We thank the Associate Editor for comments and the opportunity to revise the manuscript. We have taken care to address each comment in a point by point response.

Responses to Report #3

The manuscript “External and Internal Cloud Condensation Nuclei (CCN) Mixtures: Controlled Laboratory Studies of Varying Mixing States” presents the results of testing and validating the CCN activation with multicomponent and varying mixing state under controlled laboratory conditions. Mixing state is important for CCN concentrations and it is interesting to test the relationship the CCN activation with mixing state in laboratory studies.

I did not read the manuscript of previous version. For this version, I have a few specific comments.

1. The manuscript claims that “the aerosol mixing state can be observed in CCN activation data and can thus be revisited in complex aerosol data sets to understand the extent of mixing” (L392-394, and something similar in the abstract (L39-40)). In this study, two-components mixture were used and a plateau was found for the external mixing case. I am curious how well the plateau can be resolved when aerosol contains more than two components, say three or five components. It might look like a continuous activation curve. Therefore, it would be helpful to discuss the limit of this approach.

 Also L286-288, “Results utilizing CCN activation data for aerosols <50nm may be a good substitute for estimating aerosol chemical fractions when other instruments with lower size resolution are not readily available.” This may be difficult if aerosol contains more than two components.

 Discussion about the limit of multiple components has been added to the text as follows:

 L251. For more than 2-component externally mixed particle distributions, more than two plateaus will be observed. For example, the work of Schill et al. 2015 shows multiple plateaus for a five-component external mixture mimic of ocean spray CCN. If one considers a limiting case of infinite components with distinct varying degrees of hygroscopicity, then the activation curve will be monotonic below 1 and may appear to be representative of an internal mixture; the CCN activation curve will approach the shape of a shallow sigmoidal slope (however not as steep or instantaneous as the ideal step function)

 L294“Results with distinct CCN activation plateaus, especially of 2-3 distinct hygroscopicities, may be useful for estimating aerosol chemical fractions when other instruments with lower size resolution are not readily available”

2. Fig. 3, in the caption, it is mentioned that “Dashed lines indicate 20% uncertainty.” What does this uncertainty exactly mean? The lines are of 0.8:1 and 1.2:1 lines? It seems to
be not the case according the values in the figure. I have similar questions for Fig. 5 and Fig. 6.

That is an error in the text. The dashed lines in Figures 3, 5, and 6 represent 50% uncertainty from the 1:1. The lines are 1.5:1 and 1:1.5 and were kept consistent across the figures. The data in Figure 3 are well within the 50% uncertainty, and specifically within 20% uncertainty from the agreement with theory. The error bars are the standard deviation from replicate measurements. We have added this additional clarification to the revised manuscript and have made sure that the text is congruent with the figures.

Regardless of surface tension omissions, the single sigmoidal experimental data set is within 20% of theoretical agreement and indicative of a single component or homogeneous internally mixed aerosol population.”

3. L261-264, it is very interesting to attribute the change of mixing state to minute water content. Have the authors also considered the possibility of effect of heating on the size of SA particles? If the size distribution changes, the coagulation efficiency of SA and AS may change, which will also affect the mixing state.

The effects of heating on semi-volatile succinic acid particles is interesting but was not discussed because we did not observe evidence of potential evaporation affecting our SA and AS results. Additionally, single-particle composition measurements at low temperatures are required to robustly quantify the effects of coagulation on mixing state. We unfortunately did not have access to such instrumentation. We expand this explanation with the points below.

For example, In Figure 4, the effects on the CCN activation curve of SA and AS are presented. When heating is on, distinct plateaus (below 1) are observed indicating that SA is present and contributes to a fraction of the aerosol at those smaller sizes. It should be emphasized that the heating of concern occurs during aerosol generation. The subsequent aerosol that remains is then characterized for CCN activity. The plateau below one is an indication of multiple components at the given sizes. Additionally, kappa is a particle intrinsic property; that is regardless of particle size distribution, kappa hygroscopicity is a reflection of the chemical composition of particles. Simply stated, ten 100nm particles will have the same hygroscopicity as one thousand 50 nm particles. Even if the the distributions change (if the 50 nm particles evaporate), the hygroscopicity of the component should stay the same. When two sigmoids are applied in our data sets, we correctly measure the kappa of the two distinct components. If all the SA was evaporated, then the critical activation diameters and kappa values would look entirely like AS.

It is noted that particle evaporation has the potential to modify the volume fraction of a particle at a given size. That is for external mixtures, the plateau height will likely be higher for the more hygroscopic and less volatile material. Figure 6 shows that the AMS measured fraction of potentially evaporated SA/AS mixtures agrees reasonably well with the fraction estimated from the CCN at different supersaturations. For an internal mixture, the asymptote equals 1 and if the size resolved contribution of each component is known, there is a shift in the CCN activation from left to right (as is observed in Figure
3). Our estimates of the volume fraction from kohler theory agree with the known quantities used to make the solution. These particles were also heated during particle activation. Again, we see little evidence of the effects of succinic acid evaporation in our data set. In the transition mixing state experiments from external to internal, we do not have single-particle information and thus cannot fully quantify the volume fraction at each size. The reported CCN activation curve and resulting kappa values during the transition from external to internal also agree with theory. That is the external mixture agrees with AS and SA theoretical values and the internal mixtures is somewhere between the two, again suggesting that SA is present and has not completely evaporated during the measurement. We have provided some additional discussion to address concerns about volatile species and the coagulation of particles.

Additional revised text

L253. “It is noted that heated succinic acid particles can evaporate during aerosol generation and before CCN measurement; the asymptote in Figure 4 is an indication that multiple components are present in the total aerosol distribution.

L218. The shifting of the CCN activation sigmoid (left and right) is also expected of internally mixed particles formed via the coagulation of separate particle distributions (Farmer et al., 2015).

4. L332-334, it would be helpful for readers to understand if the D50 values of NaCl and AS were provided.

The additional information has been provided in the revised text.

