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Abstract. Fine particulate matters (PM2.5) are of great concern to public due to their significant risk to human health. Numerous 

methods have been developed to estimate spatial PM2.5 concentrations at unobserved locations due to the sparse fixed 10 

monitoring stations. On the other hand, as the rising of low-cost sensing for air pollution monitoring, crowdsourcing activities 

has been gradually introduced into fine exposure control in cities. However, the optimal mapping method for conventional 

sparse fixed measurements may not suit this new high-density monitoring way. This study therefore for the first time presents 

a crowdsourcing sampling campaign and strategies of method selection for hundred meter-scale level PM2.5 mapping in intra-

urban area of China. In this process, the crowdsourcing sampling campaign was developed through a group of volunteers and 15 

their smart phone applications; the best performed mapping approach was chosen by comparing three widely used modelling 

method (ordinary kriging (OK), land use regression (LUR), and universal kriging combined OK and LUR (UK)) with 

increasing training sites. Results show that crowdsourcing based PM2.5 measurements varied significantly by sites (i.e. urban 

microenvironments) (Period 1: 28–136 µg m-3; Period 2: 115–266 µg m-3) and clearly differed from those at national 

monitoring sites (Period 1: 20–58 µg m-3; Period 2: 146–219 µg m-3). Despite the performance of the three models in estimating 20 

PM2.5 concentrations all improved as the number of training sites increase, OK interpolation performed best under conditions 

with non-peak traffic (9:00-11:00) in Period 1 (i.e. light-polluted period) with the hold-out validation R2 ranging from 0.47 to 

0.82. Meanwhile, the accuracy of UK was the highest for 8:00 and 12:00 with less than 70% training sites (0.40–0.69) and all 

five hours of Period 2 (i.e. heavy-polluted period) (0.32–0.68). Comparatively, LUR demonstrated limited ability in PM2.5 

concentration simulations (0.04–0.55). Moreover, spatial distributions of PM2.5 concentrations based on the selected model 25 

with crowdsourcing data clearly illustrated their hourly intra urban variations which are generally concealed by the results 

from national air quality monitoring sites. This method selection strategy provides solid experimental evidence for method 

selection of PM2.5 mapping under crowdsourcing monitoring and a promising access to the prevention of exposure risks for 

individuals in their daily life. 
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1 Introduction 

Fine particulate matters (PM2.5) have been associated with increased risk of morbidity and mortality for both long-term and 

short-term (Beverland et al., 2012; Cohen et al., 2017; Di et al., 2017; Lelieveld et al., 2017). Nevertheless, it comes down to 

the persistent cumulative effects from the exposure in daily activities, especially in daily traveling (Kingham et al., 2013; 

Hankey et al., 2017). It would be very helpful for health protection if individuals could consciously choose the location and 5 

time for outdoor activities based on detailed knowledge about the spatiotemporal variation of PM2.5 concentration, and thus 

exposure. 

In situ measurement is the most reliable way to capture the PM2.5 concentrations across every corner of a city in real time. 

However, fixed monitoring stations under conventional air quality monitoring networks are sparse. As a result, it has been 

difficult for site-based observations to capture spatiotemporal variations of air pollutants, especially in intra-urban areas with 10 

unevenly-distributed emission sources and dispersion conditions (Kumar et al., 2015; Zou et al., 2016; Apte et al. 2017). For 

this, spatial mapping methods including air dispersion modelling, spatial interpolation, satellite remote sensing (RS), and 

empirical models have been increasingly employed to estimate concentrations of PM2.5 at unobserved locations over the past 

two decades (Jerrett et al., 2005; Henderson et al., 2007; El-Harbawi, 2013; Kim et al., 2014; Rice et al., 2015; Fang et al., 

2016; Zou et al., 2017; Zhai et al., 2018; Xu et al., 2018). Among them, the outputs of dispersion model largely depend on 15 

detailed emission inventories and meteorological information which are not usually available for many cities. The coarse 

spatial resolution (≥1-10 km) of satellite instruments and data missing problem due to the cloud cover prohibit the widespread 

use of RS in PM2.5 concentration mapping in urban environments (Zou et al., 2015; Apte et al., 2017).  

