
1 
 

Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, 

experience and next steps  

 

Ingrida Šaulienė
1
, Laura Šukienė

1
, Gintautas Daunys

1
, Gediminas Valiulis

1
, Lukas Vaitkevičius

1
, 

Predrag Matavulj
2
, Sanja Brdar

2
, Marko Panic

2
, Branko Sikoparija

2
, Bernard Clot

3
, Benoît Crouzy

3
 

Mikhail Sofiev
1,4

 
 

1
Siauliai University, Siauliai, 76352 Lithuania 

2
 BioSensе Institute - Research Institute for Information Technologies in Biosystems, University of 

Novi Sad, Novi Sad, 21000, Serbia 
3
Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, CH-1530, Switzerland  

4
Finnish Meteorological Institute, Helsinki, 00560, Finland 

 

Corespondence to: Ingrida Šaulienė (ingrida.sauliene@su.lt) 

 

Abstract. Pollen-induced allergy is among the most-prevalent non-contagious diseases, with about a 

quarter of European population sensitive to various atmospheric bioaerosols. In most European 

countries, pollen information is based on a weekly-cycle Hirst-type pollen trap method. This method is 

labour-intensive, requires narrow specialized abilities and substantial time, so that the pollen data are 

always delayed, subject to sampling- and counting-related uncertainties. Emerging new approaches to 

automatic pollen monitoring can, in principle, allow for real-time availability of the data with no human 

involvement.  

The goal of the current paper is to evaluate the capabilities of the new Plair Rapid-E pollen monitor and 

to construct the first-level pollen recognition algorithm. The evaluation was performed for three devices 

located in Lithuania, Serbia and Switzerland, with independent calibration data and classification 

algorithms. The Rapid-E output data include multi-angle scattering images and the fluorescence spectra 

recorded at several times for each particle reaching the device. Both modalities of the Rapid-E output 

were treated with artificial neural networks (ANN) and the results were combined to obtain the pollen 

type. For the first classification experiment, the monitor was challenged with a large variety of pollen 

types and the quality of many-to-many classification was evaluated. It was shown that in this case, both 

scattering- and fluorescence- based recognition algorithms fall short of acceptable quality. The 

combinations of these algorithms performed better exceeding 80% accuracy for 5 out of 11 species. 

Fluorescence spectra showed similarities among different species ending up with three well-resolved 

groups: (Alnus, Corylus, Betula and Quercus), (Salix and Populus), and (Festuca, Artemisia, Juniperus). 

Within these groups, pollen is practically non-distinguishable for the first-level recognition procedure. 

Construction of multi-steps algorithms with sequential discrimination of pollen inside each group seems 

to be one of possible ways forwards. In order to connect the classification experiment to existing 

technology, a short comparison with the Hirst measurements is presented and an issue of the false-

positive pollen detections by Rapid-E is discussed. 

 

Key words: pollen observations, real-time monitoring, artificial neural networks (ANN), scattering, 

fluorescence 
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1 Introduction 

Pollen of many wind-pollinated plants has specific proteins that cause human allergy (Valenta et al., 

1992; Bousquet et al., 2006; Radauer and Breiteneder, 2006; Bousquet et al., 2015; Choual et al. 2018), 

particularly affecting children (Skoner 2001; Höst et al., 2003; Douladiris et al., 2018). Stress due to 

contact with the pollen-contained allergen can cause an allergic reaction or exacerbate some related 

diseases (Leynaert et al., 2000; Devillier et al., 2017; Poethko-Müller et al., 2018). Allergy impairs the 

quality of life of about 30% of the world population (Akdis et al., 2015). In most of European countries, 

national organizations of various kinds provide information about pollen concentration in the air, 

publish pollen prognosis and issue warnings. The bulk of such efforts are based on retrospective pollen 

observations and climatological pollen calendars. Most observers use Hirst-type volumetric pollen traps 

where airborne particles (>5 µm) are collected on a rotating drum covered by Melinex tape. Samples are 

identified by a microscopic analysis (Galán et al., 2014; Buters et al., 2018). This method is labour-

intensive, tedious, requires narrow specialization abilities and incorporates significant uncertainties – 

e.g. (Oteros et al., 2017). In addition, due to the manual treatment of the collected samples and weekly 

cycle of the trap the data are always delayed from a few days up to a few weeks. However, timely data 

about pollen concentration in the air are also needed for improving the accuracy of tools for 

personalized medicine (for example, PASYFO app, http://www.pasyfo.lt, POLLEN app, 

http://www.polleninfo.org, NORKKO forecast and app http://www.norkko.fi, etc.) (Bousquet et al., 

2017; Horgan and Pazzagli, 2017; Pereira et al., 2018, Tabatabaian and Casale 2018). It can be also 

used for informing people about current pollen concentration in the air. Finally, real-time data are 

needed for short-term pollen forecasts with statistical and atmospheric dispersion models (Sofiev et al, 

2013, 2015, 2017, Prank et al., 2016; Ritenberga et al., 2016; Zink et al., 2017).  

As the approach to information and personal responsibility for health is changing, it has become a 

necessity to develop new methods enabling the information on airborne pollen to become available in 

real-time. The first attempts to obtain automated information were related to image recognition 

technologies (Bennett, 1990). Their development was accompanied by the formation of more potential 

possibilities (Ronneberger et al., 2002; Landsmeer, 2009). Currently, two types of technologies seem to 

be the most-suitable for taxon-level classification of pollen: based on image recognition and laser-

fluorescence (or their combinations). Image-based technologies are used in detectors, such as BAA500 

(Hund Wetzlar, https://www.hund.de); the laser fluorescence-based approach is implemented in WIBS 

device (http://www.dropletmeasurement.com), PA-300 and Rapid-E (Plair, http://www.Plair.ch), 

whereas the new Poleno device (Swisens, https://swisens.ch/) aims at integration of both features. The 

Hund- and Plair- manufactured devices were used in limited-scale scientific studies: Oteros et al. (2015) 

for BAA500 and Crouzy et al. (2016) for PA-300 and showed promising results. However, the large-

scale evaluation and calibration suitable for European-scale applications are yet to be concluded (Oteros 

et al., 2015, Crouzy et al., 2016).  