L343 “Thus for both the AS and NaCl external mixtures, the activation diameters derived from a singular fit were consistent with the expected dp50 < 50 nm of the respective inorganic salts. Specifically at Sc=1.1%, AS and NaCl particles activated at 25 and 19 nm respectively (congruent with theoretical dp50 at 24.8 and 19.0 nm)”

5. Legends of Fig. 9 are missing.

The following text has been revised.

“Figure 9. a) Time series of CCN/CN activated fractions of Succinic Acid (SA) and combustion aerosol (BC) mixture in flow tube. b) The CCN/CN activated fraction (closed triangles) of Succinic Acid and Combustion Aerosol mixtures for particle distribution scans 24, 45, 54, 73, and 94. Aerosol water is introduced at ~ scan 70 to promote internal mixing. Cross symbols show the particle size distribution mixed aerosol.”

6. L380-382, “...which have attributed increases in plateau height to the extent of internal mixing of hygroscopic materials on externally mixed inactivated aerosols.” This phrasing seems to be confusing for me.

The text has been revised and now reads.

“This is consistent with CCN spectra observed in ambient studies, which have attributed observations in CCN activation plateau heights less than one to the contributions of externally mixed and inactivated (typically non-hygroscopic black carbon) aerosols.”
References:

External and Internal Cloud Condensation Nuclei (CCN) Mixtures: Controlled Laboratory Studies of Varying Mixing States.

Diep Vu1,2,§, Shaokai Gao1, Tyler Berte1,2, Mary Kacarab1,2, Qi Yao4, Kambiz Vafai3 and Akua Asa-Awuku1,2,*

1.*Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
2.*Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Riverside, CA 92507, USA
3. Department of Mechanical Engineering, Bourns College of Engineering, University of California, Riverside, CA 92521, USA
4.*Department of Chemical and Biomolecular Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742.

§. Currently at Ford Motor Company, Research & Innovation Center Dearborn, MI 48124, USA
☆. Currently at Phillip 66 Research Center, Research and Development, Bartlesville, OK 74004, USA

*Correspondence to: A. Asa-Awuku (asaawuku@umd.edu)

Abstract
Changes in aerosol chemical mixtures modify cloud condensation nuclei (CCN) activity. Previous studies have developed CCN models and validated changes in external and internal mixing state with ambient field data. Here, we develop an experimental method to test and validate the CCN activation of known aerosol chemical composition with multicomponent mixtures and varying mixing states. CCN activation curves consisting of one or more activation points is presented. Specifically, simplified two component systems of varying hygroscopicity were generated under internal, external, and transitional mixing conditions. κ-Köhler theory predictions were calculated for different organic
and inorganic mixtures and compared to experimentally derived kappa values and respective mixing states. This work employs novel experimental methods to provide information on the shifts in CCN activation data due to external to internal particle mixing from controlled laboratory sources. Results show that activation curves consisting of single and double activation points are consistent with internal and external mixtures, respectively. In addition, the height of the plateau at the activation points are reflective of the externally mixed concentration in the mixture. The presence of a plateau indicates that CCN activation curves consisting of multiple inflection points are externally mixed aerosols of varying water-uptake properties. The plateau disappears when mixing is promoted in the flow tube. At the end of the flow tube experiment, the aerosol are internally mixed and the CCN activated fraction data can be fit with a single sigmoidal curve. The technique to mimic external to internally mixed aerosol is applied to non-hygroscopic carbonaceous aerosol with organic and inorganic components. To our knowledge, this work is the first to show controlled CCN activation of mixed non-hygroscopic soot with hygroscopic material as the aerosol population transitions from external to internally mixed states in laboratory conditions. Results confirm that CCN activation analysis methods used here and in ambient data sets are robust and may be used to infer the mixing state of complex aerosol compositions of unknown origin.

1. Introduction

Atmospheric cloud condensation nuclei (CCN) are comprised of complex mixtures of organic and inorganic compounds. The chemical and physical diversity present in complex mixtures can significantly complicate the quantification of aerosol-cloud interactions, thereby making it difficult to predict CCN activity (e.g., Riemer et al., 2019). In this work, we define mixtures and the aerosol mixing state as the chemical diversity across an aerosol distribution. Knowledge of the mixing state and the chemical composition can greatly improve CCN predictions and has been the focus of several studies (e.g., but not limited to (Bilde and Svenningsson 2004; Abbatt et al. 2005; Henning et al. 2005; Svenningsson et al. 2006; King et al. 2007; Cubison et al. 2008; Kuwata and Kondo 2008; Zaveri et al. 2010; Su et al. 2010; Wang et al. 2010; Spracklen et al. 2011; Ervens et al. 2010; Asa-Awuku et al. 2011; Lance et al. 2012; Liu et al. 2013; Jurányi et al. 2013; Paramonov et al. 2013; Padró et al. 2012; Moore et al. 2012; Meng et al. 2014; Bhattu and Tripathi 2015; Almeida et al. 2014; Schill et al. 2015; Crobie et al. 2015; Che...

It is well accepted that the water content and the point of activation is dependent on more factors than just the supersaturation and dry diameter for CCN active aerosols (Dusek et al., 2006; Petters and Kreidenweis, 2007). The droplet growth and activation of slightly soluble organics can be modified when internally mixed with inorganic salts that readily deliquesce (Cruz et al., 1998; Padró et al., 2002; Svenningsson et al., 2006). Although inorganic salts are well characterized, the quantification of CCN activity is complicated when they are internally mixed with a complex organic. Consequently, simple mixing rules may no longer be appropriate. It has been observed that mixed aerosols can activate at lower supersaturations than their bulk constituents and organic compounds that may not traditionally be considered as water soluble may aid in the formation of a cloud droplet by acting as a surfactant, depressing surface tension, or simply by contributing mass (Cruz et al., 1998; Padró et al., 2007; Svenningsson et al., 2006). In addition, when there is a sufficiently large enough fraction of salt, the slightly soluble core can dissolve before activation, thus lowering the required supersaturation (Sullivan et al., 2009). Thus, the mixing state and extent of mixing can substantially influence CCN activity.

