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Abstract. A method is described to classify cloud mixtures of cloud top types, termed cloud scenes, using cloud type 

classification derived from the CloudSat radar (2B-CLDCLASS). The scale dependence of the cloud scenes is quantified. For 

spatial scales at 45 km (15 km), only 18 (10) out of 256 possible cloud scenes account for 90% of all observations and contain 

either one, two, or three cloud types. The number of possible cloud scenes is shown to depend on spatial scale with a maximum 10 

number of 210 out of 256 possible scenes at a scale of 105 km and fewer cloud scenes at smaller and larger scales. The cloud 

scenes are used to assess the characteristics of spatially collocated Atmospheric Infrared Sounder (AIRS) thermodynamic 

phase and ice cloud property retrievals within scenes of varying cloud type complexity. The likelihood of ice and liquid phase 

detection strongly depends on the CloudSat-identified cloud scene type collocated with the AIRS footprint. Cloud scenes 

primarily consisting of cirrus, nimbostratus, altostratus and deep convection are dominated by ice phase detection, while 15 

stratocumulus, cumulus, and altocumulus are dominated by liquid and undetermined phase detection. Ice cloud particle size 

and optical thickness are largest for cloud scenes containing deep convection and cumulus, and are smallest for cirrus. Cloud 

scenes with multiple cloud types have small reductions in information content and slightly higher residuals of observed and 

modelled radiance compared to cloud scenes with single cloud types. These results will help advance the development of 

temperature, specific humidity, and cloud property retrievals from hyperspectral infrared sounders that include cloud 20 

microphysics in forward radiative transfer models.  

1 Introduction 

There is increasing evidence of secular cloud trends at regional and global scales in both satellite observations (e.g., Norris et 

al. 2016) and climate general circulation model (GCM) simulations (e.g., Zelinka et al., 2013). The poleward migration of the 

extratropical storm tracks (Barnes and Polvani, 2013) is coupled with systematic changes in cloud thermodynamic phase 25 

partitioning in forced CO2 experiments in climate GCMs (e.g., Mitchell et al. 1989; Ceppi et al. 2016). The spread in 

equilibrium climate sensitivity is also tightly coupled to the temporal evolution of phase partitioning in most climate GCMs 

(Tan et al. 2016). Obtaining reasonable observational estimates of the small-scale cloud phase partitioning at model sub-grid 

scales are critical for constraining the highly uncertain Wegener–Bergeron–Findeisen time scale parameter that is crucial for 
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modelling mixed phase cloud and precipitation processes and (Tan and Storelvmo 2016). A new generation of probability 

distribution function-based parameterizations has shown promise for improving climate model simulations of cloud properties 

(e.g., Golaz et al. 2002) and would benefit from further exploitation of the information available in pixel-scale satellite 

observations. A rigorous assessment of the scale dependence of cloud types, and their mixtures, would also enhance climate 

GCM evaluation and parameterization development research efforts (Bony et al. 2006).  5 

 

Kahn et al. (2018) showed that Atmospheric Infrared Sounder (AIRS) observations of ice cloud optical thickness (τi) and 

effective radius (rei) exhibit statistically significant temporal trends that are dependent on latitude and cloud type. Trends in 

Multi-angle Imaging SpectroRadiometer (MISR) observations of cloud texture have suggested that recent thinning of tropical 

cirrus has led to increased detection of trade cumulus (Zhao et al. 2016). Using high-spatial-resolution estimates of cloud 10 

thermodynamic phase obtained from the Hyperion instrument on Earth Observing 1 (EO-1), Thompson et al. (2018) showed 

that phase mixtures are highly variable at scales smaller than the AIRS footprint or typical GCM grid boxes. These studies 

(and many others) suggest that quantification of the scale dependence of cloud type mixtures could help explain satellite 

observations of cloud trends. 

 15 

Statistical classification methods are commonly used to define weather states or cloud types (e.g., Rossow et al., 2005; Xu et 

al., 2005; Sassen and Wang, 2008; Wang et al. 2016). For instance, joint histograms of cloud top pressure and optical thickness 

from the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer 1999) are useful for relating cloud 

types to dynamical, radiation and precipitation variability, and in evaluating climate model simulations (e.g., Klein and Jakob, 

1999; Jakob and Tselioudis 2003; Rossow et al. 2005; Tselioudis et al., 2013). Weather states are typically mixtures of 20 

conventional cloud types as shown by Rossow et al. (2005) and Oreopoulos et al. (2014). Partly inspired by this methodology, 

we introduce the concept of cloud scenes that are defined to be mixtures of CloudSat cloud types (2B-CLDCLASS; Sassen 

and Wang 2005) that vary with horizontal scale.  

 

As cloud scenes will be matched to coincident A-train observations, we begin by defining cloud scenes with cloud types 25 

derived from CloudSat and observed within an AIRS/Advanced Microwave Sounding Unit (AMSU) (Chahine et al. 2006) 

field of regard (FOR) of roughly 45-km resolution. One AMSU FOR within an AMSU swath is spatially and temporally 

coincident with a ‘curtain’ of 94 GHz CloudSat radar profiles. The likelihood of observing clouds is resolution-dependent and 

is approximately 80–85% at the AIRS footprint scale of 15 km (Krijger et al. 2007; Kahn et al., 2008). The clouds in AMSU 

sounding FORs or AIRS footprints are more often broken or transparent, and less often uniform or opaque. Yue et al. (2013) 30 

showed that about 43% of the AMSU FORs are mixtures of CloudSat-identified cloud types, implying that roughly half of 

cloudy soundings contain mixtures of cloud types.  
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Our purpose in this work is to quantify the scale dependence of cloud type mixtures that are then used to understand the cloud 

complexity within AIRS cloud phase and ice cloud property data sets. The AIRS and CloudSat data and the collocation 

approach are described in Section 2. To quantify cloud type distributions and their dependence on horizontal scales, the cloud 

scenes are first characterized at the AMSU FOR resolution in Section 3.1, are extended to larger and smaller scales in Section 

3.2, and key results of the scale dependence are placed into context in Section 3.3. The cloud scenes are used to partition AIRS 5 

cloud property retrievals into cloud types, specifically, cloud thermodynamic phase histograms in Section 4.2, and mean values 

of ice cloud microphysical parameters are described in Section 4.3. A discussion, summary, and suggestions for future 

investigation are found in Section 5. 

2 Data and Methodology 

2.1 CloudSat and AIRS pixel-scale matching 10 

The AIRS/AMSU/CloudSat matchup product described in Manipon et al. (2012) is used by Yue et al. (2013) and in this 

investigation. The matchup process uses a nearest neighbor approach to geolocate all CloudSat profiles within either an AMSU 

FOR at 45 km spatial resolution at nadir view, or a single AIRS footprint at 15 km spatial resolution at nadir view (Kahn et al. 

2008).  Approximately 45 to 50 (15–17) CloudSat profiles coincide with a single AMSU FOR (AIRS footprint), in a swath of 

width 30 FOR (90 footprints). The cloud scenes are first defined at the AMSU FOR scale and are then extended to other spatial 15 

scales. We use a two-year period of data extending from 01 July 2006 until 30 June 2008 which contains about 8 million 

AMSU FORs (or 24 million AIRS footprints). 