The goal of the current paper is to evaluate the capabilities of the new Plair Rapid-E pollen monitor and 

to construct and evaluate the first-level pollen recognition algorithms using particle scattering and 

fluorescent data from the Rapid-E. The key questions to answer were: 

- can we identify different pollen genera using the Rapid-E data? 

- can we identify different species within the same pollen genus? 
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- what is the recognition accuracy for the most-common pollen types in Europe? 

The experiment was performed in Siauliai (University of Siauliai and Finnish Meteorological Institute), 

Novi Sad (BioSense Institute of University of Novi Sad) and Payerne (Federal office of meteorology 

and climatology MeteoSwiss) with three newly acquired experimental Rapid-E devices. The devices 

were provided with local pollen samples and several pollen recognition algorithms have been 

constructed independently in each center. This organization of the study allowed accounting for 

variability of the actual technical characteristics of the individual devices and an absence of “good 

practice” for such type of measurements. The best classification results compared across the centres 

formed the basis of the Result section of this paper. Finally, outputs of the MeteoSwiss classifier are 

compared with airborne pollen data collected with the Hirst-type pollen trap. The provided time series 

were used to discuss the “false positive” identifications important for the operational context. 

2 Methods 

2.1 Description of the measurement instrument 

The new Rapid-E instrument designed and produced by Plair S.A is the successor of the first-generation 

particle analyser PA-300 used by Crouzy et al. (2016). It is a particle counter, i.e. it analyses all 

particles coming to its inlet one-by-one. Operation of the instrument is based on two physical principles: 

scattering of near-UV laser beam and deep-UV laser-induced fluorescence (Kiselev et al., 2011; 2013). 

Multi-angle scattering is used for determination of the particle’s morphology, such as size and shape. 

The fluorescent light is analysed for its spectrum and lifetime. The instrument constantly takes in the 

ambient air through the air inlet on the top of its panel. Sample air flow is up to 2.8 litres per minute 

with the counting rate of up to 4500 particle detections per minute, i.e. the theoretical saturation level is 

1.6 10
6
 particles m

-3
. Since according to the device provider the smallest observable particle is 0.5m in 

diameter, this saturation level will not be reached in realistic ambient conditions.  

The sampled air enters the nozzle, which creates a laminar flow in the measurement zone. Particles 

interact with 400 nm laser light source and the scattered light is captured by twenty-four time-resolving 

detectors distributed at different angles. The information on chemical properties of the particles is 

obtained by a powerful deep-UV laser (320 nm) source that induces fluorescence. Its spectrum (32 

measuring channels within spectral range of 350-800 nm, 8 sequential acquisitions with 500 ns 

retention) and lifetime (4 particular bands) are recorded and used for the particle identification (Figure 

1).  
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Figure 1 Examples of scattering images, fluorescence spectra and lifetimes of selected pollen types. 

 

The threshold of the particle fluorescence intensity (> 1500 units) was empirically determined as a cut-

off level for sufficiently recorded pollen grains. The spectra were subsequently normalized to eliminate 

the difference in the signal strength between the instruments. Rapid-E has an embedded mechanism for 

collecting the particles, which passed through the registration chamber, onto sticky slides for the follow-

up microscopic analysis.  

The device has several modes of operations. Since the deep-UV laser has a limited resource, the 400 nm 

scattering image is used for prior estimation of the particle morphology and deciding if it can be pollen. 

In the Pollen mode, the device ignites the deep-UV laser only for 5-100 micrometer particle size range 

(used in this study). Another mode allows detecting particles in the range of 0.5-100 micrometers for 
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spores, particulate matter and bacteria identification. However, the expected lifetime of the deep-UV 

laser is much shorter in this mode, especially in polluted atmosphere. 

2.2 Data processing and recognition methods  

2.2.1 Siauliai 

Both modalities of the Rapid-E output (scattering image and the fluorescence spectra) were processed 

independently with artificial neural networks (ANN) and the scores were merged to obtain the final 

classification result.  

Both scattering and fluorescence signals (Figure 1) significantly depend on the particle position with 

regard to the laser beam while passing through it. In particular, the apparent particle size (scattering) 

and the fluorescence intensity varied between the recordings. Apart from that, 15-50% of particles are 

missed by the deep-UV laser. Therefore, pre-processing included: (i) identification of a characteristic 

template of 44x20 pixels from the scattering image to localize the features characteristic for each pollen 

type; (ii) particles with insufficient fluorescence intensity are filtered out (Table 1); (iii) fluorescence 

spectrum was normalised, (iv) at the first time moment, only 16 of 32 wavelengths were included in the 

feature vector to exclude the saturated short-wavelength fluorescence bands.   

 

Table 1 Pollen used for testing the identification capabilities of the instrument in Siauliai. 

Plant group 

Total particles 

counted by 400 

nm laser 

Fluorescent particles * 

Number Percentage of 

particles with 

sufficient 

fluorescence level 

Festuca 21808 12205 56 

Artemisia 15521 13370 86 

Corylus 14858 10865 73 

Alnus 13692 10486 77 

Betula 20676 12089 58 

Salix alba 15383 13431 87 

Salix fragilis 12942 10401 80 

Populus 15340 10963 71 

Acer negundo 11832 8647 73 

Acer pseudoplatanus 11030 7372 67 

Juniperus 17926 10404 58 

Quercus 17677 8934 51 

Pinus sylvestris 14224 8537 60 

Pinus mugo 13399 8287 62 

* the particle fluorescence intensity level> 1500 at the Rapid-E scale for at least one 

emitted wavelength. The initial number of pollen noticed by the scattering laser is not used 

in the analysis. The algorithms were based on data of fluorescent particles. Calibration 

datasets were normalised. 
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Several ANNs were created. One of the best-performing networks included only scattering and 

fluorescence signals taking them separately and disregarding the noisy lifetime component.  

ANN for scattering images consists of two convolutional blocks for the feature extraction and two fully 

connected layers for classification (Figure 2).  

 

 
Figure 2 Neural network for pollen classification in Siauliai based on separately treated scattering and 

fluorescence signals. 

 

Every convolutional block consists of the 2D convolutional layer, the batch normalization layer, the 

ReLU activation layer, and the maxpooling layer. One mask of the convolutional layer has size of 5x5. 

The convolutional layer of the first block has 16 filters, and the one of the second block has 32 filters. 