To help minimize the complexity in characterizing aerosol hygroscopic and CCN activation properties, CCN data analysis has traditionally been simplified by assuming that i) the aerosols share a similar or uniform hygroscopicity over a particle size distribution, ii) the CCN particle size can be described by the electrical mobility diameter, iii) CCN consists of few multiply charged aerosols and iv) all CCN active aerosols readily dissolve at activation. As a result, a singular sigmoidal fit is commonly applied over the entire CCN activation. However, this method of analysis may not be fully representative of the heterogeneous mixing state occasionally present in the aerosol sample. Thus a CCN mixture refers to the diversity of activated aerosols in the particle population (not the property of an individual particle; i.e., Winkler, 1973; Riemer et al., 2019).

Previous studies have addressed aerosols with singular or internally mixed binary chemical species (e.g. but not limited to, Bilde et al., 2004; Broekhuizen et al., 2004; Petters and Kreidenweis, 2007; Shulman et al., 1996; Sullivan et al., 2009). However, ambient measurements indicate complex aerosol populations consisting of both external and internal mixtures (e.g., but not limited to Ervens et al., 2007; Lance et al., 2012; Moore et al., 2012, Padró et al., 2012). By accounting for the mixing states and extent of mixing in field data sets, CCN concentration predictions can be greatly improved (e.g. but not limited to Padró et al., 2012; Wex et al., 2010, Su et a., 2010, Kuwata and Kondo, 2008).
However, dynamic changes in particle mixing states have not been reproduced in the laboratory and subsequent treatment of CCN measurement and analysis have not been readily studied in depth under controlled laboratory conditions.

In this work, we seek to improve the experimental CCN activation analysis techniques of complex mixtures by investigating the influence of mixing state on activation curves with known aerosol composition. Theoretical postulations have already been developed and applied to ambient data sets (e.g., but not limited to, Su et al., 2010, Padró et al., 2012; Bhattu et al., 2016) but never before has a systematic laboratory experiment controlled and validated the extent of particle heterogeneity for CCN activation. To understand the impact of mixing state on CCN activation, simplified two component mixtures of known compounds with varying hygroscopicities are created under internal, external, and in-between (transition) mixing conditions. In addition, black carbon containing particles (BC) and BC mixing state data is presented. BC is renowned for its direct radiative effects yet little is known experimentally about the contributions of BC mixtures to aerosol-cloud interactions at varied mixing states. Previous work investigating the contribution of BC to aerosol-cloud interactions at various mixing states has been studied (e.g., but not limited to Bond et al., 2013 and references therein, Lammel and Novakov 1995; Novakov and Corrigan 1996; Weingartner et al. 1997; Dusek et al. 2006; Kuwata and Kondo 2008; Koehler et al. 2009; McMeeking et al. 2011; Liu et al. 2013; Rojas et al. 2015). However, many of these have been limited more to ambient related field studies and less under controlled laboratory settings. Here, the CCN activation and hygroscopic properties of soot mixed with atmospherically relevant constituents of varying hygroscopicity are investigated under laboratory controlled conditions. This work provides evidence on the differences between inorganic, slightly soluble, and insoluble externally and internally mixed compositions for the uptake of water, and subsequent CCN activity.

2. Experimental Methods

2.1 Aerosol Composition and Sources

The CCN activity of two component aerosol mixtures under internal, external, and combinations of mixing states are explored in this study. The components include very hygroscopic (inorganics), hygroscopic (organic acids), and non-hygroscopic (Black Carbon, BC). For known chemical compositions, a Collision-type atomizer generated...
singular-component solutions of ammonium sulfate, ((NH₄)₂SO₄, Acros 99.5%), sodium chloride, (NaCl, Acros 99+) and succinic acid (C₄H₆O₄, Acros 99%) and subsequent internal mixture combinations as described in the sections Aerosol Mixing States and Modified Mixing States: External to Internal. Succinic acid, classified as a slightly soluble dicarboxylic acid, (18) (NH₄)₂SO₄, and NaCl are all relevant model atmospheric compounds with varying degrees of solubility and hygroscopicity. All atomized solutions were prepared using Millipore® DI water (18 mΩ, TOC ≤ 5 ppb). Atomized wet droplets were dried with silica gel diffusion dryer (as commonly practiced). In addition, we employ a heated column before the diffusion dryer to facilitate the evaporation of water from the wet particles. The implications of the use or absence of a heated column are discussed in the results below.

An AVL Particle Generator (APG), which houses a mini Combustion Aerosol STandard soot generator (miniCAST 6203C, Jing ltd.), was used to generate carbonaceous aerosols. The APG consists of a propane burner followed by a volatile particle remover. The burner was operated at 400°C with a propane and air flow rate of 15 ml per min and 1.0 l per min, respectively. The miniCAST utilized in the APG has been well characterized in previous work (e.g., Pinho et al. 2008; Seong and Boehman 2012; Mamakos et al. 2013; Maricq and Matti Maricq 2014; Durdina et al. 2016; Moore et al. 2014). The soot formed is a mixture of black and oxidized carbon (Moore et al. 2014). The aerosol structures generated by the APG likely consisted of fractal-like agglomerates of non-spherical particles (Moore et al. 2014; Durdina et al., 2016). APG Combustion aerosols are mixed with inorganic and slightly soluble succinic acid and CCN activity is subsequently measured at different supersaturations.

2.2 Aerosol Mixing Methods

Mixing compounds in solution can readily form internal mixtures of aerosol (Gibson et al., 2007; Hameri et al., 2002). Solution mixtures of a highly hygroscopic compound, NaCl, and a slightly hygroscopic compound, succinic acid, are shown. Five aqueous solutions of succinic acid and NaCl with molar ratios of 100:0, 87:13, 69:31, 43:57, 0:100 were aerosolized using a single atomizer, passed through a heated column, dried, and sampled directly into a Scanning Mobility Particle Sizer (SMPS) and CCN Counter (CCNC). Instrument specifications are discussed in section 2.3.

