
Reviewer #1 
 
We thank the reviewer for the insightful comments (bold font) and we have replied to each of 
the comments and queries below each comment (regular font) and modifications to the 
manuscript are in italic font. 
 
The manuscript attempts to answer the following questions: How many different cloud types 
co-exist within a particular area? What cloud type mixtures are more prevalent? How do 
answers to the above two questions depend on area size? (side question that emerges: at 
what spatial scale does one encounter the greatest diversity of distinct cloud type mixtures?). 
These all sound kind of philosophical questions, but the authors find practical relevance (at 
least for the first question) for AIRS (and AMSU) scales cloud retrievals. The link to AIRS 
allows the authors to make one the major compromises of the study: only cloud type 
identification of the topmost cloudy layer matters because that’s where AIRS is most 
sensitive even though the data source identifying cloud type provides vertical profile 
information. The other major compromise is that when identifying cloud mixtures, the 
frequency of occurrence of each cloud type does not matter, in other words cloud mixtures 
consisting of the same cloud types are treated as equivalent even if the contributions of a 
cloud type are different. These two simplifications, along with an additional one where the 
spatial arrangement of the cloud types is ignored allow the authors to reduce the 
dimensionality of the problem and make the analysis tractable.  
 
We appreciate the reviewer’s synthesis of the paper and agree these are the major thrusts of 
the first aspect of the paper. 
 
This is overall quite a difficult paper to read, but I find the results of the first part quite 
fascinating (I was less excited about the implications for AIRS retrievals–although I 
understand that these findings are important for understanding the quality of the AIRS 
retrievals), so I recommend acceptance of the article to AMT. As you can see below, I have 
some inquiries some of which are also of the philosophical kind I’d like the authors to 
consider.  
 
We have made some edits and changes that follow from the reviewer suggestions that we hope 
make the manuscript more readable. We do appreciate the reviewer’s point of view regarding 
how this paper may be viewed in two distinct pieces.  However, our end goal of this work was 
to show practical relevance to the cloud scene variability and ultimately establish why it is 
important to describe cloud scenes on a pixel-by pixel basis.  The reasons are hopefully clearer 
in the revised version as we have more carefully documented AIRS retrievals of cloud phase and 
ice cloud properties as a function of whether the scene contains one cloud type or multiple 
cloud types, or whether the scene is completely or partly cloudy, instead of reporting them in a 
slightly convoluted manner. These changes are closely coupled to those arising from reviewer 
#2’s comments (please refer to replies to reviewer #2 for further detail).  
 



– What does the cloud type from 2B-CLDCLASS mean? The names of cloud types are the same 
as the ones used by surface observers, but are they related? Some description of the physical 
meaning of the cloud types given their method of identification by the 2B-CLDCLASS 
algorithm is needed.  
 
The 2B-CLDCLASS algorithm is described in Sassen and Wang (2005, 2008) that is referenced in 
the manuscript. As stated in Sassen and Wang (2008), the algorithm is based on earlier work by 
the same authors and combines the measurements of ground-based multiple remote sensors. 
They report having tested the results against surface observer cloud reports. We have included 
some additional text at the beginning of Section 2.2 to clarify: 
 
“The CloudSat 2B-CLDCLASS product is used in this work and the algorithm is described in Sassen 
and Wang (2005, 2008). As summarized in Sassen and Wang (2008) and previous works, the 
algorithm uses methods developed from ground-based multiple remote sensors that have been 
tested against surface observer-based cloud typing reports. The cloud classification occurs in 
two steps. First, a clustering analysis is performed to group cloud profiles into cloud clusters. 
Secondly, classification methods are used to classify clouds into different cloud types. The 
decision trees guiding the classification are complex and are based on 23 variables derived from 
the clustering analysis of the first stage. Geometric quantities such as cloud base, top, and 
horizontal extents are present in decision trees (Sassen and Wang, 2005).” 
 