2.2 CloudSat cloud types and their mixtures within the AIRS footprint 

The CloudSat 2B-CLDCLASS product is used in this work and the algorithm is described in Sassen and Wang (2005, 2008). 

As summarized in Sassen and Wang (2008) and previous works, the algorithm uses methods developed from ground-based 20 

multiple remote sensors that have been tested against surface observer-based cloud typing reports. The cloud classification 

occurs in two steps. First, a clustering analysis is performed to group cloud profiles into cloud clusters. Secondly, classification 

methods are used to classify clouds into different cloud types. The decision trees guiding the classification are complex and 

are based on 23 variables derived from the clustering analysis of the first stage. Geometric quantities such as cloud base, top, 

and horizontal extents are present in decision trees (Sassen and Wang, 2005). Plan view and zonal average frequencies of 2B-25 

CLDCLASS cloud types at its native resolution are reported in Sassen and Wang (2008). 

 

There are eight CloudSat defined classes in the 2B-CLDCLASS files: cumulus (Cu), stratocumulus (Sc), stratus (St), 

altocumulus (Ac), altostratus (As), nimbostratus (Ns), cirrus (Ci), and deep convective (Dc) clouds, with a ninth classification 

of clear sky designated no cloud (nc).  Since each AMSU FOR contains roughly 50 CloudSat profiles with 125 vertical levels 30 

each, there are 9"#×%&" possible distinct cloud type combinations (although in practice there are fewer as many levels reside 
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in the stratosphere) for each AMSU FOR. This number is too high to derive a classification that could be useful, i.e. where 

each cloud type combination could be populated with a significant number of samples for any climatological study. One 

particularly appealing way to reduce the dimensionality is to limit consideration of cloud type to cloud top only. This 

simplification is consistent with the capabilities of infrared sounders as the sampling of temperature and specific humidity is 

maximized in the atmosphere near and above cloud top, assuming the cloud is opaque and covers the entire sounder pixel area. 5 

There are 950 possible cloud combinations defined in this manner including clear sky profiles. As a point of comparison, there 

are about 324,000 AIRS soundings per day or about 108 per year. Even when considering the 16 years of AIRS nominal 

operation, the number of cloud type combinations 950, or about 5 ´ 1047, is many orders of magnitude greater than the number 

of AMSU FORs available, making impossible a statistically significant sampling of all combinations. This necessitates further 

assumptions to define a practical yet meaningful set of cloud scenes. 10 

 

Two additional simplifications are made here: variations in the count of each CloudSat cloud type is not considered, and the 

observation sequence of successive cloud types is disregarded. These two simplifications are applied to the AMSU FOV. We 

define a cloud scene as a list of the cloud types that are present within a given AMSU FOR. For example, the notation 

(Ci,Ac,Sc,Cu) is used to label a cloud scene that contains cirrus, altocumulus, stratocumulus, and cumulus clouds at cloud top 15 

in any frequency and in any sequence along the orbit segment. These simplifications greatly reduce the dimensionality of the 

classification problem and makes cloud scene identification tractable. We will show both partly cloudy and completely cloudy 

scenes in Section 4, so the clear sky (nc) type is both included and excluded in the analyses. Since each of the 8 cloud types is 

either present or absent, a cloud scene can also be represented by an 8 bit binary string. As a consequence, there are 256 (28) 

possible cloud scenes that remain after taking into account the aforementioned simplifications. The number of possible cloud 20 

scenes is therefore reduced from 950´125 to a much more tractable 256. The limitations of this approach are: (i) a consideration 

of cloud tops only, (ii) the spatial sequence and frequency of individual cloud types are not considered, and (iii) equal weight 

is given to all cloud types within a cloud scene regardless of counts. 

 

One advantage of using a classification to define cloud mixtures rather than an unsupervised learning technique, such as 25 

clustering, is that the size of the set of possible cloud mixtures is well defined and finite (here it is 256). A related and important 

advantage of classification is that one can use this set of classes (cloud scenes) with any parameter matched to any given scene. 

Here, the spatial scale dependence of those cloud scenes is described in section 3.2. 

 

An alternative approach may consider the vertical layering of cloud types or cloud features, some form of weighting based on 30 

counts of each cloud type, or possibly the sequence of cloud types, which may result in different radiance measurements 

observed by the AIRS instrument (the radiance emitted within an AIRS footprint is non-uniform and channel-dependent, as 

described in Schreier et al., 2010). However, the simplified approach outlined above is broadly consistent with the sensitivity 

and sampling characteristics of nadir-viewing passive infrared sounders. Therefore, we consider the approach outlined above 
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to be an appropriate compromise that retains the diversity of cloud scenes and makes the necessary data processing tractable 

by reducing the dimensionality for ease of interpretation. 

 

Lastly, the results of Kahn et al. (2018) suggest larger ice cloud particle sizes occur at convective cloud tops compared to thin 

cirrus at the same cloud top temperature. Given the key assumption of cloud typing only at cloud top, the 2B-CLDCLASS 5 

product is better suited for identifying convective clouds in AIRS apart from stratiform clouds, the latter of which are dominant 

in 2B-CLDCLASS-LIDAR. If 2B-CLDCLASS-LIDAR was used in place of 2B-CLDCLASS, the statistics would be weighted 

towards the detection of vast areas of cirrus in thin layers above and in proximity to convective clouds. The Ci classification 

dominates in 2B-CLDCLASS-LIDAR at cloud top and will blur the signals of underlying cumulus and deep convective cloud 

types that are capped by thin cirrus. 10 

2.3 AIRS thermodynamic phase and ice cloud properties 

The AIRS version 6 cloud thermodynamic phase and ice cloud properties (Kahn et al., 2014) are geolocated to the CloudSat 

ground track and are binned by cloud scene. The cloud thermodynamic phase algorithm includes two liquid tests and four ice 

tests of brightness temperature (Tb) thresholds and Tb differences (ΔTb) in the mid-infrared atmospheric windows. The Tb and 

ΔTb thresholds are designed to exploit spectral differences in liquid and ice water indices of refraction. The two liquid and four 15 

ice tests are each assigned a value of -1 and +1, respectively, and a summed value that ranges from -2 to +4 is reported.  

Summed values –2 or –1 indicate liquid clouds, 0 is undetermined, and ³ +1 indicate ice, with the highest values indicating 

deeper, convective ice clouds (Naud and Kahn, 2015). Ice is detected in 26.5% of AIRS footprints by Kahn et al. (2014) and 

pixel-scale comparisons with estimates of ice from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

(CALIPSO) lidar (Jin and Nasiri, 2014) are in agreement with AIRS more than 90% of the time. The success rate, however, is 20 

smaller for liquid cloud detection with AIRS using CALIPSO as a benchmark because of the small thermal contrast between 

low-lying liquid clouds and the surface. Despite this limitation in sensitivity, AIRS rarely misidentifies liquid clouds as ice 

(Jin and Nasiri, 2014). Furthermore, many liquid clouds are classified as undetermined phase. Low latitude shallow trade 

cumulus clouds generally fall within this category (Kahn et al., 2017). 