The maxpooling layer selects the maximal response from the area of 2x2. At the output of the second 

convolutional block, the size of the feature vector is 1760. The first fully connected layer has 256 

neurons. The second fully connected layer classifies these vectors to the number of pollen classes 

chosen for the calibration. The ANN was trained using the cross-entropy loss criterion. The 

fluorescence spectrum was processed by a multilayer perceptron ANN (Figure 2) with dropout and 

batch normalization layers used for regularization. This ANN also was trained using the cross-entropy 

loss criterion. Results of two ANN were fused by summing scores of every pollen type.The training 

process was monitored to avoid over-fitting the networks – see the Discussion section.  

2.2.2 Novi Sad 

All Rapid-E signals (i.e. scattering, fluorescence and life time) were transformed into images and jointly 

processed by a single ANN (Figure 3). Its architecture considers the same input dimensions of every 

image, and since the scatter signal could vary in the number of acquisitions, each image’s width was 
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equalised by finding its centre of mass and either cutting or zero-padding to fit to 24x70 pixels. The 

dynamic range of each image was reduced by replacing each pixel value with its logarithm, which 

resulted in enhancing of the low intensity pixels. Images from temporally resolved spectrum data and all 

bands of the life time data were used unprocessed.  

Similarly to Siauliai, particles with the fluorescence intensity less than 1500 units at the Rapid-E scale 

at all wavelengths were filtered out. In addition, particles with calculated optical size out of the range 5-

100 micrometers were filtered out using the manufacturers size approximation, depending on the sum of 

the scattering image. Size is 0.5 micrometers if the sum is less than 5500000. If the sum is between 

5500000 and 500000000, the size is given by the 9.95e-01*np.log(3.81e-05*x)-4.84e+00. Finally, if the 

sum is greater than 500000000, the size is given by 0.0004*x**0.5 - 3.9. 

Each input signal is analysed with its own chain consisting of 2D convolutional layers, replication 

padding layers, ReLU activation functions, batch normalization layers, max pooling and the dropout 

layers, together forming the convolutional block (Figure 3).  

 
Figure 3 Neural network for pollen classification in Novi Sad using all three signals. 

The convolutional layer of the first scattering block had 10 filters with the kernel size of 5x5 while the 

second one had 20 filters with the kernel size of 3x3. For the spectral images, the convolutional layer of 

the first block had 50 filters with the kernel size of 5x5, and the one of the second block had 100 filters 

with the kernel size of 3x3. For the lifetime images, the first convolutional layer had 70 filters with 

kernel size of 7x1, the second one had 140 filters with kernel size of 5x1 and the one of the final block 

had 200 filters with the kernel size of 3x3. At the output of the final convolutional block, the sizes of the 

feature vectors for scattering image, fluorescence spectrum and lifetime are 1800, 1600 and 1400, 

respectively. Each feature vector is passed through one fully connected layer with 50 neurons. Those 

features were concatenated resulting in the feature vector of dimension of 150. The size of the second 

(last) fully connected layer was of the size of the number of classes, after which the samples were 

classified with the log-softmax activation function.  

The ANN was trained using negative log-likelihood (NLL) loss and the Stochastic Gradient Descent 

with the learning rate of 0.001 and the momentum of 0.9. 
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2.2.3 Payerne 

At the pre-processing stage, all three signals were normalized with their maxima. For scattering, the 

image was additionally centered and cut to a 24 x 100 shape. Extra filtering was imposed retaining only 

calibrations with optical size above 10 micrometers and a fluorescence signal in a range and spectrum 

compatible with single pollen grains (see Crouzy et al., 2016, for examples of spectra). The optical size 

corresponding to 10 micrometers was estimated by comparing the integral of the scattering signal of 5 

micrometer PSLs with the integral of the scattering signal for Urtica and Parietaria pollen grains.  

For scattering ANN, 5x5 convolutions were applied with 32 filters, ReLU activation, and the pooling 

layers with a 2x2 window. For lifetime, 1D convolution was applied with ReLU activation, with 

windows size 10x1 and 10 filters. For the spectrometer, asymmetric 2x4 convolution was applied with 8 

filters with ReLU activation. The ANN was trained using the Adam optimizer and categorical cross-

entropy as loss function (Figure 4).  

 

 
 

Figure 4 Neural network used for classification at Payerne 

 

In order to retain flexibility, additional features were inserted before the final fully-connected layers 

after Crouzy et al. (2016): the maximum and the integral of the scattering together with the maxima of 

each of the four lifetime bands and the maxima of the first three spectrum acquisition.  
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2.2.4 Additional filtering of false-positives in operational context 

Even if high expectations on the performance of the classifier are met, problems are bound to occur in 

the operational applications due to false-positive detections. For example, Birch pollen concentrations 

regularly exceed 1000 pollen m
-3

 in Switzerland in spring. If just 2% of these are mis-interpreted as, 

e.g., Ambrosia pollen, the false concentration of 20 grains per cubic meter would be already significant 

for allergy analysis. In order to cope with this, extra steps were introduced in Payerne. Additional 

filtering was applied disregarding the events with classifications quality below a certain threshold as 

was done in (Crouzy et al., 2016) where a reduction of sampling of 20% lead to an increase in precision 

of about 10%.  

For the operational monitoring, at least a few events with extremely good classification score were 

required during the same or two preceding days to accept the middle-confidence recognition of the 

specific pollen type. This condition is applied uniformly over the pollen season to verify what pollen 

taxa are present in the air.  

2.3 The scheme of the experiment  

In this chapter, we present in details how the calibration experiment was implemented in Siauliai, 

followed by the description of specifics of the setups in Novi Sad and Payerne. Most-importantly, only 

pollen characteristic for each location was used. Comparison of the results was based on pollen types 

belonging to the same plant families found in all three locations. 

2.3.1 Siauliai 

The experiment in Siauliai was carried out with 14 pollen morphotypes, the tested amounts of which are 

given in Table 1. Three genera (Salix, Acer, Pinus) were represented by two plant types. All 14 plants 

are naturally widespread in Lithuania and their airborne pollen is abundantly recorded annually 

(Šaulienė et al., 2016).  

Pollen was taken from the plant inflorescences collected during the vegetation period in April-August of 

2018 during the days with intense pollen release. The collected material was put in air-permeable paper 

bags and dried at a temperature of 40°C until the maximum release of pollen from the inflorescences. 

