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Abstract. Biases in absorption coefficients measured using a filter-based absorption photometer (Tricolor Absorption 

Photometer, or TAP) at wavelengths of 467, 528 and 652 nm are evaluated by comparing to measurements made using 

photoacoustic spectroscopy (PAS). We report comparisons for ambient sampling covering a range of aerosol types including 15 

urban, fresh biomass burning and aged biomass burning. Data are also used to evaluate the performance of three different 

TAP correction schemes. We found that photoacoustic and filter-based measurements were well correlated, but filter-based 

measurements generally overestimated absorption by up to 45 %. Biases varied with wavelength and depended on the 

correction scheme applied. Optimal agreement to PAS data was achieved by processing the filter-based measurements using 

the recently developed correction scheme of Müller et al. (2014), which consistently reduced biases to 0–18 % at all 20 

wavelengths. The biases were found to be a function of the ratio of organic aerosol mass to light-absorbing carbon mass 

although applying the Müller et al. (2014) correction scheme to filter-based absorption measurements reduced the biases and 

the strength of this correlation significantly. Filter-based absorption measurement biases led to aerosol single-scattering 

albedos that were biased low by values in the range 0.00–0.07 and absorption Ångström exponents (AAE) that were in error 

by ± (0.03–0.54). The discrepancy between the filter-based and PAS absorption measurements is lower than reported in 25 

some earlier studies, and points to a strong dependence of filter-based measurement accuracy on aerosol source type. 

1 Introduction 

Aerosol-radiation interactions are estimated to contribute a global mean effective radiative forcing of −0.45 (−0.95 to +0.05) 

W m−2, offsetting a potentially significant but poorly constrained fraction of the positive effective radiative forcing 

associated with greenhouse gases (2.26 to 3.40) W m−2 (Myhre et al., 2013a). One of the major factors governing the 30 

uncertainty in estimates of aerosol direct radiative forcing is the poorly constrained aerosol single scattering albedo (SSA), 
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defined as the ratio of aerosol scattering to total extinction (Loeb and Su, 2010; McComiskey et al., 2008; Sherman and 

McComiskey, 2018). Accurate determination of aerosol SSA is limited by uncertainties in aerosol absorption estimates, 

which could potentially be underestimated by up to a factor of two in global climate models (Shindell et al., 2013; Stier et 

al., 2007).  

 5 

The main types of absorbing aerosol include black carbon (BC) and light-absorbing organic carbon, commonly referred to as 

brown carbon (BrC) (e.g. Myhre et al., 2013a). On a global scale, aerosol absorption is dominated by BC, a carbonaceous 

product formed during incomplete combustion, which may exert the next largest positive radiative forcing after carbon 

dioxide (Stocker et al., 2013). BC absorbs strongly across visible wavelengths and contributes an estimated 0.71 (0.09 to 

1.26) W m−2 to aerosol direct radiative forcing (Bond et al., 2013). In recent years, BrC has received increasing attention as a 10 

climate forcing agent (e.g. Feng et al., 2013). Sources of BrC include primary emissions during biomass and biofuel 

combustion as well as secondary production via photo-oxidation of volatile organic compounds (Andreae and Gelencsér, 

2006; Wang et al., 2018). BrC has been found to absorb strongly towards ultraviolet wavelengths, although the strength and 

wavelength dependence of this absorption is uncertain, due in part to the wide range of compounds that this term 

encompasses, many of which are poorly characterised (Andreae and Gelencsér, 2006; Lack et al., 2012b; Pokhrel et al., 15 

2017). Climate models generally only crudely represent the optical properties of BC and BrC and their evolution with time. 

For example, while the Met Office Hadley Centre HadGEM3 model treats the internal mixing of aerosol components, the 

real and imaginary parts of the refractive index of organic carbon that are used to calculate the radiative properties of the 

composite aerosol are fixed (e.g. Johnson et al., 2016). In order to address this deficiency, stronger observational constraints 

are first required (e.g. Alexander et al., 2008; Bond et al., 2013; Liu et al., 2014; Myhre et al., 2013b; Saleh et al., 2014; 20 

Wang et al., 2018).  

 

Over the course of several decades, filter-based absorption photometry has been used to measure aerosol absorption 

coefficients. The approach has considerable benefits including that it is relatively inexpensive, portable and capable of 

unattended measurements for long periods of time (Baumgardner et al., 2012). Filter-based instruments measure the light 25 

transmittance across a filter continuously, which changes as particles are deposited onto the filter, providing a measure of 

aerosol absorption (see Sect. 2.1) (e.g. Bond et al., 1999). Absorption coefficients determined using filter-based absorption 

photometry can be subject to measurement artefacts due to (i) scattering of light away from the light-detector leading to 

erroneous apparent absorption (Bond et al., 1999) and (ii) enhanced absorption as particles are deposited onto the filter. The 

latter leads to multiple scattering between the particles and the filter medium, providing multiple opportunities for 30 

absorption. The enhancement is complex to characterise and depends on the filter loading such that an increase in the 

number of deposited absorbing particles reduces the multiple scattering between the filter and particle layers (Bond et al., 

1999; Liousse et al., 1993; Weingartner et al., 2003) leading to lower absorption coefficients for highly loaded filters 

(Weingartner et al., 2003). The sensitivity of filter-based absorption photometers is also affected by the penetration depth of 
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particles within the filter matrix, which depends on particle size (Moteki et al., 2010; Nakayama et al., 2010). A number of 

empirical and semi-empirical correction schemes have been derived to correct for the aforementioned artefacts. This study 

will focus on correction schemes derived for use with glass-fibre Pallflex E70-2075W filters that have been used widely with 

the Particle Soot Absorption Photometer (PSAP, Radiance Research) (Bond et al., 1999; Müller et al., 2014; Virkkula, 2010; 

Virkkula et al., 2005). These correction schemes are also valid for similar instruments using this filter substrate, for example 5 

the Tricolor Absorption Photometer (TAP, Brechtel Manufacturing) used in this study and described in Sect. 2.3.2 (Ogren et 

al., 2017).  

 

Another potentially significant measurement artefact is due to liquid-like organic aerosols spreading across the filter fibres 

(Lack et al., 2008). The mechanisms proposed for this artefact include a change in the physical shape and therefore optical 10 

properties of deposited particles, or a coating effect whereby deposited particle absorption is enhanced via a lensing effect 

(Cappa et al., 2008; Lack et al., 2008; Subramanian et al., 2007). Although recognised as potentially significant, there are no 

empirical corrections to account for these artefacts.   

 

Previous work has examined the magnitude of biases in filter-based absorption measurements. For example, Lack et al. 15 

(2008) found PSAP absorption coefficients were biased high in the range 12 % to over 200 % at 532 nm compared to 

photoacoustic spectroscopy measurements for aerosols over the Gulf of Mexico, which included BC, nitrate, sulphate and 

organic aerosols from shipping emissions. The PSAP biases were found to be positively correlated to the organic aerosol 

mass concentration and even more strongly correlated to the ratio of the organic aerosol to light-absorbing carbon mass. To 

verify these measurements, Cappa et al. (2008) performed laboratory experiments using secondary organic aerosol (SOA) 20 

derived from the ozonolysis of α-pinene, which had a SSA > 0.998 at 532 nm. A key finding of this study was that for 

external mixtures of SOA and soot, the PSAP absorption could be biased high by a factor 2.6, consistent with the findings of 

Lack et al. (2008). Cappa et al. (2008) also found that the magnitude of the absorption bias was strongly dependent upon the 

filter transmittance and that the bias was both immediate (clean filter) and cumulative (filter previously exposed to absorbing 

material). The results from both of these studies (Cappa et al., 2008; Lack et al., 2008) were independent of the correction 25 

scheme applied (Bond et al., 1999; Virkkula et al., 2005).  

