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Abstract. Pollen-induced allergy is among the most-prevalent non-contagious diseases, with about a
quarter of European population sensitive to various atmospheric bioaerosols. In most European
countries, pollen information is based on a weekly-cycle Hirst-type pollen trap method. This method is
labour-intensive, requires narrow specialized abilities and substantial time, so that the pollen data are
always delayed, subject to sampling- and counting-related uncertainties. Emerging new approaches to
automatic pollen monitoring can, in principle, allow for real-time availability of the data with no human
involvement.

The goal of the current paper is to evaluate the capabilities of the new Plair Rapid-E pollen monitor and
to construct the first-level pollen recognition algorithm. The evaluation was performed for three devices
located in Lithuania, Serbia and Switzerland, with independent calibration data and classification
algorithms. The Rapid-E output data include multi-angle scattering images and the fluorescence spectra
recorded at several times for each particle reaching the device. Both modalities of the Rapid-E output
were treated with artificial neural networks (ANN) and the results were combined to obtain the pollen
type. For the first classification experiment, the monitor was challenged with a large variety of pollen
types and the quality of many-to-many classification was evaluated. It was shown that in this case, both
scattering- and fluorescence- based recognition algorithms fall short of acceptable quality. The
combinations of these algorithms performed better exceeding 80% accuracy for 5 out of 11 species.
Fluorescence spectra showed similarities among different species ending up with three well-resolved
groups: (Alnus, Corylus, Betula and Quercus), (Salix and Populus), and (Festuca, Artemisia, Juniperus).
Within these groups, pollen is practically non-distinguishable for the first-level recognition procedure.
Construction of multi-steps algorithms with sequential discrimination of pollen inside each group seems
to be one of possible ways forwards. In order to connect the classification experiment to existing
technology, a short comparison with the Hirst measurements is presented and an issue of the false-
positive pollen detections by Rapid-E is discussed.
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1 Introduction

Pollen of many wind-pollinated plants has specific proteins that cause human allergy (Valenta et al.,
1992; Bousquet et al., 2006; Radauer and Breiteneder, 2006; Bousquet et al., 2015; Choual et al. 2018),
particularly affecting children (Skoner 2001; Host et al., 2003; Douladiris et al., 2018). Stress due to
contact with the pollen-contained allergen can cause an allergic reaction or exacerbate some related
diseases (Leynaert et al., 2000; Devillier et al., 2017; Poethko-Miiller et al., 2018). Allergy impairs the
quality of life of about 30% of the world population (Akdis et al., 2015). In most of European countries,
national organizations of various kinds provide information about pollen concentration in the air,
publish pollen prognosis and issue warnings. The bulk of such efforts are based on retrospective pollen
observations and climatological pollen calendars. Most observers use Hirst-type volumetric pollen traps
where airborne particles (>5 um) are collected on a rotating drum covered by Melinex tape. Samples are
identified by a microscopic analysis (Galan et al., 2014; Buters et al., 2018). This method is labour-
intensive, tedious, requires narrow specialization abilities and incorporates significant uncertainties —
e.g. (Oteros et al., 2017). In addition, due to the manual treatment of the collected samples and weekly
cycle of the trap the data are always delayed from a few days up to a few weeks. However, timely data
about pollen concentration in the air are also needed for improving the accuracy of tools for
personalized medicine (for example, PASYFO app, http://www.pasyfo.lt, POLLEN app,
http://www.polleninfo.org, NORKKO forecast and app http://www.norkko.fi, etc.) (Bousquet et al.,
2017; Horgan and Pazzagli, 2017; Pereira et al., 2018, Tabatabaian and Casale 2018). It can be also
used for informing people about current pollen concentration in the air. Finally, real-time data are
needed for short-term pollen forecasts with statistical and atmospheric dispersion models (Sofiev et al,
2013, 2015, 2017, Prank et al., 2016; Ritenberga et al., 2016; Zink et al., 2017).

