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Abstract. The prior information used for Level 2 (L2) retrievals in the thermal infrared can influence the quality of the re-

trievals themselves and, therefore, their further assimilation in atmospheric composition models. In this study we evaluate the

differences between assimilating L2 ozone profiles and Level 1 (L1) radiances from the Infrared Atmospheric Sounding Inter-

ferometer (IASI). We minimized potential differences between the two approaches by employing the same radiative transfer

code (RTTOV) and a very similar setup for both the L2 retrievals (1D-Var) and the L1 assimilation (3D-Var). We computed5

hourly 3D-Var reanalyses assimilating respectively L1 and L2 data in the chemical transport model MOCAGE and compared

the resulting O3 fields among each other and against ozonesondes. We also evaluated the joint assimilation of limb measure-

ments from the Microwave Limb Sounder (MLS) on top of IASI to assess the impact of stratospheric O3 on tropospheric

reanalyses. Results indicate that significant differences can arise between L2 and L1 assimilation, especially in regions where

the L2 prior is biased (at the tropics and in the southern hemisphere in this study). L1 and L2 assimilation give instead very10

similar results in the northern hemisphere, especially when MLS measurements are used to constrain the stratospheric O3 col-

umn. We conclude this study by listing remaining issues that are common to both the L1 and L2 approaches and that deserve

further research.

1 Introduction

The global monitoring of the atmospheric composition relies on a large number of dedicated satellite missions and on the15

sustained improvement of numerical forecast models. Research and operational centers provide today both satellite based

reanalyses and forecasts of atmospheric composition for a large number of applications, spanning from stratospheric ozone

monitoring (van der A et al., 2010) to climate change (Flemming et al., 2017) and air-quality (Zhang et al., 2012; Marécal

et al., 2015).

Satellite sensors measure the spectral signature of gases and aerosols on the radiation field that traverse the atmosphere.20

Retrieving the concentration of a given gas from the radiation measured at the satellite position represents an inverse problem

that is in most cases ill-posed and under-determined, i.e. finding the solution requires some type of mathematical regularization

or prior information (Rodgers, 2000). The accuracy of the solution depends in general on the intensity of the spectral signature

of the retrieved compound, the source of radiation (e.g. the Earth or the Sun), the observation geometry and the accuracy of the
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Radiative Transfer Modeling (RTM). The latter means also correctly accounting for all the atmospheric constituents or surface

properties that affect the radiation field but are not retrieved themselves (auxiliary RTM inputs).

When the retrieval is done within a Bayesian framework, like the optimal estimation method (Rodgers, 2000), the measure-

ments errors, the RTM errors and the uncertainty in the prior information (also named background or a-priori) are prescribed.

The procedure provides then an estimation of the error covariance for the retrieved quantity and the Degrees Of Freedom (DOF)5

of the solution. The retrieval errors and DOF can be used first to diagnose the quality and the relevance of the atmospheric

retrieval. They become even more important when retrievals are further assimilated in numerical forecast models, because they

weight the impact of the observations in the system.

First atmospheric composition models were named Chemical Transport Models (CTM) because they solve the chemical and

physical processes but are based on meteorological fields computed separately with a Numerical Weather Prediction (NWP)10

model. Coupled Chemistry Meteorology Models (CCMM) that simulate both meteorology and chemistry online became avail-

able later but are today quite common in operational centers (Zhang, 2008; Flemming et al., 2015). There are currently growing

efforts to introduce even stronger coupling of the atmosphere with both ocean and surface models, which gives so-called Earth

System Models (ESM) (Brown et al., 2012; Hurrell et al., 2013). ESMs provide a comprehensive tool for climate predictions

and reanalyses, but they are also considered for state-of-the-art air quality modeling (Neal et al., 2017).15

Following closely the historical advances in modeling, the assimilation of satellite data has been introduced first in CTMs

(Geer et al., 2006; Lahoz et al., 2007), and it is now well integrated also in operational CCMMs (Flemming et al., 2017). Today,

numerous satellite retrievals of trace gases (e.g. O3, CO, NO2, CH4, CO2) and aerosols (AOD) are assimilated daily within

operational CTMs and CCMMs (Inness et al., 2015; Bocquet et al., 2015). However, some aspects of the Data Assimilation

(DA) approach differ between the chemistry and meteorology communities.20

Since long time, meteorological variables such as temperature and water vapor profiles are corrected by means of assimilating

directly satellites radiances (Level 1 data). Therefore, the RTM became part of the observation operator of the assimilation

system (Andersson et al., 1994). This resulted necessary to avoid the introduction of biases in NWP that arise from poor prior

information used in satellite retrievals at that time (Eyre et al., 1993). On the other hand, chemical species and aerosols are

mostly corrected by means of assimilating geophysical retrievals (Level 2 or L2 data) that are made available by satellite data25

providers. To remove the impact of the prior information when assimilating L2 retrievals, the Averaging Kernels (AK) of the

retrieval must be multiplied by the modeled profiles before computing the innovation vectors (Eskes and Boersma, 2003).

However, within standard methods based on the linearization of the RTM, like the optimal estimation, issues might still arise

when the prior information used in the retrieval sits far from the true atmospheric state: this might challenge the linearization

of the observation operator and result in sub-optimal retrievals. Since the AK themselves are also a result of the retrieval (and30

depend upon its prior information), we suppose that a perfect removal of the prior information within DA cannot always be

ensured.

The precise conditions that provide an equivalence between assimilating retrievals (using some kind of weighting functions)

and radiances have been formalized by Migliorini (2012) and further tested by Prates et al. (2016) on synthetic satellite ob-

servations. These authors conclude that the equivalence holds under the hypothesis of an almost linear RT regime and with35
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a careful selection of the prior error covariances in a way to maximize the measurements information in the retrieval step.

Nonetheless, testing the two approaches within an operational system and with real observations remains crucial to verify if

these conditions are met in practice. Moreover, the perfect equivalence holds only when all the auxiliary inputs of the RTM

are exactly the same in both the retrieval and the radiance assimilation. It is clear that a climatological option for some RTM

inputs will always be a more practical choice when computing L2 retrievals. On the other hand, the evolution towards strongly5

integrated ESMs will allow in principle to dispose of the most accurate prior information for all RTM inputs and favors the

radiances assimilation approach. In this context, it appears important to introduce and evaluate the assimilation of radiances

for chemical applications as well.