 

More recently, Subramanian et al. (2010) derived the BC mass absorption coefficient (MAC) at 660 nm for fresh and 1–2 

day-old aerosol emissions in and around Mexico City by dividing the absorption coefficients measured using a PSAP by the 

refractory BC mass concentrations measured using a single particle soot photometer (SP2, Droplet Measurement 30 

Technologies). For the fresh emissions, they found a ~50 % enhancement in their measured BC MAC relative to the value 

reported by Bond and Bergstrom (2006), whose review was based on an extensive range of measurements. The BC MAC 

bias was attributed in part to an over-estimation of the absorption coefficients measured by the PSAP due to externally 

mixed liquid-like organic matter. However, the BC MAC values for the relatively thickly coated, aged BC further from the 



4 
 

city were in line with those estimated by Bond and Bergstrom (2006), which the authors suggested may indicate that biases 

in filter-based measurements relating to high organic aerosol loading may only be present when organic aerosol is externally 

mixed with BC (Subramanian et al., 2010).  

 

Using a similar methodology, McMeeking et al. (2011) derived the BC MAC at 550 nm using PSAP and SP2 measurements 5 

for urban pollution aerosols around the UK, reporting organic aerosol mass concentrations in the range 1–7 µg m−3. The 

work by Lack et al. (2008) indicates that a positive absorption bias of up to 50 % would be expected at these loadings, 

however no bias in the BC MAC was observed. McMeeking et al. (2011) postulated that this result could be due to 

limitations in the PSAP and SP2 measurements or a physical effect whereby absorption enhancements due to coatings were 

offset by the collapse of fractal BC aggregates (McMeeking et al., 2011). Indeed, another explanation for this discrepancy 10 

could have been that the organic aerosol sampled here was not quasi-liquid like and contributed different biases to those seen 

in previous studies.  

 

Biases in filter-based absorption photometry measurements can limit the accurate determination of key climate-relevant 

parameters including, for example, the aerosol SSA and AAE (e.g. Sherman and McComiskey, 2018). Mason et al. (2018) 15 

compared PAS to filter-based absorption measurements of wildfires and agricultural fires over the continental U.S.A. during 

August and September 2013, which included a PSAP and a Continuous Light Absorption Photometer (CLAP) (Ogren et al., 

2017). All PSAP and CLAP data were corrected using the Bond et al. (1999) and Ogren (2010) corrections. Biases in filter-

based measurements were evaluated by comparison to PAS measurements, which were in the range 0.61 to 1.24, dependent 

on measurement wavelength (405, 532 and 660 nm). Mean SSA and AAE values derived using filter-based absorption 20 

photometry were found to be in error by up to 0.03 and 0.7, respectively, compared to PAS.  

 

Further, Backman et al. (2014) assessed the sensitivity of the PSAP-derived AAE to the Bond et al. (1999) and Virkkula 

(2010) correction schemes for measurements recorded on the central Highveld in South Africa, where emissions were 

dominated by fossil-fuel burning activities including from coal-fired power plants. They found that the AAE varied between 25 

1.34 to 1.96 dependent upon the PSAP correction scheme applied, which led to different conclusions regarding the aerosol 

composition and source (Backman et al., 2014). 

 

Despite this body of previous work, there remains significant uncertainty related to the magnitude of biases in filter-based 

absorption measurements, particularly regarding dependence on source type and the correction scheme applied. The aim of 30 

this study is to address this gap. We assess biases by comparing absorption coefficients determined using multi-wavelength 

TAP and photoacoustic instruments during a series of research flights aboard the UK Facility for Airborne Atmospheric 

Measurements (FAAM) BAe-146 aircraft. Aerosol sources sampled include urban aerosol emissions over London, fresh 

biomass burning aerosol (BBA) over West Africa and aged BBA over the Southeast Atlantic Ocean. We follow the 
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methodology of Lack et al. (2008) by looking at the absorption biases as a function of organic aerosol concentration, 

extending their study by looking at a greater range of wavelengths and aerosol sources as well as evaluating additional 

correction schemes, namely those developed by Virkkula (2010) and Müller et al. (2014). We then assess the impact that 

biases in filter-based absorption photometry have on the aerosol SSA and AAE. This is the first study to simultaneously 

evaluate the Bond et al. (1999), Virkkula (2010) and Müller et al. (2014) correction schemes for ambient aerosol sampling 5 

across multiple aerosol types. 

2. Methodology and measurements 

2.1 Principles of filter-based absorption photometry 

Filter-based absorption photometers measure the light transmitted through a filter as particles are deposited onto the filter 

such that the attenuation can be defined as  10 

𝐼 = −𝑙𝑛 !!
!!
,            (1) 

where 𝐼! and 𝐼! are the intensities of light transmitted through a filter corresponding to a sample spot (i.e. an area of the filter 

with deposited aerosols) and reference spot (i.e. an area of the filter without deposited aerosols), respectively (Ogren et al., 

2017). The attenuation coefficient can thus be determined using  

𝑏!"!"# =
!
!!!

𝐼 𝑡 + ∆𝑡 − 𝐼(𝑡) ,           (2)  15 

where 𝐴 is the area of the aerosol deposited onto a filter, 𝑄 is the flow rate of the aerosol-laden stream pulled through a filter, 

Δ𝑡 is the time between successive measurements of light attenuation and 𝐼(𝑡) and 𝐼(𝑡 + ∆𝑡) are the light attenuations at 

times 𝑡 and 𝑡 + ∆𝑡 (Ogren et al., 2017). To correct 𝑏!"!"# for apparent and enhanced absorption, we applied the correction 

schemes developed by Bond et al. (1999), Virkkula, (2010) and Müller et al. (2014), which will be referred to as 𝑏!"!!""", 

𝑏!"!!"#" and 𝑏!"!!"#$ respectively. See Sect. 2.1.1–2.1.3. The code used to run the analysis presented in this manuscript, i.e. 20 

relating to the equations presented throughout this section, was implemented in Python. 

2.1.1 The Bond et al. (1999) correction scheme (B1999) 

The Bond et al. (1999) correction scheme was developed empirically by comparing PSAP absorption coefficients to 

reference absorption coefficients determined using the difference between extinction as measured by an optical extinction 

cell and scattering coefficients measured using a nephelometer. Calibration aerosols included polydisperse nigrosin and 25 

ammonium sulphate. This correction scheme was updated by Ogren (2010). Bond et al. (1999) found that 

𝑏!"!!""" = 𝑓 𝑇𝑟 𝑏!"!"# − 𝑠𝑏!",           (3) 

with 

𝑓 𝑇𝑟 = !.!"
!! !.!"#$!"!!.!"

,            (4)  
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𝑠 = !!
!!

,              (5) 

and where 𝑏!" is the scattering coefficient, K1=0.02, K2=1.22 and 𝑇𝑟 is the normalised filter transmittance, defined as (Ogren 

et al., 2017) 

𝑇𝑟 =
!! !

!! !
!! !

!! !
.               (6) 

This correction scheme was derived at the wavelength 550 nm and is generally assumed to apply over the entire range of 5 

visible wavelengths, though there is no empirical basis for this (Bond et al., 1999; Ogren, 2010).  

2.1.2 The Virkkula (2010) correction scheme (V2010) 

The Virkkula et al. (2005) correction scheme and the subsequent Virkkula (2010) erratum were derived for the PSAP 

wavelengths 467, 530 and 660 nm, which is reflected by the 𝑓 𝑇𝑟, 𝜆  term described below. The scheme was derived by 

comparing absorption coefficients determined using a multi-wavelength PSAP to those measured using either photoacoustic 10 

spectroscopy or to absorption derived by subtracting scattering from extinction measurements (Virkkula et al., 2005). 