I’m sure the authors are aware that another version of the product currently exists, 2B-
CLDLASS-LIDAR where the CALIPSO lidar assists in the identification of the cloud type. Why 
was this newer product not used? (I suspect the authors may have started the work before 
this product was released). If the authors were to use 2B-CLDCLASS-LIDAR and the results 
changed in a major way, how would that undermine the fundamentals and motivation for the 
first part of the study?  
 
This is a good question and a fair one to ask. We are motivated by the results of Kahn et al. 
(2018) that suggests larger particle sizes in convective clouds compared to thin cirrus. The 2B-
CLDCLASS product is better suited for differentiating cloud types other than small particle thin 
cirrus, in which 2B-CLDCLASS-LIDAR would excel. While AIRS is very sensitive to thin cirrus, the 
sensitivity of AIRS ice cloud particle size most strongly responds to clouds around an optical 
thickness on the order of 1.0. If we used 2B-CLDCLASS-LIDAR, the statistics would be weighted 
to the detection of vast areas of thin cirrus in layers above optically thicker clouds and 
elsewhere in absence of other cloud types. The Ci classification dominates in the 2B-CLDCLASS-
LIDAR data set and will blur the signals of cumulus and deep convective cloud types capped by 
thin cirrus. As we describe in the paper, the simplifications required to make the approach 
tractable require us to quantify cloud type at cloud top, and thus we would lose the 
discriminatory ability for clouds that occur just below a thin layer of cirrus. We expect that the 
mixtures would be profoundly different in 2B-CLDCLASS-LIDAR, with much less ability to 
demonstrate AIRS’ skill at obtaining larger particle sizes at convective cloud tops (Kahn et al. 
2018). Ultimately, we argue that 2B-CLDCLASS is a more appropriate tool for this work. We 
have included some additional text in Section 2.2 to clarify: 



 
“Lastly, the results of Kahn et al. (2018) suggest larger ice cloud particle sizes occur at 
convective cloud tops compared to thin cirrus at the same cloud top temperature. Given the key 
assumption of cloud typing only at cloud top, the 2B-CLDCLASS product is better suited for 
identifying convective clouds in AIRS apart from stratiform clouds, the latter of which are 
dominant in 2B-CLDCLASS-LIDAR. If 2B-CLDCLASS-LIDAR was used, the statistics would be 
weighted towards the detection of vast areas of cirrus in thin layers above and in proximity to 
convective clouds. The Ci classification dominates in 2B-CLDCLASS-LIDAR at cloud top and will 
blur the signals of underlying cumulus and deep convective cloud types that are capped by thin 
cirrus.” 
 
What if a completely different cloud type product was used, e.g., based on passive satellite 
observations where cloud type is identified by location in a cloud-top- pressure/cloud-optical-
thickness joint histogram (the authors briefly touch on this in the last paragraph, but only 
with regard to the AIRS application – I’m more interested in the cloud scene climatology 
aspects)?  
 
As the reviewer certainly knows, how one goes about “typing clouds” is not a settled research 
topic and is sensitive to the instrument sampling, radiance sensitivity, wavelength, underlying 
assumptions, and so forth. In the conclusions, we touch on the results of Wang et al. (2016) 
where comparisons of CloudSat cloud types as used here in this work are compared to ISCCP-
like categories derived from the MODIS imager, which could be used in place of the CloudSat 
cloud typing. We expect that the CloudSat radar will have more skill in discriminating 
convective clouds from stratiform clouds than passive sensors, as these two types of clouds 
show strong differences in the AIRS microphysical retrievals. For many cloud types, the 
detection is similar between passive and active; please see Wang et al. (2016) for specifics. 
 
– It seems to me that the results depend completely on how frequently 2B-CLDCLASS 
identifies certain cloud types based on its internal definitions. Yes, the authors do not often 
find mixtures containing stratus (St) simply because St is extremely rare in 2B-CLDCLASS, 
probably unrealistically so given other methods identifying St (I mean, cloud types will always 
be loosely defined).  
 