To the knowledge of the authors, the existent literature on this topic only concerned meteorological applications. Han and

McNally (2010) explored the possibility of assimilating O3 sensitive radiances within a NWP model but without comparing10

the two approaches. Similarly, Weaver et al. (2007) examined the assimilation of satellite radiances for aerosols but the focus

was on the impact of using modeled aerosols microphysical properties as auxiliary input for the RTM and no comparison was

provided. No other studies could be found concerning the assimilation of chemical compounds.

The objective of this study is to perform a first strict comparison between radiances and retrievals assimilation, with re-

spect to O3 estimation in the Thermal Infrared (TIR). To this end, systematic differences between the retrieval and radiances15

assimilation have been minimized as much as possible, for example by means of employing the same RTM within the two

approaches.

We consider the case of O3 assimilation using the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Euro-

pean MetOP satellites (Clerbaux et al., 2009). Several IASI O3 retrievals have been already well validated (Dufour et al., 2012)

and used directly to provide multi-annual time-series of the global O3 budget (Wespes et al., 2016) or successfully assimilated20

within global (Peiro et al., 2018) and regional CTMs (Coman et al., 2012). However, an empirical correction of the retrievals

has been found necessary to ensure globally unbiased reanalyses and slightly degraded assimilation results are still found at

mid and high latitudes (Emili et al., 2014). Since the tropospheric O3 signature in the selected IASI spectral window decreases

over colder surfaces, the impact of the retrieval’s prior might become more relevant at high latitudes. In addition, the majority

of IASI O3 retrievals use a single a-priori profile globally (Barret et al., 2011; Boynard et al., 2016), which might present25

very large local departures from the true O3 profile. Hence, IASI O3 assimilation represents a good benchmark to evaluate the

differences between retrievals and radiances assimilation.

The IASI-SOFRID O3 product (Barret et al., 2011) and MOCAGE CTM have been used here to benefit from the experience

of previous studies (Emili et al., 2014; Peiro et al., 2018). Both are based on a variational algorithm and, since SOFRID

employs RTTOV (Saunders et al., 1999), which is a community RTM developed originally for NWP applications, the same30

RTM has been implemented in the MOCAGE DA system. Global O3 reanalyses are computed for July 2010 and the results

are compared against all available radio-soundings to evaluate their accuracy. Since the sensitivity of IASI TIR measurements

to O3 is not uniform along the atmospheric column, we also investigate the impact of assimilating more accurate stratospheric

profiles from the Microwave Limb Sounder (MLS) in combination with IASI radiances. This might reveal possible synergies

when assimilating multiple instruments that sense different layers of the atmospheres.35
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The paper is organized as follows. The satellite measurements, the Level 2 retrievals and the validation measurements used

for this study are described in Sec. 2, as well as main steps concerning the preprocessing for some of the datasets. The chemical

transport model, the radiative transfer model, the assimilation algorithm and the setup of the experiments are described in Sec.

3. The assimilation of IASI retrievals and radiances is compared in Sec. 4.1 and the impact of MLS assimilation on top of IASI

is discussed in Sec. 4.2. The conclusions are summarized in the last section, where some recommendations are also given.5

2 Measurements

2.1 IASI

The Infrared Atmospheric Sounding Interferometer (IASI) flies onboard the series of polar-orbiting satellites MetOP operated

by the EUropean organization for the exploitation of METeorological SATellites (EUMETSAT). It provides hyper-spectral

measurements of the Earth’s thermal radiation in the 3.62 - 15.5 �m (2760 - 645 cm�1) window and serves meteorological10

and atmospheric chemistry applications (Clerbaux et al., 2009). IASI is an operational mission meant to provide long-term (>

20 years) time series of accurate TIR spectra at high spatial resolution. A total of three IASI instruments will be flying simul-

taneously at the end of 2019, providing nearly global coverage three times per day. Hence, they represent a great opportunity

for both NWP and climate-chemistry reanalyses. Only MetOP-A data, available from 2008 to present, have been employed for

this study.15

2.1.1 L1 radiances

IASI L1c data contain calibrated and geolocalized spectra at 0.5 cm�1 spectral resolution (after apodization), i.e. 8700 radiance

values for each ground-pixel, with a footprint of 12 km for nadir observations. For this study, historical L1c data granules have

been downloaded from the EUMETSAT Earth Observation data portal (https://eoportal.eumetsat.int) in NETCDF format. Data

files contain also the observation geometry (sun and satellite angles) for each ground-pixel and the collocated land mask and20

cloud fraction values, obtained from the Advanced Very High Resolution Radiometer (AVHRR) measurements, also onboard

MetOP.

2.1.2 SOFRID L2 retrievals

The Software for a Fast Retrieval of IASI Data (SOFRID) was developed at the Laboratoire d’Aérologie to retrieve O3 (Barret

et al., 2011) and CO (De Wachter et al., 2012) profiles from IASI in near-real time. It is based on the Radiative Transfer for25

TOVS (RTTOV) RTM (Saunders et al., 1999) and the 1D-VAR scheme developed within the Numerical Weather Prediction

Satellite Application Facilities (NWP-SAF) program. SOFRID retrieves the O3 profile in volume mixing ratio (vmr) units at

43 pressure levels between the surface and 0.1 hPa using 469 spectral channels within the main IASI O3 window (980 - 1100

cm�1). The choices that are made in SOFRID and are relevant for this study are summarized in Tab. 1. Note that a single

a-priori profile and error covariance matrix are used globally and that the Surface Skin Temperature (SST) is estimated within30
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the retrieval. The number of DOF of the SOFRID retrieval has been evaluated between 2 and 3 for the full atmospheric column,

with about one DOF for the tropospheric column (Dufour et al., 2012). The accuracy of the retrieved O3 depends on the latitude

and the vertical level, but sits generally within 10-20 % of the corresponding radiosoundings values, once the averaging kernels

are applied. However, increased biases are found in the troposphere with SOFRID (+10%) and positive biases of about 15%

are found in the Upper Troposphere - Lower Stratosphere (UTLS) region with all current IASI O3 products (Dufour et al.,5

2012). The reasons for such biases are not yet fully understood and can impact negatively data assimilation (Emili et al., 2014)

or trends analysis (Gaudel et al., 2018). This study will provide further insights about the impact of the constant a-priori on

