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Abstract. Fine particulate matter (PM2.5) is of great concern to the public due to its significant risk to human health. Numerous 

methods have been developed to estimate spatial PM2.5 concentrations in unobserved locations due to the sparse number of 10 

fixed monitoring stations. Due to an increase in low-cost sensing for air pollution monitoring, crowdsourced monitoring of 

exposure control has been gradually introduced into cities. However, the optimal mapping method for conventional sparse 

fixed measurements may not be suitable for this new high-density monitoring approach. This study presents a crowdsourced 

sampling campaign and strategies of method selection for hundred metre-scale level PM2.5 mapping in an intra-urban area of 

China. During this process, PM2.5 concentrations were measured by laser air quality monitors through a group of volunteers 15 

during two 5-hour periods. Three extensively employed modelling methods (ordinary kriging (OK), land use regression (LUR), 

and regression kriging (RK) were adopted to evaluate the performance. An interesting finding is that PM2.5 concentrations in 

micro-environments varied in the intra-urban area. These local PM2.5 variations can be easily identified by crowdsourced 

sampling rather than national air quality monitoring stations. The selection of models for fine scale PM2.5 concentration 

mapping should be adjusted according to the changing sampling and pollution circumstances. During this project, OK 20 

interpolation performs best in conditions with non-peak traffic situations during a light-polluted period (hold-out validation 

R2: 0.47–0.82), while the RK modelling can perform better during the heavy-polluted period (0.32–0.68) and in conditions 

with peak traffic and relatively few sampling sites (less than ~100) during the light-polluted period (0.40–0.69). Additionally, 

the LUR model demonstrates limited ability in estimating PM2.5 concentrations on very fine spatial and temporal scales in this 

study (0.04–0.55), which challenges the traditional point about the good performance of the LUR model for air pollution 25 

mapping. This method selection strategy provides empirical evidence for the best method selection for PM2.5 mapping using 

crowdsourced monitoring, and this provides a promising way to reduce the exposure risks for individuals in their daily life. 

1 Introduction  

Fine particulate matter (PM2.5) has been associated with an increased risk of morbidity and mortality in both the long-term and 

the short-term (Beverland et al., 2012; Cohen et al., 2017; Di et al., 2017; Lelieveld et al., 2017). The persistent cumulative 30 
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effects from exposure in daily activities, especially daily travelling, are critical (Kingham et al., 2013; Hankey et al., 2017). If 

individuals could consciously choose the location and time of their outdoor activities based on detailed knowledge about the 

spatiotemporal variation in PM2.5 concentration, then their health protection could be improved. 

In situ measurement is the most reliable way to capture the PM2.5 concentrations across every corner of a city in real time. 

However, fixed monitoring stations in conventional air quality monitoring networks are sparse. As a result, site-based 5 

observations encounter challenges in capturing spatiotemporal variations of air pollutants, especially in intra-urban areas with 

unevenly distributed emission sources and dispersion conditions (Kumar et al., 2015; Zou et al., 2016; Apte et al. 2017). Spatial 

mapping methods, including air dispersion modelling, spatial interpolation, satellite remote sensing (RS), and empirical models, 

have been increasingly employed to estimate concentrations of PM2.5 in unobserved locations over the past two decades (Jerrett 

et al., 2005; Henderson et al., 2007; El-Harbawi, 2013; Kim et al., 2014; Rice et al., 2015; Fang et al., 2016; Zou et al., 2017; 10 

Zhai et al., 2018; Xu et al., 2018; Liu et al., 2018). The outputs of a dispersion model considerably depend on detailed emission 

inventories and meteorological information, which are not usually available for many cities. The coarse spatial resolution (≥1-

10 km) of satellite instruments and the data missing problem due to the cloud cover prohibit the widespread use of RS in PM2.5 

concentration mapping in urban environments (Zou et al., 2015; Apte et al., 2017).  

Conversely, geostatistical and empirical models can estimate concentrations at high spatial resolution with a rather low 15 

requirement for data. The most commonly employed models are ordinary kriging (OK) interpolation and land use regression 

(LUR) modelling. Some studies have improved the estimating accuracy by combining these two technologies (Mercer et al., 

2011; De Hoogh et al., 2018). While they have been successfully applied to map the spatial variability of PM2.5 concentrations 

in various geographic areas, their accuracy varies as the concentration levels and sample sizes change (Wang et al., 2012; 

Mercer et al., 2011; Lee et al., 2014; Zou et al. 2015; Gillespie et al., 2016; Choi et al., 2017; De Hoogh et al., 2018).  20 

Due to an increase in low-cost sensing for air pollution monitoring, the real-time strategies for exposure control in cities have 

been further developed (Kumar et al., 2015). Crowdsourced monitoring that enables citizens to produce geospatial data is 

constantly growing and shows considerable potential (Heipke, 2010). Large and diverse groups of people who lack formal 

training can easily describe their environments with a mobile phone or smart phone and upload data via informal social 

networks and web technology. Unlike traditional fixed monitoring stations that are usually mounted on roofs (i.e., 3 to 20 25 

metres above the ground) for the sake of instrument protection, crowdsourced monitoring provides real-time PM2.5 monitoring 

that reflects the real exposure for individuals who live and work on the ground. Although crowdsourced monitoring tends to 

produce observations with questionable quality, it enables us to obtain measurements of ambient air pollution in dense 

networks at relatively low cost. Some studies have employed these data to display the air pollution concentration and 

investigate the exposure risks (Thompson, 2016; Miskell et al., 2017; Jerrett et al., 2017). These observations are still point 30 

measurements that are only representative of the limited area around the site and cannot satisfy the demand of obtaining the 

air pollution concentration whenever and wherever we want.     

One way to address the previously mentioned challenge is to combine high-density crowdsourced observations with spatial 

mapping methods. An important investigation was performed by Schneider et al. (2017) in Oslo, Norway. They presented a 
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universal kriging technique for urban NO2 concentration mapping that combines near-real-time crowdsourced observations of 

urban air quality with output from an air pollution dispersion model. However, high-density crowdsourced measurements may 

vary among urban microenvironments with different human daily activities and among sparsely distributed conventional in 

situ measurements. Using the elected mapping methods from previous studies to depict the variation in air pollution on a very 

fine spatial and temporal scale with new monitoring ways may cause the misclassification of exposure and an underestimation 5 

of risk. As the number of valid crowdsourced observations may significantly change due to instrument faults, human error, 

and other quality issues, the applicability of mapping methods to different sampling sizes needs sound scientific evidence. 

In this study, we presented strategies of method selection for PM2.5 concentration mapping based on crowdsourced datasets 

with varying size. The intra-urban crowdsourced sampling campaign was conducted in the city of Changsha, China, over two 

periods in different pollution scenarios. The performance of OK, LUR and regression kriging (RK) in estimating PM2.5 10 

pollution was evaluated and compared with an increasing number of training sites. The best performing method was employed 

to plot the variation in the hourly PM2.5 concentration and identify the pollution hotspots in the intra-urban area. The results 

from this study will provide evidence for the method selection of PM2.5 mapping using crowdsourced monitoring and 

significantly contribute to efficient air pollution mapping and exposure assessment in intra-urban areas. 