Vibratory Sieve Shaker Analysette 3 PRO was used for gentle shaking the pollen grains out of the 

inflorescences. The extracted pollen was stored in Petri dishes at +4°C.  

Each experiment was performed twice and consisted of up to 8 sample tests, using approximately 5 mg 

of pollen per sample test. The number of grains registered in the scattering signal is indicated in Table 1 

as “Total particles”, whereas the column “Fluorescent particles” shows the number of grains with usable 

fluorescent and lifetime signals. 
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Figure 5 The scheme of the experiment for identification of pollen. 

 

The experiments were carried out in laboratory conditions with a self-designed manual exposure 

method (Figure 5). In order to isolate the environment of the experiment from the ambient particles, a 

plastic (PET) bottle was fitted tightly to the Rapid-E inlet. One of the bottle walls was cut open and two 

holes of ~15 cm
2
 were covered with a household air filter. The filter fabric was tested to hold ~99% of 

particles larger than 1 micrometre in diameter without any noticeable disturbance of the air inflow into 

the device.  

The pollen was injected into the upper part of the bottle by inserting the pipette tip with the pollen 

sample into the narrow cut in the bottle and then gently blowing the air through the pipette. With the 

sampling rate up to 2.8 litres per minute, Rapid-E was collecting the pollen grains from the bottle within 

a few tens of seconds. This simple scheme enabled reducing the environmental sample contamination 

by up to 5 times compared to the unfiltered air in the lab. Each new experiment used a new bottle and 

the nozzle of the instrument was cleaned, thus ensuring the removal of previously sampled pollen. 

Quality and level of contamination of the samples was manually controlled by using the sticky slides. 

The presence of non-pollen particles (debris from the remnants of inflorescences etc.) was verified to be 

substantially less than 1% by the visual inspection of a subset of the calibration events. Abundance of 

pollen aggregates (several pollens stuck together) was also low but their reliable identification by 

microscopic analysis was more difficult because of thick layer of pollen on slides. The calibration was 

performed in the Pollen mode, which excluded particles smaller than 5 m of optical size. 

2.3.2 Novi Sad 

The scheme of the pollen exposure experiment was similar to that in Siauliai. The exposure was 

conducted on the roof by fitting the PET bottle to the sampling pipe after removing the Sigma-2 inlet. 

Manual microscopic analysis of sticky slides was used to confirm the quality of samples and absence of 

non-pollen debris and pollen agglomerates. The device was also in Pollen mode, i.e. it filtered out 

particles smaller than 5 m of optical size. 

Classification was tested for an adjusted set of pollen morphotypes accounting for the availability of the 

fresh material during the study season. In particular, Juniperus was replaced by Taxus and Festuca was 

replaced by Cynodon and Dactylis aiming to assess the degree of discrimination between different grass 
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genera. Similarly, Picea and Cedrus pollen were used for assessing differences between the same pollen 

morphotype. Only Acer negundo was analysed as it is the only Acer pollen that is recorded regularly in 

Serbia. Fraxinus (including both F. excelsior and F. ornus) was added to the test as it is commonly 

recorded throughout spring season. 

2.3.3 Payerne 

Low ambient concentration of coarse particles allowed a less laborious approach: pollen calibrations in 

Payerne were performed by directly blowing the material into the Sigma 2 inlet, without protection 

from contamination. The details of the procedure are described in (Crouzy et al., 2016). In order to 

obtain a reasonable panel of the relevant pollen types, 60 calibrations were performed for 21 different 

taxa. Focus was set on repeating calibrations, if possible under varying conditions. Only fresh pollen 

was used and time between collection and calibration was reduced to a minimum (range: 15-120 

minutes). The presence of agglomerates and debris was investigated by collecting histograms of the 

optical size and of the fluorescence intensity of the recorded events. Cut-offs were introduced 

accordingly, in order to retain only single pollen grains. The device was also in Pollen mode, i.e. filtered 

out particles smaller than 5 m of optical size. 

3 Results obtained in Siauliai 

The analysis was started from a semi-qualitative consideration of the fluorescence spectra, primarily 

aiming at demonstration of the capabilities and the limitations of the approach and preliminarily 

assessing the principal possibility to construct a reliable particle recognition algorithm.  

3.1 Qualitative comparison of the fluorescence spectra of different pollen species 

3.1.1 Comparison of fluorescence spectra of different species of the same genus  

The experiment included three genera, for which we collected pollen from different species (Table 1): 

Salix, Pinus, and Acer. Their fluorescence spectra are shown in Figure 6, where the solid lines represent 

the normalized mean spectrum and shadows show the standard deviation range. The uncertainties of the 

mean spectra were a fraction of a percentage leading to the statistically significant difference (p<0.001) 

at all wavelengths for both Pinus and Acer mean spectra and even for some wavelengths of the Salix 

spectra.  
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Figure 6 Fluorescence spectra (first acquisition) of Salix, Pinus and Acer species. 

 

Despite statistically significant differences between the mean spectra, the sample standard deviation 

(shadowed ranges in Figure 6) was quite large. Therefore, it was not possible to distinguish between 

Salix alba and Salix fragilis. The normalised spectra of Pinus sylvestris and Pinus mugo coincided at the 

maximum value of the amplitudes at the wavelength of 460 nm but the mean amplitude of the Pinus 

sylvestris spectrum was higher in short-wave range (< 450 nm). At the longer wavelenghts (480-550 

nm) the amplitude was higher for the Pinus mugo pollen. However, these differences were well inside 

the sample standard deviation. The difference between the species of the Acer genus was the most-

pronounced and, even taking the sample variability into account, these were the ones that could be 

distinguished. The Acer pseudoplatanus spectrum showed higher amplitude than Acer negundo in the 

short-wave range and lower in the central part of the spectrum (400-520 nm). 