In contrast, geostatistical and empirical models can estimate concentrations at high spatial resolution with a rather low 

requirement for data. The most commonly used ones are ordinary kriging (OK) interpolation and land use regression (LUR) 20 

modelling. Moreover, some studies have improved the estimating accuracy through a universal kriging (UK) interpolation by 

combining these two technologies (Beelen et al., 2009; Mercer et al., 2011; De Hoogh et al., 2018). While they have been 

successfully applied to map the spatial variability of PM2.5 concentrations for various geographic areas, their accuracy varies 

as concentration levels and sample sizes change (Wang et al., 2012; Mercer et al., 2011; Lee et al., 2014; Zou et al. 2015; 

Gillespie et al., 2016; Choi et al., 2017; De Hoogh et al., 2018).  25 

As the rising of low-cost sensing for air pollution monitoring, the real-time strategies for fine exposure control in cities have 

been further developed (Kumar et al., 2015). Crowdsourcing activities based on informal social networks and web 2.0 

technologies that allowed citizens themselves to produce geospatial data among others (Heipke, 2010). Unlike the traditional 

fixed monitoring stations usually mount on the roofs (i.e. 3 to 20 meters above the ground) for the sake of instruments 

protection, crowdsourcing activities provide real-time PM2.5 monitoring that reflect the real exposure for individuals living and 30 

working on the ground. Although crowdsourcing activities tend to produce observations with questionable quality, they enable 

us to obtain measurements of ambient air pollution in dense networks at relatively low cost. Some studies have employed these 

data to display the air pollution concentration and investigate the exposure risks (Thompson, 2016; Miskell et al., 2017; Jerrett 
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et al., 2017). Nevertheless, these observations are still point measurements which are only representative of the limited area 

around the site and cannot meet the demand of obtaining air pollution concentration whenever and wherever we want.     

One way to address the aforementioned challenge is to combine high-density crowdsourcing observations with spatial mapping 

methods. One of the important investigations was carried out by Schneider et al. (2017) in Oslo, Norway. They presented a 

universal kriging technique for urban NO2 concentration mapping combining near real-time crowdsourcing observations of 5 

urban air quality with output from an air pollution dispersion model. However, the high-density crowdsourcing measurements 

may vary among urban microenvironments with different human daily activities and differed from the sparsely distributed 

conventional in situ measurements. Using the elected mapping methods from previous studies to depict variation of air 

pollution at very fine spatial and temporal scale under new monitoring ways may lead to the misclassification of exposure and 

an underestimate of risk. Moreover, as the number of valid crowdsourcing observations may change significantly due to the 10 

instruments fault, human error, and other quality issues, the applicability of mapping methods to different sampling sizes still 

needs sound scientific evidence. 

In this study, we therefore presented strategies of method selection for PM2.5 concentration mapping based on crowdsourcing 

datasets with varying sizes. The intra-urban crowdsourcing sampling campaign was conducted in the city of Changsha, China, 

over two periods under different pollution scenarios. The performance of OK, LUR and UK in estimating PM2.5 pollution was 15 

evaluated and compared with increasing training sites. The best performed one was then employed to plot the variation of 

hourly PM2.5 concentration and identify pollution hotspots in the intra-urban area. Results from this study will provide evidence 

for method selection of PM2.5 mapping under crowdsourcing monitoring and contribute significantly to efficiently and 

effectively air pollution mapping and exposure assessment in intra-urban areas. 

2 Data and methods 20 

2.1 PM2.5 sampling 

2.1.1 Measurement instrument 

Measurements were performed with 86 portable laser air quality monitors. They are convenient to carry with the overall size 

of 25×34×14 cm (Fig. 1a). And the monitor has the advantages of fast response, rather high resolution (0.1μg/m3) and data 

consistency. The concentration of particulate matter was measured using the light-scattering method. The monitor contains a 25 

special laser module, the signals were recorded by the photoelectric receptor when particulate matters passing through the laser 

light. The count and size of particulate matters were then analysed by the microcomputer after the signals were amplified and 

converted. Finally, their concentrations were calculated based on the conversion factor (K-Factor) for airborne dust 

concentration (Fig. 1b). 

In order to ensure the quality of observations from those monitors, we randomly selected 30 monitors and continuously 30 

observed two days next to three national monitoring instruments. The scatter plots of hourly measurements for two instruments 
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were presented in Fig. 1c. The rather high correlation coefficient R2 of 0.89, and low root-mean-square-errors (RMSE, 5.63) 

and mean relative error (MRE, 4.48%) has guaranteed the reliability of sampling data, more details can be found in the 

Supporting Information (Table S1). 

2.1.2 Sampling design 

The sampling area is located in the Changsha metropolitan area (112°49′–113°14′E, 27°58′–28°24′N), which covers an area 5 

of approximately 920 km2 consisting of seven districts (see Fig. 2). Changsha is the capital of Hunan Province with a population 

of greater than 7 million people. The area experienced high-level exposure to air pollutants due to the growing anthropogenic 

activities and intensive energy consumption. 

To make sure the sampling sites distributed typical for different urban microenvironments (i.e. residential community, building 

site, school, park, etc.) and relatively even. A series of rules were designed to set up the PM2.5 sampling network based on air 10 

quality related local geographical and meteorological conditions as well as the distribution of potential emission sources (see 

Table 1). The data supporting sampling design consist of important points of interest (POI), dust surfaces, and main road 

network. All these data were collected from the Information Center of Department of Land and Resources of Hunan Province. 