As the approach to information and personal responsibility for health is changing, it has become a
necessity to develop new methods enabling the information on airborne pollen to become available in
real-time. The first attempts to obtain automated information were related to image recognition
technologies (Bennett, 1990). Their development was accompanied by the formation of more potential
possibilities (Ronneberger et al., 2002; Landsmeer, 2009). Currently, two types of technologies seem to
be the most-suitable for taxon-level classification of pollen: based on image recognition and laser-
fluorescence (or their combinations). Image-based technologies are used in detectors, such as BAA500
(Hund Wetzlar, https://www.hund.de); the laser fluorescence-based approach is implemented in WIBS
device (http://www.dropletmeasurement.com), PA-300 and Rapid-E (Plair, http://www.Plair.ch),
whereas the new Poleno device (Swisens, https://swisens.ch/) aims at integration of both features. The
Hund- and Plair- manufactured devices were used in limited-scale scientific studies: Oteros et al. (2015)
for BAA500 and Crouzy et al. (2016) for PA-300 and showed promising results. However, the large-
scale evaluation and calibration suitable for European-scale applications are yet to be concluded (Oteros
etal., 2015, Crouzy et al., 2016).

The goal of the current paper is to evaluate the capabilities of the new Plair Rapid-E pollen monitor and
to construct and evaluate the first-level pollen recognition algorithms using particle scattering and
fluorescent data from the Rapid-E. The key questions to answer were:

- can we identify different pollen genera using the Rapid-E data?

- can we identify different species within the same pollen genus?



- what is the recognition accuracy for the most-common pollen types in Europe?

The experiment was performed in Siauliai (University of Siauliai and Finnish Meteorological Institute),
Novi Sad (BioSense Institute of University of Novi Sad) and Payerne (Federal office of meteorology
and climatology MeteoSwiss) with three newly acquired experimental Rapid-E devices. The devices
were provided with local pollen samples and several pollen recognition algorithms have been
constructed independently in each center. This organization of the study allowed accounting for
variability of the actual technical characteristics of the individual devices and an absence of “good
practice” for such type of measurements. The best classification results compared across the centres
formed the basis of the Result section of this paper. Finally, outputs of the MeteoSwiss classifier are
compared with airborne pollen data collected with the Hirst-type pollen trap. The provided time series
were used to discuss the “false positive” identifications important for the operational context.

2 Methods

2.1 Description of the measurement instrument

The new Rapid-E instrument designed and produced by Plair S.A is the successor of the first-generation
particle analyser PA-300 used by Crouzy et al. (2016). It is a particle counter, i.e. it analyses all
particles coming to its inlet one-by-one. Operation of the instrument is based on two physical principles:
scattering of near-UV laser beam and deep-UV laser-induced fluorescence (Kiselev et al., 2011; 2013).
Multi-angle scattering is used for determination of the particle’s morphology, such as size and shape.
The fluorescent light is analysed for its spectrum and lifetime. The instrument constantly takes in the
ambient air through the air inlet on the top of its panel. Sample air flow is up to 2.8 litres per minute
with the counting rate of up to 4500 particle detections per minute, i.e. the theoretical saturation level is
1.6 10° particles m™. Since according to the device provider the smallest observable particle is 0.5um in
diameter, this saturation level will not be reached in realistic ambient conditions.

The sampled air enters the nozzle, which creates a laminar flow in the measurement zone. Particles
interact with 400 nm laser light source and the scattered light is captured by twenty-four time-resolving
detectors distributed at different angles. The information on chemical properties of the particles is
obtained by a powerful deep-UV laser (320 nm) source that induces fluorescence. Its spectrum (32
measuring channels within spectral range of 350-800 nm, 8 sequential acquisitions with 500 ns
retention) and lifetime (4 particular bands) are recorded and used for the particle identification (Figure
1).
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Figure 1 Examples of scattering images, fluorescence spectra and lifetimes of selected pollen types.

The threshold of the particle fluorescence intensity (> 1500 units) was empirically determined as a cut-
off level for sufficiently recorded pollen grains. The spectra were subsequently normalized to eliminate
the difference in the signal strength between the instruments. Rapid-E has an embedded mechanism for
collecting the particles, which passed through the registration chamber, onto sticky slides for the follow-
up microscopic analysis.