Calibration aerosols included kerosene soot, graphite, diesel soot, ammonium sulphate and polystyrene latex spheres. 

Virkkula (2010) proposed that  

𝑏!"!!"#" = 𝑓 𝑇𝑟, 𝜆 𝑏!"!"# − 𝑠𝑏!",           (7) 

where 15 

𝑓 𝑇𝑟, 𝜆 =  𝑘! + 𝑘! ℎ! + ℎ!𝜔! 𝑙𝑛 𝑇𝑟 ,          (8)  

and where 𝑘!,  𝑘!,  ℎ!,  ℎ! and 𝑠 are wavelength dependent constants and 𝜔! is the wavelength dependent SSA. The values 

of the constants used in this study were taken directly from Table 1 in Virkkula (2010), which are provided in Table 1. The 

wavelengths at which these constants were derived differ to those used in the TAP by 2 nm and 8 nm at the green and red 

wavelengths, respectively. It is unclear how these constants depend on wavelength. To assess the impact that this wavelength 20 

mismatch might have on the absorption coefficients derived using the V2010 correction scheme, the single-wavelength 

V2010 constants were also applied to TAP measurements. These were taken from Table 1 in Virkkula (2010) and are 

provided in the fifth column of Table 1. This was found to have a moderate impact on the results of this study as discussed in 

Sect. 3. The Virkkula (2010) correction is an iterative correction scheme due to its dependence on the SSA. Hence the 

algorithm was run 10 times for each time-step, which was sufficient for the absorption coefficient to converge to a single 25 

value with a precision better than 0.001 Mm−1.  

2.1.3 The Müller et al. (2014) correction scheme (M2014) 

The constrained two-stream (CTS) algorithm developed by Müller et al. (2014) includes a two-stream radiative transfer 

model that explicitly accounts for the optical properties of the filter substrate and deposited particles and is constrained by 

either the Bond et al. (1999), Virkkula et al. (2005) or Virkkula (2010) parameterisations. This section covers the key 30 
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equations from Müller et al. (2014) to show how they have been implemented in this study and the reader is referred to 

Müller et al. (2014) for a full derivation. The M2014 correction scheme makes use of the relationship between the absorption 

coefficient and the change in particle absorption optical depth, 𝛿!", on the filter medium between two measurements 

separated by a time-step Δ𝑡, as represented by:  

𝑏!"!!"#$ =
!
!!!

𝛿!"(𝑡 + Δ𝑡) − 𝛿!"(𝑡) ,          (9) 5 

For each time-step, 𝛿!" was calculated iteratively by minimising the difference between the measured total optical depth, 

𝛿!"! (filter + particles) and the relative optical depth, 𝛿!"#, which is the change in total optical depth of the filter system after 

collecting a particle relative to the unloaded filter. A Newton-type solver was applied, as suggested by Müller et al. (2014), 

and required ten iterations to converge to a precision better than 0.001 Mm−1. 𝛿!"! was calculated from measurements of the 

filter, with and without aerosol, using Eq. 1. The equations outlined in Müller et al. (2014) were used to calculate 𝛿!"# and 10 

are included here for clarity.  

𝛿!"# =
!!
!"#!!"!!!

!"#!!!
!!
!"# ,            (10) 

where 𝛿!"is the particle scattering optical depth, calculated using  

𝛿!" =
!!!
!

𝑏!" 𝑡!
!!! ,            (11) 

𝐹!
!"# = 𝑎! + 𝑎! + 𝑎!𝑔! 𝑒

!
!" !!" !!!

!

!!!!!!!

!

,          (12) 15 

where 𝑎! = 0.1509 , 𝑎! = −0.1611 , 𝑎! = 4.5414 , 𝑎! = −5.7062 , 𝑎! = −1.9031 , 𝑎! = 0.01  and 𝑔!  is the average 

weighted particle asymmetry parameter (see Eq. 24). Using the B1999 empirical correction,  

𝐹!,!!"""
!"# = !

!!"
𝑙𝑛 !!!!!"!!" !!!!! !!!

!!
,          (13) 

where 𝑐! = 1.555 and 𝑐! = 1.023, which were derived in Bond et al. (1999); see the alternative formulation of the B1999 

correction in Müller et al. (2014). Alternatively, using the V2010 empirical correction,  20 

𝐹!,!!"#"
!"# = !

!!"

!!
!!!!

!
− !!!"

!!!!
+ !!

!!!!
,          (14) 

where 𝑐!, 𝑐!,  ℎ!, ℎ! and 𝑠 correspond to the wavelength dependent constants 𝑘!, 𝑘!,  ℎ!,  ℎ! and 𝑠 as defined in Sect. 2.1.2, 

corresponding to the Virkkula (2010) parameterisation. Finally,  

𝐹!!"# 𝛿!", 𝛿!",𝑔! = ! !!"!!,!!",!! !! !!",!!"!!,!!
! !!",!!",!!

,         (15) 

where 25 

𝛿 𝛿!", 𝛿!",𝑔! = −𝑙𝑛 𝑇!! 𝛿!", 𝛿!",𝑔! + 𝑙𝑛 𝑇!! 𝛿!" = 0, 𝛿!" = 0,𝑔! = 0 ,     (16) 

𝑇!! =
!!!!

!!!! !!!!
,             (17) 
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and 𝑇! and 𝑇! represent the filter transmittances of the particle-loaded and particle-free layers, respectively. These are 

represented by layers 1a and 1b in Müller et al. (2014), respectively. The filter transmittance and reflectance are given by 

𝑇 = !
!!!! !!! !"#! !!!/!! /!!!!"#! !!!/!!

          (18) 

and 

𝑅 =
!! !!! !"#! !!! !! /!

!!!! !!! !"#! !!! !! /!!!!"#! !!! !!
,          (19) 5 

where 

𝛿! = 𝜒𝛿!" + 𝛿!" + 𝜒𝛿!" + 𝛿!",           (20) 

𝐾 = 1 − 𝜔! 1 − 𝜔!𝑔 ,           (21) 

𝜔! =
!"!"!!!"

!"!"!!!"!!"!"!!!"
,            (22) 

and 10 

𝑔 =
!"!!!"!!!!!"
!"!"!!!"

.            (23) 

The filter scattering optical depths used in this study were 𝛿!"!"# = 7.76 , 𝛿!"!"# = 7.69  and 𝛿!"!!" = 7.34  and the filter 

absorption optical depths used were 𝛿!"!"# = 0.033, 𝛿!"!"# = 0.038 and 𝛿!"!!" = 0.019, as measured by Müller et al. (2014) for 

the same type of filters. Small differences between wavelengths that the filter optical properties were measured at by Müller 

et al. (2014) (467, 530, 660 nm) compared to those at which the TAP measures (467, 528, 652 nm) were assumed to be 15 

negligible. Following the nomenclature of M2014, for filter layer 1 (the particle-loaded filter layer) 𝜒 = 0.2 and for layer 2 

(the unloaded filter layer) 𝜒 = 0.8. This assumes that the particle penetration depth into the filter was 20 % and accounts for 

the fractional filter optical depths corresponding to each layer. The value used for 𝜇! was 1
3

. The value 𝑔! is the average 

weighted asymmetry parameter of all particles deposited onto the filter, given by 

𝑔! =
!!"! !!!!
!!"!!