A total of 208 PM2.5 sampling sites were selected. 

2.1.3 Sampling and data processing 15 

Sampling was carried out in two time periods in the winter of 2015 to examine the effect of air quality grades on mapping 

results. The first period was between 8:00 and 12:00, representing a light-polluted period (Period 1). The second period was 

between 14:00 and 18:00, when Orange (i.e. the pollution level was high) warning signals of haze were released by the 

Changsha Meteorology Bureau, representing a heavy-polluted period (Period 2). At each monitoring site, samples were 

uploaded twice-to-three times hourly through a smart phone application (App) by a group of volunteers. Geographic 20 

coordinates of sampling sites have been uploaded as well. To represent the hourly pollution level of the sampling area, we 

averaged valid PM2.5 concentrations measured at all sites. In total, 179-208 samples were successfully collected at each hour 

over Period 1 and 105-118 samples over Period 2. The official observations at 10 national monitoring sites in the study area 

were also obtained (China Environmental Monitoring Center, CEMC: http://106.37.208.233:20035/) and averaged for 

comparison purposes. 25 

2.2 Mapping method selection 

We divided sampling data into a training set and a validation set (hold-out validation) for each hour to evaluate the performance 

of OK, LUR and UK with increasing training sites. The training data sets were divided into groups based on the percentages 

of 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the total number of monitoring sites. Therefore, a series of groups of 

training samples (36–42, 54–62, 72–83, 90–104, 107–125, 125–146, 143–166, 161–189 sites in Period 1 and 31–35, 42–47, 30 

52–59, 63–71, 73–83, 84–94, 94–106 in Period 2) were extracted using the Subset Features Tool of ArcGIS (version 10.0). 
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We repeated this process 100 times for each training set size for Period 1 and 50 times for Period 2, respectively. Statistics 

including the coefficient R2, RMSE and MRE between predicted and observed concentrations of PM2.5 in the independent 

validation set were employed to evaluate and compare their performance. 

2.2.1 Ordinary kriging 

Ordinary kriging (OK) estimates the target variable at unsampled location as a linear combination of neighboring observations. 5 

It relies on a weighting scheme where closer observations have greater impact on the final prediction. The weighting scheme 

is dictated by the variogram (Pang et al., 2010; Zou et al., 2015). It can be described as follows:  

𝑍∗(𝑋0) = ∑ 𝜔𝑖𝑍(𝑋𝑖)
𝑛
𝑖

∑ 𝜔𝑖
𝑛
𝑖 = 1

},                                      (1) 

where Z∗(X0)  is the estimation of an unknown sample point, Z(Xi) and ωi  are the value of the ith known sample point 

surrounding the unknown sample point and its corresponding weight, respectively. and n is the number of known sample points. 10 

2.2.2 Land use regression 

Land use regression (LUR) modeling predicts air pollution concentration by linking measurements of monitoring sites and 

geographic elements around them using the least square method. It is composed of predictor variable extraction and selection 

as well as regression modelling and validation. 

Geographic factors including pollution sources (dust surface and pollution industries), road networks, and land use/cover were 15 

employed to indirectly characterize the PM2.5 emissions in this study. These data were generated using multiple ring buffers 

with different radii (50–1000m) at each monitoring site. Meteorological data with a spatial resolution of roughly 0.4 sites per 

100 km2 (wind speed, atmospheric pressure, relative humidity, temperature) that might affect the dispersion of PM2.5 were 

obtained as well. Geographic factors were made available by the Information Centre of Department of Land and Resources of 

Hunan Province. Meteorological data were released by the Hunan Meteorology Bureau. All variables (Table 2) were extracted 20 

using ArcGIS (version 10.0). The optimal buffer radius for the percentage of dust surfaces and land use, pollution industries 

density, and road density were defined based on the maximum Pearson correlation coefficients. 

An automatic forward-backward stepwise regression procedure was used to select the best fitting LUR models based on the 

screened-out predictors. The final LUR models in this study were determined based on the criteria of the lowest Akaike 

information criterion (AIC) value and the highest fitting R2. The model structure can be expressed as follows: 25 

𝑃𝑀2.5,𝑠 = 𝑎0 + 𝑎1𝑋1,𝑠 + 𝑎2𝑋2,𝑠 +⋯+ 𝑎𝑛𝑋𝑛,𝑠 + 𝜇,                                   (2) 

where 𝑃𝑀2.5,𝑠  is the estimation of hourly-averaged PM2.5 concentration of site s, 𝑋𝑖,𝑠 (i=1,2,⋯,n) are independent variables, 

𝑎0 is a constant, 𝑎𝑖  (i=1,2,⋯,n) are regression coefficients, and μ is the random error estimated using the least squares method. 