The device has several modes of operations. Since the deep-UV laser has a limited resource, the 400 nm
scattering image is used for prior estimation of the particle morphology and deciding if it can be pollen.
In the Pollen mode, the device ignites the deep-UV laser only for 5-100 micrometer particle size range
(used in this study). Another mode allows detecting particles in the range of 0.5-100 micrometers for
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spores, particulate matter and bacteria identification. However, the expected lifetime of the deep-UV
laser is much shorter in this mode, especially in polluted atmosphere.

2.2 Data processing and recognition methods

2.2.1 Siauliai

Both modalities of the Rapid-E output (scattering image and the fluorescence spectra) were processed
independently with artificial neural networks (ANN) and the scores were merged to obtain the final
classification result.

Both scattering and fluorescence signals (Figure 1) significantly depend on the particle position with
regard to the laser beam while passing through it. In particular, the apparent particle size (scattering)
and the fluorescence intensity varied between the recordings. Apart from that, 15-50% of particles are
missed by the deep-UV laser. Therefore, pre-processing included: (i) identification of a characteristic
template of 44x20 pixels from the scattering image to localize the features characteristic for each pollen
type; (ii) particles with insufficient fluorescence intensity are filtered out (Table 1); (iii) fluorescence
spectrum was normalised, (iv) at the first time moment, only 16 of 32 wavelengths were included in the
feature vector to exclude the saturated short-wavelength fluorescence bands.

Table 1 Pollen used for testing the identification capabilities of the instrument in Siauliai.

Total particles Fluorescent particles *

counted by 400 Number Percentage of

Plant group nm laser particles with

sufficient
fluorescence level

Festuca 21808 12205 56
Artemisia 15521 13370 86
Corylus 14858 10865 73
Alnus 13692 10486 77
Betula 20676 12089 58
Salix alba 15383 13431 87
Salix fragilis 12942 10401 80
Populus 15340 10963 71
Acer negundo 11832 8647 73
Acer pseudoplatanus 11030 7372 67
Juniperus 17926 10404 58
Quercus 17677 8934 51
Pinus sylvestris 14224 8537 60
Pinus mugo 13399 8287 62

* the particle fluorescence intensity level> 1500 at the Rapid-E scale for at least one
emitted wavelength. The initial number of pollen noticed by the scattering laser is not used
in the analysis. The algorithms were based on data of fluorescent particles. Calibration

datasets were normalised.



Several ANNs were created. One of the best-performing networks included only scattering and
fluorescence signals taking them separately and disregarding the noisy lifetime component.

ANN for scattering images consists of two convolutional blocks for the feature extraction and two fully
connected layers for classification (Figure 2).

‘ Scattering Image | | Fluorescence spectrum ‘
| !

‘ Convolutional Block 1 | | Batch Normalization + Dropout ‘
! !

‘ Convolutional Block 2 | | Fully-connected + Leaky RELU ‘
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Dropout + Fully connected + ReLU | | Batch Normalization + Dropout ‘
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| Summing |

!
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Figure 2 Neural network for pollen classification in Siauliai based on separately treated scattering and
fluorescence signals.

Every convolutional block consists of the 2D convolutional layer, the batch normalization layer, the
ReLU activation layer, and the maxpooling layer. One mask of the convolutional layer has size of 5x5.
The convolutional layer of the first block has 16 filters, and the one of the second block has 32 filters.
The maxpooling layer selects the maximal response from the area of 2x2. At the output of the second
convolutional block, the size of the feature vector is 1760. The first fully connected layer has 256
neurons. The second fully connected layer classifies these vectors to the number of pollen classes
chosen for the calibration. The ANN was trained using the cross-entropy loss criterion. The
fluorescence spectrum was processed by a multilayer perceptron ANN (Figure 2) with dropout and
batch normalization layers used for regularization. This ANN also was trained using the cross-entropy
loss criterion. Results of two ANN were fused by summing scores of every pollen type.The training
process was monitored to avoid over-fitting the networks — see the Discussion section.

2.2.2 Novi Sad

All Rapid-E signals (i.e. scattering, fluorescence and life time) were transformed into images and jointly
processed by a single ANN (Figure 3). Its architecture considers the same input dimensions of every
image, and since the scatter signal could vary in the number of acquisitions, each image’s width was
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equalised by finding its centre of mass and either cutting or zero-padding to fit to 24x70 pixels. The
dynamic range of each image was reduced by replacing each pixel value with its logarithm, which
resulted in enhancing of the low intensity pixels. Images from temporally resolved spectrum data and all
bands of the life time data were used unprocessed.