Therefore, two out of three tested genera allowed, in principle, an inter-genus species classification 

using the pollen fluorescence spectrum. However, the differences between them were evidently too 

small for the multi-species algorithm considered in the current paper. Practical work was therefore left 

for the follow-up studies. 
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3.1.2 Comparison of fluorescence spectra of species of different genera 

The study included 11 different pollen genera (Table 1), whose spectra are shown in Figure 7 for 

recordings at every 500 ns starting from the first pulse reaching the detector. For all species, the most 

intense fluorescence was observed for the wavelengths from 390 to 570 nm, with different locations of 

the maximum and with different amplitude. For example, the highest mean intensity of fluorescence 

was recorded for the Artemisia pollen: it exceeded >7000. Meanwhile, the amplitudes of Betula and 

Quercus reached more than 4000. In all cases, the first pulse had a wider wavelength range than the 

subsequent ones. The amplitudes of already the second recording (500 ns from the first pulse) was close 

to zero for wavelengths longer than 600 nm. 
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Figure 7 Comparison of fluorescence indicators of the tested pollen. The blue line represents the first 

acquisition. All other lines are delayed acquisition by step of 500 ns from the last. Shadows show the 

standard deviation ranges for each acquisition. In the figures, the x-axis represents the wavelength, nm; 

the y axis shows the amplitude, NA. 

 

In addition, Figure 7 shows that not only the intensity of the first signal between separate genera differs, 

but the shape of the second recording is also specific, which is significant for the identification of the 

pollen morphotype. For example, the difference in fluorescence intensity of Salix pollen between the 

first and second signals was larger than for other tested taxa. Tests with Festuca pollen actually showed 

that, unlike all other species, the signal amplitude grows during the first 500 ns resulting in the absolute 

maximum intensity of the spectrum registered at the second recording, 500 ns after the fluorescence is 

induced. 

The qualitative analysis of the data was continued by grouping the data according to similarity of the 

fluorescence spectrum of the first recording (Figure 8). 

 

 
Figure 8 Groups with similar fluorescence spectra. 
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Alnus, Corylus and Betula plants are in one taxonomic family, and our results indicate that their pollen 

has a similar fluorescence spectrum. Interestingly, according to the similarities of the fluorescence 

spectra, Quercus pollen appeared in the same group with Betulaceae, although the maximum value of 

its mean of the normalised spectrum was the lowest in the group. 

Another group in which the pollen fluorescence curves have similar shapes also consists of pollen of 

woody plants: Populus and Salix. They also bloom at a similar time; therefore their precise 

identification is an important but, as seen from Figure 8, a challenging task. The tested grass pollens 

form a separate group, which however also included pollen of the woody plant Juniperus. This group is 

characterised by the high mean amplitude in short (< 400 nm) wavelength range. 

3.2 Recognition skills 

The key practical question for the Rapid-E application in the daily pollen monitoring is the accuracy of 

the pollen type classification presented below via the confusion matrices. In these matrices, rows 

represent the actual type of pollen and columns are the assigned type. All values are in %, the sum of 

values over each row is 100%: every pollen has to be assigned to some type. 

3.2.1 Comparison of the confusion tables obtained in Novi Sad, Payerne and Siauliai 

The recognition procedure in Siauliai was built independently for scattering and fluorescence signals 

with subsequent fusion of the results. The tables for the individual components are presented in the 

Supplement. Table S1 and Table S2 present the outcome of the combined identification using both the 

scattering image and the fluorescence spectra. With the exception of Alnus, the combination of the 

identification methods showed better recognition skills than each of the methods separately. Overall, the 

improvement over individual methods was ~23% compared to scattering images and ~7% compared to 

fluorescence. 

Overall, 6 out of 11 tested pollen genera were identified with the accuracy better than 75%. The best 

results (> 91% of correct classification) were achieved for Pinus pollen. The pollen of the plants of 

Betulaceae genus was identified comparatively well but the recognition of the individual species of this 

family was poor.  

The overall accuracy was very similar for Siauliai and Novi Sad and somewhat better for Payerne, 

partially owing to the stricter filtering of the raw data. Although it is difficult to make exact comparison 

of the confusion tables between the studies, it still sheds some light on the overall performance and also 

highlights the similarities and differences between the regions. Comparing the Tables 2 and 3, one can 

see that the difference in the recognition quality is about 10% for most of species, being practically 

identical for Betula (~50% in both studies) and Quercus (~60%).  

 

Table 2 Confusion table obtained in Siauliai. Accuracy: 73 %. 
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Artemisia 2 86 0 0 0 2 1 4 5 0 0 

Corylus 2 0 63 17 8 1 0 0 0 9 0 

Alnus 1 0 15 53 18 2 1 0 0 9 1 

Betula 3 1 9 30 47 1 1 0 1 6 1 

Salix  1 1 2 1 2 78 10 0 1 4 0 

Populus 3 6 1 1 1 18 58 3 3 5 1 

Acer  5 2 1 1 1 0 2 86 1 1 0 

Juniperus 4 4 0 0 0 0 3 1 87 0 1 

Quercus 2 0 9 10 5 4 1 0 0 69 0 

Pinus  7 0 0 0 0 0 0 0 1 0 91 

Predicted label  

 

Table 3 Confusion table obtained in Novi Sad. Accuracy 74% (obs. different number of species). 
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Dactilis 78 3 0 3 0 2 0 4 5 0 1 0 0 0 
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Cynodon 4 70 0 0 0 6 1 0 0 12 5 0 2 0 

Corylus 0 0 64 6 12 1 10 0 0 0 4 2 0 0 

Alnus 1 2 6 72 3 2 3 2 1 2 6 3 0 0 

Betula 1 0 25 5 51 3 3 0 0 1 1 10 1 0 

Salix 3 1 0 2 1 80 3 2 2 2 1 3 1 0 

Fraxinus 0 0 7 1 3 2 79 1 0 0 4 3 0 0 

Populus 5 3 1 4 0 4 3 71 1 1 3 4 1 0 

Acer 8 1 0 2 1 4 0 0 73 0 1 9 1 0 

Artemisia 1 5 0 2 1 4 0 1 0 84 0 1 1 0 

Taxus 0 3 0 2 0 0 0 0 0 0 93 1 1 0 

Quercus 1 0 4 5 8 9 2 1 1 1 1 63 4 0 

Picea 3 3 0 2 4 3 0 1 1 7 1 13 61 0 

Cedrus 0 0 0 0 0 1 0 1 0 1 0 0 1 95 

 Predicted label  

 

Somewhat higher skills in Novi Sad were obtained for Corylus, Alnus and Populus while in Siauliai 

higher skills were reached for Acer and Artemisia. It is interesting to note that the confusion between 

the two chosen grass pollen morphotypes in Novi Sad was not notable and for these genera the Rapid-E 

data have certain discrimination potential. One can therefore conclude that the multi-species 

discrimination algorithms applied in these studies showed similar recognition skills. It should be 

stressed however that the training of the ANNs were completely independent and used the local pollen 

grains. Therefore, the similar recognition quality does not imply similar pollen in these regions. 