2 Data and methods 15 

2.1 PM2.5 sampling 

2.1.1 Measurement instrument 

The portable laser air quality monitor SDL307 (produced by NOVA FITNESS Co., Ltd.) is employed to perform sampling. 

The monitor manual can be downloaded from http://www.inovafitness.com/index.html. This monitor can be conveniently 

carried with a total size of 25×34×14 cm (Fig. 1a) and has a resolution of 0.1 µg m-3. It has two monitoring modes, laser air 20 

quality monitor has two monitoring modes, Mode One and Mode Two. Under the Mode One, the monitor observes PM2.5 

concentration in real time and measurement updates and automatically stores every second, but only has a battery life of 5 

hours. Under the Mode Two, the monitor repeats the procedure of observing and storing 1 minute and then sleeping 5 minutes 

and have a battery life of 30 hours. According to the test report provided by the Center for Building Environment Test at 

Tsinghua University, the laser monitors were compared with the regulatory monitor in the lab in the air quality monitoring 25 

mode at concentration levels of 21, 63, 106, 212, 454 and 1060 µg m-3 and the relative errors were rather low (within ±20%) 

and demonstrated similar patterns between concentration levels except for the 1060 µg m-3 level (http://www.inovafitness.com 

/a/minyongchanpin/jianceyilei/2015/0522/31.html). The concentration of particulate matter is measured using the light-

scattering method (Fig. 1b). The monitor contains a special laser module, and the signals are recorded by a photoelectric 

receptor when particulate matter passes through laser light. The count and size of particulate matter are then analysed by a 30 

microcomputer after the signals are amplified and converted. Their mass concentrations are automatically calculated using a 
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built-in algorithm based on the conversion factor between the light-scattering method and the tapered element oscillating 

microbalance technology.  

To ensure the low inter-sensor variability (i.e. the measurement difference under the same condition) of sampling monitors, 

we placed 115 laser air quality monitors in the same environment and continuously observed them in the Mode Two for one 

week during each of the four seasons. If the absolute value of relative error between the observation of one monitor and the 5 

average observations of the other monitors exceeded 5%, this monitor fell into disuse. This procedure was conducted both 

indoors and outdoors. Subsequently, 86 monitors with rather stable performance and a small difference between each 

observation remained. In addition, we randomly selected 30 portable laser air quality monitors to compare with the national 

monitoring instruments to further guarantee the reliability of the sampling data. First, for ease of operation, three national air 

quality monitoring stations were selected. Second, for each station, 10 monitors were observed in the Mode Two next to the 10 

national monitoring instrument (~15 metres above the ground in the study area) from 8:00 to 20:00 on December 20–22, 2015 

and from 8:00 to 20:00 on December 29–31, 2015. The hourly PM2.5 concentrations of the evaluation periods were the mean 

values of 10 minutes measurements. The weather on December 20–22 was overcast with patchy drizzle and light rain at times, 

and the relative humidity (RH) ranged from 77% to 94%, while the weather on December 29–31 was cloudy with some 

sunshine and a RH that ranged from 38%–67%. 15 

The scatter plots and descriptive statistics of the valid hourly average PM2.5 concentrations from the thirty laser air quality 

monitors and the three national monitoring instruments for December 20–22 and 29–31 were presented in Fig. 1c and Fig. 1d, 

respectively. The hourly average PM2.5 concentrations for two types of instruments generally showed good agreement with a 

correlation coefficient R2 of 0.89 and 0.90. The root-mean-square-errors (RMSE) for the former time period was lower than 

the RMSE for the latter time period (5.63 µg m-3 vs. 5.94 µg m-3), while the mean relative error (MRE) was higher than the 20 

MRE for the latter time period (6.37% vs. 3.82%). The latter time period demonstrated a smaller difference in hourly average 

PM2.5 concentrations between laser air quality monitors and the national monitoring instruments with mean values and standard 

deviations (SD) of 72.99±16.45 µg m-3 vs. 71.89±15.28 µg m-3 and 129.93±18.33 µg m-3 vs. 129.33±17.50 µg m-3.  The 

relationship between RH and the ratio of laser monitor measurements to the national instrument measurements for two 

evaluation periods was presented in the Supporting Information as Fig. S1a and Fig. S1b. The ratio of laser monitor 25 

measurements to the national instrument measurements roughly increased exponentially with the increase in the RH for 

December 20–22 (R2=0.22), while the ratio was uncorrelated with RH for December 29–31 (R2=0.05). When RH correction 

is made by empirical equation for December 20–22, the R2 between hourly PM2.5 concentration from laser monitor 

measurements and the national instrument measurements improved from 0.89 to 0.9. 

2.1.2 Sampling design 30 

The sampling area is located in the Changsha metropolitan area (112°49′–113°14′E, 27°58′–28°24′N), which covers an area 

of approximately 920 km2 and seven districts (refer to Fig. 2). Changsha is the capital of Hunan Province with a population 
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that exceeds 7 million people. The area experienced high-level exposure to air pollutants due to an increase in anthropogenic 

activities and intensive energy consumption. 

To ensure that the sampling sites exhibit a relatively even and typical distribution for different urban microenvironments (i.e., 

residential community, building site, school, and park), a series of rules were designed to determine the potential PM2.5 

sampling sites based on the distribution of potential emission sources (refer to Table 1). The data that support the sampling 5 

design consist of important points of interest (POI), dust surfaces, and main road networks. POI data includes industrial parks, 

enterprises, factories, depots, hospitals, schools, and parks. Dust surfaces refer to natural and artificial bare surfaces with 

vegetation that covers less than 10%, which easily produce atmospheric particulate matter, such as construction sites, stacked 

substance, and natural bare land. These data were collected from the Information Center of Land and Resources of Hunan 

Province. More than three observations of PM2.5 concentrations are required every hour for each potential sampling site to 10 

improve the reliability of the sampling data. Given that the number of laser air quality monitors and the distance that a volunteer 

can walk in one hour are limited, only 2–4 sites can be set in the area in which a volunteer can cover during the sampling. 

Therefore, a total of 208 potential PM2.5 sampling sites were selected. The centre of each area covered by a monitor were 

numbered in sequence (i.e., 1–86). The monitors were also numbered and labelled. 

2.1.3 Sampling and data processing 15 

Sampling was performed in two time periods in the winter of 2015 to examine the effect of air quality grades on the mapping 

results. The first period fell between 8:00 and 12:00 on December 24. In this period, the official air pollution levels were 

“Good” and “Moderate” (i.e., Period 1, light-polluted period). The weather was overcast with occasional rain or drizzle, and 

the relative humidity (RH) ranged from 95% to 98%. The second period extended between 14:00 and 18:00 on December 25, 

when an orange warning signal of haze (i.e., official air pollution level was “Heavily Polluted”) was released by the Changsha 20 

Meteorology Bureau (i.e., Period 2, heavy-polluted period). The weather was cloudy with some sunshine, and the RH ranged 

from 39%–43%. 