IASI retrievals. The SOFRID V1.5 retrievals described in Barret et al. (2011) are available for the full MetOP-A period at

http://thredds.sedoo.fr/iasi-sofrid-o3-co . The V1.6 version of SOFRID retrievals has been used for this study and have been

obtained from LA (personal communication). The only difference with version 1.5 concerns the temperature and water vapor10

profiles employed in the radiative transfer computations, which are taken from the ECMWF NWP forecasts (V1.6) instead

of EUMETSAT L2 retrievals (V1.5). Since the CTM is also based on ECMWF NWP forcing fields (Sec. 3.1), this choice

minimizes possible systematic differences between L2 retrievals and L1 assimilation. In addition to the O3 retrieval and its

error covariance, SOFRID files contain a number of auxiliary and diagnostic fields. We considered in particular the SOFRID

cloud fraction, based on Brightness Temperature (BT) analysis at 11 and 12 �m to fill pixels with missing AVHRR data15

(Barret et al., 2011), and an index based on V-shaped sand signature computed as �BT = (BT829cm�1 �BT972:5cm�1)+

(BT1202:5cm�1 �BT1096cm�1). Usage of these products will be detailed in the data preprocessing section (2.4).

2.2 MLS L2 retrievals

Since 2004 The Microwave Limb Sounder (MLS) flies on-board the research mission AURA and measures thermal emission

at the atmospheric limb (Waters et al., 2006). It provides about 3500 stratospheric profiles of multiple atmospheric constituents20

each day, including O3 (Froidevaux et al., 2008). Since the version 3 of MLS products, O3 profiles are retrieved on 55 pressure

levels with a recommended range for scientific usage between 0.02 and 261 hPa for version 4.2 (Livesey, 2018). The biases of

MLS O3 profiles are typically within 5% with respect to ozonesondes and lidar measurements (Hubert et al., 2016), with slightly

higher values below 200 hPa. Given its good accuracy, MLS O3 has been widely used both for trend analysis (Froidevaux et al.,

2015) and assimilation experiments (Massart et al., 2010; Miyazaki et al., 2012; Inness et al., 2015). Similarly to previous25

studies (Emili et al., 2014), we retain only the most accurate data using MLS, i.e. above 170 hPa. The MLS V4.2 product used

in this study has been downloaded from the Goddard Earth Sciences Data and Information Services Center (GES DISC) web

portal (https://disc.gsfc.nasa.gov).

2.3 Radiosoundings

Ozonesondes are launched on weekly bases by meteorological services and provide accurate profiles of O3 up to 10 hPa30

with a vertical resolution of 150-200 m. ECC type sondes, which represent the largest percentage of the global network, have

a precision of about 5% (Thompson et al., 2003). Radiosoundings are relatively sparse and their geographical distribution

is much more representative of the northern mid-latitudes. However, they provide since several decades the most precise
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information on vertical ozone distribution in the troposphere. Therefore, they have been used to derive widely used tropospheric

O3 climatologies (McPeters et al., 2007) and validate both satellite products (Dufour et al., 2012) or models (Geer et al., 2006).

They will be used in this study to validate all model simulations. Data are collected and distributed by the World Ozone and

Ultraviolet Radiation Data Center (WOUDC, http://www.woudc.org).

2.4 Data preprocessing5

Some further preprocessing has been applied to the original L1c and SOFRID datasets to ease the interpretation of the assimi-

lation experiments presented later in Sec. 4. The objective was to ensure that exactly the same spectra are used for both L1 and

L2 assimilation.

Only the spectral channels that are used in SOFRID are extracted from IASI L1c granules, i.e. channel n. 1350 (980 cm�1)

to 1818 (1100 cm�1). Some further screening is applied to remove channels that are affected by strong H2O absorption, as also10

done in SOFRID.

The spatial resolution of the CTM (2�x2� degrees, Sec. 3.1) is much coarser than IASI pixels size. Since it is preferable

to avoid all kind of spatial averaging of the observations, a significant reduction of ground-pixels is needed. In return, we

employ strict selection criteria to avoid as much as possible contamination from clouds and bright surfaces, which reduce the

RT accuracy and increase retrieval or assimilation errors. The data selection is performed as follows.15

First, only L1 pixels with both IASI and AVHRR highest quality flags are kept. Then, ground-pixels from IASI L1 and

SOFRID products are filtered using their respective cloud masks (Sec. 2.1.1 and 2.1.2) and keeping only pixels with cloud

fraction less or equal to 1%. SOFRID pixels with a sand signature greater than 0.5 and with a number of retrieved levels lower

than 35 (mountains) are also filtered out. Resulting datasets are then matched, i.e. only common ground-pixels that remained

available after the previous L1 and SOFRID independent selections are kept. Finally, data thinning is performed to retain a20

maximum of about two pixels for each model grid point. After the completion of the data selection procedure the final number

of retained ground-pixels for L1 and SOFRID is about 3300 per day, compared to about 105 when only the cloud screening is

applied.

3 Method

This section summarizes the main characteristics of the CTM (3.1), the RTM (3.2) and the assimilation algorithm (3.3) used25

in this study. Further details on the particular selection of the main parameters of the assimilation experiments (e.g. the error

covariances) are given in Sec. 3.4.

3.1 Chemical transport model

The Chemical Transport Model (CTM) MOCAGE (Josse et al., 2004) is used in this study. A global configuration with an

horizontal resolution of 2�x2� degrees and 60 hybrid sigma-pressure levels up to 0.1 hPa has been used. The vertical resolution30

varies from about 100 m in the planetary boundary layer to about 700 m in the upper troposphere, decreasing further to
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approximately 2 km in the upper stratosphere. Chemical mechanism, emissions and physical parameterizations follow the

setup used for operational air-quality forecasts (Marécal et al., 2015), which includes about 100 species and 300 chemical

reactions. A similar configuration has been employed by Barré et al. (2013) to assimilate IASI O3 columns over Europe, but

with a lower model top at 5 hPa. Other authors favored a simplified chemistry scheme but with a model top at 0.1 hPa to

assimilate satellite O3 products globally (Emili et al., 2014; Peiro et al., 2018).5

We considered for this study the highest available model top because we need to simulate the full atmosphere to compute

radiances. In addition, the 0.1 hPa top matches with the vertical grid used for SOFRID retrievals (Sec. 2.1.2), making the

comparison of the two assimilation approaches (radiances vs L2) stricter. The full chemical scheme is chosen instead of a

simplified chemistry to reduce as much as possible biases of the modeled O3 in the troposphere. The main intent of this study

is in fact to evaluate the impact of a dynamical and accurate O3 prior on assimilation results.10

The meteorological forcing comes from the ECMWF NWP model (IFS), from which we selected the forecast steps initialized

with the latest available analysis (at 00 or 12 UTC).