External mixtures were formed via two methods. The first and simplest method required two sufficiently dry aerosol streams to mix. Two aerosol streams were joined via a Swagelok® Tee connector. External mixtures were also formed in a flow tube mixing apparatus. As conditions (e.g., but not limited to, residence time, temperature,
pressure, relative humidity) change in a flow tube, it is assumed that the external mixture may transition into an internally mixed aerosol system. A flow tube mixing apparatus was constructed to test this assumption and modify the extent of mixing of multiple components (Fig. 1 & 2).

Figure 1. External and Internal Mixtures with gradual mixing in flow tube

This work shows changes in CCN experimental data and analysis as a result of changes in the extent of mixing. Results of the CCN activation are presented in the Section: Modified Mixing: External to Internal Mixing in the Aerosol Flow Tube. A brief description of the flow tube is provided here. The first aerosol stream is introduced into the flow tube by a ¼ inch stainless steel (SS) tube. The second aerosol stream is also introduced by a ¼ inch SS tube, but is expanded to an outer concentric ¾ inch SS tube using a SS Swagelok tee connection. The two aerosol flows are initially mixed together at the exit of ¼ inch tube and aerosol mixes within the ¾ inch SS tube for an additional 12 inches before entering the quartz tube where it continues to mix. In this study, the pressure and temperature of the flow tube is maintained at ambient conditions. The extent of mixing in the flow tube mixer has been modeled by Computational Fluid Dynamics simulation (CFD - Comsol) to test and improve the aerosol mixing capabilities of the flow tube mixer (Fig. A1). The focus of this work is not the mixing apparatus but the CCN behavior that results from changes in the extent of mixing. It is noted that particle losses likely occur within the flow tube system but do not affect the intrinsic aerosol and CCN properties (activated fractions) presented here.

Figure 2. Example of charge corrected a) a single component activation curve b) a multiple activation curve from an externally mixed/heterogeneous system. The asymptote, η, varies in height and length with the presence of mixed components and their respective hygroscopicities.

2.3 CCN Activity and Chemical Composition: Measurements and Instrumentation

CCN activation is measured with particle sizing and counting instrumentation in parallel with CCN counting instrumentation. This technique is widespread and has been used in numerous publications (e.g., but not limited to,
Moore et al., 2010; Padró et al., 2012). The development of a single continuous-flow thermal gradient diffusion column CCN Counter, CCNC (Droplet Measurement Technologies, Inc.) has provided rapid (~1 Hz) and robust CCN data (Lance et al., 2012; Roberts and Nenes, 2005). Aerosols with a S_i lower than the supersaturation in the column activate and form droplets. These droplets are detected and counted using an optical particle counter at the exit of the column.

A TSI 3080 Electrostatic Classifier selects and measures aerosol size distributions. Polydisperse aerosol streams are passed through a bi-polar krypton-85 charger and then through a differential mobility analyzer (DMA), where the aerosols are sized according to electrical mobility with a sheath to aerosol flow ratio of 10:1. The monodispersed flow is then split to a CPC and a CCN counter. CN concentrations were measured with a condensation particle counter, CPC (TSI 3772, TSI 3776).

The CCNC is operated at 0.5 lpm with a sheath to aerosol flow ratio of 10:1 and is calibrated with (NH$_4$)$_2$SO$_4$ to determine the instrument supersaturation (Rose et al., 2008). Operating the CCN in parallel with the CPC allows for the simultaneous measurements of the total CN and CCN of the monodispersed aerosols. By operating the DMA in scanning voltage mode and maintaining a constant column supersaturation, the CCN/CN, or activation ratio, as a function of dry diameter can be obtained for a given supersaturation. These size resolved CCN distributions obtained through scanning mobility CCN analysis (SMCA) are produce CCN activation curves, CCN/CN ratio as a function of particle mobility diameter (Moore et al., 2010). SMCA produces high resolution CCN activation data near the 50% efficiency critical diameter every ~ 2 minutes.

An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measured the non-refractory bulk composition (DeCarlo et al., 2006). The HR-ToF-AMS was operated in V-mode to track the concentration and vacuum aerodynamic diameter as the aerosol fractions were modified.

3. CCN Analytical Method

CCN data analysis of single component aerosols, such as AS, are well characterized. The activation of a single known component yields a simple sigmoidal activation curve and is often used for instrument calibration (Fig. 2a). However ambient aerosols generally exist as complex mixtures of organic and inorganic species. CCN data sets from
ambient and chamber studies, which consist of these aerosol mixtures, may not show a single sigmoidal activation curve but instead can exhibit multiple activation curves not associated with doubly charged particles (Fig. 2b).

Sigmoidal fits are applied to the CCN/CN as a function of dry activation diameters for the multicomponent aerosols. Externally mixed aerosol fractions in activation curves have been previously observed in ambient studies by Lance et al. (2013), Moore et al. (2012), and Bougiatioti et al. (2011). For those studies, E was defined as the hygroscopic fraction, and $1-E$ the non-hygroscopic mixed fraction. For this study the first curve is similarly defined as the hygroscopic externally mixed fraction (EMF) with an asymptote, or plateau of η. The dependence of η varies with the presence of mixed components and their respective hygroscopicities. Thus we evaluate η for controlled compositions and compare how representative they are of the known fractions of mixtures.

A sigmoidal fit through the EMF determines the particle dry diameter of the more hygroscopic species. A second sigmoidal fit is applied to the second activation curve. An example is shown in Fig. 2b for an external mixture of AS and SA. A sigmoid is fit for the more hygroscopic species, AS, and then a second for the less hygroscopic species, SA. The activation diameters are consistent with those expected for the two compounds and agree with Köhler predicted activation values for AS and SA. Doubly charged aerosols are indicated in Figure 2 and are a negligible contribution to the activation curves.