 25 

Kahn et al. (2014) describe a retrieval algorithm that is based on optimal estimation (OE) theory and derives ice cloud optical 

thickness (τi) and effective radius (rei) for AIRS footprints containing ice. The AIRS retrieval sample includes nearly all ice 

clouds with τi > 0.1, while the maximum values of τi asymptote to values around 6-8 (e.g. Kahn et al., 2015). Scalar averaging 

kernels (AKs), c2 residuals from observed and simulated radiance fits, and values of relative error are also reported (Kahn et 

al., 2014). Values of AKs closer to 1.0 suggest higher information content while larger relative error estimates and values of 30 

c2 indicate increased uncertainty in retrieved parameters. Only the relative magnitude of error estimates should be considered 

since temperature, specific humidity, surface temperature, surface emissivity, and ice crystal habit and size distribution 

uncertainties are not included in the error covariance matrices of the AIRS version 6 algorithm (cf. Kahn et al., 2014). We 
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focus on the differences in error estimates and c2 among cloud scenes and determine which cloud scenes contain higher or 

lower certainty in their ice cloud properties relative to other scenes.  

3 Classification and characteristics of cloud scenes 

3.1 Cloud scenes with ~45 km resolution 

A cloud scene is assigned to every AMSU FOR along the CloudSat viewing path using the methodology outlined in Section 5 

2. Using the two years of data, a total of 194 out of 256 possible cloud scenes are observed but only 18 of the cloud scenes 

account for 90% of all observed scenes (Fig. 1a). The four most common scenes contain one cloud type with or without clear 

sky, and the most common mixed cloud scene (Ac, Sc) is ranked as the fifth most common scene overall. Intuitively, the more 

diverse a scene, the less frequently it should be observed. The scene that ranked last (18th) in Fig. 1a is (Ci, Ac, Sc). The least 

frequently observed cloud scene with a ranking of 194 contains six cloud types (Ci, As, Ac, St, Cu, Ns) and was observed only 10 

once in two years. Of the 256 possible types of cloud scenes, the number of unobserved cloud scenes is 62, of which 61 include 

St. The unobserved cloud scenes include the only possible cloud scene with eight cloud types together, and the seven possible 

cloud scenes with seven cloud types together. 

 

The unobserved scenes in the two-year period contain a median of five different cloud types.  This is consistent with the 15 

improbability of particular cloud types occurring in rapid succession over a few tens of kilometers. The only unobserved cloud 

scene that does not contain St is (Sc,Cu,Ns,Dc) and is consistent with the conclusion by Sassen and Wang (2008) that Dc 

(1.8%) and Cu (1.7%) clouds are the least frequent of the cloud types. While Dc and Ns are typically associated with different 

climatological regimes (tropical convection versus extratropical storm tracks), occasionally, Dc is embedded within 

extratropical cyclones and Ns is classified in stratiform regions of mesoscale convective systems (MCSs). Given the prevalence 20 

of Sc and Cu in Figure 1a, it is somewhat surprising that the combination (Sc,Cu,Ns,Dc) is not observed. 

 

The relative ranking of cloud scenes within the AIRS FOV along the CloudSat track is shown in Fig. 1b for the same sets of 

matched pixels. A total of 10 cloud scenes account for 90% of all observed cloud scenes (Fig. 1b). This shows that fewer cloud 

scenes are found at the smaller AIRS FOV compared to the AMSU FOR. 25 

 

Figure 2 depicts the geographic distribution of Sc at the AMSU FOR scale, the most observed scene after clear sky (nc), and 

(Ac,Sc) is the most observed mixed cloud scene. The Sc classification is consistent with the prevalence of stratocumulus clouds 

in subtropical subsidence regions and trade cumulus in the tropics and subtropics (e.g., Yue et al., 2011). The (Ac,Sc) cloud 

scene is identified most frequently in the extratropical storm tracks and the transition from shallow cumulus to deep tropical 30 

convection. 
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3.2 Cloud scenes at 1 to 1000 km scales 

In Section 3.1, the relative frequencies of cloud scenes were derived for exact collocated matches of AIRS and AMSU 

observations to the CloudSat ground track. As the CloudSat ground track can oscillate across several AIRS FOVs over a scan 

line within a given orbit, the numbers of coincident CloudSat profiles matching to AIRS and AMSU will vary. Below, cloud 

scenes are derived independently of the specific AIRS and AMSU collocation geometry. 5 

 

To investigate the scale dependence of the number of cloud scenes, the approach described in Section 2 is modified for a range 

of horizontal extents between 1.1 and 1000 km. The number of observed cloud scenes calculated at each horizontal scale is 

shown in Fig. 3a for 10 to 1000 km. At the finest scale of 1.1 km, only eight possible observed cloud scenes or clear sky are 

expected. When the scale increases, as expected, the number of cloud scenes quickly increases with a total of 143 cloud scenes 10 

observed at a scale of 11 km. As horizontal scale is further increased, the probability of observing cloud scenes with only one 

or two cloud types is reduced. After a maximum number of cloud scenes is obtained at 105 km, the number of cloud scenes 

will decrease with increasing scale (e.g., 163 cloud scenes at 990 km) until a limiting case is reached at the largest scale with 

only one cloud scene with all observed cloud types. The number of cloud scenes observed at least once at the AMSU FOR 

horizontal scale (indicated by the red vertical line on Fig. 3a) is approximately 190. 15 

 

The 90th percentile calculated at all horizontal scales is shown in Fig. 3b. The 90th percentile of the maximum number of cloud 

scenes is 33 between 303 to 440 km in horizontal scale. The number at the nominal 45-km AMSU footprint scale is 16 cloud 

scenes, while the average number at the AIRS footprint is 9 cloud scenes. (Note that these are slightly smaller than values of 

18 and 10 using the exact AMSU and AIRS geometry, respectively,  in Section 3.1.) While these results show that fewer cloud 20 

type mixtures are observed at a decreasing length of 45 km to 15 km, a variety of cloud type mixtures is still encountered. 

While infrared sounding at 15 km resolution does not eliminate the cloud scene complexity encountered for combined infrared 

and microwave sounding at 45 km, the vast majority of 15 km footprints contain a smaller subset of possible cloud mixtures. 

In Section 4, we will determine whether individual cloud types or cloud type mixtures have meaningful impacts on AIRS cloud 

property retrievals. (Impacts on temperature and specific humidity soundings are beyond the scope of this investigation.) 25 

 

The reasons for the maximum number of observed cloud scenes (210) at a particular horizontal scale (105 km) are not 

immediately clear. The scale preference depends on the physical characteristics of cloud regimes and the degree to which cloud 

types are “mixed together” by region and furthermore depend on cloud length distributions (Guillaume et al., 2018). A simple 

model is described below that is able to approximate the results of Fig. 3 and offers some insight for the observed maximum 30 

frequency of cloud scenes and the spatial scale at which it occurs. 
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3.3 Generalizing to all scales 

The goal of this section is to derive cloud scene scale statistics that are independent of any regular grid resolution, and explore 

whether these statistics can explain some features of the number of scenes as a function of scale observed in the previous 

section. In particular, we explore whether these statistics can explain the maximum observed around 105 km. There is however 

an inherent difficulty in defining the boundaries that delimit any given cloud scene in absence of a predefined horizontal extent. 5 

It is possible that within a given cloud scene there exists several scenes with the same cloud types but differing lengths making 

the scene identification ambiguous. To circumvent this problem, we define a cloud scene and its maximum length as follows:  

 

(1) We search for a cloud scene containing a pre-defined mixture of cloud types. The spatial extent of this scene is 

delimited by cloud types (or clear sky) on both ends that do not belong to the mixture. 10 

(2) The maximum length of a cloud scene is the sum of all the horizontal lengths of all the cloud types in the cloud 

scene. 