3.2 Radiative transfer model

RTTOV (Saunders et al., 1999) is a community RTM developed for operational NWP models. One of its main advantages is

computational efficiency, which is achieved by running accurate but costly line-by-line RT simulations for a large number of15

satellite sensors, observation geometries and atmospheres and storing the corresponding coefficients in large look-up tables.

RTTOV provides API interfaces for the direct RT computations plus the tangent linear and adjoint model, which are needed in

variational assimilation systems.

Version 11.3 of RTTOV (Saunders et al., 2013) has been used in this study. This version includes coefficients for the IASI

TIR channels computed using a fine atmospheric grid (104 vertical levels). The SST, 2 m temperature, 2 m pressure and 220

m wind vector are taken from high resolution (0.125�x0.125� degrees) global IFS forecasts initialized from ECMWF 4D-Var

analysis at 00 UTC of each day and collocated with satellite ground-pixels prior to data assimilation. The surface emissivity is

based on the RTTOV monthly TIR emissivity atlas (Borbas and Ruston, 2010). Only clear-sky RT computations are performed

for this study and no aerosols have been prescribed. The RTM configuration is summarized in Table 1.

3.3 Assimilation algorithm25

The assimilation suite for MOCAGE is based on a variational algorithm and was developed initially within the ASSET (As-

similation of Envisat data) project (Lahoz et al., 2007). The objective was to assimilate satellite products at a global scale and

a 3D-FGAT implementation was chosen. It evolved later to provide air-quality reanalyses at the surface based on a 3D-Var

implementation (Jaumouillé et al., 2012) and extended to 4D-Var in case of linearized chemistry schemes (Massart et al., 2012;

Emili et al., 2014). In all cases the minimization of the variational cost function is performed using the limited-memory BFGS30

algorithm (Liu and Nocedal, 1989). We used in this study a 3D-Var algorithm with hourly assimilation windows and with O3

as control variable.
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The 3D background error covariance is modeled through a diffusion operator (Weaver and Courtier, 2001) and allows the

specification of heterogeneous correlation length scales. Compared to previous studies using MOCAGE assimilation suite, a

new vertical correlation operator has been employed here: the vertical error correlation is now assigned by explicitly filling

a positive definite matrix using the gaussian formulation of Paciorek and Schervish (2006) and by numerically computing its

square root. This avoids difficulties encountered with diffusion based operators concerning the normalization in presence of5

boundaries (e.g. the surface) and heterogeneity (Mirouze and Weaver, 2010). Since the vertical dimension of the model grid is

relatively small, this choice does not impact significantly the numerical cost and the memory requirements with respect to the

previous implementation based on diffusion.

The observation operator of MOCAGE allows to assimilate a large number of measurements, spanning from columns of

gases (Massart et al., 2009) to aerosol optical depth (Sič et al., 2016). Next, we give some details of the implementation used10

in this study to assimilate vertical profiles and radiances.

After the horizontal and temporal interpolation of the model fields at the satellite ground-pixel position, modeled profiles

are linearly interpolated to the retrieval’s vertical grid. When the averaging kernels are used (i.e. for SOFRID assimilation),

the linear estimation equation (Barret et al., 2011) is used to remove the impact of the prior from the innovation vector. The

ensemble of these operations is stored as coefficients of a large sparse matrix and done through its multiplication by the model15

3D field. This approach is practical since numerous application of the linearized and adjoint operator are needed during the

minimization of the variational cost function. Differently from all previous studies involving IASI O3 assimilation (Massart

et al., 2009; Emili et al., 2014; Peiro et al., 2018), where L2 profiles were first reduced to total or partial columns prior to

assimilation, we assimilate here directly the full L2 profiles (43 levels). This avoids any loss of information and allows a fairer

comparison between L2 and radiances assimilation. The error covariance matrix of the profile-type observations is diagonal in20

the latitude/longitude dimensions but off-diagonal terms are allowed along the vertical dimension.

The steps for the computation of modeled radiances are equal to the profiles ones until the vertical interpolation. In fact,

the RTTOV vertical interpolator is used for radiances computations instead of the MOCAGE one. All model levels (60) and

corresponding levels pressure are given as input to RTTOV, which performs internally the vertical interpolation to the IASI

coefficients levels. Since the model vertical resolution is lower than the one available in RTTOV for IASI coefficients (10425

levels), we used the default option based on Rochon et al. (2007). Also, O3 profiles above the CTM top (0.1 hPa) are completed

using RTTOV climatological profile. Auxiliary inputs for the radiances computation include the pressure, temperature and

water vapor profiles, which are interpolated from the correspondent MOCAGE fields.

The MOCAGE control vector has been extended to include the SST, as it is done within SOFRID retrieval scheme. This

proved to be important since small errors in the SST translate in significant differences between modelled and measured30

radiances. Not accounting for this would produce wrong O3 analyses. The SST does not belong to the MOCAGE prognostic

fields nor it is prescribed on the MOCAGE grid. Hence, the SST analysis is not propagated in time and no spatial covariance

model have been implemented so far. In this sense, it can be interpreted as a variational bias correction term in the observation

space (Dee and Uppala, 2009), with prior values given by the NWP model (IFS, see Sec. 3.2).
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3.4 Setup of the experiments

We performed numerical experiments for the month of July 2010, which corresponds to the typical presence of summer O3

maxima in the northern hemisphere linked to photochemical pollution. July 2010 is also interesting due to the development

of a strong La Nina episode (Peiro et al., 2018). The main difference between assimilating L2 and L1 data consists in using

a climatological (L2 assimilation) versus a dynamical a-priori (L1 assimilation) for the inversion of the radiative transfer5

problem. The chosen period presents large local deviations of the O3 field from climatological values. Therefore, it provides

an interesting benchmark period with respect to the objective of this study.

The CTM has been initialized on 1st June 2010 with a zonal climatology and run for one month period (spinup) to provide

chemically balanced initial condition on 1st July 2010 for all simulations.