             (24) 20 

where 𝑖 represents the 𝑖 th ensemble of particles with scattering coefficient 𝑏!"! . Equation 24 is a practical way to apply 

equation 5 presented in Müller et al. (2014) who instead used an equivalent method, which utilised individual particle 

scattering cross sections (as opposed to ensemble scattering coefficients). We used Eq. 24 as opposed to the recommended 

formulation because nephelometer measurements represent an ensemble. In this study, bulk asymmetry parameters (i.e. 

corresponding to an ensemble of particles) were calculated for each time-step using the parameterisation  25 

𝑔! = −6.347𝑏!"#$!!"! + 6.906𝑏!"#$!!"! − 3.859𝑏!"#$!!" + 0.9852,       (25) 

where 𝑏!"#$!!" is the backscattering ratio measured using a nephelometer (Moosmüller and Ogren, 2017).  
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To confirm the accuracy of the implementation of the M2014 algorithm used during this analysis, equations 16–23 were 

used to reproduce the results in Fig. 6 of the Müller et al. (2014) study, which were verified against intermediate results (T. 

Müller, personal communication, 2016).  

2.3 Measurements and instrumentation 

All measurements presented in this study were made aboard the UK’s BAe-146-301 large Atmospheric Research Aircraft 5 

(ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM; www.faam.ac.uk). The aircraft is capable 

of carrying 3 crew, 18 scientists and a total scientific payload of up to 4000 kg with a range up to 3700 km. This section 

provides information on the filter-based, photoacoustic, nephelometer and aerosol composition instrumentation used aboard 

the aircraft and introduces the environments in which measurements were made.  

2.3.1 Aerosol sampling and conditioning 10 

An important strength of this dataset is that the TAP, PAS and cavity ring-down spectrometer (CRDS) instruments used to 

sample aerosol optical properties all shared a common sample inlet and were subject to the same flow conditioning. Aerosols 

were drawn into the aircraft through a modified Rosemount inlet (Trembath et al., 2012). The aerosol-laden stream was first 

dried to < 20 % relative humidity (Permapure, PD100T-12MSS) and then passed through a scrubber (MAST Carbon) to 

remove absorbing gaseous impurities such as ozone and nitrogen dioxide. An impactor removed particles with aerodynamic 15 

diameter > 1.3 µm (Brechtel, custom design). A series of flow splits (Brechtel 1110 and 1104) evenly distributed the aerosol-

laden stream between the suite of instruments, which each sampled the aerosol at a flow rate of 1 L min-1, as shown in Fig. 1. 

All measurements were corrected to standard temperature and pressure (PAS, CRDS and TAP: 20 °C and 1013 mb). 

2.3.2 Tricolor Absorption Photometer  

The TAP is a commercially available (Brechtel) version of the Continuous Light Absorption Photometer (CLAP), described 20 

by Ogren et al. (2017). The TAP comprises eight sample filter spots and two reference filter spots. The aerosol-laden air 

passes through one sample spot at a time, which allows for eight times the filter lifetime compared to single-spot 

photometers. The filtered air is re-circulated through one of the reference spots to enable the attenuation calculation (see Eq. 

1) (Ogren et al., 2017). Upon reaching a pre-defined filter transmittance set point, the TAP automatically changes to the next 

available sample filter spot. We used 47 mm diameter Pallflex (E70-2075W) glass-fibre filters, which were nominally 25 

identical to the filters used to derive the correction schemes applied in this study (see Sect. 2.1.1–2.1.3). The TAP provides 

measurements at three wavelengths with peaks centred at 467, 528 and 652 nm, which allows the spectral dependence of 

climate relevant parameters such as the SSA and AAE to be evaluated (Sect. 3.3). The LEDs are cycled through each 

wavelength once per second, providing absorption measurements at 1 Hz at all wavelengths. The inlet of the TAP is heated 

to 35.2 ± 0.2 °C to minimise the effects of changing temperature and to prevent water condensing onto the filter. The built-in 30 

digital low-pass filter was disabled in all of our measurements to enable calculation of the absorption coefficients from the 
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raw photodiode measurements, as it was unclear how the low-pass filter impacted the measurements. To understand the 

impact of this on instrument sensitivity, the TAP was run for ~3 h in the laboratory while it sampled filtered room air to 

characterise the noise in the system. Uncorrected attenuation coefficients, 𝑏!"!"#, were calculated at 1 Hz, and the average and 

standard deviation for each time interval Δt (1 < Δt < 1000 s) were calculated. The 1-sigma detection limits at 30 s averaging 

time were 0.71, 1.37 and 0.89 Mm−1 at wavelengths 658, 528 and 467 nm, respectively. Ogren et al. (2017) calculated the 5 

mean 1-sigma detection limit for their 28 instruments over all three wavelengths to be 0.33 Mm−1. The difference between 

the detection limits measured in this study and that presented in Ogren et al. (2017) could be due to running without low-pass 

digital filtering in the current study and/or differences between the TAP and CLAP. TAP internal particle losses were 

estimated to be < 1 % for particles with diameters in the range 0.03–2.5 µm (Ogren et al., 2017).  

 10 

To determine the areas of the spots resulting from particle deposition onto the filter, nigrosin (Sigma Aldrich, product 

number 198285-100G) was atomised from solution, dried to < 10 % relative humidity using a silica gel diffusion drier 

(Topas, DDU-570) and sampled by the TAP. The areas of the eight sample spots were determined by measuring the number 

of pixels corresponding to the diameters in a magnified digital photograph, which yielded areas in the range 32.4–36.8 mm2. 

The manufacturer-recommended spot sizes are 30.7210 mm2. Filter spot sizes were determined using nigrosin rather than 15 

from the ambient aerosol samples themselves as the spot edges were more clearly defined. The spot edges of the deposited 

ambient aerosol were difficult to detect as the filter spot was changed at the start of each day when measurements were 

taken. It was possible to detect the aerosol spot for measurements that corresponded to high loadings of absorbing aerosol. In 

these cases there was evidence of aerosols spreading across the filter and the area of the spots was larger by 5–20 %. 

However, this observation is based on a limited sample of three aerosol spots and the timescale for spread across the filter is 20 

unclear. This analysis used the areas determined using the clearly defined nigrosin spots, and therefore provides a lower limit 

of area, absorption coefficient (see Eq. 2), and as will be shown in Sect. 3, the TAP absorption bias. 

2.3.3 Photoacoustic and cavity ring-down spectrometers 

The photoacoustic and cavity ring-down spectrometers used in this study were based on the designs by Lack et al. (2012) 
and Langridge et al. (2011), respectively and are described in detail in Davies et al. (2018) and Szpek et al. (in preparation). 25 
PAS measures absorption directly for aerosols in their suspended state (Arnott et al., 1999). The PAS principle relies on 
converting energy from a light source into sound. Light-absorbing media, such as aerosol, transfer electromagnetic energy 
into thermal energy that heats the surrounding air. This gaseous heating generates a pressure wave, which is detected by a 
microphone located within the PAS cell. The amplitude of the microphone signal is related to the sample absorption 
coefficient through calibration (Arnott et al., 1999; Davies et al., 2018; Moosmüller et al., 2009). 30 

Much of this analysis relies on accurate PAS absorption measurements and thus we focus here on describing the uncertainty 

associated with these measurements. The total PAS measurement uncertainty is comprised of the measurement precision and 

accuracy. The PAS measurement precision was derived by evaluating the minimum sensitivities of the suite of PAS 
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instruments in a similar way to the TAP, as described in Sect. 2.3.2, and were in the range 0.01–0.06 Mm−1 for 30 s 

averaging across the range of cells used. The minimum sensitivities of the suite of CRDS cells were evaluated in the same 

way and were found to be 0.02–0.05 Mm−1 across the range of cells used.  

 

The accuracy of PAS absorption measurements was determined primarily by three factors: (i) uncertainty in the ozone 5 

calibration, (ii) uncertainty in corrections applied to account for the PAS microphone pressure sensitivity and (iii) 

uncertainty in subtraction of background noise which arose primarily from laser heating of the PAS cell optical windows. 