Before sampling started, every volunteer received one monitor and went to the corresponding area. At each potential 

monitoring site, the volunteer lifted the monitor (~2 metres above the ground) and constantly measured PM2.5 concentration in 

the Mode One for 3 minutes. During this process, after the first 60 seconds, we observed the screen and uploaded the 25 

measurement using a smart phone application (App) that we developed to verify the reliability of the stored data. For each 

hour, we eliminated the sampling sites observed less than three times. As the sites take turns measuring PM2.5 concentration, 

there are at least 3 minutes of measurements every 20 minutes of every sampling hour for those left sites. The valid observations 

for every sampling hour (i.e. 9–12 minutes measurements) were then averaged at each site. The geographic coordinates of the 

sampling sites were also uploaded. As some volunteers quit after the sampling of the first period, the sampling sites in period 30 

2 were concentrated in the central study area. A total of 179-208 samples were successfully collected at each hour in Period 1, 

and 105-118 samples were successfully collected in Period 2. The official observations at 10 national monitoring stations in 
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the study area were also obtained (China Environmental Monitoring Center, CEMC: http://106.37.208.233:20035/) and 

averaged for comparison purposes. 

2.2 Mapping method selection 

We divided sampling data into a training set and a validation set (hold-out validation) for each hour to evaluate the performance 

of OK, LUR and RK with an increasing number of training sites. The training data sets were divided into groups based on the 5 

percentages of 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the total number of monitoring sites. Therefore, a series 

of groups of training samples (36–42, 54–62, 72–83, 90–104, 107–125, 125–146, 143–166, 161–189 sites in Period 1 and 31–

35, 42–47, 52–59, 63–71, 73–83, 84–94, 94–106 in Period 2) were extracted using the Subset Features Tool of ArcGIS (version 

10.0). We repeated this process 100 times for each training set size for Period 1 and 50 times for Period 2. Statistics including 

the coefficient R2, RMSE and MRE between the predicted concentrations and observed concentrations of PM2.5 in the 10 

independent validation set were employed to evaluate and compare their performance. 

2.2.1 Ordinary kriging 

OK estimates the target variable at an unsampled location as a linear combination of neighbouring observations. OK relies on 

a weighting scheme, where closer observations have a greater impact on the final prediction. The weighting scheme is dictated 

by the variogram (Pang et al., 2010; Zou et al., 2015) and can be described as  15 

𝑍∗(𝑋0) = ∑ 𝜔𝑖𝑍(𝑋𝑖)
𝑛
𝑖

∑ 𝜔𝑖
𝑛
𝑖 = 1

},                                      (1) 

where Z∗(X0)  is the estimation of an unknown sample point; Z(Xi) and ωi  are the value of the ith known sample point 

surrounding the unknown sample point and its corresponding weight, respectively; and n is the number of known sample points. 

2.2.2 Land use regression 

LUR modelling predicts the air pollution concentration by linking measurements of monitoring sites and geographic elements 20 

around them using the least squares method. LUR is composed of predictor variable extraction and selection and regression 

modelling and validation. 

Geographic factors including pollution sources (dust surface and pollution industries), road networks, and land use/cover were 

employed to indirectly characterise the PM2.5 emissions in this study. These data were generated using multiple ring buffers 

with different radii (50–1000 m) at each monitoring site. Meteorological data including wind speed, atmospheric pressure, 25 

relative humidity, and temperature of 107 sites in and around the sampling area, which may affect the dispersion of PM2.5, 

were also obtained. Geographic factors were made available by the Information Centre of Department of Land and Resources 

of Hunan Province. Meteorological data were released by the Hunan Meteorology Bureau. All variables (Table 2) were 
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extracted using ArcGIS (version 10.0). The optimal buffer radius for the percentage of dust surfaces and land use, pollution 

industries density, and road density were defined based on the maximum Pearson correlation coefficients. 

An automatic forward-backward stepwise regression procedure was employed to select the best fitting LUR models based on 

the screened-out predictors. The final LUR models in this study were determined based on the criteria of the lowest Akaike 

information criterion (AIC) value and the highest fitting R2. The model structure can be expressed as 5 

𝑃𝑀2.5,𝑠 = 𝑎0 + 𝑎1𝑋1,𝑠 + 𝑎2𝑋2,𝑠 +⋯+ 𝑎𝑛𝑋𝑛,𝑠 + 𝜇,                                   (2) 

where 𝑃𝑀2.5,𝑠 is the estimation of the hourly averaged PM2.5 concentration of site s, 𝑋𝑖,𝑠 (i=1,2,⋯,n) are independent variables, 

𝑎0 is a constant, 𝑎𝑖 (i=1,2,⋯,n) are regression coefficients, and μ is the random error estimated using the least squares method. 

This process was conducted in R statistical software (version 3.3.2) (Fox and Weisberg 2011, R Core Team 2016). 

2.2.3 Regression kriging 10 

RK is a two-stage statistical procedure in this study. First, separate standard LUR models were developed based on 

crowdsourced observations in the training dataset for each hour. Second, the residuals for the LUR models was calculated and 

interpolated for each hour using OK technology. Finally, the estimations of the residuals at the validation sites were extracted 

and added to the LUR estimations. 

In this study, OK was performed using the Geostatistical Analyst Tool of ArcGIS (version 10.0), and interpolated residuals 15 

were obtained using the Extract Values to Point Tool. The entire process was implemented with Python scripts. 

2.3 PM2.5 concentration mapping 

The method that performed best with 90% training sites was chosen as the mapping method. Using this method, the spatial 

distributions of the PM2.5 concentration for each hour were estimated with all samples. In this study, nearest neighbour 

distances between two sampling sites ranged from 15 to 60 metres for Period 1 and 54 to 98 metres for Period 2. Considering 20 

the resolutions of the potential predictors, 100 metres was used as the mapping grid size. The spatial distributions of the PM2.5 

concentration for each hour with measurements of 10 national monitoring stations were estimated using the same method for 

comparison. 

3 Results 

3.1 Descriptive statistics of PM2.5 concentrations 25 

Table 3 shows the descriptive statistics of hourly PM2.5 concentrations for the crowdsourced sampling sites and the national 

monitoring stations. For Period 1, the mean values and SD of the PM2.5 concentrations for the crowdsourced sampling sites 

ranged from (69.67±18.81) to (76.45±14.55) µg m-3. These values were substantially higher than those for the national 

monitoring stations (i.e., (36.9±10.97) – (41.2±8.68) µg m-3). The maximum and minimum values of crowdsourced PM2.5 
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concentrations were higher than the national values. However, the mean values and SD of PM2.5 concentrations of the 

crowdsourced sites are lower than those of the national stations in period 2. The former values ranged from (162.72±15.96) 

µg m-3 to (171.89±21.5) µg m-3, while the latter values ranged from (177.8±16.91) µg m-3 to (188.3±22.4) µg m-3. Although 

the minimum values of crowdsourced PM2.5 concentrations were also lower than those of the national stations, the maximum 

values were higher. The average PM2.5 concentrations of Period 2 were substantially higher than those of Period 1, and the 5 

highest values occurred when traffic and emissions from cooking had peaked (i.e., 12:00 and 18:00) for both periods. 