The observation error covariance matrix (R) is prescribed according to the choices adopted in SOFRID V1.6. When the10

radiances are assimilated, a diagonal matrix (i.e. with no inter-channel correlation) is used with a constant standard deviation

of to 0.7 mW m�2 sr�1 cm for all channels. This is a simplified although common setting for most IASI O3 retrievals (Barret

et al., 2011; Boynard et al., 2016). The SST, which is controlled as well within radiances assimilation, has a prescribed standard

deviation of 4� C for all ground-pixels. When L2 profiles are assimilated we used the full non-diagonal error covariance matrix

provided by SOFRID or MLS retrievals.15

We considered a dynamical rejection of observations based on the relative differences between simulated and measured

values with respect to simulated values. It avoids assimilating observations with too large departures from corresponding model

background. The thresholds values are set to 12% for L1 radiances and 2000% for L2 profiles and trespassing the threshold for

any particular channel or profile level rejects the entire spectrum or profile. The strong difference between the two thresholds

is a consequence of the very different nature of assimilated observations: the exponential shape of O3 profiles can produce20

very large departures where the gradient is the steepest (tropopause) and a small rejection threshold would filter out most of

the profile observations. This is not the case for radiances, which vary on a linear scale. Thresholds values have been chosen

based on misfit histograms in a way to remove abnormal tails. As a consequence, L1 and L2 pixels that pass the selection and

are further assimilated could differ. However, the relative number of rejected observations for the entire month of July is quite

limited in both cases (3% for L1, 6% for L2), thus not affecting statistically the results.25

The setup of the background error covariance (B) is a critical step both for L2 retrievals and data assimilation. For this study

we could benefit from past experiences using MOCAGE, IASI and MLS O3 (Massart et al., 2012; Emili et al., 2014; Peiro

et al., 2018) and we tried to derive an optimal parameterization for B based on previous results. Note that the B matrix (3D)

used in data assimilation is by definition different with respect to the one specified within SOFRID (1D), but the same 3D B

is used for all data assimilation experiments (L1 and L2). Concerning the standard deviation, Emili et al. (2014) employed30

vertically varying errors expressed as percentage of the background O3 profile. Optimal results were found setting a value of

5% in the stratosphere and 30% in the troposphere, with the tropopause being arbitrary set at about 150 hPa. Peiro et al. (2018)

kept the same error parameterization but reduced the errors to 15% in the troposphere to analyze the tropical O3 distribution.

Since we use here a more detailed chemistry model (Sec. 3.1) we first evaluated the Root Mean Square Error (RMSE) of a

9

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-426
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 10 January 2019
c© Author(s) 2019. CC BY 4.0 License.



free model simulation (control) against the ozonesondes (Fig. 1). We remark that the model’s RMSE reproduces the vertical

features observed in previous studies, with smaller errors in the stratosphere (between 20 and 50 hPa), larger errors in the free

troposphere, and highest errors close to the tropopause and within the planetary boundary layer. Note also the zonal variability

of the maxima, which appear linked to the variability of the tropopause height. However, thanks to the detailed chemical

mechanism, biases (not shown) are generally smaller than in the studies cited previously.5

The background standard deviation is prescribed through a smooth step function that takes values of 2% above 50 hPa and

10% below. These values are slightly smaller than in previous studies (Emili et al., 2014; Peiro et al., 2018) because of the

smaller biases of the forecast model. Also, the percent profile is multiplied by the hourly O3 field of the control simulation

once for the entire period and not at every forecast time step. Therefore, all assimilation experiments presented in this study

are based on the same B matrix. This choice has been taken to permit a stricter comparison between L1 and L2 assimilation10

experiments.

The vertical error correlation diffuses the assimilation increments between model levels and has been found to significantly

impact the quality of O3 reanalyses with current model vertical resolutions (not shown). In general, small values of vertical

correlation are favored to avoid injection of large stratospheric O3 increments in the troposphere. For example, Emili et al.

(2014) used a constant correlation length of 1 model grid point; Peiro et al. (2018) found that switching off the vertical15

correlation provided even better results for MLS analyses. However, a non-zero correlation seems more appropriate for generic

usage, because it allows to assimilate effectively also point measurements. Second, the SOFRID prior covariance is also non-

diagonal (Barret et al., 2011) and it is better to preserve a certain consistency between the two approaches. Therefore, we used

the value of 1 model grid point in this study.

Finally, the exponential scale of the horizontal error correlation is set equal to 200 km, with the zonal component that is20

reduced towards the poles to account for the increasing resolution of the model’s grid (Emili et al., 2014).

Further improvements of theB parameterization could be achieved by diagnosing the forecast errors hourly or using ensem-

bles of model forecasts. However, such complex and costly estimations do not always improve systematically and significantly

the results of chemical assimilation (Massart et al., 2012). Additional research is needed in this regard, which is out of the

scope of this study.25

4 Results

A total of six simulations for the month of July 2010 have been performed (Tab. 2), starting on 1st July: a free model simulation

(control) and five 3D-Var reanalyses assimilating respectively SOFRID L2 profiles (named L2a), IASI L1 radiances (L1a),

MLS L2 profiles (MLSa), MLS plus SOFRID L2 profiles (MLS+L2a), MLS plus L1 radiances (MLS+L1a). The first three

simulations (control, L2a and L1a) are discussed in Sec. 4.1. The control simulation and the three reanalyses that include30

MLS are discussed in Sec. 4.2. All simulations have been validated against ozonesondes profiles to elucidate the differences

of the resulting O3 vertical distribution. A total of 220 radiosoundings are available globally in July 2010. The colocation of

ozonesondes profile with model fields in time and space is performed through the MOCAGE observation operator (Sec. 3).
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4.1 IASI assimilation

We discuss the geographical differences between L1a and L2a reanalyses by looking at the monthly bias between the two ex-

periments, divided by the average O3 of the control simulation. To this end O3 fields have been first interpolated vertically from

the model grid to a selection of pressure levels, covering both the stratosphere and the troposphere, and averaged afterwards.