 

For example, imagine that we will calculate the maximum length of the specific cloud scene (Ac,Sc). We then identify a 

location in the CloudSat data record with the following illustrative succession of cloud types: (Ci,Ac,Sc,Ac,Sc,Ac,Ns), with 15 

the number of CloudSat profiles associated with each cloud type of 10, 3, 6, 5, 7, 12, and 15, respectively. The Ci and Ns 

obviously do not belong to the (Ac,Sc) cloud scene and therefore delimit the scene as defined in (1) above. The maximum 

length of the cloud scene (Ac,Sc) will be the sum of the number of CloudSat profiles for (Ac,Sc,Ac,Sc,Ac), which is 

3+6+5+7+12=33 CloudSat profiles in total. Below, we define a minimum cloud length that is unequivocal: 

 20 

(3) If within a given cloud scene, there exist several cloud scenes with the same cloud types but smaller lengths than 

the maximum length, the minimum length of a cloud scene is defined as the smallest length of all those lengths.  

 

In the example above, there are four possible sequences (in bold font) that could be the minimum length: (Ac,Sc,Ac,Sc,Ac), 

(Ac,Sc,Ac,Sc,Ac), (Ac,Sc,Ac,Sc,Ac) or (Ac,Sc,Ac,Sc,Ac). The corresponding lengths are 3+6=9, 6+5=11, 5+7=12, and 25 

7+12=19, respectively. In this example, the minimum length would therefore be 9 CloudSat profiles. (The minimum and 

maximum may be equal for a particular mixed cloud scene.)  

 

Before steps (1) and (2) are used to quantify the maximum and minimum lengths for each of the 247 mixed scenes (256 minus 

the 8 single cloud scenes and clear sky), the locations of each cloud scene must first be identified in the two-year data record. 30 

Starting at the first CloudSat profile, the presence of each of the 247 mixed cloud scenes is determined using (1). For each 

occurrence of each mixed cloud scene, (2) and (3) are then applied to determine the maximum and minimum lengths for each 
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individual cloud scene. After processing the maximum and minimum lengths for every mixed cloud scene, simple statistics 

are calculated. 

 

A total of 200 out of 247 possible mixed scenes were identified. The minimum and maximum length occurrence frequencies 

of five cloud scenes (Ac,Sc), (As,Sc,Cu), (Ci,As,Cu,Dc), (As,Ac,Ns,Dc) and (Ci,As,Ac,St,Sc) selected randomly from the 200 5 

present in the two-year record, are shown in Fig. 4a and 4c, respectively. Recall that the maximum length is defined from (2), 

while the minimum length is defined from (3), with an illustrative example shown for (Ac,Sc). From top to bottom, their 

respective ranks are 1, 26, 51, 76 and 101. It is striking that each frequency histogram in Fig. 4a and 4c is not monotonic and 

displays a frequency maximum between 100 and 1000 km. Consequently, the sum of all (200) observed mixed scenes across 

length scales will result in a curve with a maximum and these are shown in Fig. 4b and 4d. Both curves are very similar to Fig. 10 

3a and have maxima for about 180 observed scenes at 77 km and 174 km, respectively. Using the methodology outlined in (1) 

to (3) to estimate numbers of cloud scenes, the scale dependence of the number of observed scenes shows that the maximum 

will occur somewhere between 77 and 174 km. 

 

In order to shed additional light on why a maximum in the occurrence frequency of each cloud scene histogram is obtained, 15 

histograms of cloud length frequency of single cloud types (defined at cloud top) are calculated. An example CloudSat orbital 

segment is shown in Fig. 5. The distribution of lengths for each cloud type for the two-year period is then shown in Fig. 6 with 

corresponding median and median absolute deviation (or m.a.d.) values reported in Table 1. Note that these values are similar 

to but not exactly the same as those calculated in Guillaume et al. (2018), for which cloud length was derived from a 2-D 

curtain of cloud features. The main characteristic shared by all cloud types in Fig. 6 is that their distributions are heavily 20 

skewed towards small lengths.  

 

The length of a mixed scene is the sum of the lengths of each cloud type within it. There are two aspects that will influence 

the number of scenes observed at a given length L. First, there are several combinations of different lengths that will sum to L 

and those lengths will be smaller than L (abscissa of Fig. 6). Second, the likelihood of observing a given scene depends on the 25 

frequency of occurrence of each cloud type (ordinate axis of Fig. 6). These two effects have opposite behaviors as a function 

of L: single cloud frequency decreases with L, whereas the number of cloud length combinations that sum up to L increases 

with length scale. 

 

To illustrate the effects of these opposing behaviors, we consider the scene (As,Sc,Cu) length distribution. Since the minimum 30 

length of all cloud distributions in Fig. 6 is one CloudSat profile, there is only one possible cloud length combination (1+1+1) 

that will sum to the minimum possible length of the scene (As,Sc,Cu). This is indeed the value observed on the far left of each 

red-orange curve in Fig. 4a and 4c. Next, consider a measurement consisting of 4 CloudSat profiles with this particular scene, 

with three possible length combinations:  (1+1+2), (1+2+1) or (2+1+1). The frequency of each individual cloud type, As, Sc 
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or Cu, is smaller at the scale of 4 CloudSat profiles than it is at a length of 3 CloudSat profiles in Fig. 6. However, there are 

more (As,Sc,Cu) scenes at length 4 than at 3 in Fig. 4a and 4c. This indicates that the increase of possible combinations is 

more important than the individual cloud frequency decrease for larger scales. This reasoning applies for increasing lengths 

until the decreasing frequency of individual cloud types between two consecutive lengths is more important. There are very 

few single As, Sc or Cu clouds observed at large lengths (far right scale of Fig. 6) resulting in a very small number of observed 5 

(As,Sc,Cu) scenes in Fig. 4a and 4c, despite the large number of length combination possibilities that may contribute.   

4 Cloud scene dependence of AIRS cloud properties 

We will now establish differences in the AIRS thermodynamic phase and ice cloud properties in the presence of complex and 

simple cloud types using coincident cloud scenes. In this section, the scenes are determined at the AIRS FOV resolution 

(approximately 15 km). We briefly summarize general categories of cloud scene statistics in Section 4.1. The AIRS cloud 10 

thermodynamic phase tests are discussed separately for single and mixed cloud scenes in Section 4.2. The AIRS ice cloud τi 

and rei, error estimates, averaging kernels (i.e., information content), and c2 residual fits between observed and simulated 

radiances are shown in Section 4.3. 