Fig. 3 demonstrates the spatial variation in the PM2.5 measurements over the two periods in the study area, and the spatial 

variations between different sampling sites and two periods can be obtained. For Period 1, the PM2.5 concentrations gradually 

decreased from north to south and from west to east. Higher concentrations of PM2.5 (> 75 µg m-3) were observed at sampling 

sites in the northwest corner of the study area. The sampling sites in Changsha County with high levels of green vegetation 10 

cover had lower PM2.5 concentrations compared with the sites in the inner city. For Period 2, conversely, sampling sites in the 

central and eastern parts of the study area had higher PM2.5 concentrations than those in the western part. Monitoring sites had 

PM2.5 concentrations higher than 150 µg m-3 in most areas, with the exception of the western Yuelu district. Particularly, 

sampling sites in areas along the Xiangjiang River, especially in the higher education mega centre experienced extreme PM2.5 

pollution (> 210 µg m-3). 15 

3.2 Model performance for OK, LUR and RK 

The box plots of Fig. 4 show the variation in the hold-out validation R2 for the three mapping approaches in relation to the 

number of training sites. The average and standard deviation of the RMSE and MRE between the observed concentration and 

predicted concentration of PM2.5 in the hold-out validation were presented in the Supporting Information (Table S3–S4). The 

average values and variability ranges of R2 for OK, LUR and RK were positively associated with an increase in the number of 20 

training sites. RK performed best in Period 2 and at 8:00 and 12:00 of Period 1 with training sites less than ~100. The LUR 

demonstrated the poorest performance for both periods of the models tested. 

For Period 1, the PM2.5 estimating accuracy was generally highest at 9:00 and lowest at 12:00. The average validation R2 

ranges for different number training sites of OK at 8:00, 9:00, 10:00, 11:00 and 12:00 were 0.58–0.72, 0.56–0.78, 0.51–0.82, 

0.47–0.71, and 0.24–0.48, respectively. Compared with OK, the accuracy of LUR was substantially lower. The ranges were 25 

0.26–0.55, 0.29–0.54, 0.16–0.40, 0.16–0.36, and 0.24–0.34. The average R2 for RK were weakly smaller than OK at 9:00, 

10:00, and 11:00 with ranges of 0. 59–0. 69, 0. 50–0.66, and 0. 48–0.60, respectively. The average R2 of RK at 8:00 and 12:00 

were higher than OK when less than ~100 sampling sites were divided into training datasets (8:00: 0.65–0.69 vs. 0.58–0.68; 

12:00: 0.40–0.44 vs. 0.24–0.41). For Period 2, the validation R2 from high to low followed the sequence RK > OK > LUR. 

The average validation R2 for a different number of training sites of OK were considerably lower in Period 1. The ranges at 30 

14:00, 15:00, 16:00, 17:00 and 18:00 were 0.25–0.49, 0.34–0.50, 0.40–0.59, 0.27–0.39, and 0.18–0.27, respectively. The 

average R2 of LUR were even lower; the lowest values were 0.08, 0.07, 0.15, 0.06, and 0.04, and the highest values were 0.22, 
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0.25, 0.42, 0.22, and 0.16, respectively. Combining OK and LUR, the performance of RK improved with an average R2 that 

ranged from 0.43, 0.44, 0.43, 0.36, and 0.32 to 0.60, 0.68, 0.52, 0.54, and 0.57.  

Fig. 5 shows scatterplots of holdout-validation results with 90% training sites. For Period 1, the lowest total R2 of OK and the 

highest total R2 of OK were 0.46 for 12:00 and 0.82 for 10:00 (Fig. 5a), respectively, while R2 of RK were lower with the 

range of 0.44–0.68 (Fig. 5c); they were both higher than the LUR (0.29–0.53, Fig. 5b). Correspondingly, the RMSE and MRE 5 

from low to high were OK (5.95–10.36; 6.80%–9.91%) < RK (8.23–10.92; 9.80%–11.91%) < LUR (10.68–13.16; 12.91%–

14.97%). For Period 2, however, the RK presented the highest accuracy with a R2 that ranged from 0.45 (17:00) to 0.66 (14:00) 

(Fig. 5f). The OK ranked second (R2: 0.27–0.54, Fig. 5d), while the LUR achieved the poorest performance (R2: 0.06–0.36, 

Fig. 5e).  

3.3 Spatial patterns of crowdsourced PM2.5 concentration 10 

Fig. 6a and Fig. 6b reveal the spatial distributions of OK interpreted PM2.5 concentrations for Period 1 from the crowdsourced 

sampling sites and the national monitoring stations, respectively. Fig. 6c and Fig. 6d demonstrate the spatial distributions of 

the RK estimated PM2.5 concentrations for Period 2. The crowdsourced hourly PM2.5 concentration maps demonstrate more 

detailed intra-urban variations than the national monitoring maps, especially for Period 1. 

For Period 1, crowdsourced PM2.5 concentrations generally increased from south-east to north-west with multiple hot spots. In 15 

the central and south regions of the study area, areas with a larger number of factories that experience a relatively higher PM2.5 

concentration than other areas. The national monitoring PM2.5 concentrations, however, were less than 55 µg m-3 with limited 

spatial variation. For Period 2, with the exception of 14:00, the national monitoring PM2.5 concentration maps showed high-

east and low-west patterns. PM2.5 concentrations of central Yuelu district were rather low (<175 µg m-3). Crowdsourced PM2.5 

concentrations demonstrate extensive cold spots of PM2.5 concentrations in southern Changsha County and the southern Kaifu 20 

district, while southern Yuelu and western Tianxin with a high-density of factories and roads were hot spots of PM2.5 

concentration. 

4 Discussion 

Aimed at efficiently mapping the PM2.5 concentration in an intra-urban area at a fine scale using crowdsourced monitoring, a 

high-density crowdsourced sampling campaign and strategies of the popular mapping method selection with an increase in 25 

training sites were presented in China for the first time. 

The number of sampling sites were 18 and 10 per 100 km2 for Period 1 and Period 2, respectively. These data comprise a 

considerable improvement compared with a density of approximately 0.015 sites per 100 km2 in the national air quality 

monitoring network in China. As expected, crowdsourced PM2.5 measurements demonstrated detailed spatial variation among 

urban microenvironments, and these variations can hardly be disclosed by sparse national air quality monitoring stations. This 30 

finding suggests that crowdsourced sampling can effectively improve the density of PM2.5 monitoring at a rather low monetary 
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cost and can be supportive of the short-term air pollution exposure assessment for epidemiologic studies at a fine scale. 

However, persuading the general public to continuously observe and upload PM2.5 concentrations during their activities of 

daily living through a designed study is difficult. We employed a batch of volunteers to model their behaviours on the general 

public’s behaviour and simultaneously collect data. This approach is a preliminary practice of crowdsourced monitoring and 

can be further developed and improved in the long-term exposure assessment at the fine scale in the future with the progress 5 

in low-cost wearable air quality monitors and automatic processing techniques of crowdsourced data. 