As mentioned earlier (Section 2.2.3), the calibration procedure used at MeteoSwiss was slightly 

different than in Novi Sad and in Siauliai. In addition, the focus at MeteoSwiss was more towards 

operational applications. As a consequence, only a subset of the 60 calibrations was used to train the 

classifier. Only taxa with high relevance for monitoring or for which very good calibrations were 

available were selected. It was noticed that increasing the number of taxa could worsen the problem of 
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false positive detections (see below). An optimum for monitoring purposes was found when using 10 

taxa. The performance of the corresponding classifier is shown in Table 4. 

 

Table 4 Confusion table obtained at MeteoSwiss, Payerne. Accuracy 80%.  
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Alnus 27 27 1 0 0 1 43 0 0 1 

Betula 1 83 2 0 0 4 7 0 0 1 

Carpinus 0 13 74 0 0 2 3 0 6 1 
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Cupressus 0 3 1 84 0 0 1 2 1 8 

Fagus 0 2 3 1 88 0 1 1 2 3 

Fraxinus 0 12 2 0 0 78 2 1 2 3 

Corylus 4 8 0 0 0 0 87 0 0 0 

Pinus 0 0 0 0 0 0 0 98 0 2 

Poaceae 0 3 8 1 0 1 0 1 82 4 

Taxus 0 0 0 1 0 0 0 1 0 97 

    Predicted label 
 

It is interesting to note that, as expected, most errors occur within the Betulacae family, with an 

extremely low recall for Alnus. It was hypothesised that, although calibrations were repeated, the 

classifier may to some extend recognize the conditions under which the calibration was performed and 

quality of the sample. Obtaining a classifier working only on the generic features of the taxa is a very 

difficult task. A holistic validation procedure, going from the analysis of device raw outputs (Section 

3.1) analysis to the comparison with reference measurements (Section 4.5), is therefore essential. 

4 Discussion 

4.1 Over-training – a problem? 

The problem of potential over-training was addressed from two directions: via the standard training vs 

test datasets evaluation, and via an explicit verification of homogeneity of the datasets. 

4.1.1 Performance in the training and test datasets 

Prior to starting the ANN training, all datasets were split to the training and test subsets. The test subset 

in Siauliai consisted of 1000 particles picked at the end of every calibration event while all other 

particles were used for training. The Siauliai ANN training continued until saturation of the recognition 

quality for the training dataset (see example in Figure 9), thus including the overfitting range. The 

maximum performance of the fluorescence-based recognition was obtained at the epoch of ~900, after 

which the over-fitting gradually picked up. Therefore, the ANN parameters after this epoch were taken 
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as the study outcome. For the scattering-image-based training, a similar consideration suggested the 

epoch 3500 as the optimum.  

 
Figure 9 Siauliai ANN multi-species cost function for scatter (left) and fluorescence-(right) based 

recognition as a function of the training epoch. 

 

 
Figure 10 Novi Sad ANN overall cost as a function of the training epoch. The evaluation error is lower 

than the training error due to dropout (0.5) in each convolutional and fully connected layer, not used in 

the validation round. 

 

For Novi Sad (Figure 10), the training was stopped before the overfitting picked up and thus the 

parameters of the last trained epoch 3000 were used. 

4.1.2 Test of homogeneity of the calibration datasets 

One of the concerns regarding the fluorescence-based technology is the stability of the spectra for 

different conditions of pollen grains, which are affected by ambient humidity, temperature, time they 

spent in the air, chemical interaction and degradation, etc. Full-scale evaluation of this problem lies 
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beyond the scope of this paper. Here, we only present a brief check demonstrating that it was not the 

major issue.  

As stated in the methodological section, the calibration set for each pollen type in Siauliai consisted of 

up to 8 independent calibration sessions for four species, these sessions were performed in different 

days and thus with pollen of different age. A simple check of homogeneity of the fluorescence spectra is 

then to use the data of one of these days as the training set and those from another day as the test subset. 

Substantial difference in the recognition quality would point at the inhomogeneous data. Distinguishing 

the 4 species is simpler than 11 but important is the difference between the training and test recognition 

quality.  

 
Scattering training accuracy    Fluorescence training accuracy 

 
Scattering test accuracy    Fluorescence test accuracy 

 

Figure 11 Performance of the Siauliai ANN for the test subset taken from different days than the 

calibration subset. Unit: %. 

 

Comparing the upper and lower rows of Figure 11, one can see that for the above epochs (3500 for 

scattering- and 900 for fluorescence-based ANNs), the quality of recognition for the training subset (one 
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day) and test subset (another day) differ by <5% for all 4 species. Therefore, we conclude that the 

conditions during the different days of calibration did not affect the homogeneity of the dataset. 

4.2 Comparison with other studies on pollen recognition 

During recent years, a number of attempts to obtain information about pollen concentration in the air in 

real time have been undertaken. However, even the most-successful tests carried out with WIBS-4 

(O’Connor et al., 2014), Hund BAA500 (Oteros et a., 2015), Yamatronics KH-3000-01 (Kawashima et 

al., 2017), and Plair PA-300 (Crouzy et al., 2016) devices, strongly advancing the pollen monitoring 

field, left open the questions of scalability and replicability of the results. They also did not touch the 

topics related to application of the tested systems in the operational context. Application of yet-another 

new device – Plair Rapid-E – in our study was pursuing, apart from the scientific objectives, the 

operational implementation as a mid- to long-term goal. However, having tested 14 different pollen 

morphotypes, we found that significant work is still needed. 

One of the challenges to the automatic monitors is the rich mixture of pollen types in Europe that all 

pose significant allergenic threat. This makes it particularly difficult for the monitors to satisfy the 

needs of allergic people and allergologists – unlike in many other regions. For instance, Cryptomeria 

japonica identified more than 10 years ago by Kawashima et al. (2007) is still the main pollen type 

recognised by that system (Kawashima et al., 2007; Wang et al., 2013; Wang et al., 2014; Takahashi et 

al., 2018). However, it seems to be more or less sufficient for that region.  