This process was conducted in R statistical software (version 3.3.2) (Fox and Weisberg 2011, R Core Team 2016). 
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2.2.3 Universal Kriging 

Universal Kriging (UK) in this study is a two-stage statistical procedure. Firstly, sperate standard LUR models were developed 

based on crowdsourcing observations in training dataset for each hour. Secondly, the residuals for LUR models was calculated 

and interpolated for each hour using OK technology. Finally, the estimations of residuals at validation sites were extracted and 

added to LUR estimations. 5 

In this study, OK was performed with Ordinary Kriging using the Geostatistical Analyst Tool of ArcGIS (version 10.0), and 

interpolated residuals were obtained using the Extract Values to Point Tool. The whole process was implemented with Python 

scripts. 

2.3 PM2.5 concentration mapping 

Based on the best modelling method with 90% training sites, maps of the spatial distribution of PM2.5 concentration for each 10 

hour were estimated. In this study, nearest-neighbor distances range from 15 to 60 meters for Period 1 and 54 to 98 meters for 

Period 2 between sampling sites. Considering the resolutions of potential predictors, 100 meters was therefore used as the 

mapping grid size. 

3 Results 

3.1 Descriptive statistics of PM2.5 concentrations 15 

Table 3 shows descriptive statistics of PM2.5 concentration at each sampling hour. We found that the PM2.5 concentrations for 

each sampling hour in this study were significantly different from those at national monitoring sites. For Period 1, PM2.5 

concentrations at 8:00, 9:00, 10:00, 11:00, and 12:00 were (69.67±18.81), (72.97±17.04), (73.08±15.57), (74.12±13.96), and 

(76.45±14.55) µg m-3, respectively. The highest and lowest values of PM2.5 concentration was 136 µg m-3 (12:00) and 28 µg 

m-3 (10:00), respectively. These were clearly higher than those of national monitoring sites (i.e. (36.9±10.97) – (41.2±8.68) µg 20 

m-3; 58 and 20 µg m-3). Correspondingly, the PM2.5 concentrations for Period 2 ranged from 115µg/m3 (16:00) to 266 µg m-3 

(17:00). Their averages and standard deviations were (167.91±14.48), (165.75±17.06), (162.72±16.91), (167.69±20.49) and 

(171.89±22.4) µg m-3 at 14:00, 15:00, 16:00, 17:00, and 18:00, respectively. The mean, minimum, and standard deviation of 

PM2.5 from crowdsourcing sampling were slightly lower than those from national monitoring. Clearly, the average PM2.5 

concentrations of Period 2 were two times higher than those of Period 1 and the highest ones occurred when traffic had peaked 25 

(i.e. 12:00 and 18:00) for both periods. 

Figure 3 demonstrates the spatial variation of PM2.5 measurements over the two periods in the study area, and strong spatial 

variations can be found between different sampling sites and two periods. For Period 1, the PM2.5 concentrations decreased 

gradually from north to south and from west to east. Higher concentrations of PM2.5 (> 75 µg m-3) were observed on sampling 

sites in the northwest corner of the study area. The sampling sites in Changsha County with high levels of green vegetation 30 
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cover had lower PM2.5 concentrations in comparison with the sites in the inner city. For Period 2, in contrast, sampling sites in 

the central and eastern parts of study area had higher PM2.5 concentrations than ones in the western part. Monitoring sites had 

PM2.5 concentrations higher than 150 µg m-3 in most areas, except for the western Yuelu district. Particularly, sampling sites 

in areas along the Xiangjiang River, especially in the higher education mega center had experienced extreme PM2.5 pollution 

(> 210 µg m-3). 5 

3.2 Model performance for OK, LUR and UK 

The box plots of Fig. 4 show the variation of hold-out validation R2 for the three mapping approaches in relation to the number 

of training sites. Overall, the variability ranges and average values of R2 for OK, LUR and UK were positively associated with 

the increasing training sites. UK outperformed OK significantly for all five sampling hours of Period 2 while only for 8:00 and 

12:00 of Period 1 when the number of training sites smaller than a certain threshold. LUR demonstrated poorest performance 10 

for both periods. 