During the sampling, as the number and the battery life of the monitor are limited, we cannot continuously observe PM2.5 

concentration at one site for the whole sampling period. For all potential sites in one area that a volunteer can cover, 27–36 

minutes are needed to walk through three times. That means 24–33 minutes are left in one hour to observe 2–4 potential sites 

three times. Therefore, at each potential monitoring site, 3 minutes are designed for PM2.5 concentration constantly monitoring 10 

every observation. Although the sampling concentrations are only averages from ~10 minutes measurements, we believe it is 

generally equal to the hourly averages for the following reasons: (1) the 3–4 times of 3-minutes observation happened at rather 

regular intervals, which can reflect the temporal variation of PM2.5 measurements for one location during one hour to a certain 

extent. (2) the monitor observed in a similar pattern in the comparison experiments with the national monitoring instruments, 

and the relatively good agreement the results demonstrate provides empirical evidence for this assumption. 15 

The hourly PM2.5 concentrations between crowdsourced sampling sites and national monitoring stations were rather different; 

this difference varied as the official air quality level changed. The crowdsourced PM2.5 concentrations were substantially larger 

than the national concentrations in Period 1 (light-polluted) and slightly lower in Period 2 (heavy-polluted). One possible 

reason is that the national monitoring stations in the study area were installed on the roofs of mid-rise buildings (i.e., ~15 m) 

with ventilation and spaciousness, while crowdsourced sampling was conducted on the real ground (i.e., ~2 m). The PM2.5 20 

concentration may experience a drop above ~15m from the ground (Quang et al., 2012; Sajani et al., 2018). The change in the 

major pollution sources and meteorological conditions in the study area may contribute to the difference between two periods; 

the major contribution of local sources, especially the vehicle emission and the very high RH (95%–98%) during the light-

polluted period, may cause the accumulation of PM2.5 near the ground; and the sources of long-range transport of regional 

pollution during the heavy-polluted period can increase the concentration of PM2.5 on the upper layer. Another possible reason 25 

can be the inaccuracies in measurements the low-cost sensor and the use of optical particle detection may cause. For Period 1, 

the very high RH may lead to an overestimate of PM2.5 concentration. The ratio of laser monitor measurements to the national 

instrument measurements generally increased exponentially with the increase in the RH for December 20–22 (i.e. the first 

evaluation period with a weather condition similar to that of light-polluted sampling period, RH: 77%–94%) (R2=0.22). This 

is consistent with the findings of Zheng et al. (2018) and Badura et al. (2018), who discovered that low-cost sensors tend to 30 

overestimate the PM2.5 concentrations when RH is high (>~80%). However, the agreement between laser monitor and the 

national instrument was rather good (R2=0.89) and the improvement after RH correction was insignificant (0.01); the potential 

effect of RH on hourly PM2.5 concentration during very high RH events could be consistent because of  the low inter-sensor 

variability (i.e. the measurement difference under the same condition, <5%) of sampling monitors selected from the 
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preliminary experiments and the small spatial variability of RH in intra-urban area. In view of the above-mentioned reasons, 

we believe the hourly PM2.5 concentration for light-polluted sampling period could generally disclose the air pollution variation 

of different urban microenvironments although the very high RH conditions (RH>95%) were not experienced in the evaluation 

period. For Period 2, the high concentration environment may cause the underestimate of low-cost sensor (Zheng et al., 2018; 

Johnson et al., 2018). Although the monitor experienced little high concentration environments (>160 µg m-3) for December 5 

29–31 (i.e. the second evaluation period with a weather condition similar to that of heavy-polluted sampling period). the 

monitor was compared with the regulatory monitor at concentration levels of 106, 212 and 454 µg m-3 in the test of Tsinghua 

University and the relative errors were rather low (within ±20%) and demonstrated similar patterns between concentration 

levels. In consideration of this and the low inter-sensor variability of sampling monitors, we assume the responses of sampling 

monitor to the national monitoring instrument in heavy-polluted sampling period is consistent in the study area and the spatial 10 

variation of air pollution could be revealed to some extent. As the three methods we compared were performed with the same 

sampling dataset, the uncertainty in measurements associated with the monitor, RH and high concentration environments may 

cause a limited influence on the method comparison results. We therefore did not correct the measurements in this study. 

However, more efforts are needed in the intended use environment evaluating, uncertainty analysis and bias correction of low-

cost sensors for applications that requires more accurate measurements in the future, such as very high-resolution mapping of 15 

air pollution and accurate exposure assessment, especially under extreme weather conditions and very high and very low 

concentration environments.    

Unlike previous studies that conducted performance comparisons of OK, LUR and RK in estimating air pollution concentration 

on an annual and seasonal scale based on measurements from sparse regulatory stations (Mercer et al., 2011; Lee et al., 2014; 

Zou et al. 2015; Choi et al., 2017; De Hoogh et al., 2018), this research is the first study to evaluate and compare their 20 

performance with an increase in the number of training sites at an hourly scale using crowdsourced monitoring. 

As expected, the performance of three methods improved with an increase in the number of training sites. Compared with 

former studies that normally developed in other fields (e.g., spatial variability analysis of soil components in the environmental 

sciences) (Li and Heap, 2014), this study further confirmed the better performance of OK interpolation with larger training 

data sets in air pollution estimation. We substantiated the findings of Johnson et al. (2010), who discovered that LUR models 25 

developed with fewer sampling sites may perform poorly using real-ground PM2.5 measurements. However, average hold-out 

validation R2 (0.04–0.55) between the observed concentration and predicted concentration of PM2.5 in this study were smaller 

than the results in Johnson et al. (2010) (0.29–0.67) and similar studies of NO2 presented by Wang et al. (2012) and Gillespie 

et al. (2016) (0.44–0.85). The variations in the hourly average PM2.5 concentration between two sampling sites were generally 

sharper compared with the annual average values. The meteorological condition had a more sensitive role in the short-term 30 

transmission and diffusion of PM2.5 than the long-term processes. These findings suggest that the most effective way to improve 

the accuracy of the mapping method continues to increase the number of sampling sites and confirm the necessity of developing 

high-density crowdsourced sampling for PM2.5 monitoring. However, the increased variability ranges of R2 and the standard 

deviation of RMSE and MRE with an increase in the number of training sites also suggest that the performance of these 
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methods was affected by more than sampling size. The spatial distribution of the samples, for example, may influence their 

estimating accuracy (Li and Heap 2014). 

Contrary to the findings of Zou et al. (2015) and Choi et al. (2017) conduced at the annual scale, OK interpolation surprisingly 

showed a better performance in estimating the PM2.5 concentrations compared with the LUR modelling with a substantially 

higher average R2 and lower RMSE and MRE. RK also performed better than LUR (0.32–0.71 vs. 0.04–0.55), which is 5 

consistent with the findings of Mercer et al. (2011) (0.67–0.75 vs. 0.48–0.74) and De Hoogh et al. (2018) (0.66 vs. 0.59). RK 

had the highest accuracy in Period 2 and at 8:00 and 12:00 of Period 1 with less than ~100 training sites. These results suggest 

that OK interpolation based on crowdsourced sampling is the best strategy for the PM2.5 mapping in the intra-urban area when 

the official air pollution levels are “Good” and “Moderate” for non-peak traffic conditions in this study, while RK is the best 

strategy when the pollution levels are “Heavy-polluted”. These findings challenge the traditional point on the LUR model’s 10 

good performance in air pollution mapping and verify that the applicability of mapping methods varies as the monitoring 

technology and sampling density change. In addition, the accuracy of OK and LUR were distinctly higher for Period 1 (0.24–

0.82; 0.13–0.55) than for Period 2 (0.18–0.59; 0.04–0.42), while that for RK was rather stable (0.40–0.71 vs. 0.32–0.68). This 

finding indicates the robustness and generalisation capability of RK in estimating the PM2.5 concentration.  