The supersaturation and critical dry diameter are related via a single parameter hygroscopicity, κ, to describe the CCN activity and to determine the effect of mixing states of multiple components on the supersaturated hygroscopic properties of aerosols. Using the generalized κ-Köhler equations presented by Petters and Kreidenweis (2007 and 2008), droplet growth in the supersaturated regimes for a selected dry diameter can be modeled for an aerosol where the entire particle diameter dissolves at activation.

\[
\ln S_e = \left(\frac{4A^3\sigma_{\text{air}}M_w}{27\nu \rho_w M_w D^3}\right)^{3/2}, \quad \text{where} \quad A = \frac{4\sigma_{\text{air}}M_w}{RT\rho_w} \quad (1)
\]

\[
\kappa = \frac{4A^3}{27\nu \sigma_{\text{air}} M_w D^3} \quad (2)
\]

σ_{air} is the surface tension, M_w is the molecular weight of water, R the universal gas constant, T is the temperature at activation, and ρ_w is the density of water. Surface tension and density of water were calculated according to temperature dependent parameterizations presented by Seinfeld and Pandis (1998) and Pruppacher and Klett (1997).
The surface tension of the solution is assumed to be that of pure water. Traditional Köhler theory is known to work reasonably well for inorganic salts and slightly-soluble and hygroscopic organics like succinic acid.

4. Results and Discussion

4.1 Internal Mixtures

Aerosolized internally mixed solutions exhibit single CCN activation curves for all five compositions of succinic acid and NaCl solutions (Fig. 3a). The activation curve is similar to that of ammonium sulfate in Figure 2a. Multiply charged particles contribute less than 10% to the activated fraction and are assumed to be negligible. The sigmoid that plateaus near one can be applied to describe the CCN activation. As the internal mixture salt fraction increased at a given supersaturation, the single curve was maintained and shifted towards a lower activation diameter, indicative of and consistent with more hygroscopic aerosol. The shifting of the CCN activation sigmoid (left and right) is also expected of internally mixed particles formed via the coagulation of separate particle distributions (Farmer et al., 2015). Using the simple mixing rule, a multicomponent hygroscopicity parameter can be theoretically derived based on the expected kappa values for each individual component hygroscopicity (κ_i), and the volume fraction of each component (ε_i) (Petters and Kreidenweis, 2007).

$$\kappa = \sum_i \varepsilon_i \kappa_i \quad (3)$$

Equation (3) was applied for each mixture. κ was calculated and compared to the experimental values (Fig. 3b). These internal mixtures do not strongly follow the simple mixing rule for every mixture and is consistent with the previous work of Shulman et al. (1996) and Padró et al. (2007) who showed that slightly soluble compounds internally mixed with salts resulted in surface tension depression and thus a lower required critical supersaturation. As previously published, accounting for organic surface tension depression could improve kappa-hygroscopicity calculations for internal mixtures. Regardless of prediction surface tension omissions, the single sigmoidal experimental data set is within 20% of theoretical agreement and indicative of a single component or homogeneous internally mixed aerosol population.
Figure 3. a) Activation curves for two component internal mixtures of NaCl and succinic acid (SA) at SS 0.72%. Doubly charged aerosols are present but are all below 0.1 and negligible. b) Internally mixed aerosols.

Multicomponent hygroscopicity parameter predictions vs. experimentally derived kappa values. Dashed lines indicate 50% uncertainty (1:1.5 and 1.5:1). Data are within 20% uncertainty of the 1:1 line.

4.2 External to Internal Aerosol Mixing Results

Individual single component aqueous solutions of ammonium sulfate (AS), (NH₄)₂SO₄, and succinic acid (SA) were aerosolized, dried with an active heated column and silica gel diffusion dryer to produce external mixtures. Data sets yielding multiple activation curves consistent with external mixing were successfully created by i) mixing aerosol streams and ii) injecting SA and AS-compounds in the flow tube. For this manuscript, we show externally mixed data generated from the use of the mixing flow tube. The direct mixing produces the same external mixed CCN results (not shown). By using aerosols consisting of compounds of significantly different hygroscopicities, and thus different activation diameters, distinct double plateaus for CCN activation can be observed for external mixtures (Fig. 2b). At particle mobility diameters between ~35 and 45 nm there is an asymptote, $\eta \approx 0.6$ (Fig. 4a., 4b., and 4c). It is noted that heated succinic acid particles can evaporate during aerosol generation before CCN measurement; the asymptote in Figure 4 is an indication that multiple components are present in the total aerosol distribution. The activation curves were characteristic of AS and SA, and the measured activation diameters agreed well with Köhler Theory and the single parameter (κ) thermodynamic predictions of droplet activation (Fig. 4a). The external mixture was maintained for an hour as indicated by the separate and stable activation diameters derived from multiple sigmoid analysis. For more than 2-component externally mixed particle distributions, more than two plateaus will be observed. For example, the work of Schill et al. 2015 shows multiple plateaus for a five-component external mixture mimic of ocean spray CCN. If one considers a limiting case of infinite components with distinct varying degrees of hygroscopicity, then the activation curve will be monotonic below 1 and may appear to be representative of an internal mixture; the CCN activation curve will approach the shape of a shallow sigmoidal slope (however not as steep or instantaneous as the ideal step function).
Figure 4. External to internal mixtures of a slightly soluble organic aerosol, succinic acid (SA) and inorganic ammonium sulfate (AS) aerosol. The CCNC was operated at a single S_c of 0.8%. Closed symbols are externally mixed. Open symbols are internally mixed. a) The apparent kappa values derived from externally mixed multiple-sigmoid activation data before active heating is turned off [at approximately 3:30 pm] and after 3:30pm where single sigmoid activation curves (after 3:30pm) are observed are shown. The two dotted lines indicate the theoretically derived kappa values for succinic acid, κ=0.23, and ammonium sulfate, κ=0.61. b) CCN activation curves exhibit external (with active heating before 3:30 pm) and then transitioning external to internal mixing (after 3:30pm) c) CCN/CN vs. Dry mobility diameter data as a function of time. The asymptote, η, disappears at the by the end of the experiment.

One hour after initial injection into the flow tube, the active heating column was turned off. It should be noted that atomized aerosol continued to be dried through the silica gel diffusion dryers, as is commonly done. The relative humidity after the dryer in both cases is small (< 20%) and thus the activation diameters of very hygroscopic AS calibration aerosol are not affected with or without active heating (Fig. A2). However, as soon as active heating was turned off, particles in the mixing flow tube became more mixed (Figure 4). Thus, it is likely that minute amounts of aerosol water promoted internal mixing and shifted aerosol mixing from external to internal in the mixing flow tube system.

