution 

concentration mapping at high resolution for accurate exposure assessment in the future.    

Unlike previous studies that conducted performance comparisons of OK, LUR and RK in estimating air pollution concentration 

on an annual and seasonal scale based on measurements from sparse regulatory stations (Mercer et al., 2011; Lee et al., 2014; 

Zou et al. 2015; Choi et al., 2017; De Hoogh et al., 2018), this research is the first study to evaluate and compare their 25 

performance with an increase in the number of training sites at an hourly scale using crowdsourced monitoring. 

As expected, the performance of three methods improved with an increase in the number of training sites. Compared with 

former studies that normally developed in other fields (e.g., spatial variability analysis of soil components in the environmental 

sciences) (Li and Heap, 2014), this study further confirmed the better performance of OK interpolation with larger training 

data sets in air pollution estimation. We substantiated the findings of Johnson et al. (2010), who discovered that LUR models 30 

developed with fewer sampling sites may perform poorly using real-ground PM2.5 measurements. However, average hold-out 

validation R2 (0.04–0.55) between the observed concentration and predicted concentration of PM2.5 in this study were smaller 

than the results in Johnson et al. (2010) (0.29–0.67) and similar studies of NO2 presented by Wang et al. (2012) and Gillespie 

et al. (2016) (0.44–0.85). The variations in the hourly average PM2.5 concentration between two sampling sites were generally 
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sharper compared with the annual average values. The meteorological condition had a more sensitive role in the short-term 

transmission and diffusion of PM2.5 than the long-term processes. These findings suggest that the most effective way to improve 

the accuracy of the mapping method continues to increase the number of sampling sites and confirm the necessity of developing 

high-density crowdsourced sampling for PM2.5 monitoring. However, the increased variability ranges of R2 and the standard 

deviation of RMSE and MRE with an increase in the number of training sites also suggest that the performance of these 5 

methods was affected by more than sampling size. The spatial distribution of the samples, for example, may influence their 

estimating accuracy (Li and Heap 2014). 

Contrary to the findings of Zou et al. (2015) and Choi et al. (2017) conduced at the annual scale, OK interpolation surprisingly 

showed a better performance in estimating the PM2.5 concentrations compared with the LUR modelling with a substantially 

higher average R2 and lower RMSE and MRE. RK also performed better than LUR (0.32–0.71 vs. 0.04–0.55), which is 10 

consistent with the findings of Mercer et al. (2011) (0.67–0.75 vs. 0.48–0.74) and De Hoogh et al. (2018) (0.66 vs. 0.59). RK 

had the highest accuracy in Period 2 and at 8:00 and 12:00 of Period 1 with less than ~100 training sites. These results suggest 

that OK interpolation based on crowdsourced sampling is the best strategy for the PM2.5 mapping in the intra-urban area when 

the official air pollution levels are “Good” and “Moderate” for non-peak traffic conditions in this study, while RK is the best 

strategy when the pollution levels are “Heavy-polluted”. These findings challenge the traditional point on the LUR model’s 15 

good performance in air pollution mapping and verify that the applicability of mapping methods varies as the monitoring 

technology and sampling density change. In addition, the accuracy of OK and LUR were distinctly higher for Period 1 (0.24–

0.82; 0.13–0.55) than for Period 2 (0.18–0.59; 0.04–0.42), while that for RK was rather stable (0.40–0.71 vs. 0.32–0.68). This 

finding indicates the robustness and generalisation capability of RK in estimating the PM2.5 concentration.  

Using the selected mapping method, the spatial distributions of the hourly PM2.5 concentration based on crowdsourced 20 

sampling data and national air quality observations were successfully plotted and compared. The former distribution provides 

more information about the intra-urban PM2.5 variations than the latter distribution. The nearest-neighbour distances that range 

from 15 to 60 m between two crowdsourced sampling sites enable PM2.5 concentration mapping to attain the hundred metre-

scale level. In the light-polluted period, this phenomenon was more pronounced. These findings not only suggest the support 

of crowdsourced activities in PM2.5 monitoring on a fine scale but also prompt us to pay more attention to the scenarios with 25 

low-level air pollution. This outcome is critical to the long-term future of air pollution prevention and control and public health 

protection for China, since the main emphasis has gradually shifted from the control of heavy pollution to the prevention of 

exposure risks. 