4.1 Types of cloud scenes 

Table 2 summarizes five types of scenes at the 15-km AIRS FOV scale: (i) clear sky, (ii) cloudy sky with one cloud type, (iii) 15 

partly cloudy sky with one cloud type, (iv), cloudy sky with multiple cloud types, and (v) partly cloudy sky with multiple cloud 

types. The raw counts and the relative percentages for the two-year observing period are shown. The dominance of clear sky 

(30.7%) at 15-km is apparent and is consistent with an absence of thin cloud features in the 2B-CLDCLASS data set. Cloudy 

sky scenes with one cloud type (multiple cloud types) amount to 31.3% (10.2%) of all observed scenes, while partly cloudy 

sky scenes with one cloud type (multiple cloud types) amount to 23.5% (4.3%) of all observed scenes. A total of 41.5% of 20 

AIRS FOVs are completely cloudy while 27.8% are partly cloudy according to 2B-CLDCLASS. Below the differences in 

cloud thermodynamic phase detection and ice cloud property retrievals are quantified for the types of scenes summarized in 

Table 2. 

4.2 Cloud thermodynamic phase 

The occurrence frequency histogram of the sum of all thermodynamic phase tests is shown for cloudy sky with one cloud type 25 

in Fig. 7. Homogeneous cloud scenes serve as an ideal point of reference for establishing cloud phase sensitivity benchmarks. 

Overall, there is strong differentiation in the cloud thermodynamic phase among cloud scenes with single cloud types. Ice tests 

dominate Ci, Ns, Dc, and As, while liquid and undetermined tests dominate Ac, Sc, and Cu.  
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The ice tests dominate the Ci cloud scenes and reaffirm the sensitivity of AIRS to ice clouds. CloudSat-classified clear scenes 

contain occasional occurrences of AIRS-detected thin cirrus (+1 and +2), consistent with either thin cirrus that is undetected 

by the CloudSat radar, or thicker cirrus within the AIRS footprint but to the side of the CloudSat ground track (e.g., Kahn et 

al., 2008). A few occurrences of -1 and -2 may also arise from spatial mismatches between AIRS and CloudSat scenes, or from 

stratus below 1 km in altitude that is undetected by CloudSat. In the Sc cloud scenes, trade cumulus clouds dominate as 5 

previously shown by Yue et al. (2011) and Kahn et al. (2017). A larger proportion of liquid tests, and a smaller proportion of 

ice tests, is observed in the Sc cloud scenes compared to clear sky, but undetermined phase is dominant in both scene types. 

The Cu and Sc cloud scene histograms are generally similar with more undetermined cases for Cu, but with a slight reduction 

of liquid and slight increase in ice observed for Cu compared to Sc.  

 10 

The As cloud scene histogram in Fig. 7 is overwhelmingly dominated by ice. The undetermined cases in part may result from 

supercooled liquid or mixed-phase clouds that potentially could be distinguished with an improved phase algorithm that factors 

in the spectral mid-infrared signature of supercooled liquid (e.g., Rowe et al., 2013). The Ac and As cloud scene histograms 

are very different from each other, with a majority of undetermined and liquid for Ac and a majority of ice for As, consistent 

with aircraft observations (Mazin, 2006). The preponderance of undetermined phase for Ac may indicate frequent supercooled 15 

liquid cloud tops (Zhang et al., 2010). Ham et al. (2013) showed that Ac are typically 2-3 km lower in altitude than As and 

this probably explains some of the difference in liquid and ice phase, as lower clouds are usually warmer. The Ns cloud scene 

histogram is dominated by ice detection with occasional liquid and undetermined cloud tops. The Ns cloud scene also has 

significant height overlap with Ac and As, with most tops for all three types typically located below 9 km. Ice tests dominate 

in the Dc cloud scene histogram although a very small proportion of -1, 0, and +1 occur. Inspection of AIRS granules (not 20 

shown) demonstrate that the spectral signatures used in thermal infrared phase tests break down in the presence of overshooting 

convection and other ice clouds within a few Kelvins of the tropopause (e.g., Kahn et al., 2018).   

 

The occurrence frequencies of cloud phase for partly cloudy sky with one cloud type are shown in Fig. 8. The biggest change 

is the relative ordering of the ranks among cloud scene types between Figs. 7 and 8. Ac is now more common than As, and Dc 25 

ranks higher than Ci as it is typically horizontally more extensive (Miller et al. 2014; Guillaume et al. 2018). There are more 

subtle changes in the cloud phase histograms that are consistent with partly cloudy sky. A weaker spectral signature for partly 

cloudy scenes results in slightly greater counts of unknown phase and also subtle shifts in liquid and ice phase tests in Fig. 8 

compared to Fig. 7. In the Ac cloud scene histograms, there is a small but discernible increase in ice tests in Fig. 8 compared 

to Fig. 7.  Horizontally heterogeneous Ac appears to have more frequent ice detection than horizontally homogeneous Ac. 30 

 

The nine most frequent cloudy scenes with multiple cloud types are shown in Fig. 9. The (Ci,Sc) cloud scene ice phase 

histogram resembles a hybrid of histograms for Ci and Sc with undetermined phase the most frequent. (Ci,Sc) is a common 

cloud scene in the low latitudes as trade cumulus (Sc cloud type) and is frequently found under thin cirrus (Chang and Li, 
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2005). Furthermore, the spectral signatures of the two types of clouds frequently cancel, giving an  undetermined phase result 

in the spectral tests used here (not shown). The (Ci,As) cloud scene shows a slight reduction in liquid detections and a slight 

increase in ice detections compared to As alone. While the As cloud scene in Fig. 7 is dominated by +2, the (Ci,As) cloud 

scene is dominated by +2 and +3. This suggests that a mixture of Ci and As together can trigger more ice tests in AIRS than 

As alone.  5 

 

The nine most frequent partly cloudy scenes with multiple cloud types are shown in Fig. 10. As with the differences between 

Figs. 7 and 8, the biggest change is the relative ordering of the ranks among cloud scene types between Figs. 9 and 10. 

Furthermore, there are additional (yet subtle) changes in the phase test histograms for the cloud scenes that are common 

between Figs. 9 and 10.   10 

 

In most mixed cloud scenes in both Figs. 9 and 10, the characteristics of the histograms are similar either to single types or 

have combined characteristics of the multiple cloud types contained within the cloud scene. These results are encouraging and 

reaffirm the capabilities of thermal infrared cloud phase determination (Jin and Nasiri 2014) and exhibit consistency with cloud 

types from the CloudSat radar. We note, however, that the AIRS phase determination has some ambiguity in overlapping ice 15 

and liquid cloud layers as previously shown by Jin and Nasiri (2014). 