Relative differences are displayed in Fig. 2. First, we remark that differences are in generally significant both in the stratosphere5

and in the troposphere, with absolute values that can exceed 50% of the O3 field locally and global averages that are between

1% and 15%. Largest differences in the stratosphere are found in correspondence of tropical latitudes, L1a showing larger O3

values than L2a at 20 hPa and lower at 70 hPa. In the troposphere the strongest positive differences are still found in the tropics,

especially over central Africa and Eastern Asia, but significant negative differences appear in the Southern Hemisphere (SH)

mid latitudes. Differences become smaller when moving down to 750 hPa and tend to disappear at lower altitudes (not shown),10

which is normal considering the vertical sensitivity of IASI. More remarkably, in the Northern Hemisphere (NH) mid and high

latitudes, relative differences are smaller than elsewhere. This behavior seems coherent with the fact that the SOFRID prior is

more representative of the NH mid-latitudes (Sec. 2.1.2) and much less accurate for tropical and SH latitudes. Overall, these

plots suggest that the equivalence between L1 and L2 assimilation is not verified for O3, even when the averaging kernels are

employed.15

To further verify which one, between the L1a and L2a experiments, reproduces better the measured O3 profiles, we val-

idated the three simulations against radiosoundings. Figure 3 reports the RMSE differences computed globally and for five

different latitude bands. The displayed values are the differences between the RMSE of the assimilation experiment and the

corresponding value for the control simulation (Fig. 1). Negative values in Fig. 3 indicate that the assimilation improved the

O3 field and decreased the relative RMSE with respect to ozonesondes by the amount displayed on the plot. Looking at the20

global averages we remark that below 70 hPa the gain is similar for both L1a and L2a experiments, and quite significant at 200

hPa (20%). Note, however, the strong similarity between the global and 30�N-60�N statistics, due to the over-representation

of ozonesondes for NH mid-latitudes (63% of the total).

In the NH the RMSE of the control simulation is effectively reduced between 70 and 300 hPa (up to 20%). L1a shows a

slightly better gain than L2a between 150 and 300 hPa. Interestingly, both L1a and L2a display increased RMSE between 30025

and 400 hPa. This behavior is also confirmed when the vertical error correlation is switched off in the 3D-Var B and with

different choices for the vertical interpolation of O3 optical coefficients within RTTOV (log-linear or Rochon, not shown).

Since large negative biases were present in the control simulation (as low as -30%, not shown), a possible explanation is

that part of the strong positive correction of O3 between 100 and 300 hPa is propagated downwards, where both absolute

O3 concentrations and relative biases are much lower. This can degrade the reanalysis accuracy below 300 hPa. Whether this30

propagation is carried out by the Jacobian matrix of the observation operator (either through the RTM or the retrieval’s AK)

or by vertical O3 transport is not yet elucidated and would need further investigation. Also, other possible factors affecting the

accuracy of the RTM exist, like inadequate vertical resolution close to the tropopause, uncertainties in meteorological profiles

or impact of aerosols. Nonetheless, these errors impact both L1a and L2a in our study: a more profound revision of the L1
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assimilation configuration with respect to the L2 retrievals is left for a future study. The RMSE is reduced again at about 500

hPa between 30�N-60�N, although not very significantly. The assimilation increases the RMSE of the tropospheric profile at

northern latitudes (60�N-90�N). In general, the validation confirms that L1a and L2a have a very similar accuracy in NH at

mid and high latitudes, as also suggested previously by Fig. 2. However, the strongest positive corrections are confined to the

UTLS.5

At the tropics (30�S-30�N) the results differ more significantly. In the troposphere (below 100 hPa), both L1a and L2a

reduced the RMSE of the control simulation, although by a smaller amount than in NH (5%). Note also that L1a RMSE

reduction is larger than L2a between 300 and 500 hPa, whereas it is the other way round at about 600 hPa. Above 100 hPa we

observe an increase of RMSE that peaks at 60 hPa with L2a and at 30 hPa with L1a, but smaller in magnitude for L1a. This

behavior might be linked to the strong differences that exist between the SOFRID prior and the modeled O3 at the tropical10

tropopause, to some other factor affecting the RT computations, to overestimation of the background error covariances or to a

complex combination of all previous causes. A full satisfactory explanation has not been found yet.

Results in the SH (30�S-90�S) are in favor of L1a: lower RMSE than for the control simulation is found for both L1a and

L2a in the stratosphere (between 30 hPa and 100 hPa), with L1a slightly better at polar latitudes (60�S-90�S). More noticeably,

L2a is equal or worse than the control simulation in the troposphere (below 250 hPa), whereas L1a improves the RMSE.15

The SOFRID prior is biased towards NH mid-latitudes, where tropospheric O3 concentrations are generally the highest. The

sensitivity of IASI TIR channels to tropospheric O3 decreases over colder surfaces (e.g. in the SH during July). Hence, we

expect a stronger impact of the prior in the retrieval results, which can be detrimental if the prior is biased. Indeed, we note

that L1a remains close to the (already accurate) control profiles, whereas L2a adds a positive bias (not shown). Such behavior

was already diagnosed by Emili et al. (2014) when assimilating SOFRID partial columns and we provide here a possible20

explanation. Using a more adapted prior in the SH could in principle also improve L2 retrievals themselves, which seems the

case with a newer versions of SOFRID (B. Barret, personal communication).

Since radiosoundings do not provide a uniform global coverage and vertical coverage also lacks in the vicinity of the O3

maximum, we validated the three simulations against MLS measurements. The RMSE differences for stratospheric profiles can

be found in Fig. 4. These statistics are based on more than 105 profiles for the global average and between 15000 and 3000025

for zonal averages, depending on the latitude band. The patterns observed in the stratosphere with respect to ozonesondes are

confirmed also with MLS. The only exceptions are a lower RMSE degradation at 50 hPa for L2a in the tropics and for both

L1a and L2a at 150 hPa in the 30�S-60�S band. Overall, the validation against MLS bolsters the robustness of the conclusions

derived previously for the troposphere.

The computational cost of L1 assimilation is necessarily higher than for L2 assimilation. Additional CPU time is due not30

only to online RTM computations but also to a higher number of iterations needed by the minimizer to converge. For a typical

24 hours long simulation performed on Intel Xeon E5-2680 V3 CPU the total computing time is 3.9 CPU hours for L2a and

13.2 hours for L1a. Note that the L2a time does not include the cost of the L1 to L2 processor but only the cost of the 3D-Var

assimilation plus the model forecasts. Most of the CPU time for L1a is spent in the linearized and adjoint calls of the RTM

(50% of the total CPU time), whereas the corresponding time spent for the observation operator within the L2a experiment is35
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about 1%. However, the total CPU time can be significantly decreased by reducing the maximum number of iterations of the

minimizer. A simulation with halved number of iterations (75) showed very similar results to the ones that have been reported

(150 iterations) and could be considered if computation time is a critical factor. Moreover, with standard high performance

computers and thanks to the parallel nature of the observation operator and the RTM, we could obtain a speedup of about 24

on the 24 CPU cores. This reduces the run time of L1a to about 36 minutes for the 24 hours-long simulation, versus 13 minutes5

for L2a. The extra cost of L1 assimilation seems therefore acceptable also for operational applications.