Varying level of allergenicity of species within a single genus or a family raises the question if the intra-

genus classification is possible. Hirst-based manual techniques do not allow it: pollen grains are too 

similar in the microscopic analysis. Our results show that such level of identification is not immediately 

possible using Rapid-E information either. In particular, our data demonstrated that the fluorescence 

spectra of the Salix alba and Salix fragilis species were almost identical. More promising were the 

experiments with Pinus and Acer (Figure 6) and some grasses (Table 3) where the work should be 

continued with different identification algorithms built for these very species after their separation from 

other pollen types. Other genera should also be tested. 

Fluorescence spectra can be similar not only between species of a particular genus but also between 

different families. Several groups of otherwise unconnected species manifested very similar spectra, to a 

degree that did not allow their reliable differentiation (Figure 8). Similar results were obtained in the 

studies conducted by D. J. O’Connor with co-authors (2011). They assessed the fluorescence spectrum 

of pollen of Betulaceae family and stated that “birch and alder spectra closely resemble each other 

although there is a possibility that the birch pollen is less fluorescent than alder”. Our results show that 

in the case of Alnus, the fluorescence amplitudes are higher than of Betula but the spectra are indeed 

similar. 

Similar spectra of Salix and Populus pollen (Figure 7) also resulted in poor differentiation between 

them. At the same time, the degree of confusion was higher for Populus than for Salix (Tables 2 – 4). 

This is in agreement with the results obtained with Hund BAA500 by Oteros et al. (2015), who 

identified Salix pollen as the worst of pollen types analysed (Oteros et al., 2015). The BAA500 

algorithm is based on recognition of the particle shape, which can be weakly related to the scattering 
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images in our study – the very part that showed substantial confusion of almost all studied pollens with 

Salix and Populus. 

Crouzy et al. suggested that a non-zero fluorescence amplitude around 600 nm wavelength is 

incompatible with pollen from the Betulaceae family (Alnus, Carpinus, Corylus and Betula) but could 

possibly be observed for grass pollen (Dactylis and Phleum) (Crouzy et al., 2016). Our results support 

this suggestion and in addition the test in Novi Sad shows that ANN could show some discriminatory 

power between Dactylis and Cynodon. Noteworthy, recognition of the herbaceous plants (Festuca, 

Artemisia) was considerably better than that of pollen of Betulaceae family also in Siauliai (Table 2). 

One can note that the recognition accuracy of this study (just above 70%) is in an apparent contradiction 

with the results of Crouzy et al. (2016), where the skills were significantly higher: 91% was obtained 

with PA-300. However, there are several important differences between the approaches. Firstly, the pre-

filtering of the particles is substantially stricter and about 20% of classifications were filtered out as 

uncertain (failed the threshold of the classification quality). Secondly, the accuracy of the recognition 

depends significantly on the number of pollen morphotypes used for the test (8 by Crouzy et al). In an 

extreme case, automated discrimination of just one species (Cryptomeria japonica) from non-pollen 

particles using KH-3000 was high already 10 year ago (Kawashima et al., 2007; Kawashima et al., 

2017). Similarly, the high fraction of BAA500 true positive counts (93,3%) against manual analysis of 

individual species by Oteros et al. (2015) went down to 65% when the recognition of 13 pollen 

morphotypes was requested. It took an additional training of the algorithm to raise it up to the same 

72% as in our study. Finally, it should also be noted that PA-300 delivers fewer parameters than Rapid-

E, possibly making it difficult to identify the important combinations in the raw signal in a single-level 

many-to-many identification task. Application of additional levels of the discrimination filters can 

improve the results. 

4.3 Possible ways to improve the recognition skills 

The dependence of the recognition quality on the number of categories is one of the directions of the 

future research. It may be possible to consider independent groups of pollens that never (or very rarely) 

appear in the air at the same time – but it can make the algorithm place-specific. It is vital however to 

obtain improvement of the algorithm for reliable separation of pollens that can be in the air together 

(e.g., Betulaceae, Quercus, and the like). 

Considering improvements of the recognition algorithms, Matsuda and Kawashima (2018) suggested 

the “extract window” method of analysis of the scattering images, which enabled to distinguish unique 

ranges of light scattering intensities for each taxon. However, the reliability of the algorithm is known 

only for 5 pollen morphotypes. Development of this and similar approaches for the Rapid-E scattering 

images may eventually improve this line of analysis and, subsequently, push up the overall scores. 

Since the output of the ANN can be transformed to give a vector of probabilities, where each element i 

of the vector represents the probability that the sample belongs to class ci, we expect improvement of 

the classification accuracy if we demand that the classification occurs only if the highest probability in 

that vector is greater than some probability threshold, but with the price of discarding the samples below 

the defined threshold. This direction was initially explored by Crouzy et al (2016) and showed high 
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potential: discarding 20% of samples led to an increase of precision of about 10% (see also Section 

2.2.4).  

As a more radical approach, one can challenge the usage of ANNs without a-priori relations derived 

from physical or chemical features of each pollen type. Even generic considerations of scattering and 

fluorescence theories might hint on quantities, which show enhanced contrast in comparison with the 

raw data. The idea was tried in the Payerne algorithm and showed its potential. 

4.4 Lessons from the comparison of the Hirst and Rapid-E measurements 

Comparison of the Rapid-E of MeteoSwiss with the operational Hirst measurements in Payerne from 

February to June 2018 extended the results of Crouzy et al. (2016) to more important taxa (Figure 12), 

but also showed that robust determination of the sampling still needs to be achieved.  

 
Figure 12 Comparison between automatic (Plair Rapid-E) and manual (Hirst-type) pollen counts for 

Betula, Fraxinus, Pinaceae, Poaceae. 
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In order to obtain pollen concentrations, large particles presenting bimodal fluorescence spectra with 

position and intensity of maxima compatible with the observations made from calibrations (see Section 

3.1) were first selected. Then, the classifier presented in Section 2.2.3 was applied. The effective 

sampling of Rapid-E is the result of a series of physical and algorithmic processes: the sampling 

efficiency of the Sigma-2 head, the imperfect targeting by lasers and the drop-offs due to the below-

threshold classification. In Figure 12, the Rapid-E data are scaled with species-dependent factors 

(constant over the season) bringing the seasonal mean to that of the Hirst time series. The issue deserves 

attention since, as shown by the Novi Sad results, tightening the thresholds improves the recognition 

skills but increases the drop-offs at the recognition stage. Sampling with Poaceae is the highest, 

Pinaceae present a 2% decrease of sampling and Betula presents a 33% decrease in sampling with 

respect to Poaceae. False positive is a significant issue with Fraxinus: the sampling is dramatically 

reduced (75%) for higher fluorescence thresholds. As a consequence of those limitations, the results 

presented here should not be taken as a complete demonstration of operational capabilities. 