4.3 Ice cloud properties  

The mean ice cloud property retrievals are summarized in Table 3 for cloudy sky with one cloud type only for the ice only 

portions of the cloud phase histograms depicted in Fig. 7. Scenes identified as clear sky exhibit properties of a small population 

of thin cirrus detected by AIRS (Fig. 7) with mean values of τi =0.77 and rei=20.9 µm (Table 3). The AKs are notably lower 20 

and the relative error for τi is higher than other cloud scenes. The Sc cloud scene shows a small population of cirrus that go 

undetected in 2B-CLDCLASS (Fig. 7) and have mean values of τi =1.30 and rei=20.6 µm (Table 3).  The AKs are also lowest 

in Table 3 for Sc relative to other cloud scenes with similarly high errors in τi and rei. Kahn et al. (2008; 2015) have shown that 

AIRS is very sensitive to thin cirrus, thus some ice clouds in CloudSat-identified Sc cloud scenes are expected. Because 

tenuous ice clouds have smaller values of τi and rei, the lower estimates of information content and larger error estimates are 25 

promising. These tenuous ice cloud retrievals are differentiated well from more robust retrievals within cloud scenes that are 

dominated by ice phase in the histograms (Fig. 7).  

 

The Ci cloud scene has mean values of τi =1.91 and rei=25.4 µm, an AK=1.0, the highest of any scene type, and lower errors 

compared to other types in Table 3. The As cloud scene has a larger mean of τi=2.42 compared to the Ac cloud scene with a 30 

mean of τi=1.65  (Table 3). Interestingly, the mean value and error estimate of rei is lower for Ac than As, exhibiting 

differentiation between these two mid-level cloud types. However, a much smaller proportion of Ac are ice compared to As 

(Fig. 7).  
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The Ns cloud scene in Table 3 contains larger mean values of τi than Ci and Ac cloud scenes, but these values are similar to 

those for As; however, the mean values are lower than Cu and Dc cloud scenes (Table 3). A lower value of τi is characteristic 

of diffuse cloud tops where the infrared emission may originate several km deep within the cloud (e.g., see Kahn et al., 2008; 

Holz et al., 2008). The reduced AK=0.88 for the Ns cloud scenes illustrates that a diffuse cloud top is more problematic for 5 

ice cloud retrievals.  Cu cloud scenes with ice cloud tops occur a small amount of the time (Fig. 7); furthermore, Cu is infrequent 

in CloudSat classification (1.7% of all clouds). The horizontal extent of Cu is also much smaller than Dc (see Table 1). 

Interestingly, τi is larger for Cu cloud scenes than for all categories except Dc cloud scenes (Table 2). 

 

The mean Cu value of rei=26.5 µm is larger than most cloud scenes. This is consistent with larger ice particles observed at the 10 

tops of convection instead of small ice particles in thin cirrus at the same cloud top temperature (e.g., Yuan and Li 2010; Protat 

et al. 2011; van Diedenhoven et al. 2014; Kahn et al., 2018). These Cu cases are likely transient cumulus congestus at altitudes 

cold enough for cloud top glaciation. The Dc cloud scene has the largest mean τi=5.47 of all cloud scenes with a very dense 

cloud top that saturates the infrared emission signal in contrast to Ns. The values of rei for Dc are similar to Cu (Table 3) with 

a slight reduction in the rei AK=0.96 and τi AK=0.98 relative to Ci cloud scenes (Table 3). This is consistent with reduced 15 

sensitivity for high values of τi (e.g., Huang et al., 2004). 

 

The relative variations between the ice cloud retrieval properties for cloudy sky with one cloud type in Table 3 are consistent 

with expectations of infrared sensitivity.  CloudSat-observed Ci cloud scenes have smaller error estimates and higher 

information content in comparison to Sc, consistent with Sc scenes containing tenuous cirrus that goes undetected by 2B-20 

CLDCLASS. Larger τi and rei are observed at the tops of convective ice clouds such as Dc and Cu compared to stratiform 

clouds such as As and Ci.  Differences in ice cloud properties between Ac and As cloud scenes are consistent with observed 

differences in scene heterogeneity and cloud top height.  

 

The mean ice cloud property retrievals are summarized in Table 4 for partly cloudy sky with one cloud type with cloud phase 25 

histograms depicted in Fig. 8. The biggest difference between Tables 3 and 4 is the relative frequency of occurrence with large 

differences between cloud scenes with or without clear sky. Another significant change is an overall reduction in AKs and 

magnitude of τi, with an increase in c2 in Table 4, consistent with partly cloudy scenes. The changes in rei AKs, magnitudes, 

and error estimates between Tables 3 and 4 are smaller than those for τi. Overall, the differences between Tables 3 and 4 are 

reassuring in that the AIRS retrieval is responding to partly cloudy scenes by reducing information content and the magnitude 30 

of τi, while c2 residuals are increasing somewhat. 
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The As and Ac cloud scenes in Table 4 are very similar to As and Ac cloud scenes in Table 3 except for slight reductions in τi 

and rei. Scenes in Table 4 are partly cloudy, implying a weaker infrared cloud signal.  The Ci cloud scene in Table 4 shows 

slight reductions in τi and rei from the Ci cloud scene in Table 3. 

 

The differences between Tables 3 and 4 are more significant for the convective ice clouds, however. The Cu cloud scene τi 5 

and AK are smaller while errors are larger in Table 4 compared to the pure Cu cloud scene in Table 3. This is expected as Cu 

clouds are several kilometers in depth but often have small horizontal scales and are averaged with clear sky in an AIRS pixel.  

Mixed (Cu,Nc) cloud scenes are especially problematic for plane-parallel radiative transfer calculations. This results in more 

uncertain retrievals of ice cloud properties for partial cloud (Cu,Nc) in Table 3 than those for the pure Cu cases in Table 2, 

which are more likely to be completely fill an AIRS scene.  10 

 

The ice cloud property retrievals for cloud scenes that contain multiple cloud types are summarized in Table 5 for cloudy 

scenes and Table 6 for partly cloudy scenes. These tables list the nine most frequent cloud scene types as depicted in Figures 

9 and 10. Seven of the nine cloud scenes are common between Tables 5 and 6. There is a general tendency for reductions of 

τi, increases in % relative error, and slight reductions in AKs in Table 6 for the seven common cloud scenes in Table 5. Changes 15 

in rei related variables are smaller than changes in τi related variables. 

 

To summarize Tables 3-6, larger differences in ice cloud property retrievals are found between different cloud types than 

between cloudy and partly cloudy scenes. However, the differences between cloud scene types are the sharpest for the subset 

of cloudy scenes with one cloud type (Table 3). The AIRS cloud property retrievals are not greatly impacted by mixtures of 20 

cloud types within the AIRS footprint, and ice cloud property differences among cloud scenes are broadly consistent with the 

expected performance of infrared retrievals among these cloud types.  

5 Summary 

A method is described to classify cloud mixtures of cloud top types, termed cloud scenes, using the 2B-CLDCLASS cloud 

type classification obtained from the 94 GHz CloudSat radar. The scale dependence of the cloud scenes is quantified. The 25 

method is initially applied to two years of CloudSat data collocated within the Atmospheric Infrared Sounder 

(AIRS)/Atmospheric Microwave Sounding Unit (AMSU) field of regard (FOR) at 45 km scale. Given the 45 km scale and 

approximately 50 coinciding CloudSat profiles, each with 125 levels, the total number of possible scenes within an AMSU 

FOR is 950x125. This very large number of possible scenes is reduced to 256 by making three assumptions in the classification. 