Similarly to Siauliai, particles with the fluorescence intensity less than 1500 units at the Rapid-E scale
at all wavelengths were filtered out. In addition, particles with calculated optical size out of the range 5-
100 micrometers were filtered out using the manufacturers size approximation, depending on the sum of
the scattering image. Size is 0.5 micrometers if the sum is less than 5500000. If the sum is between
5500000 and 500000000, the size is given by the 9.95e-01*np.log(3.81e-05*x)-4.84e+00. Finally, if the
sum is greater than 500000000, the size is given by 0.0004*x**0.5 - 3.9.

Each input signal is analysed with its own chain consisting of 2D convolutional layers, replication
padding layers, ReLU activation functions, batch normalization layers, max pooling and the dropout
layers, together forming the convolutional block (Figure 3).

Fluorescence lifetime

| Scattering image ‘ |Fluorescencespectrum| | Convolutional Block 1 |

l l l

| Convolutional Block 1 ‘ | Convolutional Block 1 | | Convolutional Block 2 |

| Convolutional Block 2 ‘ | Convolutional Block 2 | | Convolutional Block 3 |

| l l

| Fully - connected ‘ | Fully - connected | | Fully - connected |

}

Concatenation

Fully - connected

Pollen class

Figure 3 Neural network for pollen classification in Novi Sad using all three signals.

The convolutional layer of the first scattering block had 10 filters with the kernel size of 5x5 while the
second one had 20 filters with the kernel size of 3x3. For the spectral images, the convolutional layer of
the first block had 50 filters with the kernel size of 5x5, and the one of the second block had 100 filters
with the kernel size of 3x3. For the lifetime images, the first convolutional layer had 70 filters with
kernel size of 7x1, the second one had 140 filters with kernel size of 5x1 and the one of the final block
had 200 filters with the kernel size of 3x3. At the output of the final convolutional block, the sizes of the
feature vectors for scattering image, fluorescence spectrum and lifetime are 1800, 1600 and 1400,
respectively. Each feature vector is passed through one fully connected layer with 50 neurons. Those
features were concatenated resulting in the feature vector of dimension of 150. The size of the second
(last) fully connected layer was of the size of the number of classes, after which the samples were
classified with the log-softmax activation function.

The ANN was trained using negative log-likelihood (NLL) loss and the Stochastic Gradient Descent
with the learning rate of 0.001 and the momentum of 0.9.



2.2.3 Payerne

At the pre-processing stage, all three signals were normalized with their maxima. For scattering, the
image was additionally centered and cut to a 24 x 100 shape. Extra filtering was imposed retaining only
calibrations with optical size above 10 micrometers and a fluorescence signal in a range and spectrum
compatible with single pollen grains (see Crouzy et al., 2016, for examples of spectra). The optical size
corresponding to 10 micrometers was estimated by comparing the integral of the scattering signal of 5
micrometer PSLs with the integral of the scattering signal for Urtica and Parietaria pollen grains.

For scattering ANN, 5x5 convolutions were applied with 32 filters, ReLU activation, and the pooling
layers with a 2x2 window. For lifetime, 1D convolution was applied with ReLU activation, with
windows size 10x1 and 10 filters. For the spectrometer, asymmetric 2x4 convolution was applied with 8
filters with ReLU activation. The ANN was trained using the Adam optimizer and categorical cross-
entropy as loss function (Figure 4).

Scattering image Lifetime Spectrometer
Center, cut and norm. Norm. Norm.
Conv2D+Relu+Max pool Conv1D+Relu Conv2D+Relu
Conv2D+Relu+Max pool \
Flatten — Additional features

Fully connected + Dropout

Fully connected + Dropout

Labels with scores

Figure 4 Neural network used for classification at Payerne

In order to retain flexibility, additional features were inserted before the final fully-connected layers
after Crouzy et al. (2016): the maximum and the integral of the scattering together with the maxima of
each of the four lifetime bands and the maxima of the first three spectrum acquisition.