For Period 1, PM2.5 estimating accuracy were generally highest at 8:00 and lowest at 12:00. The average validation R2 of OK 

at 8:00, 9:00, 10:00, 11:00 and 12:00 increased from 0.58, 0.56, 0.51, 0.47, 0.24 (20%, n ≤ 42) to 0.72, 0.78, 0.82, 0.71, 0.48 

(90%, n ≥ 161), respectively. Comparing with OK, the accuracy of LUR demonstrated a significant and steady decrease. The 

lowest and highest average R2 were 0.26, 0.29, 0.16, 0.16, 0.13 and 0.55, 0.54, 0.40, 0.36, 0.34, respectively. As for UK, the 15 

average R2 ranged from 0.64, 0.59, 0.50, 0.48, 0.40 to 0.71, 0.69, 0.66, 0.60, 0.46. They were weakly smaller than OK at 9:00, 

10:00, and 11:00, and the difference between them were positively associated with the increasing training site. The average R2 

of UK at 8:00 and 12:00 were higher than OK when less than 70% sampling sites were divided into training datasets (8:00: 

0.65–0.69 vs. 0.58–0.68; 12:00: 0.40–0.44 vs. 0.24–0.41). For Period 2, the validation R2 from high to low clearly followed a 

sequence of UK > OK > LUR. The average validation R2 of OK at 14:00, 15:00, 16:00, 17:00 and 18:00 increased from 0.25, 20 

0.34, 0.40, 0.27, 0.18 (30%, n ≤ 35) to 0.49, 0.50, 0.59, 0.39, 0.27 (90%, n ≥ 95), respectively. They were significantly lower 

than those in Period 1. The average R2 of LUR were even lower, the lowest ones were found to be 0.08, 0.07, 0.15, 0.06, and 

0.04, and the highest ones were 0.22, 0.25, 0.42, 0.22, and 0.16, respectively. Combined OK and LUR, the performance of UK 

clearly improved with average R2 ranging from 0.43, 0.44, 0.43, 0.36, and 0.32 to 0.60, 0.68, 0.52, 0.54, and 0.57.  

Average and standard deviation of RMSE and MRE between the observed and predicted concentrations of PM2.5 in hold-out 25 

validation presented in Supporting Information (Table S4–S5) further demonstrated the better performance yet larger variation 

of these three methods with larger training data sets in PM2.5 concentration estimation. The average RMSE and MRE of OK 

and UK were close and significantly smaller than LUR. Meanwhile, those of OK were generally smaller than UK in Period 1 

while cases in Period 2 were the opposite.  

Figure 5 shows scatterplots for the repeated holdout-validation results with 90% training sites. For Period 1, the overall R2 of 30 

OK were 0.71, 0.79, 0.82, 0.71, and 0.46 for 8:00, 9:00, 10:00, 11:00, and 12:00, respectively (Fig. 5a). They were slightly 

larger than those of UK (0.68, 0.67, 0.66, 0.60, 0.44, Fig. 5c) and significantly larger than those of LUR (0.53, 0.52, 0.38, 0.34, 

0.29, Fig. 5b). Correspondingly, their RMSE and MRE from low to high were OK (5.95–10.36; 6.80%–9.91%) < UK (8.23–
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10.92; 9.80%–11.91%) < LUR (10.68–13.16; 12.91%–14.97%). For Period 2, however, the UK presented the highest accuracy 

with overall R2 ranging from 0.45 (17:00) to 0.66 (14:00). The OK took the second place with lowest and highest R2 for five 

sampling hours being 0.27 (17:00) and 0.54 (16:00) while LUR performed poorest (0.06–0.36). Meanwhile, the values of 

RMSE and MRE went from LUR (13.61–23.13; 6.60%–10.25%) to OK (10.90–17.31; 4.58%–6.24%) then down to UK (8.98–

15.38; 4.11%–5.78%). 5 

3.3 Spatial patterns of crowdsourcing PM2.5 concentration 

Figure 6 reveals the spatial distributions PM2.5 concentrations estimated by the best performed mapping method with 90% 

training sites over the two periods (i.e. OK for Period 1 and UK for Period 2) in the study area from both crowdsourcing 

sampling sites and national monitoring sites. Significant difference can be found between two sources, and the crowdsourcing-

based hourly PM2.5 concentration maps clearly demonstrate more detailed intra urban variations than the national monitoring-10 

based ones, especially during the Period 1. 

For Period 1, OK interpolated PM2.5 concentration from national monitoring sites (Fig. 6b) for almost all of the study area was 

less than 35 µg m-3. While that from crowdsourcing sampling sites (Fig. 6a) generally shows a three-step growth from the 

south-east to the north-west and multiple hot spots of PM2.5 concentrations. During each zone of the growth, area with more 

factories and major roads were experiencing relatively higher PM2.5 concentration than other areas. For Period 2, with the 15 

exception of 14:00, the national monitoring-based PM2.5 concentration maps estimated by UK (Fig. 6d) showed high-east and 

low-west patterns, lower concentrations of PM2.5 (<175 µg m-3) centered in the center of Yuelu district. However, 

crowdsourcing based PM2.5 concentrations revealed by UK (Fig. 6c) demonstrate extensive cold spots of PM2.5 concentrations 

in not only the southern Changsha County but also the southern Kaifu district. While the southern Yuelu and the west Tianxin 

with high-density of factories were hot spots of PM2.5 concentration. 20 

4 Discussion 

Aiming at efficiently and effectively mapping PM2.5 concentration in intra-urban area at fine scale under crowdsourcing 

monitoring, a high-density crowdsourcing sampling campaign and strategies of popular mapping method selection with 

increasing training sites were presented in China for the first time. 