First, only the cloud type at the cloud top is considered.  Second, the occurrence frequency of each cloud type within the cloud 30 

scene is disregarded; thus, there is no consideration of the counts of each cloud type.  Third, the sequence of cloud types along 

the orbit segment is not considered. These three assumptions make mixed cloud scene classification tractable and are broadly 
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consistent with the sensitivity of infrared sounders to clouds. They are also independent of the spatial scale of a scene and 

therefore can be generalized to all horizontal scales.  A total of 210 out of 256 possible cloud scenes are observed in a two-

year period from 01 July 2006 to 30 June 2008. The maximum number of cloud scenes occurs at a horizontal scale of 105 km 

with fewer cloud scenes at larger and smaller scales, and the majority of observed cloud scenes contain single cloud types.  

 5 

The cloud scenes are organized into five categories: i) clear sky, (ii) cloudy sky with one cloud type, (iii) partly cloudy sky 

with one cloud type, (iv), cloudy sky with multiple cloud types, and (v) partly cloudy sky with multiple cloud types. 

Summarizing AIRS cloud top property retrievals for cloudy sky with one cloud type, there is strong differentiation in the cloud 

thermodynamic phase. Ice phase dominates Ci, Ns, Dc, and As, while liquid and undetermined phase dominate Ac, Sc, and 

Cu. The results are similar for partly cloudy sky with one cloud type with an increase in unknown cloud phase and c2  residuals, 10 

and a reduction in information content for some cloud types. A similar set of calculations were performed for both cloudy and 

partly cloudy skies with multiple cloud types. In most cloud scenes with multiple cloud types, the changes in the ice properties 

are generally either small or reflect the combined characteristics of the multiple cloud types contained within the cloud scene. 

The sensitivity of thermal infrared cloud phase determination is consistent with independently determined cloud typing from 

the CloudSat radar for clouds detected by CloudSat.  15 

 

The relative magnitude of differences in rei and τi, and their averaging kernels (AKs) and error estimates, and the c2 residual 

between simulated and observed radiances, are consistent with expectations of infrared retrieval sensitivity to different cloud 

types. Smaller error estimates and higher information content (AKs) within Ci cloud scenes are observed in comparison to thin 

cirrus likely missed by CloudSat in clear sky and Sc scenes. Larger τi and rei are observed at the tops of convective ice clouds. 20 

Differences in retrieved cloud properties between Ac and As cloud scenes are consistent with differences in their scene 

heterogeneity and cloud temperature. Variations in ice cloud property retrievals are larger between types of cloud scenes than 

between cloudy and partly cloudy/mixed cloud scenes.   

 

The fidelity of AIRS retrieved cloud phase and ice cloud microphysics was tested within scenes with both uniform and non-25 

uniform cloud cover, and one or more cloud types within the scene. As with phase, retrieval differences are shown to be larger 

among cloud types rather than between uniform and mixed cloud scenes.  

 

New methodologies for simultaneous retrievals of cloud microphysical properties and temperature and specific humidity 

profiles that include clouds in the forward radiative transfer (e.g., De Souza-Machado et al. 2018; Irion et al. 2018) necessitate 30 

careful investigation of the effects of cloud mixtures on retrieved cloud properties. The bias and root-mean square error of 

AIRS temperature and specific humidity soundings depend on cloud type (Yue et al., 2013; Wong et al., 2015). A more rigorous 

evaluation of scene complexity is necessary for optimizing the retrieval configuration of future sounding algorithms (Irion et 

al. 2018) and for validating their products. 
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This investigation shows that careful inspection of footprint-scale AIRS cloud property retrievals are consistent with 

expectations of infrared sensitivity to different cloud types defined with the 94 GHz CloudSat radar. Other cloud observations,  

such as MODIS, may be used in a similar analysis to the one described here.  MODIS captures the off-nadir portion of the 

AIRS swath and the fine-scale variability within AIRS footprints. Wang et al. (2016) used the cloud typing in CloudSat to 5 

cross validate with cloud typing using MODIS-defined cloud types. This establishes a link between cloud types obtained from 

CloudSat and MODIS. A rigorous estimation of the pixel-scale relationships between cloud properties obtained from CloudSat, 

MODIS and AMSU will help to further advance multi-sensor and multi-variate geophysical retrievals (e.g., Irion et al. 2018). 
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Cloud type nc Ci As Ac St Sc Cu Ns Dc 

median 6.6 8.8 12.1 1.1 3.3 1.1 1.1 15.4 14.3 

Median 
absolute 
deviation 

5.5 7.7 11.0 0.0 2.2 0.0 0.0 13.2 9.9 

Table 1. Horizontal cloud chord length median and median absolute deviation for each cloud type (km). 
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Type of scene Total count percent 

clear 7175523 30.7 
cloudy sky with one cloud type 7332076 31.3 
partly cloudy sky with one cloud type 5506074 23.5 
cloudy sky with multiple cloud types 2377259 10.2 
partly cloudy sky with multiple cloud types 1008158 4.3 
all 23399090  100.00 

Table 2. Total counts and relative percentages of five cloud scene categories at the AIRS FOV scale: clear sky, cloudy sky with one 
cloud type, partly cloudy sky with one cloud type, cloudy sky with multiple cloud types, and partly cloudy sky with multiple cloud 
types. 
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Cloud 
type 

Cloudy 
single 
type 

proportion 

Mean ti ti relative 
error 

ti 
averaging 

kernel 

% 
passing 

QC for ti 
Mean rei 

rei 
relative 

error 

rei 
averaging 

kernel 

% 
passing 
QC for 

rei 

c2 
residual 

fit 

nc 49.5 0.77 14.88 0.71 75.09 20.9 5.6 0.97 34.1 3.3 

As 14.0 2.42 6.41 0.92 97.36 24.5 4.7 0.98 79.9 2.9 

Sc 11.5 1.30 15.12 0.69 82.63 20.6 6.5 0.96 48.6 3.2 

Ci 11.3 1.91 2.21 0.99 96.44 25.4 2.6 1.00 74.2 4.0 

Ns 8.6 2.41 8.70 0.88 98.11 23.6 5.6 0.98 87.0 2.4 

Ac 2.9 1.65 6.66 0.91 93.45 22.1 4.1 0.98 59.0 4.1 

Dc 1.7 5.47 3.53 0.98 98.64 27.1 7.1 0.96 71.9 3.2 

Cu 0.6 2.92 5.99 0.94 94.37 26.5 6.1 0.97 70.6 3.9 

St 0.001 2.33 15.37 0.63 100.00 27.3 4.9 0.98 70.0 4.1 
Table 3. Cloud ice properties for cloudy sky with one cloud type (i.e., all CloudSat profiles have the same cloud type). Proportions 
and relative errors are in percent. The effective radius is in µm.  