2.2.4 Additional filtering of false-positives in operational context

Even if high expectations on the performance of the classifier are met, problems are bound to occur in
the operational applications due to false-positive detections. For example, Birch pollen concentrations
regularly exceed 1000 pollen m™ in Switzerland in spring. If just 2% of these are mis-interpreted as,
e.g., Ambrosia pollen, the false concentration of 20 grains per cubic meter would be already significant
for allergy analysis. In order to cope with this, extra steps were introduced in Payerne. Additional
filtering was applied disregarding the events with classifications quality below a certain threshold as
was done in (Crouzy et al., 2016) where a reduction of sampling of 20% lead to an increase in precision
of about 10%.

For the operational monitoring, at least a few events with extremely good classification score were
required during the same or two preceding days to accept the middle-confidence recognition of the
specific pollen type. This condition is applied uniformly over the pollen season to verify what pollen
taxa are present in the air.

2.3 The scheme of the experiment

In this chapter, we present in details how the calibration experiment was implemented in Siauliai,
followed by the description of specifics of the setups in Novi Sad and Payerne. Most-importantly, only
pollen characteristic for each location was used. Comparison of the results was based on pollen types
belonging to the same plant families found in all three locations.

2.3.1 Siauliai

The experiment in Siauliai was carried out with 14 pollen morphotypes, the tested amounts of which are
given in Table 1. Three genera (Salix, Acer, Pinus) were represented by two plant types. All 14 plants
are naturally widespread in Lithuania and their airborne pollen is abundantly recorded annually
(Sauliené¢ et al., 2016).

Pollen was taken from the plant inflorescences collected during the vegetation period in April-August of
2018 during the days with intense pollen release. The collected material was put in air-permeable paper
bags and dried at a temperature of 40°C until the maximum release of pollen from the inflorescences.
Vibratory Sieve Shaker Analysette 3 PRO was used for gentle shaking the pollen grains out of the
inflorescences. The extracted pollen was stored in Petri dishes at +4°C.

Each experiment was performed twice and consisted of up to 8 sample tests, using approximately 5 mg
of pollen per sample test. The number of grains registered in the scattering signal is indicated in Table 1
as “Total particles”, whereas the column “Fluorescent particles” shows the number of grains with usable
fluorescent and lifetime signals.
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The experiments were carried out in laboratory conditions with a self-designed manual exposure
method (Figure 5). In order to isolate the environment of the experiment from the ambient particles, a
plastic (PET) bottle was fitted tightly to the Rapid-E inlet. One of the bottle walls was cut open and two
holes of ~15 cm? were covered with a household air filter. The filter fabric was tested to hold ~99% of
particles larger than 1 micrometre in diameter without any noticeable disturbance of the air inflow into
the device.

The pollen was injected into the upper part of the bottle by inserting the pipette tip with the pollen
sample into the narrow cut in the bottle and then gently blowing the air through the pipette. With the
sampling rate up to 2.8 litres per minute, Rapid-E was collecting the pollen grains from the bottle within
a few tens of seconds. This simple scheme enabled reducing the environmental sample contamination
by up to 5 times compared to the unfiltered air in the lab. Each new experiment used a new bottle and
the nozzle of the instrument was cleaned, thus ensuring the removal of previously sampled pollen.
Quality and level of contamination of the samples was manually controlled by using the sticky slides.
The presence of non-pollen particles (debris from the remnants of inflorescences etc.) was verified to be
substantially less than 1% by the visual inspection of a subset of the calibration events. Abundance of
pollen aggregates (several pollens stuck together) was also low but their reliable identification by
microscopic analysis was more difficult because of thick layer of pollen on slides. The calibration was
performed in the Pollen mode, which excluded particles smaller than 5 um of optical size.

2.3.2 Novi Sad

The scheme of the pollen exposure experiment was similar to that in Siauliai. The exposure was
conducted on the roof by fitting the PET bottle to the sampling pipe after removing the Sigma-2 inlet.
Manual microscopic analysis of sticky slides was used to confirm the quality of samples and absence of
non-pollen debris and pollen agglomerates. The device was also in Pollen mode, i.e. it filtered out
particles smaller than 5 um of optical size.