We consider each of these in turn below.  

 

The accuracy of the PAS ozone calibration has previously been evaluated in laboratory experiments that compared measured 10 

and modelled absorption and extinction cross sections of strongly-absorbing nigrosin aerosol. This analysis showed the PAS 

calibration accuracy to be better than 8 % and the accuracy of the CRDS instruments used in this study to be better than 2 % 

(Davies et al., 2018). Moreover, our recent work has demonstrated that the calibration accuracy of PAS using ozone is 

optimal when the gas phase composition closely resembles that of ambient air (Cotterell et al., 2019), as is the case for 

calibrations performed for this work. 15 

 

The second source of PAS measurement uncertainty was due to the PAS microphone sensitivity to pressure, which was 

evaluated by performing ozone calibrations at several pressures in the range 600–1000 mb (typical of those encountered 

during airborne operation). The measured PAS microphone sensitivities were fit to a linear trend across this range and 

normalised to yield a correction factor that varied from 0.83 (600 mb) to 1.00 (1000 mb). The uncertainty introduced by 20 

applying this pressure-dependent correction to PAS calibrations was estimated by propagating the 1σ fitting uncertainties in 

the linear regression between the calibration factors to in-flight PAS measurements, which led to uncertainties in PAS 

absorption coefficient measurements of 0.0–1.2 %. The smallest uncertainties were associated with measurements around 

1000 mb where there was no correction applied and largest for relatively low pressures where the largest correction was 

applied. 25 

 

The third source of PAS measurement uncertainty was due to subtraction of window-generated background noise, which is 

unstable for airborne operation due to its dependence on pressure. To account for this, in-flight background noise is typically 

characterised by periodically measuring a filtered-air stream for 30 s every 300 s. These measurements are then used post-

flight to derive a background correction as a function of pressure. To evaluate the uncertainty introduced by this background 30 

noise correction, we took continuous PAS measurements of filtered-air in the laboratory and varied the pressure within the 

PAS cells over the range encountered during airborne operation. This laboratory PAS dataset was then processed to mimic 

in-flight conditions, with 30 s windows of data every 300 s being used to derive a continuous pressure-dependent 

background correction. Examining the difference between the continuous filtered-air measurements and the synthetically 
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generated background data series provided the uncertainty in the background noise correction under variable pressure 

conditions. The uncertainty in the background noise correction was found to be normally distributed, with a 1σ width of 

1.81–2.30 % across the range of cells used. This uncertainty was propagated through in-flight PAS data processing to derive 

the uncertainties introduced to airborne PAS absorption coefficient measurements from the background noise subtraction. 

The uncertainty was found to be 0.27–0.54 Mm−1, which led to larger percentage uncertainties for lower absorption 5 

coefficients. The noise performance was no worse than a factor of 2 larger for airborne operation. 

 

The total uncertainty in PAS measurements is the combination of the measurement precision and accuracy, including the 

PAS calibration accuracy, the pressure-dependent calibration correction uncertainty and the background noise correction 

uncertainty. These factors were combined in quadrature, leading to total PAS measurement uncertainties of 29.0–55.0 % for 10 

1 Mm−1 absorption coefficient measurements across the range of cells used (independent of pressure) and approximately 8.1 

% for 100 Mm−1. These uncertainties are in-line with previous estimates for airborne PAS measurements, which were found 

to be ± 5 % for ground-based measurements with an additional ± 0.5 Mm−1 for airborne measurements (Lack et al., 2012a). 

2.3.4 Additional measurements 

Nephelometer measurements (TSI 3563) were used to derive the aerosol asymmetry parameter needed to apply the Müller et 15 

al. (2014) correction scheme (see Sect. 2.1.3) and were corrected according to Müller et al. (2011). A Time-Of-Flight 

Aerosol Mass Spectrometer (TOF-AMS) (e.g. Drewnick et al., 2005) measured the aerosol composition. The TOF-AMS was 

run as described in previous publications (e.g. Morgan et al., 2010). 

2.3.5 Data Averaging 

All absorption, scattering and extinction coefficient data measured using the PAS, TAP, CRDS and nephelometer were 20 

recorded at 1 Hz. Data were subsequently averaged to 30 seconds during post-flight analysis to reduce the noise in these 

measurements and to aid temporal alignment of the PAS and TAP for direct comparisons. In the case of TAP measurements, 

the intensities of light transmitted through a filter were first averaged to 30 seconds and then input into Eq. 1–9 to determine 

the corresponding absorption coefficients. To account for time lags between the PAS and TAP, an optimisation routine was 

run that maximised the correlation coefficient (R2) between the absorption coefficients determined using the PAS and TAP 25 

by delaying one instrument relative to the other. There was no time lag between the PAS and CRDS when using an 

averaging time of 30 seconds. Time alignment was verified by visually confirming that the rising and falling edges of the 

peaks in the absorption coefficients aligned. 

2.3.6 Flights and meteorology  

This study uses data collected aboard the FAAM aircraft during 30 research flights (each 3-4 hours duration) in three distinct 30 

regions: London (three flights, 17 to 20 July 2017, from 1.7° W to 2.0° E and from 50.6° to 52.9° N), West Africa (three 
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flights, 28 February to 1 March 2017, from 14.2° to 17.6 °W and from 9.6° to 14.8° N) and the Southeast Atlantic Ocean (24 

flights, 16 August to 7 September 2017, from 8.0° to 18.6° W and from 4.6° N to 10.9° S). Figure 2 shows a map with the 

flight tracks indicated. All flights involved straight and level runs as well as deep profiles. Also shown in Fig. 2 are the mean 

aerosol optical depths (AODs) measured using the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments 

aboard the Terra and Aqua satellite platforms (Remer et al., 2013) for each measurement period. The mean AOD for each 5 

region is shown corresponding to all satellite overpasses during the flight periods for both MODIS instruments. Figure 2 also 

shows time series of the columnar AOD values measured using the Aerosol Robotic Network (AERONET) for the 

Chilbolton and Oxford (~ 95 km southwest and northwest of London respectively), Dakar (West Africa) and Ascension 

Island (Southeast Atlantic Ocean) sites.  

  10 

Urban emissions: during 17-20th July 2017, back trajectory analysis shows north-westerly flow brought air masses from 

over the Irish Sea to London (Rolph et al., 2017; Stein et al., 2015; available at http://ready.arl.noaa.gov/HYSPLIT_traj. 

php). Flights provided measurements of regional background aerosol (Northwest London) as well as the London pollution 

plume (Southeast London). AOD values of ~0.00–0.13 were measured using the AERONET sites at Chilbolton and Oxford 

during the measurement period, as shown in Fig. 2. Mean in-flight carbon monoxide (CO) concentrations were 98 ppbv 15 

indicating the presence of fossil fuel burning, for example from transport emissions and industrial processes (e.g. Dentener et 

al., 2001). These flights predominantly sampled the boundary layer with a maximum aircraft altitude of 2.2 km. 

 

Fresh biomass burning emissions: flights over West Africa were dominated by freshly emitted BBA encountering similar 

conditions to those sampled during previous FAAM flight campaigns at the same time of year (e.g. DABEX; Haywood et 20 

al., 2008). Low-level flying through visible smoke plumes enabled measurements of fresh BBA within a few minutes of 

emission. During the measurement period, MODIS measured mean AOD values ~ 0.5–0.7 over large swaths of West Africa, 

> 1.0 near to the coast and ~ 0.5–1.0 over the Atlantic Ocean offshore of West Africa and AERONET reported AOD values 

in the range ~ 0.5–0.9 over Dakar, as shown in Fig. 2. Many flights targeted measurements close to the source and were 

dominated by fresh BBA emissions. The impact of dust on our PAS, TAP and CRDS measurements was minimised because 25 

of the 1.3 µm aerodynamic impactor used. Based on the scattering Ångström exponent, there was likely a dust influence on 

this fresh BBA dataset. Mean in-flight CO concentrations were 175 ppbv although concentrations greater than 14000 ppbv 

were measured when flying through plumes close to the aerosol source, indicative of fresh biomass burning emissions.  