CCN activation curves for the two compounds remained distinct and separate until internal mixing conditions dominated and the multiple CCN activation curves converged into a single curve (Fig. 4b and 4c). Results suggest aerosol water plays a significant factor in mixing and CCN activation. This is consistent with previous work that indicates that the presence of water led to lowered aerosol viscosity and increased diffusivity (Ye et al., 2016). The wetted aerosols can come in contact through diffusion and coalesce to form an internally mixed aerosol. The apparent kappa values from fitting the two individual activation curves for the external part of the mixing experiment and subsequent internal mixing are shown in Fig. 4a.

To help track the change in organic/inorganic fractions during the transition from external to internal, the mixed aerosols were analyzed with a high-resolution time of flight mass spectrometer (HR-Tof-AMS) to provide mass...
fraction information. The mass size distribution was integrated and normalized for each compound per scan according
to the total mass that was measured. The mass size distribution was then converted to number size distribution and the
diameters were converted from aerodynamic diameter to electrical mobility diameter. Then for each superstation and
fraction, the EMF was calculated between the two respective activation diameters and correlated to the EMF that was
determined from SMCA to determine the plateau height η.

AS fractions measured by the AMS are consistent with the changes SMCA derived η where increases in AS mass fraction increase η. However, the AMS derived AS fraction are slightly lower compared to SMCA (Fig. 5), indicating potential influence on η from other factors. Previous work has shown the presence of highly soluble materials (like AS) can promote CCN activity of organic dominated systems (Asa-Awuku et al., 2011; Fofie et al., 2017). A second flow tube experiment was conducted to test the effect of differing concentrations on plateau heights. The detection efficiency for particles with smaller sizes in the AMS (<50nm) can effect the AS fraction. Thus, the CCNC supersaturation was modified from 0.2 to 1.2% to test the effect of activation diameter on closure (Fig. 6.). Results show good agreement and are within ±50% of predictions. Results utilizing with distinct CCN activation data for aerosols <50nm plateaus, especially of 2-3 distinct hygroscopicities, may be a good substitute useful for estimating aerosol chemical fractions when other instruments with lower size resolution are not readily available.

Figure 5. Plateau heights derived from AMS data vs. SMCA. Single CCNC Supersaturation. Dashed lines indicate 50% uncertainty (1:1.5 and 1.5:1).

Figure 6. Modifying activation diameters. Plateau heights derived from AMS data vs. SMCA for CCNC Supersaturation from 0.2 to 1.2%. Dashed lines indicate 50% uncertainty (1:1.5 and 1.5:1).

4.3 External and Internal Mixtures of Combustion Aerosol

Combustion aerosol or soot can form external and internal complex aerosol mixtures. Soot is considered insoluble but wettable (e.g., but not limited to Lammel and Novakov 1995; Moore et al. 2014) and the contributions of Black
Carbon containing particles to aerosol-cloud interactions at varied mixing states is not well known or understood (Lammel and Novakov 1995; Novakov and Corrigan 1996; Weingartner et al. 1997; Dusek et al. 2006; Kuwata and Kondo 2008; Koehler et al. 2009; Bond et al. 2013; McMeeking et al. 2011; Liu et al. 2013; Rojas et al. 2015). Thus, the ability of black carbon to mix with inorganic and organic compounds and to observe the extent of mixing as they activate as CCN is of great interest.

Prior to investigating the impact of mixing fresh combustion emissions with inorganic and organic aerosols, the CCN activation spectra of soot was measured using combustion aerosol generated from the APG. The aerosol is likely composed of black carbon and oxidized carbonaceous material (Moore et al. 2014; Durdina et al. 2016). Thus we also refer to carbonaceous aerosol as black carbon mixtures (simply, BC mixtures). The CCN activated fraction data from soot was fit to a singular sigmoidal curve (Fig. 7). There are no plateaus in the activation curve and the single sigmoid fit indicates that the aerosol generated is a homogenous internal mixture. Combustion aerosol activated at a mobility diameter of 133 nm at 2.2% supersaturation. The apparent hygroscopicity of combustion aerosol was $\kappa=0.001$, and is consistent with the order of magnitude and kappa values reported for fresh combustion aerosol from diesel engine sources (Fig. 7) (Vu et al., 2015; Moore et al. 2014). It is noted that the apparent hygroscopicity is defined by the electrical mobility diameter that assumes particles are spherical.

Figure 7. Combustion aerosol activation curve (SS 2.2%, $d_{50}=133\text{nm}, \kappa=0.001$)

Next, the influence of modifying externally mixed hygroscopic aerosol fractions with non-hygroscopic BC mixtures was observed. Soot was externally mixed with various concentrations of AS and NaCl in two separate experiments. For each BC mixture, combustion aerosol was introduced to the flow tube and atomized inorganic and organic aerosol (dried with a heated column and silica gel diffusion dryers) was injected. The concentration of inorganic in the flow tube was slowly increased to modify the contribution of soluble material. The CCN counter supersaturation was decreased to 1.1% to observe the impact of the more hygroscopic compounds in the BC mixture.