The numbers of sampling sites were 18 and 10 per 100 km2 for Period 1 and Period 2, respectively. This is a tremendous 25 

improvement in comparison with the density of about 0.015 sites per 100 km2 in the national air quality monitoring network 

in China. As expected, crowdsourcing based PM2.5 measurements varied significantly by urban microenvironments. 

Meanwhile, compared with observations obtained from 10 national PM2.5 monitoring sites, the average and variability range 

of PM2.5 observations for each sampling hour in this study were found to be significantly different from those at national 

monitoring sites. These findings suggest that the national air quality monitoring sites are relatively inadequate and inaccurate 30 

for exposure risk assessment of PM2.5 on the ground in urban environment. Crowdsourcing based sampling, on the other hand, 
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could reduce the monetary cost of sampling activity and guarantee the data collection occur on the real-ground simultaneously, 

thus could be an effective alternative for high-density PM2.5 monitoring and be strongly supportive to the short-term air 

pollution exposure assessment for epidemiologic studies. 

However, the difference of PM2.5 observations between crowdsourcing sampling sites and national monitoring sites vary with 

air quality grades. The crowdsourcing observations were significantly larger than national monitoring ones during Period 1 5 

(light-polluted), while that was clearly opposite during Period 2 (heavy-polluted). This suggests the inconvenient truth that the 

exposure risk remains relatively high for the public when official air pollution levels are “Good” (i.e. No health implications) 

and “Moderate” (i.e. Members of sensitive groups should reduce outdoor activities) and this risk is significantly different 

across the urban area. Meanwhile, it further confirms the necessity of developing real-ground high-density PM2.5 monitoring 

networks. The variation of PM2.5 difference between two periods may possibly because the change of the major pollution 10 

sources in study area; the major contribution of local sources especially the vehicle emission during light-polluted period may 

lead to the accumulation of PM2.5 near the ground; the sources of long-range transport of regional pollution during heavy-

polluted period could increase the concentration of PM2.5 on the upper layer. 

Unlike previous studies that conducted comparisons of performance and the corresponding exposure assessments of OK, LUR 

and UK in estimating air pollution concentration at annual and seasonal scale based on measurements from static and sparse 15 

fixed stations (Beelen et al., 2009; Mercer et al., 2011; Lee et al., 2014; Zou et al. 2015; Choi et al., 2017; De Hoogh et al., 

2018), this is the first study to evaluate and compare their performance with increasing training sites at the hourly scale for 

different air quality grades under crowdsourcing monitoring. 

As expected, the performance of three methods all improved with the increasing training sites. Compared with former studies 

normally developed in other fields (e.g. spatial variability analysis of soil components in the environmental sciences) (Li and 20 

Heap, 2014), this study further confirmed the better performance of OK interpolation with larger training data sets in air 

pollution estimation. Meanwhile, we substantiated the findings of Johnson et al. (2010) that LUR models developed with fewer 

sampling sites may perform poorly using real-ground PM2.5 measurements. But average hold-out validation R2 (0.04–0.55) 

between observed and predicted concentrations of PM2.5 in this study were smaller than those in Johnson et al. (2010) (0.29–

0.67) and results in similar studies of NO2 presented by Wang et al. (2012) and Gillespie et al. (2016) (0.44–0.85). The main 25 

reason is probably because the variations of hourly average PM2.5 concentration between monitoring sites were generally 

sharper in comparison to those of annual average. Moreover, meteorological conditions played a more sensitive role in short-

term transmission and diffusion of PM2.5 than long-term processes. These findings suggest that the most effective way to 

improve the accuracy of mapping method would still be increasing the number of sampling sites. They confirm, again, the 

necessity of developing high-density crowdsourcing sampling for PM2.5 monitoring. However, the increased variability ranges 30 

of R2 and standard deviation of RMSE and MRE with increasing training sites also suggest that the performance of these 

methods was affected by more than sampling size. The spatial distribution of samples, for example, may influence their 

estimating accuracy too (Li and Heap 2014). 
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Contrary to the findings of Zou et al. (2015) and Choi et al. (2017) conduced at the annual scale, OK interpolation surprisingly 

showed better performance in estimating PM2.5 concentrations compared to the LUR modelling with clearly higher average R2 

and lower RMSE and MRE. UK combined LUR and OK performed clearly better than LUR too (0.32–0.71 vs. 0.04–0.55). 

This is consistent with the findings of Mercer et al. (2011) (0.67–0.75 vs. 0.48–0.74) and De Hoogh et al. (2018) (0.66 vs. 