 

Aged biomass burning emissions: flights around Ascension Island sampled aged biomass burning aerosols transported 30 

from mainland Southern Africa in a general anticyclonic circulation (e.g. Garstang et al., 1996; Zuidema et al., 2016). East of 

~ 8° W, MODIS reported mean AOD values generally between 0.1–0.5 and up to ~ 0.8 in the east of the area in which 

flights occurred. AERONET consistently measured AOD values between 0.1–0.5 over Ascension Island (the campaign base) 

during the entire four week measurement period. Mean CO concentrations were 126 ppbv, confirming that emission likely 
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originated from a combustion source. Flights were performed in both the boundary layer and free troposphere. Based on 

HYSPLIT back trajectories, aerosols had generally undergone ~ 1 week of atmospheric transport since emission (Haywood 

et al., in preparation).  

3 Results and discussion 

3.1 TAP-PAS comparisons  5 

The primary result of this study is that the absorption coefficients determined using a TAP and PAS are linearly correlated 

and that the slope (Rabs) is dependent upon the aerosol source, measurement wavelength and the correction scheme applied to 

the TAP measurements. Scatter plots showing the relationship between absorption coefficients measured simultaneously by 

the TAP and PAS for urban, fresh and aged BBA are shown in Fig. 3–5 respectively. Tight correlations between TAP and 

PAS measurements were observed across all aerosol sources and for all correction schemes. All linear regressions between 10 

TAP and PAS measurements were forced through the origin. A summary of Rabs can be found in Table 2.  

 

For the B1999 correction scheme, the range of TAP biases across all aerosol sources was 1.18–1.45. The smallest biases 

were consistently associated with 467 nm or 652 nm wavelength measurements and largest for 528 nm wavelength 

measurements. An interesting feature of this result is that the B1999 scheme led to the largest biases at 528 nm, which is the 15 

wavelength closest to that at which the scheme was derived.  

 

For the V2010 correction scheme, the range of TAP biases across all aerosol sources was 1.08–1.38. The largest biases were 

consistently at 405 nm and smallest at 652 nm. Relative to the B1999 correction scheme, the V2010 scheme reduced the 

biases at 528 and 652 nm by 5–15 % while it increased the bias at 467 nm by 3–5 %, dependent on the aerosol source. The 20 

sensitivity of TAP biases to the wavelength dependent constants used in the V2010 scheme was investigated due to the 

mismatch in the TAP wavelengths and those for which the V2010 correction scheme was derived. Applying the single-

wavelength V2010 correction scheme (i.e. applicable at all wavelengths) decreased TAP biases by 7–9 % at 467 nm, 

increased biases by 1 % at 528 nm and increased biases by 6–8 % at 652 nm.  

 25 

For the M2014 (B1999 parameterisation) correction scheme, the range of TAP biases across all aerosol sources was 1.04–

1.26 and for the M2014 (V2010 parameterisation), the range of TAP biases was 1.01–1.18. The M2014 (V2010 

parameterisation) scheme reduced TAP biases relative to the B1999 and V2010 schemes by 7–38 % and 7–25 %, 

respectively, dependent on the aerosol source and wavelength. The most significant reductions in TAP biases were for urban 

aerosol emissions and had the most impact on measurements at 652 nm. As discussed in Sect. 2.1.3, the M2014 (V2010 30 

parameterisation) correction scheme applied here used the wavelength-dependent Virkkula (2010) parameterisation, in 

contrast to Müller et al. (2014), who applied the Virkkula et al. (2005) parameterisation. Although not shown, applying the 
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Virkkula et al. (2005) parameterisation to TAP data in this study would act to decrease TAP biases by 3–4 % at 467 nm, 

increase biases by 1–2 % at 528 nm and by 3 % at 652 nm.  

 

The Rabs from Figures 3–5 provide the mean TAP absorption coefficient biases for all measurements corresponding to each 

measurement wavelength and aerosol source, but it is pertinent to examine the range of biases corresponding to individual 5 

30-s average measurements. Examining the 10th and 90th percentiles of each dataset (see Table 2) revealed that 10 % of TAP 

measurements were biased by greater than 1.67–1.80, 1.46–1.70 and 1.39–1.42 for urban, fresh BBA and aged BBA when 

corrected using the B1999 scheme, respectively, dependent on wavelength. The M2014 (V2010 parameterisation) scheme 

reduced the biases with 10 % of measurements biased greater than 1.27–1.41, 1.20–1.30 and 1.18–1.29 for urban, fresh BBA 

and aged BBA, respectively, dependent on wavelength.  10 

 

An analysis of the dependence of TAP bias as a function of filter loading revealed no point-by-point dependence but 

potentially a weak signal in the large-scale mean such that the difference in absolute filter transmittance associated with the 

highest 10 % of TAP biases compared to the lowest 10 % of biases across all channels and wavelengths was up to 0.12. The 

filter transmittance changed over the course of a flight by a maximum of 0.21. 15 

 

The TAP biases exhibited a strong wavelength dependence. In general, the lowest biases were seen at 652 nm and the largest 

biases at 467 nm when the V2010 and M2014 (V2010 parameterisation) schemes were applied to TAP measurements for all 

aerosol sources. The exceptions to this trend were when the M2014 scheme (V2010 parameterisation) was applied to urban 

aerosol measurements, which led to the largest biases at wavelength 528 nm. The M2014 scheme (B1999 parameterisation) 20 

also led to the largest biases at 528 nm for all aerosol types. 

 

As highlighted in the introduction, filter-based absorption photometers are sensitive to the particle penetration depth, which 

is dependent on particle size. Indeed, this sensitivity may have contributed in part to the variation in TAP biases observed for 

the three types of aerosol investigated during this study. 25 

 

Perhaps the most important and robust observation is that the M2014 scheme consistently led to the lowest biases across all 

measurement wavelengths and aerosol sources investigated. The largest biases were associated with TAP measurements 

corrected using the B1999 scheme at wavelengths 528 and 652 nm and when using the V2010 scheme at wavelength 467 nm 

for all aerosol sources. 30 

3.2 Evaluating TAP biases as a function of the organic aerosol mass concentration 

The biases of 1–45 % observed in this study are at the lower end of those measured by Lack et al. (2008) and Cappa et al. 

(2008), who reported biases of 12 % to ~200 % dependent upon the OA concentration. To investigate this apparent 



16 
 

discrepancy, we evaluated the TAP biases as a function of the OA mass concentration measured using an Aerodyne Aerosol 

Time of Flight Mass Spectrometer (TOF-AMS, Aerodyne Research Inc.) (e.g. Drewnick et al., 2005).  

 

Figure 6 (a–c) shows how TAP biases vary with OA mass concentration for TAP measurements corrected using the B1999 

correction scheme, for direct comparison with the Lack et al. (2008) study. The linear relationship between the PSAP biases 5 

and OA observed by Lack et al. (2008) is superimposed for reference. For urban emissions (Fig. 6a), TAP biases and OA 

mass are positively correlated and the trend is broadly consistent with that observed by Lack et al. (2008). There is however 

no correlation for fresh (Fig. 6b) or aged BBA (Fig. 6c).  