Figure 8 shows the CCN activation of external mixtures of BC with AS and NaCl at $S_c = 1.1\%$. The initial combustion size distribution at the start of the experiment and the modified CCN activation fractions of the aerosol mixtures are presented. The shape of the activation curve provides insight about the sizes of very hygroscopic and non-hygroscopic species. At $S_c = 1.1\%$ BC particles, with $\kappa = 0.001$, will not theoretically activate below 250 nm and...
the contribution of externally mixed BC in the size range shown does not contribute much (if any) CCN. The normalized size distribution data show that there are few BC-like particles at small sizes (<50 nm), the majority of particles in this range are inorganic. Thus for both the AS and NaCl external mixtures, the activation diameters derived from a singular fit were consistent with the expected $d_{p50} < 50$ nm of the respective inorganic salts. Specifically at $S_c=1.1\%$, AS and NaCl particles activated at 25 and 19 nm respectively (congruent with theoretical d_{p50} at 24.8 and 19.0 nm). At the larger sizes (> inorganic d_{p50}), the BC mixture concentration increased and the CCN/CN was depressed. The combustion aerosol alone is not CCN active at this S_c or size and the depressions are reflective of the non-hygroscopic combustion aerosol fraction in the aerosol sample. Notably, plateaus are dynamic. As the concentration of inorganic salts increase, the increased activated fraction is reflected in the CCN spectra; the plateau heights increase with increasing hygroscopic concentrations. In these particular externally mixed experiments, the initial CCN/CN plateau can be as large as one, subsequently decrease, and then will likely increase to one after the BC critical diameters are reached. BC externally mixed with very hygroscopic material is more CCN active than the soot alone.

Figure 8. Combustion aerosols externally mixed with inorganics a) NaCl externally mixed with concentrations modified from 51\% to 85\% over the course of 60 min b) AS externally mixed with concentrations from 41\% to 86\% over a course of 75 min. Cross symbols represent the initial size distribution of the combustion aerosol.

Succinic acid (SA) was mixed with combustion aerosol to investigate the external to internal mixing and transition of slightly hygroscopic organic with non-hygroscopic insoluble but wettable aerosols. The laboratory system mimics observed increases in SOA mass fractions on combustion aerosols during atmospheric aging. The SA was introduced to the flow tube at various concentrations, followed by the combustion aerosol from the APG, under dry externally mixed conditions and bimodal size distribution peaks were observed (Figure 9).

The normalized size distributions of the aerosol leaving the flow tube are presented. The initial soot size distribution is similar to those presented in Figure 8. Assuming the first of the two peaks is SA, and the second is a mixture of the combustion aerosol and SA, the initial point of activation agrees with that of succinic acid where SA aerosols all
activate. After a mobility diameter, $dp > 50$ nm, the concentration of combustion aerosol in the mixture increases and the CCN/CN ratio is < 0.2, indicative of a lower SA concentration relative to the non-activated BC concentration.

To induce internal mixing, active heating was again turned off for the atomized aerosol source. Again, internal mixing was promoted and the multiple activation curves converge into a single sigmoid for the BC and SA system. This is consistent with the AS/SA experiment and previous work that showed a strong influence of insoluble compounds on activation when internally mixed with a more soluble compound. (9) With continued mixing, a shift to larger activation diameters was observed towards the end of the experiment (scan 93) and there was a slight depression in the plateau of the CCN spectra.

The data suggests that only a small amount of soluble inorganic and organic material is required to make the soot more active than that observed alone, especially as the aerosol becomes more internally mixed.

Figure 9. a) Time series of CCN/CN activated fractions of Succinic Acid (SA) and combustion aerosol (BC) mixture in flow tube. b) Succinic Acid The CCN/CN activated fraction (closed triangles) of SA and Combustion Aerosol BC mixtures for Scans of particle distribution scans 24, 45, 54, 73, and 94. Aerosol water is introduced at ~ scan 70 to promote internal mixing. Cross symbols show the particle size distribution mixed aerosol.

5. Conclusion

Results confirm that the experimental CCN activation curves of aerosol provide insight into the type of mixing (e.g. internal vs. external) and the various levels of hygroscopicities that are chemically representative. Modifications in the concentrations of externally mixed non-hygroscopic aerosols are reflective of the CCN activated concentrations. This is consistent with CCN spectra observed in ambient studies, which have attributed increase in CCN activation plateau heights less than one to the extent contributions of internal mixing of hygroscopic materials on externally mixed and inactivated (typically non-hygroscopic black carbon) aerosols. This work adds to the existing
body of CCN literature and demonstrates that the transition from external to internal mixtures can be mimicked in controlled laboratory experiments and observed in CCN data. If one accounts for multiple-sigmoid analysis in experimental CCN activation data, the CCN behavior of known hygroscopic compound mixtures (e.g., ammonium sulfate, sodium chloride, succinic acid) agrees well with traditional Köhler theory. However, more work is needed to explore mixtures of hygroscopic material particularly with wettable and non-hygroscopic aerosol. Here, as the non-hygroscopic combustion aerosol becomes internally mixed with the inorganic and organic material, the CCN activity of the combustion aerosol is modified. The data here, with recent publications (Altaf et al., 2018; Ye et al., 2016), suggest that aerosol water is a significant factor in promoting mixing and can be used to modify mixing states. The aerosols to our knowledge, the technique provided here is the first to show aerosol population transitions from external to internally mixed states in a laboratory environment and thus the technique can be applied to understand additional aerosol properties (e.g., optical, gas-phase uptake, subsaturated droplet growth, etc.) of known compounds that can modify particle mixing states. The aerosols studied here maintained an external mixture under dry conditions; CCN activation curves plateaued and remained constant. However, turning off the heater promoted internal mixing and the activation curves were observed to converge. These experiments with known compounds validate that the aerosol mixing state can be observed in CCN activation data and can be revisited in complex aerosol data sets to understand the extent of mixing. The results confirm that CCN counters and CCN analysis should be used in future studies to quantify the extent of mixing of ambient particles. The results are critical to understanding other factors important to the direct and indirect radiative contributions of atmospheric particles.

Acknowledgments

This work was supported by the University of California Transportation Center and the U.S. Environmental Protection Agency (EPA) grant number 83504001. Diep Vu thanks the U.S. Environmental Protection Agency (EPA) STAR Fellowship Assistance Agreement no. FP-91751101. EPA 83504001 was fundamental for the development of the mixing flow tube apparatus. Additionally, AA would like to thank the National Science Foundation (NSF) proposal 1151893. The contents of this paper are solely the responsibility of the grantee and do not necessarily represent the official views of the EPA or NSF. Further, the EPA and NSF do not endorse the purchase of any commercial products.
or services mentioned in the publication. In addition the authors would like to acknowledge Desiree Smith, Drs. Kent
Johnson and Heejung Jung for their role in the acquisition of APG and access to controlled BC measurement and
Dr Jeffrey Pierce for advice on CCN models.
Appendix

Figure A1. Fluid dynamics simulation results of the flow stream transporting behaviors in the flow tube mixer

Figure A2. Atomized AS CCN calibrations. In both cases the aerosol is atomized and passed through a silica gel diffusion dryer. The aerosol passes through a heated column before the drier in Dp_Heater on data and does no in Dp_Heater off. The critical activation mobility diameters (μm) for heated-dried vs. non-heated dried atomized sample streams agree. The two-tailed P-value is 0.87.