4.2 IASI and MLS assimilation

Some issues were identified in the previous section in the stratosphere, especially at tropical latitudes. Among possible rea-

sons, one is that inversion of TIR measurements might be particular sensitive to the vertical distribution of O3 in the tropical

stratosphere. We consider here assimilating MLS L2 profiles on top of IASI to correct the model stratosphere and troposphere10

simultaneously, as done also in previous studies (Emili et al., 2014; Peiro et al., 2018). When the radiances are assimilated, the

RT problem is solved for the entire atmospheric column within the iterations of the variational algorithm. Therefore, enhanced

and better synergies could be observed than when only L2 products are assimilated.

We report in Fig. 5 the impact of assimilating MLS alone by computing the average difference between MLSa and the

control (upper plots), and the impact of assimilating MLS on top of IASI L1/L2 by computing the average differences between15

MLS+L1a (MLS+L2a) and L1a (L2a) respectively. As expected, the impact of MLS assimilation is very significant at 100

hPa (relative differences as high as 60% of control O3) but becomes minor at 500 hPa, where no direct constraint exists from

the observations. Interestingly there are regions at mid-latitudes where the impact of MLS is not negligible (> 5%). Since the

3D-Var increments are confined to higher levels (above 200 hPa), we reckon that the impact of MLS assimilation at 500 hPa is

due to the model dynamics at mid-latitudes, e.g. Stratosphere-Troposphere Exchanges (STE).20

When comparing the MLS impact at 500 hPa with the bottom plots we remark that there is no sign of a strong spatial

correlation in the NH and in the tropics. This suggests that the impact of MLS in the troposphere is supplanted by IASI

assimilation (either L1 or L2), which is expected due to the strong sensitivity of IASI TIR measurements at 500 hPa. Traces

of superposition of the MLS impact on IASI reanalyses appear in SH mid-latitudes, which is coherent with the fact that the

IASI tropospheric impact is smaller over colder surfaces (Sec. 4.1). In case of no synergy between MLS and IASI we would25

expect to see in bottom plots either very small values or patterns similar to what observed in the SH mid-latitudes. Instead,

significant differences (as high as 10%) arise at tropical latitudes, which are also opposed in sign, i.e. a positive feedback of

MLS is observed within MLS+L2a, both negative and positive, but smaller in amplitude, within MLS+L1a. This confirms that

constraining the model with MLS above 200 hPa has a significant impact on the free troposphere when assimilating IASI.

We compared the RMSE of MLSa, MLS+L1a and MLS+L2a against ozonesondes (Fig. 6) to evaluate if some of the observed30

feedbacks improve the O3 distribution. MLSa provides particularly accurate results down to 200 or 300 hPa, depending on the

latitude, with a robust reduction of the RMSE with respect to the control simulation. The only exception is in the SH mid-

latitudes below 250 hPa, where the MLSa RMSE increases. We suspect that this might be linked again to the combination of

strong O3 gradients at the tropopause height and the negative bias of the control simulation above the tropopause (see Sec.
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4.1). Overall MLSa confirm results found in past studies (Massart et al., 2012; Emili et al., 2014) and represents a much better

prior for assimilation of radiances or retrievals.

We remark that MLS+L1a and MLS+L2a provide now closer results in the NH and in the tropics compared to Fig. 3. This

suggests that the small differences found previously between L1a and L2a in the NH (Fig. 2) were mostly due to the im-

pact of the stratospheric O3 on the radiative transfer computations. The stratospheric O3 gain is much more significant with5

MLS+L1a/MLS+L2a than with L1a/L2a and remains very close to MLSa, demonstrating that assimilating accurate strato-

spheric profiles remains essential for O3 reanalyses. In the NH, a positive, albeit small, effect of assimilating IASI on top

of MLS is found between 150 and 300 hPa. Below 300 hPa, the addition of MLS does not bring further improvements with

respect to IASI alone. Significant differences persist in the tropical troposphere and in the 30�S-60�S band, where MLS+L1a

shows improved RMSEs with respect to MLS+L2a. In particular, only the assimilation of radiances allows to partially mitigate10

the RMSE degradation due to MLS in the SH (30�S-60�S) troposphere.

We report in Fig. 7 the Taylor plots concerning the free troposphere O3 column (340-750 hPa), to further evaluate the skills

of the assimilation experiments in terms of variability. We examine here the free troposphere since it is where the direct impact

of IASI assimilation is the largest and the impact of MLS the smallest (except for the 30�S-60�S band). IASI assimilation

improves the variability of the modeled O3 field when looking at global averages, but this conclusion varies as a function15

of the latitude band. Robust and significant improvements are found only at the tropics and in the SH polar region, mixed

elsewhere. This confirms previous findings obtained with L2 assimilation (Emili et al., 2014) and adds the conclusion that a

better prior does not necessarily solve all issues related to the assimilation of TIR measurements at high latitudes. Nevertheless,

the assimilation of radiances provides in general slightly better results at all latitudes and permits to extract more variability

from IASI spectra especially at tropical latitudes.20

5 Conclusions

In this study we addressed the following question: which are differences between the direct assimilation of IASI radiances

(Level 1) and the assimilation of Level 2 products for O3 reanalyses. We used an experimental setup where differences between

the L2 retrieval and the assimilation algorithm have been minimized as much as possible, for example by using the same RTM

(RTTOV) and control vector (O3 and SST) in both approaches. This allowed to delve into the impact of the O3 prior and its25

error covariance on the quality of the reanalysis.

We performed twins assimilation experiments with the MOCAGE CTM and the SOFRID O3 retrievals, using the same IASI

ground-pixels for both L1 and L2 assimilation, named L1a and L2a respectively. We compared the obtained reanalyses between

each other and against ozonesondes for the month of July 2010.