Classification was tested for an adjusted set of pollen morphotypes accounting for the availability of the
fresh material during the study season. In particular, Juniperus was replaced by Taxus and Festuca was
replaced by Cynodon and Dactylis aiming to assess the degree of discrimination between different grass
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genera. Similarly, Picea and Cedrus pollen were used for assessing differences between the same pollen
morphotype. Only Acer negundo was analysed as it is the only Acer pollen that is recorded regularly in
Serbia. Fraxinus (including both F. excelsior and F. ornus) was added to the test as it is commonly
recorded throughout spring season.

2.3.3 Payerne

Low ambient concentration of coarse particles allowed a less laborious approach: pollen calibrations in
Payerne were performed by directly blowing the material into the Sigma 2 inlet, without protection
from contamination. The details of the procedure are described in (Crouzy et al., 2016). In order to
obtain a reasonable panel of the relevant pollen types, 60 calibrations were performed for 21 different
taxa. Focus was set on repeating calibrations, if possible under varying conditions. Only fresh pollen
was used and time between collection and calibration was reduced to a minimum (range: 15-120
minutes). The presence of agglomerates and debris was investigated by collecting histograms of the
optical size and of the fluorescence intensity of the recorded events. Cut-offs were introduced
accordingly, in order to retain only single pollen grains. The device was also in Pollen mode, i.e. filtered
out particles smaller than 5 um of optical size.

3 Results obtained in Siauliai

The analysis was started from a semi-qualitative consideration of the fluorescence spectra, primarily
aiming at demonstration of the capabilities and the limitations of the approach and preliminarily
assessing the principal possibility to construct a reliable particle recognition algorithm.

3.1 Qualitative comparison of the fluorescence spectra of different pollen species

3.1.1 Comparison of fluorescence spectra of different species of the same genus

The experiment included three genera, for which we collected pollen from different species (Table 1):
Salix, Pinus, and Acer. Their fluorescence spectra are shown in Figure 6, where the solid lines represent
the normalized mean spectrum and shadows show the standard deviation range. The uncertainties of the
mean spectra were a fraction of a percentage leading to the statistically significant difference (p<0.001)
at all wavelengths for both Pinus and Acer mean spectra and even for some wavelengths of the Salix
spectra.

11



2 — Salix alba 3 04- —— Pinus sylvestris
204 Salix fragilis 2 Pinus mugo
o A oY
: :
g [ WA g 0.3
203 c\/ \ o
[ | [
o | \ o
$ | \ g})
S ‘ A S 0.2
=} \ 3
= 0.2 | \ =
he] \ /2 A kel
[] VvV \ (]
£ \ "\ £
o o
c c 0.1
0.1
4w il B % N
= —~— = /
© - © v
: : \
= 0.04 =00
350 400 450 500 550 600 650 700 750 800 350 400 450 500 550 600 650 700 750 800
Wavelength, nm Wavelength, nm

o
n

—— Acer negundo
Acer pseudoplatanus

0.4 1 b\

o o
[N (]

Mean of normed fluorescence amplitude
o
s

WA .

350 400 450 500 550 600 650 700 750 800
Wavelength, nm
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Despite statistically significant differences between the mean spectra, the sample standard deviation
(shadowed ranges in Figure 6) was quite large. Therefore, it was not possible to distinguish between
Salix alba and Salix fragilis. The normalised spectra of Pinus sylvestris and Pinus mugo coincided at the
maximum value of the amplitudes at the wavelength of 460 nm but the mean amplitude of the Pinus
sylvestris spectrum was higher in short-wave range (< 450 nm). At the longer wavelenghts (480-550
nm) the amplitude was higher for the Pinus mugo pollen. However, these differences were well inside
the sample standard deviation. The difference between the species of the Acer genus was the most-
pronounced and, even taking the sample variability into account, these were the ones that could be
distinguished. The Acer pseudoplatanus spectrum showed higher amplitude than Acer negundo in the
short-wave range and lower in the central part of the spectrum (400-520 nm).