Using the selected mapping method, the spatial distributions of the hourly PM2.5 concentration based on crowdsourced 15 

sampling data and national air quality observations were successfully plotted and compared. The former distribution provides 

more information about the intra-urban PM2.5 variations than the latter distribution. The nearest-neighbour distances that range 

from 15 to 60 m between two crowdsourced sampling sites enable PM2.5 concentration mapping to attain the hundred metre-

scale level. In the light-polluted period, this phenomenon was more pronounced. These findings not only suggest the support 

of crowdsourced activities in PM2.5 monitoring on a fine scale but also prompt us to pay more attention to the scenarios with 20 

low-level air pollution. This outcome is critical to the long-term future of air pollution prevention and control and public health 

protection for China, since the main emphasis has gradually shifted from the control of heavy pollution to the prevention of 

exposure risks. 

As the crowdsourced PM2.5 concentrations maps revealed, areas with a larger number of factories and high-density of roads 

experienced relatively higher PM2.5 concentrations, while areas with high levels of green vegetation cover had lower PM2.5 25 

concentrations. The relatively high concentration in the northwest corner of the study area with few factories in Period 1 may 

be attributed to the dust deposition from construction activities promoted by a high RH in this newly developed zone. This 

finding suggests that optimising the distribution of land use may improve the air quality to some extent and strengthening the 

control of local emission may be the primary way to reduce pollution in the light-polluted period. As the urban air quality 

grade has an important effect on the spatial distribution of samples (spatial autocorrelation, and heterogeneity), which may 30 

also be affected by sample size, the mechanism for this influence is somewhat equivocal and needs further research. 
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5 Conclusions 

This study presented strategies of method selection for efficient PM2.5 concentration mapping with an increasing number of 

training sites using crowdsourced monitoring. The results confirmed that PM2.5 concentrations in microenvironments varied 

across the intra-urban area in China’s cities. These variations can be clearly disclosed by the crowdsourced PM2.5 sampling 

rather than the national air quality monitoring stations. The selection of models for fine scale PM2.5 concentration mapping 5 

should be adjusted with changing sampling and pollution circumstances. During this project, ordinary kriging (OK) 

interpolation performs the best in conditions with non-peak traffic situations in the light-polluted period, while regression 

kriging (RK) can perform better in the heavy-polluted period and conditions with peak traffic and relatively few sampling sites 

in the light-polluted period. Additionally, note that the land use regression (LUR) model demonstrates a limited ability in 

estimating PM2.5 concentrations at very fine scale in this study. This method selection strategy provides empirical evidence for 10 

the method selection of PM2.5 mapping using crowdsourced monitoring and a promising way to reduce the exposure risks for 

individuals in their daily lives. 

Author contribution. SX performed the experiments and wrote the manuscript text. BZ supervised and designed the research 

and helped with the manuscript. YL and XZ helped with the discussion and revisions. SL and CH participated in the data 

processing. 15 

Competing interests. The authors declare that they have no conflicts of interest. 

Acknowledgements. Special thanks go to the volunteers participated in this crowdsourced sampling campaign. Deepest 

gratitude goes to the anonymous reviewers for their careful work and thoughtful suggestions. This study was supported by the 

National Key Research and Development Program of China (No. 2016YFC0206201/05), the National Nature Science 

Foundation of China (No. 41871317), and the Innovation Driven Program of Central South University (No. 2018CX016).  20 

References 

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C.J., Vermeulen, 

R. C., and Hamburg, S. P.: High-resolution air pollution mapping with google street view cars: exploiting big data, Environ. 

Sci. Technol., 51, 6999–7009, doi:10.1021/acs.est.7b00891, 2017. 

Badura, M., Batog, P., Drzeniecka-Osiadacz, A., and Modzel, P.: Evaluation of low-cost sensors for ambient PM2.5 monitoring, 25 

J. Sensors, 5096540, 1–16, doi:10.1155/2018/5096540, 2018. 



14 

 

Beverland, I. J., Cohen, G. R., Heal, M. R., Carder, M., Yap, C., Robertson, C., Hart, C. L., and Agius, R. M.: A comparison 

of short-term and long-term air pollution exposure associations with mortality in two cohorts in Scotland, Environ. Health 

Perspect., 120, 1280–1285, doi:10.1289/ehp.1104509, 2012. 

Choi, G., Bell, M. L., and Lee, J. T.: A study on modeling nitrogen dioxide concentrations using land-use regression and 

conventionally used exposure assessment methods, Environ. Res. Lett., 12, 044003, doi:10.1088/1748-9326/aa6057, 2017. 5 

Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., 

Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., YangLiu, Y., Martin, R., Morawska, L., 

PopeIII, A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., Donkelaar, A., Vos, T., DPhile, C., and 

Forouzanfar, M. H.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an 

analysis of data from the global burden of diseases study 2015, Lancet, 389, 1907–1918, doi:10.1016/S0140-6736(17)30505-10 

6, 2017. 

De Hoogh, K., Chen, J., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., van Donkelaar, A., Hvidtfeldt, U. 

A., Katsouyanni, K., Klompmaker, J., Martin, R.V., Samoli, E., Schwartz, P. E., Stafoggia, M., Bellander, T., Strak, M., Wolf, 

K., Vienneau, D., Brunekreef, B., and Hoek, G.: Spatial PM2.5, NO2, O3 and BC models for Western Europe-Evaluation of 

spatiotemporal stability, Environ. Int., 120, 81–92, doi:10.1016/j.envint.2018.07.036, 2018. 15 

Di, Q., Dai, L., Wang, Y., Zanobetti, A., Choirat, C., Schwartz, J. D., and Dominici, F.: Association of short-term exposure to 

air pollution with mortality in older adults, Jama, 318, 2446–2456, doi:10.1001/jama.2017.17923, 2017. 

El-Harbawi, M.: Air quality modelling, simulation, and computational methods: a review, Environ. Rev., 21, 149–179, 

doi:10.1139/er-2012-0056, 2013. 

Fang, X., Zou, B., Liu, X., Sternberg, T., and Zhai, L.: Satellite-based ground PM2.5 estimation using timely structure adaptive 20 

modeling, Remote Sens. Environ., 186, 152–163, doi:10.1139/er-2012-0056, 2016. 

Fox, J., and Weisberg, S.: An R companion to applied regression, 2nd ed., SAGE Publications, Inc., 2455 Teller Road, 

Thousand Oaks, California 91320, the United States of America, 2011. 

Gillespie, J., Beverland, I., Hamilton, S., and Padmanabhan, S.: Development, evaluation, and comparison of land use 

regression modeling methods to estimate residential exposure to nitrogen dioxide in a cohort study, Environ. Sci. Technol., 50, 25 

11085–11093, doi:10.1021/acs.est.6b02089, 2016. 

Hankey, S., Lindsey, G., and Marshall, J. D.: Population-level exposure to particulate air pollution during active travel: 

planning for low-exposure, health-promoting cities, Environ. Health Perspect., 125, 527–534, doi:10.1289/EHP442, 2017. 

Heipke, C.: Crowdsourcing geospatial data, ISPRS J. Photogramm., 65, 550–557, doi: 10.1016/j.isprsjprs.2010.06.005, 2010. 