We agree.  Please refer above for our generalized perspective. It is well established that 2B-
CLDCLASS contains very little stratus because of ground clutter in the bottom 3-4 bins. 
 
I think one figure that the paper needs to include is the global frequency of the different 
cloud types according to 2B-CLDCLASS at its native resolution. This will give immediately clues 
on why certain cloud type mixtures (scenes) will be rare right off the bat (the authors kind of 
bring this this up already in some instances, e.g., p. 6, line 4). With DC, Cu, and St being rare 
according to 2B-CLDCLASS, one would expect that scenes containing those will also be rare. 
 
With regard to plan view maps and zonal averaged plots of cloud type frequencies from 2B-
CLDCLASS, these have been reported in the literature, in particular we are referring to Sassen 



and Wang (2008), their Figure 1 for the plan view and their Figure 2 for the zonal average. We 
do not see a need to repeat these results in this paper. With regard to the relative histogram 
counts of cloud type as a function of length scale, these are depicted in Figure 6 in the 
manuscript. The percentages of cloud type and cloud scene frequencies are also reported in 
Tables 3-6 in the revised manuscript. 
 
We have added the following statement in Section 2.2 to refer the reader for more detail on 
cloud type frequencies: “Plan view and zonal average frequencies of 2B-CLDCLASS cloud types 
at its native resolution are reported in Sassen and Wang (2008).” 
 
It is unfortunate that the abbreviation for certain cloud types changes throughout the text, 
tables, and figures: As becomes AlSt, Ac becomes AlCu, Ci becomes ci, DC becomes Dc, and so 
forth. Please fix and make consistent throughout! 
 
We have checked the notation throughout the revised manuscript and fixed any inconsistencies 
in the labeling. We intended to follow the notation cumulus (Cu), stratocumulus (Sc), stratus 
(St), altocumulus (Ac), altostratus (As), nimbostratus (Ns), cirrus (Ci), deep convective (Dc) 
clouds and a ninth classification of clear sky designated no cloud (nc). In addition to text 
changes, we corrected figure 1, 5, 6 and 7. 
 
I don’t understand panel d in Fig. 2. Whatever it depicts, it does not appear to have a very 
interesting pattern!  
 
We agree that these are confusing and have removed panels b and d in figure 2 as they are not 
key pieces of information for the manuscript. 
 
I recognize that the authors make a valiant effort in section 3.3, but that part of the paper 
remains a hard read. In this section, line 8 of p. 8 indicates that 200 possible mixed scenes 
were identified which seems to contradict the 194 figure quoted earlier (p. 5, line 23). Are 
these numbers for areas of different size (e.g., a third figure of 210 different scenes emerges 
for 105 km). Please clarify, 194, 200, and 210. Moreover, I found odd that the authors state 
(p. 7 line 2) that “The maximum number of observed cloud scenes (210) at a particular 
horizontal scale (105 km) remains unexplained” when the section that immediately follows 
tries to explain exactly that. Am I missing the subtle distinction? Section 3.3 tries to explain 
why the maximum number happens at 105 (not sure it succeeds), but why this maximum 
number is 210 remains as the unexplained mystery?  
 
In Section 3.1, we describe the statistics of cloud scenes observed at the AMSU resolution at 45-
km scales. There are 194 observed cloud scenes at this resolution. In section 3.2, we quantify 
the scale dependence of cloud scene statistics. The number of cloud scenes is shown to first 
increase with resolution then decrease as scales get large. The maximum number of cloud 
scenes is 210 and is observed at a resolution of 105 km. Both of the numbers 194 and 210 
appear as 2 points on figure 3a. The former is indicated with the intersection of the red line and 
the curve, and the latter is just the value at the maximum. 