Therefore, two out of three tested genera allowed, in principle, an inter-genus species classification
using the pollen fluorescence spectrum. However, the differences between them were evidently too
small for the multi-species algorithm considered in the current paper. Practical work was therefore left
for the follow-up studies.
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3.1.2 Comparison of fluorescence spectra of species of different genera

The study included 11 different pollen genera (Table 1), whose spectra are shown in Figure 7 for
recordings at every 500 ns starting from the first pulse reaching the detector. For all species, the most
intense fluorescence was observed for the wavelengths from 390 to 570 nm, with different locations of
the maximum and with different amplitude. For example, the highest mean intensity of fluorescence
was recorded for the Artemisia pollen: it exceeded >7000. Meanwhile, the amplitudes of Betula and
Quercus reached more than 4000. In all cases, the first pulse had a wider wavelength range than the
subsequent ones. The amplitudes of already the second recording (500 ns from the first pulse) was close
to zero for wavelengths longer than 600 nm.
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Figure 7 Comparison of fluorescence indicators of the tested pollen. The blue line represents the first
acquisition. All other lines are delayed acquisition by step of 500 ns from the last. Shadows show the
standard deviation ranges for each acquisition. In the figures, the x-axis represents the wavelength, nm;
the y axis shows the amplitude, NA.

In addition, Figure 7 shows that not only the intensity of the first signal between separate genera differs,
but the shape of the second recording is also specific, which is significant for the identification of the
pollen morphotype. For example, the difference in fluorescence intensity of Salix pollen between the
first and second signals was larger than for other tested taxa. Tests with Festuca pollen actually showed
that, unlike all other species, the signal amplitude grows during the first 500 ns resulting in the absolute
maximum intensity of the spectrum registered at the second recording, 500 ns after the fluorescence is
induced.

The qualitative analysis of the data was continued by grouping the data according to similarity of the
fluorescence spectrum of the first recording (Figure 8).
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Alnus, Corylus and Betula plants are in one taxonomic family, and our results indicate that their pollen
has a similar fluorescence spectrum. Interestingly, according to the similarities of the fluorescence
spectra, Quercus pollen appeared in the same group with Betulaceae, although the maximum value of
its mean of the normalised spectrum was the lowest in the group.

Another group in which the pollen fluorescence curves have similar shapes also consists of pollen of
woody plants: Populus and Salix. They also bloom at a similar time; therefore their precise
identification is an important but, as seen from Figure 8, a challenging task. The tested grass pollens
form a separate group, which however also included pollen of the woody plant Juniperus. This group is
characterised by the high mean amplitude in short (< 400 nm) wavelength range.

3.2 Recognition skills

The key practical question for the Rapid-E application in the daily pollen monitoring is the accuracy of
the pollen type classification presented below via the confusion matrices. In these matrices, rows
represent the actual type of pollen and columns are the assigned type. All values are in %, the sum of
values over each row is 100%: every pollen has to be assigned to some type.

3.2.1 Comparison of the confusion tables obtained in Novi Sad, Payerne and Siauliai

The recognition procedure in Siauliai was built independently for scattering and fluorescence signals
with subsequent fusion of the results. The tables for the individual components are presented in the
Supplement. Table S1 and Table S2 present the outcome of the combined identification using both the
scattering image and the fluorescence spectra. With the exception of Alnus, the combination of the
identification methods showed better recognition skills than each of the methods separately. Overall, the
improvement over individual methods was ~23% compared to scattering images and ~7% compared to
fluorescence.

Overall, 6 out of 11 tested pollen genera were identified with the accuracy better than 75%. The best
results (> 91% of correct classification) were achieved for Pinus pollen. The pollen of the plants of
Betulaceae genus was identified comparatively well but the recognition of the individual species of this
family was poor.

The overall accuracy was very similar for Siauliai and Novi Sad and somewhat better for Payerne,
partially owing to the stricter filtering of the raw data. Although it is difficult to make exact comparison
of the confusion tables between the studies, it still sheds some light on the overall performance and also
highlights the similarities and differences between the regions. Comparing the Tables 2 and 3, one can
see that the difference in the recognition quality is about 10% for most of species, being practically
identical for Betula (~50% in both studies) and Quercus (~60%).

Table 2 Confusion table obtained in Siauliai. Accuracy: 73 %.