 

TAP biases were also plotted as a function of the ratio of the mass concentrations of OA to light-absorbing carbon (LAC), 10 

denoted by ROA/LAC. This was calculated using the method outlined by Lack et al. (2008) by (i) assuming all absorbing mass 

was black carbon, (ii) converting the mass absorption coefficient (MAC) of black carbon (BC) at 532 nm (7.75 m2g−1) to the 

PAS measurement wavelength 528 nm by using a BC AAE of 1 and the method outlined by Moosmüller et al. (2011) and 

(iii) dividing the PAS-measured absorption coefficient at wavelength 528 nm by the BC MAC at 528 nm. Hence the mass 

concentration of LAC was calculated as 𝐿𝐴𝐶 = 𝑏!"#,!"# !"
!"#

𝑀𝐴𝐶!"# !"
!"  such that 𝑅!"/!"# = 𝑂𝐴

𝐿𝐴𝐶 (Bond and Bergstrom, 15 

2006; Lack et al., 2008). Figure 6(d) shows that the TAP bias is positively correlated with ROA/LAC for urban aerosol 

emissions when TAP measurements were corrected using the B1999 correction. This is consistent with the Lack et al. (2008) 

observation although our study shows lower biases. A likely contributor to this difference is that, for consistency with the 

Lack et al. (2008) study, this analysis assumed all absorption was due to BC. In reality this is a poor assumption for BBA 

emissions (e.g. Andreae and Gelencsér, 2006) and provides a maximum bound on the MAC value, a minimum bound on 20 

absorption attributed to LAC and therefore a maximum bound on ROA/LAC. A more realistic approach would be to use the 

MAC value corresponding to BC plus BrC. Using a lower MAC to account for absorption contributions from both BC and 

BrC would lead to smaller ROA/LAC values than those shown in Fig. 6 (d–f) and better agreement with the Lack et al. (2008) 

study. Correcting the TAP data using the M2014 (V2010 parameterisation) correction scheme reduces the positive 

correlation between TAP biases and both ROA and ROA/LAC as shown in Fig. 6 (g–i). This further demonstrates the 25 

improvement provided by using the M2014 scheme.  

 

This analysis was repeated at wavelengths of 467 nm and 652 nm. For measurements at 652 nm, where BrC absorbs 

relatively weakly (e.g. Andreae and Gelencsér, 2006), stronger correlations between TAP biases and ROA and ROA/LAC were 

seen compared to 528 nm measurements. This improved the agreement with Lack et al. (2008). For measurements at 467 30 

nm, where BrC absorbs relatively strongly, weaker correlations between TAP biases and ROA/LAC were seen compared to 528 

nm measurements. This reduced the agreement with Lack et al. (2008) for reasons described above. As for observations at 

528 nm, TAP biases showed little dependence on ROA and ROA/LAC when corrected using the M2014 scheme at 652 nm and 
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467 nm. This finding suggests that the source of discrepancy between the results presented in this study and the results of 

Lack et al. (2008) (i.e. Fig. 6) may be caused by the less advanced correction scheme applied to the Lack et al (2008) data. 

However, given the strong dependence of Rabs on the aerosol type and source in Fig. 6, the bias dependence on organic 

fraction in the Lack et al. (2008) data may well persist, independent of the correction scheme used, because of the different 

aerosol sources and source locations being studied. 5 

 

A key result of this analysis is to show that biases observed in filter-based aerosol absorption measurements are strongly 

dependent on the type of aerosol being sampled. Correlating biases to aerosol composition information may provide tight 

constraint for a single source study, such as that observed by Lack et al. (2008) for aerosol emissions over the Gulf of 

Mexico, but care must be taken when applying these findings more broadly to other aerosol types.  10 

3.3 Impact of TAP biases on climate relevant parameters 

We now assess the impact that the observed TAP biases may have on climate relevant parameters including the aerosol 

single scattering albedo and absorption Ångström exponent. Figure 7 shows histograms of the SSA derived using PAS or 

TAP absorption data together with CRDS extinction data for the aerosol sources described in Sect. 2.3.6 and for the TAP 

corrections described in Sect. 2.1.1–2.1.3. The SSA is biased towards lower values when derived using TAP measurements, 15 

consistent with the results in Fig. 3–5 which typically show a ~1–45 % high bias in absorption. Campaign-mean SSA values 

derived using PAS and CRDS measurements for each measurement campaign are summarised in Table 3. The mean SSA 

values derived using TAP and CRDS measurements matched those derived using PAS measurements most closely for fresh 

BBA, which were biased low by 0.00–0.03, dependent on measurement wavelength and the TAP correction scheme applied.  

The SSA values were most different for urban aerosols, which were biased low by 0.01–0.07, dependent on wavelength and 20 

the TAP correction scheme applied. This is consistent with the results in Table 2, which highlights that TAP biases were 

largest for urban aerosol measurements. The wavelength dependence of the TAP-derived SSA values depended on the 

correction scheme applied. SSA values derived using the M2014 correction scheme agreed most closely with those derived 

using PAS measurements for all measurement wavelengths and correction schemes. 

 25 

Similarly, Fig. 8 shows histograms of the AAE values derived by performing linear regressions between the logarithms of 

the PAS-measured absorption coefficients and the PAS measurement wavelengths (405–658 nm) (Moosmüller et al., 2011). 

It also shows the same information for the TAP-derived AAE values. The AAE values were calculated for the aerosol 

sources outlined in Sect. 2.3.6 and TAP correction schemes outlined in Sect. 2.1.1–2.1.3.  

 30 

The AAE values were strongly dependent on the TAP correction scheme applied. Campaign-mean AAE values are 

summarised in Table 4, which highlights that the highest mean AAE values were associated with fresh BBA emissions and 

the lowest for aged BBA emissions. TAP-derived AAE values were in absolute error by ± 0.54. The M2014 (B1999 
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parameterisation) led to mean AAE values that were in closest agreement with AAE values derived using PAS 

measurements for all aerosol types. The V2010 scheme led to mean AAE values that were in second-closest agreement with 

the AAE values derived using PAS measurements for urban aerosols, whereas the M2014 (V2010 parameterisation) scheme 

provided the second-closest match for fresh BBA and the B1999 scheme for aged BBA. It is unclear why the different TAP 

correction schemes perform so differently for the different aerosol sources sampled. However, what is clear from this 5 

analysis is that there are large uncertainties in this important parameter when calculated from filter-based absorption 

measurements, and that these uncertainties are strongly source and correction scheme dependent. This cautions that 

significant uncertainties could be introduced if using the AAE to differentiate between types of aerosol. 

4 Conclusions 

Measurement artefacts in a commercially available filter-based absorption photometer (TAP) were evaluated as a function of 10 

wavelength and aerosol source. A range of correction schemes have been proposed in the literature to account for these 

artefacts and thus to maximise the accuracy of aerosol absorption coefficients determined using this technique, although 

biases can remain. Three correction schemes were evaluated, which all reduced the TAP mean bias to within 1 to +45 % of 

the PAS absorption, dependent upon aerosol source and wavelength. The largest biases were associated with urban aerosols 

and the lowest for aged BBA. The M2014 correction scheme consistently led to the lowest biases across all wavelengths and 15 

aerosol sources. To our knowledge, this is the first study to demonstrate the improved performance of the M2014 correction 

scheme as a function of wavelength and across multiple aerosol sources for ambient aerosol sampling. 

 

Biases in filter-based absorption measurements were strongly source dependent. On no occasion were the very large biases 

of over 200 % noted in the Lack et al. (2008) study observed. However, we note that the aerosol types measured in the Lack 20 

et al. (2008) study were very different to those studied here, and therefore this result may well be consistent with the strong 

source dependence observed in the current study.  

 

The positive bias in filter-based absorption measurements resulted in a low bias in determinations of single scattering 

albedos of up to 0.07. The largest biases in SSA values were for urban aerosol measurements at wavelength 652 nm. The 25 

M2014 scheme consistently led to SSA values that were closest to those derived using PAS measurements across all 

wavelengths and aerosol sources.  