0.59). Moreover, it was the best performed method for 8:00 and 12:00 of Period 1 with less than 70% training sites and for all 5 

five hours of Period 2. These results suggest that OK interpolation based on crowdsourcing sampling is the best strategy for 

PM2.5 mapping in intra urban area when official air pollution levels are “Good” and “Moderate” for non-peak traffic conditions 

in this study, while UK is the best one when pollution levels are “Heavy-polluted”. These findings challenge the traditional 

point on LUR model’s good performance in air pollution mapping and verify that the applicability of mapping methods varies 

as the monitoring technology and sampling density change. Meanwhile, it further implies the major contribution of vehicle 10 

emission on PM2.5 concentrations during light-polluted period considering the peak traffic condition of 8:00 and 12:00. In 

addition, the accuracy of OK and LUR were obviously higher for Period 1 (0.24–0.82; 0.13–0.55) than for Period 2 (0.18–

0.59; 0.04–0.42), while that for UK was rather stable (0.40–0.71 vs. 0.32–0.68). This indicates the robustness and 

generalization capability of UK in estimating PM2.5 concentration.  

Using the selected mapping method, the spatial distributions of hourly PM2.5 concentration based on crowdsourcing sampling 15 

data and national air quality observations were successfully plotted and compared. Clearly, the former one provides more 

information on intra urban PM2.5 variations than the latter one. The nearest-neighbor distances ranging from 15 to 60 m between 

crowdsourcing sampling sites make it real for PM2.5 concentration mapping to reach the hundred meter-scale level. Meanwhile, 

in the light-polluted period, this phenomenon was more pronounced and the crowdsourcing estimations were clearly higher 

than the national monitoring ones. These findings above not only suggest the superiority of crowdsourcing activities in PM2.5 20 

monitoring at fine scale, but also prompt us to pay more attention to the scenarios with low-level air pollution. This is critical 

to the long-term future of air pollution prevention and control and public health protection for China, given that its main 

emphasis has gradually shifted from the control of heavy pollution to the prevention of exposure risks. 

However, despite a technology course and a set of standard quality parameters before crowdsourcing sampling and data 

cleaning before data processing have been provided, the possible measurement bias caused by the lack of professional services 25 

and the relatively low sampling frequency (twice/ three times per hour) during the process is still unavoidable. Future 

developments in the workflow of crowdsourcing system, the automatic processing technique of crowdsourced data, and the 

rational uniform quality standard could improve the efficiency of PM2.5 concentration sampling and lower the measurement 

bias (Heipke 2010). Additionally, as the urban air quality grade has an important effect on spatial distribution of samples 

(spatial autocorrelation, heterogeneity etc.), which may also be affected by sample size, the mechanism for this influence is 30 

somewhat equivocal and needs further research. 
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5 Conclusions 

This study presented strategies of method selection for efficiently and effectively PM2.5 concentration mapping with increasing 

training sites based on a crowdsourcing sampling campaign. According to the results, it can be confirmed that PM2.5 

concentrations in microenvironments varied significantly across the intra urban area in China’s city. And these variations could 

be clearly disclosed by the crowdsourcing based PM2.5 sampling rather than the national air quality monitoring sites. 5 

Meanwhile, the selection of models for fine scale PM2.5 concentration mapping should be adjusted with the changing sampling 

and pollution circumstances. Generally, OK interpolation performs best under conditions with non-peak traffic situation in 

light-polluted period, while the UK modeling can perform better for conditions with the peak traffic and relatively few 

sampling sites in heavy-polluted period. Additionally, it has to be noticed that the LUR model demonstrates limited ability in 

estimating PM2.5 concentrations at very fine scale in this study. In short, this method selection strategy provides solid 10 

experimental evidence for method selection of PM2.5 mapping under crowdsourcing monitoring and a promising access to the 

prevention of exposure risks for individuals in their daily life. 
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Table 1. Rules for PM2.5 sampling sites selection. 

Code Type N Rules 

1 Vertex point 5 U1 = {X | X∈(Vertex point of sampling area ∩ Landmark)}. 

2 Industrial park 28 A2 = {X | X∈((Industrial park ∪ (Metal & cement & power industrial 

agglomeration)) – High-tech industrial park)}; 

U2 = {X | X has the largest number of factories within its 100m buffer zone AND 

X∈A2}. 

3 Dust surface 13 A3 = {X | X∈(POI ∩ Dust surface) AND area of dust surface ranks in the top 4 of 

each district}; 

U3 = {X | Distance between X＞200m AND X∈A3}. 

4 Depot 16 U4 = {X | X∈(Coach station ∩ Railway station)}. 

5 Scenic area 27 A5 = {X | X∈((Park – Neighborhood park) ∩ well-known scenic area)}; 

U5 = {X | Distance between X＞200m AND X∈A5}. 