Henderson, S. B., Beckerman, B., Jerrett, M., and Brauer, M.: Application of land use regression to estimate long-term 30 

concentrations of traffic-related nitrogen oxides and fine particulate matter, Environ. Sci. Technol., 41, 2422–2428, 

doi:10.1021/es0606780, 2007. 



15 

 

Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., Sahsuvaroglu, T., Morrison, and J., Giovis, C.: A review 

and evaluation of intraurban air pollution exposure models, J. Expo. Anal. Env. Epid., 15, 185–204, doi:10.1038/sj.jea.7500388, 

2005. 

Jerrett, M., Donaire-Gonzalez, D., Popoola, O., Jones, R., Cohen, R. C., Almanza, E., de Nazelle, A., Mead, I., Carrasco-

Turigas, G., Cole-Hunter, T., Triguero-Mas, M., Seto, E., and Nieuwenhuijsen, M.: Validating novel air pollution sensors to 5 

improve exposure estimates for epidemiological analyses and citizen science, Environ. Res., 158, 286–294, 

doi:10.1016/j.envres.2017.04.023, 2017. 

Johnson, K. K., Bergin, M. H., Russell, A. G., and Hagler, G. S.W.: Field test of several low-cost particulate matter sensors in 

high and low concentration urban environments, Aerosol Air Qual. Res., 18, 565–578, doi:10.4209/aaqr.2017.10.0418, 2018. 

Johnson, M., Isakov, V., Touma, J. S., Mukerjee, S., and Özkaynak, H.: Evaluation of land-use regression models used to 10 

predict air quality concentrations in an urban area, Atmos. Environ., 44, 3660–3668, doi: 10.1016/j.atmosenv.2010.06.041, 

2010. 

Kim, S. Y., Yi, S. J., Eum, Y. S., Choi, H. J., Shin, H., Ryou, H. G., and Kim, H.: Ordinary kriging approach to predicting 

long-term particulate matter concentrations in seven major Korean cities, Environ. Health Toxicol., 29, e2014012, 

doi:10.5620/eht.e2014012, 2014. 15 

Kingham, S., Longley, I., Salmond, J., Pattinson, W., and Shrestha, K.: Variations in exposure to traffic pollution while 

travelling by different modes in a low density, less congested city, Environ. Pollut., 181, 211–218, 

doi:10.1016/j.envpol.2013.06.030, 2013. 

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di, S. S., Bell M, Norford, L., and Britter, R.: The rise of 

low-cost sensing for managing air pollution in cities, Environ. Int., 75, 199–205, doi:10.1016/j.envint.2014.11.019, 2015. 20 

Lee, J. H., Wu, C. F., Hoek, G., De, H. K., Beelen, R., Brunekreef, B., and Chan, C. C.: Land use regression models for 

estimating individual NOx and NO2 exposures in a metropolis with a high density of traffic roads and population, Sci. Total 

Environ., 472, 1163–1171, doi:10.1016/j.scitotenv.2013.11.064, 2014. 

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to 

premature mortality on a global scale, Nature, 525, 367–371, doi:10.1038/nature15371, 2015. 25 

Li, J., and Heap, A. D.: Spatial interpolation methods applied in the environmental sciences: a review, Environ. Modell. Softw., 

53, 173–189. doi:10.1016/j.envsoft.2013.12.008, 2014. 

Liu, Y., Cao, G. F., Zhao N. Z., Mulligan, K., Ye, X. Y.: Improve ground-level PM2.5 concentration mapping using a random 

forests-based geostatistical approach, Environ. Pollut., 235, 272–282, doi: 10.1016/j.envpol.2017.12.070, 2018. 

Mercer, L. D., Szpiro, A. A., Sheppard, L., Lindström, J., Adar, S. D., Allen, R. W., Avol, EL., Oron, A. P., Larson, T., Liu, 30 

L. J., and Kaufman, J. D.: Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides 

of nitrogen (NOx) for the multi-ethnic study of atherosclerosis and air pollution (MESA Air), Atmos Environ, 45, 4412–4420, 

doi:10.1016/j.atmosenv.2011.05.043, 2011. 



16 

 

Miskell, G., Salmond, J., and Williams, D. E.: Low-cost sensors and crowd-sourced data: observations of siting impacts on a 

network of air-quality instruments, Sci. Total Environ., 575, 1119–1129, doi:10.1016/j.scitotenv.2016.09.177, 2017. 

Pang, W., Christakos, G., and Wang, J. F.: Comparative spatiotemporal analysis of fine particulate matter pollution, 

Environmetrics, 21, 305–317, doi:10.1002/env.1007, 2010. 

Quang, T., He, C., Morawska, R., Knibbs, L., and Falk, M.: Vertical particle concentration profiles around urban office 5 

buildings, Atmos. Chem. Phys., 12, 5017−5030, doi:10.5194/acp-12-5017-2012, 2012. 

Rice, M. B., Ljungman, P. L., Wilker, E. H., Dorans, K. S., Gold, D. R., Schwartz, J., Koutrakis, P., Washko, G. R., O'Connor, 

G. T., and Mittleman, M. A.: Long-term exposure to traffic emissions and fine particulate matter and lung function decline in 

the framingham heart study, Am. J. Respir. Crit. Care. Med., 191, 656–64, doi:10.1164/rccm.201410-1875OC, 2015. 

Saraswat, A., Apte, J. S., Kandlikar, M., Brauer, M., Henderson, S. B., and Marshall, J. D.: Spatiotemporal land use regression 10 

models of fine, ultrafine, and black carbon particulate matter in new Delhi, India, Environ. Sci. Technol., 47, 12903–12911, 

doi:10.1021/es401489h, 2013. 

Sajani, S. Z., Marchesi, S., Trentini, A., Bacco, D., Zigola, C., Rovelli, S., Ricciardelli, I., Maccone, C., Lauriola, P., Cavallo, 

D. M., Poluzzi, V., Cattaneo, A., and Harrison, R.: Vertical variation of PM2.5 mass and chemical composition , particle size 

distribution, NO2, and BTEX at high rise building, Environ. Pollut., 235, 339−349, doi:10.1016/j.envpol.2017.12.090, 2018. 15 

Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., and Bartonova, A.: Mapping urban air quality in near real-

time using observations from low-cost sensors and model information, Environ. Int., 106, 234–247, 

doi:10.1016/j.envint.2017.05.005, 2017. 

Thompson, J. E.: Crowd-sourced air quality studies: a review of the literature & portable sensors, Trends in Environmental 

Analytical Chemistry, 11, 23–34, doi:10.1016/j.teac.2016.06.001, 2016. 20 

Team, R. D. C.: R: a language and environment for statistical computing. R foundation for statistical computing, R foundation 

for statistical computing, Vienna, Austria, Computing, 14, 12–21, 2009. 

Wang, M., Beelen, R., Eeftens, M., Meliefste, K., Hoek, G., and Brunekreef, B. Systematic evaluation of land use regression 

models for NO2, Environ. Sci. Technol., 46, 4481–4489, doi:10.1021/es204183v, 2012. 

Xu, S., Zou, B., Shafi, S., and Sternberg, T.: A hybrid Grey-Markov/ LUR model for PM10 concentration prediction under 25 

future urban scenarios, Atmos. Environ., 187, 401–409, doi:10.1016/j.atmosenv.2018.06.014, 2018. 