 

Large discrepancies were seen between AAE values derived from PAS versus TAP measurements, the latter depending 

strongly on the correction scheme applied. The largest discrepancies in AAE values were for TAP measurements of urban 30 

aerosols corrected using the B1999 scheme, which were biased low by a mean absolute value of 0.54. Best agreement with 

AAE values derived using PAS measurements was obtained when TAP measurements were corrected using the M2014 



19 
 

(B1999 parameterisation) correction scheme and when (i) urban aerosol measurements were corrected using the V2010 

scheme, (ii) fresh BBA measurements were corrected using the M2014 scheme and (iii) aged BBA measurements were 

corrected using the B1999 scheme. This highlights that the AAE is strongly source and correction scheme dependent. 

 

The strong aerosol source dependence of biases observed in this study cautions against extrapolating results more widely to 5 

other aerosol types. Further analyses exploring biases in filter-based absorption coefficient measurements may help to 

address this issue. However, given the empirical nature of filter-based correction schemes and strong source and wavelength 

dependencies, even this is unlikely to fully bound uncertainties associated with filter-based absorption measurements to the 

high level of confidence that can be achieved using alternative methods, such as photoacoustic spectroscopy. 

 10 
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 467 nm 530 nm 660 nm Ave 

𝑘! 0.377 0.358 0.352 0.362 

𝑘! −0.640 −0.640 −0.674 −0.651 

ℎ! 1.16 1.17 1.14 1.159 

ℎ! −0.63 −0.71 −0.72 −0.687 

𝑠 0.015 0.017 0.022 0.018 

Table 1: The values of the constants used in the Virkkula (2010) correction scheme (Virkkula, 2010). 
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Aerosol 

source 

Wavelength B1999 V2010 M2014 (B1999 

parameterisation) 

M2014 (V2010 

parameterisation) 

  Slope R2 P10 P90 Slope R2 P10 P90 

 

Slope R2 P10 P90 Slope R2 P10 P90 

Urban 467 1.35 0.88 0.99 1.67 1.38 0.87 0.99 1.73 1.19 0.90 0.93 1.41 1.17 0.91 0.92 1.39 

528 1.45 0.89 1.12 1.80 1.37 0.88 1.04 1.70 1.26 0.90 1.00 1.50 1.18 0.91 0.95 1.40 

652 1.40 0.67 1.17 1.76 1.27 0.69 1.04 1.58 1.11 0.68 0.88 1.38 1.02 0.68 0.82 1.27 

Fresh 

BBA 

467 1.25 0.97 1.11 1.46 1.30 0.97 1.13 1.54 1.05 0.95 0.70 1.23 1.13 0.95 0.77 1.30 

528 1.30 0.97 1.17 1.54 1.23 0.97 1.08 1.44 1.10 0.95 0.74 1.26 1.11 0.96 0.76 1.25 

652 1.24 0.96 1.19 1.70 1.09 0.97 0.92 1.32 1.04 0.95 0.67 1.24 1.01 0.95 0.66 1.20 

Aged 

BBA 

467 1.18 0.99 1.10 1.39 1.21 0.99 1.11 1.42 1.06 0.98 0.97 1.27 1.11 0.98 0.99 1.29 

528 1.21 0.99 1.12 1.42 1.16 0.99 1.05 1.35 1.09 0.99 0.99 1.30 1.07 0.98 0.95 1.26 

652 1.18 0.99 1.11 1.41 1.08 0.99 1.00 1.28 1.05 0.99 0.94 1.24 1.01 0.99 0.89 1.18 

Table 2: A summary of the slopes (Rabs) between PAS and TAP absorption coefficients. Correlation coefficients (R2) are also 
provided. P10 and P90 are the 10th and 90th percentiles of each dataset. All absorption coefficients correspond to > 1 Mm−1. All 
linear regressions were forced through the origin.  
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Aerosol 

source 

Wavelength Mean SSA 

  PAS B1999 V2010 M2014 (B1999 

parameterisation) 

M2014 (V2010 

parameterisation) 

Urban 467 0.89 0.86 0.86 0.87 0.87 

528 0.88 0.84 0.85 0.86 0.87 

652 0.88 0.81 0.83 0.86 0.87 

Fresh 

BBA 

467 0.92 0.89 0.89 0.91 0.91 

528 0.93 0.90 0.91 0.92 0.92 

652 0.93 0.91 0.93 0.93 0.93 

Aged 

BBA 

467 0.84 0.80 0.80 0.82 0.81 

528 0.83 0.79 0.80 0.81 0.81 

652 0.81 0.77 0.79 0.80 0.81 

Table 3: Campaign-mean single scattering albedo (SSA) derived using PAS and CRDS measurements and TAP and CRDS 
measurements. 
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Aerosol 

source 

Mean AAE 

 PAS B1999 V2010 M2014 (B1999 

parameterisation) 

M2014 (V2010 

parameterisation) 

Urban 1.51 0.97 1.35 1.54 1.74 

Fresh 

BBA 

1.91 1.50 2.27 1.97 2.22 

Aged 

BBA 

1.06 0.99 1.32 1.14 1.36 

Table 4: Campaign-mean absorption Ångström exponent (AAE) derived using PAS and TAP measurements. 
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Figure 1: Schematic diagram highlighting the flow conditioning and how the aerosol-laden stream was distributed between the 
PAS and CRDS cells and the TAP. All PAS and CRDS wavelengths were centred at 405, 514 and 658 nm respectively.  
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Figure 2: FAAM research aircraft flight tracks (red) over London in the United Kingdom (July 2017), West Africa (February and 
March 2017) and the Southeast Atlantic (August and September 2017). For each of the geographical areas highlighted in the white 
boxes, the mean aerosol optical depths (AODs) measured using the Moderate Resolution Imaging Spectroradiometer (MODIS) 
satellite instruments are displayed. A time series of Aerosol Robotic Network (AERONET) data shows AODs at 500 nm 5 
corresponding to each measurement period. Note the discontinuous AERONET AOD time axis. AERONET sites are shown on the 
MODIS AOD plots by arrows.  
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Figure 3: Absorption coefficients measured by PAS versus TAP for urban emissions around London in July 2017. The columns 
correspond to: column 1: 467, column 2: 528 nm, and column 3: 652 nm wavelengths and the rows correspond to the B1999, 
V2010 and M2014 corrections. All absorption coefficients correspond to > 1 Mm−1. All linear regressions were forced through the 
origin. 5 
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Figure 4: As Fig. 3 but for fresh biomass burning aerosol over Senegal in February and March 2017.  
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Figure 5: As Fig. 3 but for aged biomass burning aerosol over the Southeast Atlantic Ocean in August and September 2017.  
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Figure 6: The ratio of TAP to PAS absorption coefficients at 528 nm as a function of the organic aerosol mass concentration using 
the B1999 correction scheme (a-c) and as a function of the ratio of the organic aerosol to light-absorbing carbon mass 
concentrations when using the B1999 correction scheme (d-f) and using the M2014 (V2010 parameterisation) correction scheme 5 
(g-i). All absorption coefficients correspond to > 1 Mm−1.  
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Figure 7: Probability density functions of the single scattering albedo derived using (i) PAS and CRDS and (ii) TAP and CRDS for 
the range of TAP correction schemes outlined in Sect. 2.1.1–2.1.3 at wavelengths 467, 528 and 652 nm. All absorption coefficients 
correspond to > 1 Mm−1. 
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Figure 8: Probability density functions of the absorption Ångström exponents derived for PAS and TAP measurements using the 
range of TAP correction schemes as outlined in Sect 2.1.1–2.1.3. All absorption coefficients correspond to > 1 Mm−1.  

 5 