6 Hospital 11 A6 = {X | X∈(Hospital ranks in the top 3 of each district ∪ Children's hospital 

∪ Respiratory special hospital)}; 

U6 = {X | Distance between X＞200m AND X∈A6}. 

7 Residential area 12 A7 = {X | Distance between X and U1＜200m OR Distance between X and 

U3＜200m, X∈ Residential area }; 

U7 = {X | Distance between X＞200m AND X∈A7}. 

8 School 15 U8 = {X | Distance between X and U1＜200m OR Distance between X and 

U3＜200m, X∈School, in order of priority: 

Kindergarten＞Primary＞Secondary＞Universities)}. 

9 Commercial area 9 U9 = {X | X is the building with the highest Population density, X∈Commercial 

area}. 

10 Other important POI 8 U10 = {X | X∈(Corresponding sampling site of national monitoring site ∪ 

Background site ∪ Museum)}. 

11 Road 56 A11 = {X | X∈(Junction of (Expressway ∪ Main road))}; 

U11 = {X | X is 50/100 meters away from A11 OR X∈A11}. 

12 Supplementary point 3 U12 = {X | X∈ POI where four neighboring grids have no site}. 
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Table 2. Description of potential predictor variables for LUR. 

GIS dataset Predictor Variables Unit Buffer size (radius in meters) 

Dust surfaces  

Piling surface % 

50, 100, 200, 300, 500, 1000 

Construction surface % 

Rolling trample surfaces % 

Bare surfaces % 

Total % 

Pollution 

industries 

Inverse distance to nearest industries  NA 

Industries density  50, 100, 200, 300, 500, 1000 

Land use  

High-density residential area  % 

50, 100, 200, 300, 500, 1000 

Low-density residential area  % 

Urban green land  % 

Other built-up area  % 

High-density forest  % 

Low-density forest % 

Agricultural land % 

Traffic  
Inverse distance to a nearest major road   NA 

Road density  50, 100, 200, 300, 500, 1000 

Meteorology 

Average wind speed  Meter/s NA 

Atmospheric pressure Pa NA 

Relative humidity % NA 

Temperature  Fahrenheit degree NA 

 

Table 3. Descriptive statistics of PM2.5 concentration (µg m-3). 
  Mean Max Min Standard deviation 
  SAMPa NATb SAMP NAT SAMP NAT SAMP NAT 

Period 1 

8:00 69.67 39.8 128 58 36 27 18.81 10.46 

9:00 72.97 36.9 132 54 30 20 17.04 10.97 

10:00 73.08 38.5 113 58 28 21 15.57 11.57 

11:00 74.12 39.4 106 54 30 27 13.96 8.78 

12:00 76.45 41.2 136 53 44 29 14.55 8.68 

Period 2 

14:00 167.91 188.3 220 207 145 165 14.43 14.48 

15:00 165.75 182 227 206 133 153 16.68 17.06 

16:00 162.72 178.7 212 201 115 149 15.96 16.91 

17:00 167.69 177.8 266 209 136 146 18.92 20.49 

18:00 171.89 182.1 250 219 132 149 21.5 22.4 

a: sampling sites of the crowdsourcing sampling campaign. 

b: national monitoring sites. 5 
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Figure 1: Principle and accuracy of measurement instrument. 
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Figure 2: Sampling area and PM2.5 sampling sites. 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-402
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 7 January 2019
c© Author(s) 2019. CC BY 4.0 License.



19 

 

 

Figure 3: Spatial variation of PM2.5 concentration of sampling sites: (a) Period 1, (b) Period 2. 

 

 

Figure 4: Box plots of hold-out validation R2 between the observed and predicted concentrations of PM2.5 for OK, LUR and UK with 5 
increasing training sites: (a) Period 1; (b) Period 2. The boundaries of the boxes indicate the 75th and 25th percentiles (Q3 and Q1). The line 

within the box marks the median (Q2), and the crosses are averages. The errors bars above and below indicate the highest datum (Q3+1.5IQR, 

IQR is the interquartile range, IQR=Q3-Q1) and the lowest datum (Q1-1.5IQR). Dots above and below the error bars indicate the outliers. 
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Figure 5: Scatterplots of repeated validating results with 90% training sites for (a) OK, Period 1; (b) LUR, Period 1; (c) UK, 

Period 1; (d) OK, Period 2; (e) LUR, Period 2; (f) UK, Period 2. The solid line is the 1:1 line as a reference. 
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Figure 6: Spatial distributions of PM2.5 concentrations from crowdsourcing sampling sites and national monitoring sites. (a) 

Period 1, crowdsourcing; (b) Period 1, national monitoring; (c) Period 2, crowdsourcing; (d) Period 2, national monitoring.  
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