References

Responses to Report #4:
Vu et al. present measurements of CCN activity for externally and internally mixed particles. The subject is of relevance to study, since several studies report a significant sensitivity to the mixing state of CCN aerosol in atmospheric models. The manuscript has been submitted to a technical journal, but there is little focus on an appropriate and detailed characterization of any technical advances. The choice of characterizing the experimental system mainly by CCN spectra does not seem appropriate, and the interpretation of results can in some cases not be justified by the data presented. The concluding statements appear trivial and are not novel – which in principle is acceptable for a technical paper. However, as described above, there is not a strong focus on the technical aspects in this manuscript. In general, the manuscript is not well written – there are very many examples of unclear formulations. There is a lack of many basic details regarding the experimental approach. Several of the choices made and the argumentation (and lack of argumentation) presented by the authors appear questionable.
I recommend that this manuscript is rejected.
Below, only a few examples of major issues are described. Addressing those issues alone would not qualify the manuscript for publication.

One major issue with this study is that succinic acid particles are used to create internally and externally mixed particles. Succinic acid (SA) is known to evaporate from hydrated aerosol particles (Riipinen et al., 2006) as well as from dry aerosol particles at room temperature (Wex et al., 2007). Hence, the choice of using succinic acid in aerosol mixtures for CCN studies introduces significant issues, which turn further pronounced when a heating step is applied. Vu et al. claim that ‘very’ dry SA particles remain externally mixed with other aerosol particles until a preheating step is removed resulting in dry SA particles – and then homogeneous internally mixed particles occur in their flow tube. The authors do not present a reasonable explanation for such unexpected behavior. However, it is clear that this interpretation cannot be justified from the data presented in Fig. 9. As long as the pre-heating step is applied, the SA particles seem to be dominated by a mode centered near a mobility diameter of ~20 nm (e.g. scan 54). When the preheating is turned off, then the resulting particle number size distribution has a clear maximum near 80-85 nm decreasing significantly towards 130 nm (e.g. scan 73), where the soot particle size distribution supposedly has a maximum. A reasonable explanation for the behavior is a transition from very pronounced evaporation of SA particles, to a somewhat lower evaporation of SA particles, which leads to the observed transition in the CCN spectra and dominance of SA in the size range studied.
Hence, the interpretation of the behavior of the experimental system presented does not seem appropriate. It would be meaningful to characterize the system with more well-behaved substances and also with additional instrumentation more sensitive to the mixing state than a CCNC setup. Furthermore, the system should be characterized with more substances, if indeed the system behavior is very sensitive to the aerosol RH, as claimed by the authors.
The issues described above also influence the interpretation and use of results presented for internally mixed SA-NaCl particles as well as the externally mixed SA-ammonium sulfate particles.
The effects of heating on semi-volatile succinic acid particles is interesting but was not discussed because we did not observe evidence of potential evaporation affecting our SA and AS results. We expand this explanation with the points below.

For example, In Figure 4, the effects on the CCN activation curve of SA and AS are presented. When heating is on, distinct plateaus (below 1) are observed indicating that SA is present and contributes to a fraction of the aerosol at those smaller sizes. It should be emphasized that the heating of concern occurs during aerosol generation. The subsequent aerosol that remains is then characterized for CCN activity. The plateau below one is an indication of multiple components at the given sizes. Additionally, kappa is a particle intrinsic property; that is regardless of particle size distribution, kappa hygroscopicity is a reflection of the chemical composition of particles. Simply stated, ten 100nm particles will have the same hygroscopicity as one thousand 50 nm particles. Even if the distributions change (if the 50 nm particles evaporate), the hygroscopicity of the component should stay the same. When two sigmoids are applied in our data sets, we correctly measure the kappa of the two distinct components. If all the SA was evaporated, then the critical activation diameters and kappa values would look entirely like AS.

It is noted that particle evaporation has the potential to modify the volume fraction of a particle at a given size. That is for external mixtures, the plateau height will likely be higher for the more hygroscopic and less volatile material. Figure 6 shows that the AMS measured fraction of potentially evaporated SA/AS mixtures agrees reasonably well with the fraction estimated from the CCN at different supersaturations. For an internal mixture, the asymptote equals 1 and if the size resolved contribution of each component is known, there is a shift in the CCN activation from left to right (as is observed in Figure 3). Our estimates of the volume fraction from kohler theory agree with the known quantities used to make the solution. These particles were also heated during particle activation. Again, we see little evidence of the effects of succinic acid evaporation in our data set. In the transition mixing state experiments from external to internal, we do not have single-particle information and thus cannot fully quantify the volume fraction at each size. The reported CCN activation curve and resulting kappa values during the transition from external to internal also agree with theory. That is the external mixture agrees with AS and SA theoretical values and the internal mixtures is somewhere between the two, again suggesting that SA is present and has not completely evaporated during the measurement. We have provided some additional discussion to address concerns about volatile species and the coagulation of particles.

In Figure 9, the changes in activation curve are consistent with the transition from external to internally mixed aerosol. SA (whether partially evaporated) is present and observed in the data set. The change in size distributions of SA does not change its inherent hygroscopicity. The concern with evaporation should be most relevant for the externally mixed case but as pointed out by the reviewer there are particles at 20nm present. Once heating is turned off, more SA could be present. However, single particle measurements are required to quantify the particle volumes at activation for the transition to internally mixed aerosols. We do not have those measurement capabilities. The utility of the work here shows that CCN data may be used to observe the mixing state and can be used to estimate theoretical contributions in the future.