Main findings suggest that the accuracy of the O3 prior information used in the L2 retrievals can influence significantly the30

assimilation results. When the O3 prior is biased and the sensitivity of the retrieval is small (e.g. in the SH troposphere in

winter) increased errors with respect to the control simulation are found assimilating L2 profiles (with the respective kernels).

When the sensitivity is larger, but the retrieval’s prior is still biased (in the tropical troposphere), the reanalysis shows a better
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variability when assimilating directly L1 radiances instead of L2 profiles. L1a and L2a are instead very similar in the NH,

where the SOFRID O3 prior is the closest to the truth.

We conclude that particular care should be taken before assimilating satellite retrievals that in some circumstances can have

a low sensitivity to the true profile. A thorough analysis of the retrieval’s DOF and averaging kernels represents the first step

in this direction, but the dependence of these diagnostics to the prior itself can make this analysis troublesome. Assimilating5

directly L1 radiances represents a viable alternative to this. We could imagine extending this analysis to other chemical species

(e.g. CO) and spectral regions (e.g. UV) that show a similar behavior to O3 in the TIR spectrum in terms of information content

of the measurements.

Finally, a positive synergy has been found when assimilating simultaneously MLS profiles and IASI (either L1 or L2),

which corrected stratospheric biases due to IASI assimilation alone. The addition of MLS was found to influence the results10

of IASI assimilation also in the free troposphere (500 hPa), with L1 assimilation providing in general better results than L2

in the tropics and in the SH. This suggests that using L1 data might also be beneficial in a context of assimilating multiple

instruments with different vertical sensitivities at the same time.

We reckon that L1 assimilation requires modeling the full atmosphere, which may be not available to some models, those

for example conceived exclusively for tropospheric applications. Moreover, Level 2 products can be aggregated vertically to15

correct selectively some model layers and averaged spatially to fit models with coarser resolution than the satellite ground-pixel

size. This cannot be easily done with radiances and should be addressed in future research.

In this study the observations, their error covariance and the RTM auxiliary inputs were kept almost identical between L1

and L2 assimilation on purpose. Further research is needed to address issues that are common to L1 and L2 assimilation, e.g.

increased errors close to the tropopause in the NH or in the tropical stratosphere. Improvements are expected for example by20

increasing the vertical resolution of the model, including modeled aerosols within the RT or using more realistic observation

error covariances. Including more modeled variables among the RTM inputs is in particular of interest in the context of the

evolution towards ESMs, where hyper-spectral sounders like IASI can provide very valuable constraint for multi-variate re-

analyses (atmosphere plus surface). Including inter-channel and ground-pixel correlations in the observations error covariance

matrix seems necessary to correctly weight IASI very dense observations within higher resolution models than the one used in25

this study. All these aspects deserve further research.
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Figure 1. Relative Root Mean Square Error (RMSE) of the control simulation with respect to radiosoundings averaged globally (first plot)

and for five latitude bands separately (90�S-60�S, 60�S-30�S, 30�S-30�N, 30�N-60�N, 60�N-90�N).
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Figure 2. Relative differences (%) between radiances and Level 2 assimilation (L1a minus L2a divided by the correspondent O3 values of

the control simulation) averaged on July 2010. From left to right different pressure levels are displayed covering the stratosphere (top) and

the free troposphere (bottom). Average, maximum and minimum values of the displayed fields are given on top of each map.

Table 1. Summary of the configuration of SOFRID L2 retrievals and MOCAGE L1 assimilation.

L2 retrieval L1 assimilation

Radiative transfer model RTTOV V9 RTTOV V11.3

Algorithm 1D-Var 3D-Var

Spectral window 980 - 1100 cm�1 980 - 1100 cm�1

Measurements error 0.7 (mW m�2 sr�1 cm) 0.7 (mW m�2 sr�1 cm)

Control vector O3 (1D) + Surface Skin Temperature (SST) O3 (3D) + Surface Skin Temperature (SST)

Vertical grid 43 pressure levels (1013-0.1 hPa) 60 hybrid sigma-pressure levels (surface-0.1 hPa)

O3 prior MLS+Ozonesondes global climatology 3D-hourly model forecasts

O3 error covariance MLS+Ozonesondes climatological covariance 3D-hourly (standard deviation), parameterized (correlations)

SST prior ECMWF-IFS operational forecasts ECMWF-IFS operational forecasts

SST error covariance 4�C 4�C

Temperature, water vapor ECMWF-IFS (on 43 levels) ECMWF-IFS (on MOCAGE 60 levels)

IR emissivity (Borbas and Ruston, 2010) (Borbas and Ruston, 2010)
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Figure 3. Relative difference of RMSE (�RMSE) with respect to radiosoundings for L1a (blue) and L2a (red). The difference is computed

by subtracting the RMSE of L1a (L2a) against radiosoundings from the RMSE of the control simulation (Fig. 1). Negative values mean that

the assimilation improved (decreased) the RMSE of the control simulation, positive values indicate degradation (increase) of the RMSE. The

statistics are computed for the same latitudes as in Fig. 1.

Table 2. Names of experiments and assimilated data.

Experiment’s name IASI L1 IASI L2 MLS L2

Control no no no

L1a yes no no

L2a no yes no

MLSa no no yes

MLS+L1a yes no yes

MLS+L2a no yes yes
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Figure 4. Relative difference of RMSE with respect to MLS profiles for L1a (blue) and L2a (red). Same plots as in Fig. 3.
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MLSa-Control O3 at 100 hPa MLSa-Control O3 at 500 hPa

MLS+L2a-L2a O3 at 500 hPa MLS+L1a-L1a O3 at 500 hPa

Figure 5. Relative differences between O3 reanalyses (as % of the control O3) averaged on July 2010. On top: relative difference between

MLSa and the control simulation at 100 hPa (left) and 500 hPa (right). On bottom: relative difference between MLS+L2a and L2a (left) and

between MLS+L1a and L1a (right), both at 500 hPa.
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Figure 6. Relative difference of RMSE with respect to radiosoundings for MLS-a (teal), MLS+L1a (dark blue) and MLS+L2a (red). Same

plots as in Fig. 3.
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Figure 7. Taylor diagrams of modeled tropospheric ozone columns (340-750 hPa) for the Control simulation (green), MLS-a (violet),

MLS+L1a (grey) and MLS+L2a (yellow) averaged globally and for five latitude bands separately. The Taylor statistics are computed against

radiosoundings.
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