  



24 
 

Cloud 
type 

Cloudy 
single 
type 

proportion 

Mean 
ti 

ti 
relative 

error 

ti 
averaging 

kernel 

% 
passing 

QC for ti 
Mean rei 

rei 
relative 

error 

rei 
averaging 

kernel 

% 
passing 

QC for rei 

c2 
residual 

fit 

Sc 74.79 0.93 14.45 0.71 73.91 21.2 5.7 0.97 36.8 3.5 

Ci 10.44 0.71 3.69 0.96 87.98 22.5 2.8 0.99 62.0 4.2 

Ac 5.08 0.94 5.95 0.92 88.41 20.8 3.6 0.99 52.6 4.6 

As 4.83 1.09 14.40 0.72 90.47 19.9 6.4 0.96 46.5 3.1 

Cu 4.80 0.87 12.78 0.76 74.49 21.1 5.2 0.97 38.2 3.7 

Ns 0.05 1.69 14.50 0.71 85.08 22.9 7.1 0.96 45.3 3.7 

Dc 0.01 4.63 3.44 0.98 93.58 26.8 6.4 0.96 53.8 3.9 

St 0.01 0.79 8.95 0.88 84.00 21.3 6.3 0.96 64.0 3.9 
Table 4. Cloud ice properties for partly cloudy sky with one cloud type.  All else the same as Table 3. 
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Cloud 
scene 

Mixed 
scenes 

proportion 

Mean 
ti 

ti 
relative 

error 

ti 
averaging 

kernel 

% 
passing 
QC for 
ti 

Mean 
rei 

rei relative 
error 

rei 

averaging 
kernel 

% 
passing 
QC for 

rei 

c2 
residual 

fit 

Ci,As 16.7 2.52 4.05 0.96 97.56 24.7 3.8 0.99 74.6 3.5 

Ac,Sc 16.0 1.31 10.41 0.81 85.92 21.9 5.0 0.97 53.7 4.0 

As,Ns 11.0 2.07 10.66 0.83 97.01 22.4 5.7 0.97 81.6 2.6 

Ci,Ns 7.2 2.14 6.84 0.93 97.39 22.9 4.3 0.98 85.8 2.8 

Ac,Ns 6.1 1.75 12.83 0.77 91.58 21.2 6.0 0.97 69.9 3.1 

Ci,Sc 5.2 1.00 4.61 0.95 84.98 24.5 3.1 0.99 60.7 4.3 

As,Sc 4.8 1.34 16.31 0.66 91.55 19.7 6.6 0.96 57.0 2.9 

As,Dc 3.7 5.22 3.12 0.99 99.07 28.0 6.8 0.96 65.8 3.5 

Ci,Dc 3.4 4.30 2.82 0.99 98.61 27.4 4.9 0.98 62.0 4.1 
Table 5. Cloud ice properties for cloudy sky with multiple cloud types for the first nine most observed cloud scenes at the AIRS FOV 
scale. All else the same as Table 4.  
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Cloud 
scene 

Mixed 
scenes 

proportion 

Mean 
ti 

ti 
relative 

error 

ti 
averaging 

kernel 

% 
passing 
QC for 
ti 

Mean 
rei 

rei relative 
error 

rei 

averaging 
kernel 

% 
passing 
QC for 

rei 

c2 
residual 

fit 

Sc,Cu 18.0 1.03 14.00 0.73 76.20 21.8 5.9 0.97 39.1 3.7 

Ac,Sc 20.1 0.87 6.34 0.92 84.99 21.4 4.0 0.98 54.9 4.4 

Ci,Sc 17.8 0.70 4.07 0.95 86.31 22.6 2.9 0.99 61.1 4.2 

As,Sc 5.2 1.16 14.36 0.72 88.08 20.4 6.3 0.96 47.9 3.4 

Ac,Cu 3.4 0.94 4.84 0.95 86.14 23.0 4.1 0.98 56.3 4.7 

Ci,Ac 3.3 1.18 2.93 0.98 93.16 22.3 2.5 0.99 56.4 5.0 

Ac,Sc,Cu 3.2 0.83 5.36 0.94 85.47 22.7 4.3 0.98 59.5 4.4 

Ci,As 2.7 1.22 7.10 0.89 92.41 21.3 4.2 0.98 52.5 3.9 

As,Ac 2.1 1.14 8.07 0.87 90.54 21.3 4.5 0.98 48.6 4.3 
Table 6. Cloud ice properties for partly cloudy sky with multiple cloud types for the first nine most observed cloud scenes at the 
AIRS FOV scale. All else the same as Table 5. 
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Figure 1. Histogram of cloud scenes containing relative counts of occurrence observed at the AMSU FOR and AIRS FOV resolution 
(~45 km and ~15 km respectively). The cumulative sum of the relative counts of these 18 (10) cloud scenes amounts to more than 
90% of all cloud scenes observed globally over a period of two years at AMSU (AIRS) resolution. 5 

 

 
Figure 2. Geographic distribution of cloud scenes (Sc) and (Ac,Sc) in panels (a) and (b) respectively, in units of percentage with 
respect to all of the (194) observed cloud scenes. These scenes were observed at the AMSU FOR resolution (~45 km). Similar plots 
of the AIRS FOV resolution (~15 km) are nearly identical (not shown). 10 
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Figure 3. (a) Number of observed scenes as a function of the horizontal length scale used to define the scene. (b) Number of scenes 
observed at the 90th percentile as a function of horizontal length scale used to define the scene. The vertical green (red) lines 
approximate the scale of the AIRS (AMSU) pixel size. 
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Figure 4. Distribution of (a) minimum and (c) maximum length for 5 of the first 200 cloud scenes. The five scenes are, from top to 
bottom: (Ac,Sc) in blue, (As,Sc,Cu) in orange, (Ci,As,Cu,Dc) in yellow, (As,Ac,Ns,Dc) in purple and (Ci,As,Ac,St,Sc) in green and 
their respective ranks are 1, 26, 51, 76 and 101. In panels (b) and (d), the number of scenes were obtained by summing the number 
of scenes present a different lengths. 5 
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Figure 5. Cloud type vertical cross-section defined by the values of the cloud_scenario variables of the 2B-CLDCLASS product. 
Each color corresponds to a different cloud type (legend on right). Color segments on top of the figure indicate the horizontal extent 
of a cloud measured at its top. 
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Figure 6. Horizontal cloud chord length frequency histograms for each of the eight CloudSat cloud types and clear sky. The cloud 
chord length was obtained at the cloud top (see Fig. 5) unlike that obtained in Guillaume et al. (2018). 
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Figure 7. AIRS cloud_phase_3x3 histograms for cloudy sky with one cloud type (i.e., all CloudSat profiles have the same cloud type 
and no clear sky). The red, green, and blue bars indicate liquid, undetermined, and ice phase, respectively. Each histogram sums to 
1.0 and does not show how many counts relative to another histogram. Relative counts could be inferred from the percentages listed 
in the 2nd to left column of Table 3. 5 
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Figure 8. AIRS cloud_phase_3x3 histograms for partly cloudy sky with one cloud type. All else equal to Figure 7. 5 
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Figure 9. AIRS cloud_phase_3x3 histograms for cloudy sky with multiple cloud types for the top 9 ranked cloud scenes in order of 
occurrence frequency. 
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Figure 10. AIRS cloud_phase_3x3 histograms for partly cloudy sky with multiple cloud types for the top 9 ranked cloud scenes in 
order of occurrence frequency. 

 