As the crowdsourced PM2.5 concentrations maps revealed, areas with a larger number of factories and high-density of roads 

experienced relatively higher PM2.5 concentrations, while areas with high levels of green vegetation cover had lower PM2.5 30 

concentrations. The relatively high concentration in the northwest corner of the study area with few factories in Period 1 may 

be attributed to the dust deposition from construction activities promoted by a high RH in this newly developed zone. This 

finding suggests that optimising the distribution of land use may improve the air quality to some extent and strengthening the 

control of local emission may be the primary way to reduce pollution in the light-polluted period. As the urban air quality 
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grade has an important effect on the spatial distribution of samples (spatial autocorrelation, and heterogeneity), which may 

also be affected by sample size, the mechanism for this influence is somewhat equivocal and needs further research. 

5 Conclusions 

This study presented strategies of method selection for efficient PM2.5 concentration mapping with an increasing number of 

training sites using crowdsourced monitoring. The results confirmed that PM2.5 concentrations in microenvironments varied 5 

across the intra-urban area in China’s cities. These variations can be clearly disclosed by the crowdsourced PM2.5 sampling 

rather than the national air quality monitoring stations. The selection of models for fine scale PM2.5 concentration mapping 

should be adjusted with changing sampling and pollution circumstances. Generally, ordinary kriging (OK) interpolation 

performs the best in conditions with non-peak traffic situations in the light-polluted period, while regression kriging (RK) can 

perform better in the heavy-polluted period and conditions with peak traffic and relatively few sampling sites in the light-10 

polluted period. Additionally, note that the land use regression (LUR) model demonstrates a limited ability in estimating PM2.5 

concentrations at very fine scale in this study. This method selection strategy provides empirical evidence for the method 

selection of PM2.5 mapping using crowdsourced monitoring and a promising way to reduce the exposure risks for individuals 

in their daily lives. 
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Table 1. Rules for potential PM2.5 sampling sites selection. 

Code Type N Rules 

1 Vertex point 5 U1a = {Xc | X∈(Vertex point of the boundary of sampling area ∩ Landmark)}. 

2 Industrial park 28 A2b = {X | X∈((Industrial park ∪ (Metal & cement & power industrial factories 

agglomeration)) – High-tech industrial park)}; 

U2 = {X | X has the largest number of factories within its 100 m buffer zone AND 

X∈A2}. 

3 Dust surface 13 A3 = {X | X∈(POI ∩ Dust surface) AND area of dust surface ranks in the top 4 of 

each district}; 

U3 = {X | Distance between X＞200 m AND X∈A3}. 

4 Depot 16 U4 = {X | X∈(Coach station ∩ Railway station)}. 

5 Scenic area 27 A5 = {X | X∈((Park – Neighbourhood park) ∩ well-known scenic area)}; 

U5 = {X | Distance between X＞200 m AND X∈A5}. 

6 Hospital 11 A6 = {X | X∈(Hospital ranks in the top 3 of each district ∪ Children's hospital 

∪ Respiratory special hospital)}; 

U6 = {X | Distance between X＞200 m AND X∈A6}. 

7 Residential area 12 A7 = {X | Distance between X and U1＜200 m OR Distance between X and U3＜

200 m, X∈ Residential area }; 

U7 = {X | Distance between X＞200 m AND X∈A7}. 

8 School 15 U8 = {X | Distance between X and U1＜200 m OR Distance between X and U3＜

200 m, X∈School, in order of priority: Kindergarten＞Primary＞Secondary＞
Universities)}. 

9 Commercial area 9 U9 = {X | X is the building with the highest population density, X∈Commercial 

area}. 

10 Other important POI 8 U10 = {X | X∈(Corresponding sampling site of national monitoring station ∪ 

Background site ∪ Museum)}. 

11 Road 56 A11 = {X | X∈(Junction of (Expressway ∪ Main road))}; 

U11 = {X | X is 50/100 metres away from A11 OR X∈A11}. 