 
The third number mentioned by the reviewer is 200 and it is a result of the procedure described 
in section 3.3. We shortened the name of this section 3.3 “Generalizing to all scales” as we 
understood from the reviewer’s comment that the title was potentially confusing or misleading. 
The number of 200 mixed scenes is identified independently of a grid resolution.  
 
Therefore, there are 194 cloud scenes observed at a resolution of ~45 km, 210 scenes observed 
at a resolution of 105 km and 200 scenes identified with a procedure independent from a 
regular grid. 
 
We have added the following text at the start of Section 3.2 to clarify: “In Section 3.1, the 
relative frequencies of cloud scenes were derived for exact matches of AIRS and AMSU 
observations to the CloudSat ground track. As the CloudSat ground track can oscillate over 
several AIRS FOVs across a scan line within a given orbit, the numbers of coincident CloudSat 
profiles matching to AIRS and AMSU will vary. Below, cloud scenes are derived independently of 
the specific AIRS and AMSU collocation geometry.” 
 
As far as the quote mentioned by the reviewer on p. 7 line 2, that was intended to be a 
transition from Section 3.2 to 3.3 and as motivation for why we calculated the scale 
dependence of cloud scenes independently of a particular grid resolution.  We have changed 
the text to the following to clarify: “The reasons for the maximum number of observed cloud 
scenes (210) at a particular horizontal scale (105 km) are not immediately clear.” Then we have 
changed the text on p.7 lines 4-5 to further clarify: “A simple conceptual model is described 
below that is able to approximate the results of Fig. 3 and offers some insight for the observed 
maximum frequency of cloud scenes and the spatial scale at which it occurs.” 
 
We have rewritten some of the paragraph on p. 8 lines 11-20 as follows: “A total of 200 out of 
247 possible mixed scenes were identified. The minimum and maximum length occurrence 
frequencies of five cloud scenes (Ac,Sc), (As,Sc,Cu), (Ci,As,Cu,dc), (As,Ac,Ns,dc) and 
(Ci,As,Ac,St,Sc) selected randomly from the 200 present in the two-year record, are shown in Fig. 
4a and 4c, respectively. Recall that the maximum length is defined from relation (2), while the 
minimum length is defined from relation (3), with an illustrative example shown for (Ac,Sc). 
From top to bottom, their respective ranks are 1, 26, 51, 76 and 101. It is striking that each 
frequency histogram in Fig. 4a and 4c is not monotonic and displays a frequency maximum 
between 100 and 1000 km. Consequently, the sum of all (200) observed mixed scenes across 
length scales will result in a curve with a maximum and these are shown in Fig. 4b and 4d. Both 
curves are very similar to Fig. 3a and have maxima for about 180 observed scenes at 77 km and 
174 km, respectively. Using the methodology outlined in (1) to (3), the scale dependence of the 
number of observed scenes shows that the maximum will occur somewhere between 77 and 174 
km.” 
 
– Can the same scale be used for the y-axis of Figs. 7 and 8? You say that that the common 
panels of these two figures (single cloud type scenes) should look very similar (inclusion of 
clear-sky notwithstanding), but the comparison is hampered by different y-axis range.  



 
We regenerated figures 7 and 8 with the same ordinate scales. However, the reviewer should 
keep in mind that each bin in Figures 7-10 (revised) are normalized by the total number of cloud 
scenes (within an AIRS footprint) for single or multiple cloud types, or partly cloudy or fully 
cloudy scenes. We have added the following text to the caption of Figure 7: “Each histogram 
sums to 1.0 and does not show the numbers of counts relative to another histogram. Relative 
counts could be inferred from the percentages listed in the 2nd to left column of Table 3.” 
 
– Somewhere in section 2 mention what the maximum optical thickness retrievable by AIRS 
is.  
 
We added the following sentence on line 12 page 5: “The AIRS sampling includes nearly all ice 
clouds with τi > 0.1, while the maximum values of τi asymptote to values near 6–8 (e.g. Kahn et 
al., 2015).” 
 
 