The suppression of the false-positive detections as described in Section 2.2.4 worked quite efficiently 

but still an evident false-positive event resulting from the Betula misinterpretation as Poaceae is visible 

in the beginning of April. Further work is required to completely remove such events, and, as a last 

resort, expert supervision could be used in an operational setup. 

4.5 Opinion of the Rapid-E producer 

During the work, we have been in periodic contact with the Plair company regarding features and issues 

of the Rapid-E devices used by our groups. Having the paper finalised, we asked their feedback.  

D. Kiselev, Plair: “Our impression concerning the presented material is mixed. While I see some 

positive and encouraging results, my main critics would be addressed to your calibration sets, which 

cleaning and filtering falls short of the actual needs. Our results are 5-10 % better without overfitting 

the data or other special processing. Time series Plair gets for "problematic pollens" like Betula, 

Corylus and Alnus are actually very good. Our goal is to obtain high quality time series calculated in 

real-time by the instruments and the good calibration is essential for that.” 

We agree with importance of the calibration datasets; the procedures ensuring their quality are 

described in the Methodology section and further explained in the discussion above. Noteworthy, our 

groups were working largely independently using local pollen and original methods of the data 

collection and processing. Therefore, the similarities in the observed features provide additional support 

for our conclusions. Unfortunately, details of the Plair analysis were not available when the paper was 

prepared. Therefore, independent evaluation of that algorithm against the common criteria described in 

this paper was not possible. 

5 Conclusions 

We conducted the first analysis of the pollen monitoring capabilities of the new automatic pollen 

detector Plair Rapid-E. Using the very limited data pre-processing and basic ANN classification it was 

shown that, if comparatively large number of pollen types is considered, stand-alone scattering- and 

fluorescence- based recognition algorithms fail to produce reliable results for majority of species. The 
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combination of these algorithms performed better exceeding 80% accuracy for 5 out of 11 species. 

Therefore, this combination can be considered as the first-stage classification of pollen types. It should 

be followed by more in-depth discrimination efforts, including also life time of florescence into the 

classification model, etc. 

The fluorescence spectra showed similarities among several tested species ending up with three groups: 

(Alnus, Corylus, Betula and Quercus), (Salix and Populus), and (Festuca, Artemisia, Juniperus) – as 

identified from the Siauliai data. The classification between the groups was comparatively easy. 

Attempts to distinguish between the species of the same genus showed certain potential for some genera 

but more work is needed. 

The results obtained in Siauliai and Novi Sad with very similar experimental setup but independent 

analysis, showed comparable results confirming the overall conclusions. They also pointed out at 

certain limitations of replicability of the raw data features between the devices, which will require an 

additional conversion step to make them compatible. In this line, the comparison performed at 

MeteoSwiss shows a reasonable potential for automatic monitoring of important taxa, however it is not 

clear to which extent algorithms can be transposed from one device to another. 

The in-depth discussion and improvement of the methodology and the extension to more taxa goes 

beyond the scope of this paper. We decided to communicate early the current results, as well as the 

methods developed independently by the three teams currently working with the Rapid-E counters, in 

order to stimulate parallel developments by the user community of the Rapid-E devices. The emergence 

of such community is a good opportunity to address generalization and replicability of the device-

specific results. We also believe that moving from expert supervision or calendar methods to the 

approach presented here and based only on device outputs for, e.g., elimination of false-positive 

detections could be of help for other automatic monitoring systems. 

Among the main challenges to be resolved in the future work, the most important ones are: 

- to obtain reliable recognition skills at least for the pollen types that can be in the air at same time 

- to reach full replicability of the algorithms and results across the different copies of the same 

monitors (we are thankful to the Plair team for suggesting the scripts addressing this problem, 

which are now under evaluation) 

- to resolve specific questions related to the algorithm construction and training – including the 

minimal sample volume, problems of over- and under-fitting, preprocessing and pre-filtering of 

the data, false-positive identifications, etc. 

Successful resolution of these questions will open the way for wide applications of the automatic 

particle counters for pollen observations. 
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Supplement  

 

Table S1. Confusion table for pollen taxa identification by using ANN based on scattering image. 

Multiclass accuracy 44 % 
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Festuca 52 1 1 2 1 3 3 5 5 9 19 

T
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b
el

 

Artemisia 2 58 1 1 4 13 3 4 9 3 2 

Corylus 3 1 38 20 20 1 1 5 1 9 1 

Alnus 4 3 21 29 19 3 1 6 1 11 2 

Betula 4 4 19 15 37 3 1 5 1 9 2 

Salix  5 8 1 0 5 51 13 3 6 7 1 

Populus 16 4 0 1 1 16 28 4 16 8 6 

Acer  8 5 6 7 4 4 5 29 4 23 5 

Juniperus 16 19 0 0 0 4 10 2 36 3 10 

Quercus 7 2 10 6 3 3 3 14 2 48 2 

Pinus  13 2 0 1 1 1 1 1 3 1 76 

Predicted label 

 

Table S2. Confusion table for pollen taxa identification using fluorescence spectrum. 

Multiclass accuracy 67 % 
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Festuca 84 2 0 0 0 0 1 5 3 0 5 
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Artemisia 2 80 0 0 0 1 3 6 8 0 0 

Corylus 2 0 53 15 7 6 1 0 1 14 1 

Alnus 1 0 14 45 19 3 4 1 1 10 2 

Betula 3 1 7 29 38 3 4 0 1 12 2 

Salix  0 2 7 2 3 72 9 0 1 4 0 

Populus 2 9 3 2 2 17 53 4 4 3 1 

Acer  6 3 1 0 1 0 2 84 2 1 0 

Juniperus 6 5 0 0 1 0 3 0 84 0 1 

Quercus 1 0 12 13 9 6 2 0 1 55 1 

Pinus  11 0 0 0 1 0 0 0 1 1 86 

Predicted label 

 

 