Zhai, L., Li, S., Zou, B., Sang, H., Fang, X., and Xu, S.: An improved geographically weighted regression model for PM2.5 

concentration estimation in large areas, Atmos. Environ., 181, 145–154, doi:10.1016/j.atmosenv.2018.03.017, 2018. 

Zheng, T. S., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson: D. E., Field 

evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–30 

4846, doi:10.5194/amt-11-4823-2018, 2018. 

Zou, B., Luo, Y., Wan, N., Zheng, Z., Sternberg, T., and Liao, Y.: Performance comparison of LUR and ok in PM2.5 

concentration mapping: a multidimensional perspective, Sci. Rep., 5, 8698, doi:10.1038/srep08698, 2015. 



17 

 

Zou, B., Pu, Q., Bilal, M., Weng, Q., Zhai, L., and Nichol, J. E.: High-resolution satellite mapping of fine particulates based 

on geographically weighted regression, IEEE Geosci. Remote. S., 13, 495–499, doi:10.1109/LGRS.2016.2520480, 2017. 

 

 

 5 

Table 1. Rules for potential PM2.5 sampling sites selection. 

Code Type N Rules 

1 Vertex point 5 U1a = {Xc | X∈(Vertex point of the boundary of sampling area ∩ Landmark)}. 

2 Industrial park 28 A2b = {X | X∈((Industrial park ∪ (Metal & cement & power industrial factories 

agglomeration)) – High-tech industrial park)}; 

U2 = {X | X has the largest number of factories within its 100 m buffer zone AND 

X∈A2}. 

3 Dust surface 13 A3 = {X | X∈(POI ∩ Dust surface) AND area of dust surface ranks in the top 4 of 

each district}; 

U3 = {X | Distance between X＞200 m AND X∈A3}. 

4 Depot 16 U4 = {X | X∈(Coach station ∩ Railway station)}. 

5 Scenic area 27 A5 = {X | X∈((Park – Neighbourhood park) ∩ well-known scenic area)}; 

U5 = {X | Distance between X＞200 m AND X∈A5}. 

6 Hospital 11 A6 = {X | X∈(Hospital ranks in the top 3 of each district ∪ Children's hospital 

∪ Respiratory special hospital)}; 

U6 = {X | Distance between X＞200 m AND X∈A6}. 

7 Residential area 12 A7 = {X | Distance between X and U1＜200 m OR Distance between X and U3＜

200 m, X∈ Residential area }; 

U7 = {X | Distance between X＞200 m AND X∈A7}. 

8 School 15 U8 = {X | Distance between X and U1＜200 m OR Distance between X and U3＜

200 m, X∈School, in order of priority: Kindergarten＞Primary＞Secondary＞
Universities)}. 

9 Commercial area 9 U9 = {X | X is the building with the highest population density, X∈Commercial 

area}. 

10 Other important POI 8 U10 = {X | X∈(Corresponding sampling site of national monitoring station ∪ 

Background site ∪ Museum)}. 

11 Road 56 A11 = {X | X∈(Junction of (Expressway ∪ Main road))}; 

U11 = {X | X is 50/100 metres away from A11 OR X∈A11}. 

12 Supplementary point 3 U12 = {X | X∈ POI where four neighbouring grids have no site}. 
aUi (i=1, 2, …): ith subset of the set of potential PM2.5 sampling sites. 
bAi (i=1, 2, …): ith subset of the union of supporting data. 
cX: element belongs to the set. 

  10 
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Table 2. Description of potential predictor variables for LUR. 

GIS dataset Predictor Variables Unit Buffer size (radius in metres) 

Dust surfaces  

Piling surface % 

50, 100, 200, 300, 500, 1000 

Construction surface % 

Rolling trample surfaces % 

Bare surfaces % 

Total % 

Pollution 

industries 

Inverse distance to nearest industries  NA 

Industries density  50, 100, 200, 300, 500, 1000 

Land use  

High-density residential area  % 

50, 100, 200, 300, 500, 1000 

Low-density residential area  % 

Urban green land  % 

Other built-up area  % 

High-density forest  % 

Low-density forest % 

Agricultural land % 

Traffic  
Inverse distance to a nearest major road   NA 

Road density  50, 100, 200, 300, 500, 1000 

Meteorology 

Average wind speed  Meter/s NA 

Atmospheric pressure Pa NA 

Relative humidity % NA 

Temperature  Fahrenheit degree NA 

 

Table 3. Descriptive statistics of PM2.5 concentration (µg m-3). 
  Mean Max Min Standard deviation 
  SAMPa NATb SAMP NAT SAMP NAT SAMP NAT 

Period 1 

8:00 69.67 39.8 128 58 36 27 18.81 10.46 

9:00 72.97 36.9 132 54 30 20 17.04 10.97 

10:00 73.08 38.5 113 58 28 21 15.57 11.57 

11:00 74.12 39.4 106 54 30 27 13.96 8.78 

12:00 76.45 41.2 136 53 44 29 14.55 8.68 

Period 2 

14:00 167.91 188.3 220 207 145 165 14.43 14.48 

15:00 165.75 182 227 206 133 153 16.68 17.06 

16:00 162.72 178.7 212 201 115 149 15.96 16.91 

17:00 167.69 177.8 266 209 136 146 18.92 20.49 

18:00 171.89 182.1 250 219 132 149 21.5 22.4 

a: sampling sites of the crowdsourced sampling campaign. 

b: national monitoring stations. 5 
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Figure 1: Laser air quality monitor: (a) exterior, (b) measuring principle, (c) (d) scatterplots of hourly PM2.5 concentration from laser air 

quality monitor (Y) and national monitoring instrument (X). The black, blue and red dots indicate PM2.5 observations with relative error of 

<10%, 10%−20%, and >20%, respectively. The black and red dotted line are the 1:1 line and 1:1.2 line as references.  
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Figure 2: Sampling area and PM2.5 sampling sites. 
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Figure 3: Spatial variation of PM2.5 concentration of sampling sites: (a) Period 1, (b) Period 2. 

 

 

Figure 4: Box plots of hold-out validation R2 between the observed concentration and predicted concentration of PM2.5 for OK, LUR and 5 
RK with an increase in training sites: (a) Period 1; (b) Period 2. The boundaries of the boxes indicate the 75th percentile and 25th percentile 

(Q3 and Q1, respectively). The line within the box denotes the median (Q2), and the crosses denote the averages. The error bars above and 

below indicate the highest datum (Q3+1.5IQR, IQR is the interquartile range, IQR=Q3-Q1) and the lowest datum (Q1-1.5IQR), respectively. 

Dots above and below the error bars indicate the outliers. 
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Figure 5: Scatterplots of repeated validating results with 90% training sites for (a) OK, Period 1; (b) LUR, Period 1; (c) RK, 

Period 1; (d) OK, Period 2; (e) LUR, Period 2; (f) RK, Period 2. The solid line is the 1:1 line, which is a reference. 
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Figure 6: Spatial distributions of PM2.5 concentrations from crowdsourced sampling sites and national monitoring stations. (a) 

Period 1, crowdsourced sampling; (b) Period 1, national monitoring; (c) Period 2, crowdsourced sampling; (d) Period 2, 

national monitoring. 