12 Supplementary point 3 U12 = {X | X∈ POI where four neighbouring grids have no site}. 
aUi (i=1, 2, …): ith subset of the set of potential PM2.5 sampling sites. 
bAi (i=1, 2, …): ith subset of the union of supporting data. 
cX: element belongs to the set. 

  5 
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Table 2. Description of potential predictor variables for LUR. 

GIS dataset Predictor Variables Unit Buffer size (radius in metres) 

Dust surfaces  

Piling surface % 

50, 100, 200, 300, 500, 1000 

Construction surface % 

Rolling trample surfaces % 

Bare surfaces % 

Total % 

Pollution 

industries 

Inverse distance to nearest industries  NA 

Industries density  50, 100, 200, 300, 500, 1000 

Land use  

High-density residential area  % 

50, 100, 200, 300, 500, 1000 

Low-density residential area  % 

Urban green land  % 

Other built-up area  % 

High-density forest  % 

Low-density forest % 

Agricultural land % 

Traffic  
Inverse distance to a nearest major road   NA 

Road density  50, 100, 200, 300, 500, 1000 

Meteorology 

Average wind speed  Meter/s NA 

Atmospheric pressure Pa NA 

Relative humidity % NA 

Temperature  Fahrenheit degree NA 

 

Table 3. Descriptive statistics of PM2.5 concentration (µg m-3). 
  Mean Max Min Standard deviation 
  SAMPa NATb SAMP NAT SAMP NAT SAMP NAT 

Period 1 

8:00 69.67 39.8 128 58 36 27 18.81 10.46 

9:00 72.97 36.9 132 54 30 20 17.04 10.97 

10:00 73.08 38.5 113 58 28 21 15.57 11.57 

11:00 74.12 39.4 106 54 30 27 13.96 8.78 

12:00 76.45 41.2 136 53 44 29 14.55 8.68 

Period 2 

14:00 167.91 188.3 220 207 145 165 14.43 14.48 

15:00 165.75 182 227 206 133 153 16.68 17.06 

16:00 162.72 178.7 212 201 115 149 15.96 16.91 

17:00 167.69 177.8 266 209 136 146 18.92 20.49 

18:00 171.89 182.1 250 219 132 149 21.5 22.4 

a: sampling sites of the crowdsourced sampling campaign. 

b: national monitoring stations. 5 
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Figure 1: Principle and accuracy of measurement instrument. Y and X are laser air quality monitors and national monitoring instruments, 

respectively. The black dots, blue dots and red dots indicate PM2.5 observations with relative error of <10%, 10%−20%, and >20%, 

respectively, between two instruments. The black dotted line and red dotted line are the 1:1 line and 1:1.2 line as references. 
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Figure 2: Sampling area and PM2.5 sampling sites. 
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Figure 3: Spatial variation of PM2.5 concentration of sampling sites: (a) Period 1, (b) Period 2. 

 

 

Figure 4: Box plots of hold-out validation R2 between the observed concentration and predicted concentration of PM2.5 for OK, LUR and 5 
RK with an increase in training sites: (a) Period 1; (b) Period 2. The boundaries of the boxes indicate the 75th percentile and 25th percentile 

(Q3 and Q1, respectively). The line within the box denotes the median (Q2), and the crosses denote the averages. The error bars above and 

below indicate the highest datum (Q3+1.5IQR, IQR is the interquartile range, IQR=Q3-Q1) and the lowest datum (Q1-1.5IQR), respectively. 

Dots above and below the error bars indicate the outliers. 
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Figure 5: Scatterplots of repeated validating results with 90% training sites for (a) OK, Period 1; (b) LUR, Period 1; (c) RK, 

Period 1; (d) OK, Period 2; (e) LUR, Period 2; (f) RK, Period 2. The solid line is the 1:1 line, which is a reference. 
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Figure 6: Spatial distributions of PM2.5 concentrations from crowdsourced sampling sites and national monitoring stations. (a) 

Period 1, crowdsourced sampling; (b) Period 1, national monitoring; (c) Period 2, crowdsourced sampling; (d) Period 2, 

national monitoring. 
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