[ (2]
S| @ | g g S| 3
Plant genus é E|S| g g x| 3 . g_ g %
12|82 |8|8|2|2|3|3]|%&
Festuca 88 |1 |O |O JO JO |2 |5 |2 |Oo |2 [y
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Artemisia 2 86 |0 0 0 2 1 4 5 0 0
Corylus 2 |0 63 | 17 | 8 1 0O ([0 |0 |9 |O
Alnus 1 |0 15 | 53 |18 | 2 1 |10 [0 |9 1
Betula 3 1 |9 |30 (47 |1 1 1]0 1 6 1
Salix 1 1 2 1 2 |78 110 |0 1 |4 |0
Populus 3 6 1 1 1 18 |58 |3 |3 5 1
Acer 5 2 1 1 1 |0 |2 |86 |1 1 10
Juniperus |4 |4 |0 |0 |0 |O |3 1 |87 |0 1
Quercus 2 [0 |9 10 |5 |4 1 |0 |0 |69 |0
Pinus 7 (0 |0 |O |O |O (0O |O 1 0 (91

Predicted label

Table 3 Confusion table obtained in Novi Sad. Accuracy 74% (obs. different number of species).

Plant genus

Dactilis
Cynodon
Corylus
Alnus
Betula
Salix
Fraxinus
Populus
Acer
Artemisia
Taxus
Quercus
Picea
Cedrus

True label

o|lw|r|o|r|wo|u|o|w(r|r|o|~ S Dactilis
o|w|o|w|ul|k|w|o|r|o|v o F|w|Cynodon
olo|s|o|ojo|r|~No|R|o|R|e|e(Corylus
onvan NN A RN o|N|o|o|w|Alnus
o|n|wo|r|r|o|w|r|d w|K|o|oBetula
o|o|v|o|o|o|w|d|w|w|w|5|~|o|Fraxinus

Plw|o|o|s|a]|a|nBlw| |- o v (Salix
HHHOHO,:‘I—\NONOO-bF’Opums
ok |oo|d|r|o|v o|-|o|o|u|Acer
RNk |o|Ro|r|o|N kv oS olArtemisia
ok |(8lo|r|w|~|r|r|o|~|o|~Taxus
oAl |wlw|Blwnv|o|o|Quercus
|2 sk |k|k|o|k|r|o|o|vd|o|Picea
QOlo|lolo|o|o|o|o|o|o|o|o|o|o(Cedrus

Predicted label

Somewhat higher skills in Novi Sad were obtained for Corylus, Alnus and Populus while in Siauliai
higher skills were reached for Acer and Artemisia. It is interesting to note that the confusion between
the two chosen grass pollen morphotypes in Novi Sad was not notable and for these genera the Rapid-E
data have certain discrimination potential. One can therefore conclude that the multi-species
discrimination algorithms applied in these studies showed similar recognition skills. It should be
stressed however that the training of the ANNs were completely independent and used the local pollen
grains. Therefore, the similar recognition quality does not imply similar pollen in these regions.

As mentioned earlier (Section 2.2.3), the calibration procedure used at MeteoSwiss was slightly
different than in Novi Sad and in Siauliai. In addition, the focus at MeteoSwiss was more towards
operational applications. As a consequence, only a subset of the 60 calibrations was used to train the
classifier. Only taxa with high relevance for monitoring or for which very good calibrations were
available were selected. It was noticed that increasing the number of taxa could worsen the problem of

16



false positive detections (see below). An optimum for monitoring purposes was found when using 10
taxa. The performance of the corresponding classifier is shown in Table 4.

Table 4 Confusion table obtained at MeteoSwiss, Payerne. Accuracy 80%.

(%)

Plant genus © é % o | 2 E S| .
E|2|E|5|g|8|8|2|83
< o0 O (&) LL LL (&) o o [

Alnus 27 1 27 | 1 0 0 1 (43| 0 0 1

Betula 1 ]183]| 2 0 0 4 7 0 0 1

Carpinus 0 | 13|74 0| 0| 2 31016 1|3

Cupressus 0|3 |]1|8|0]0|1]2]|1]|8]|=

Fagus 0l 2[3]1[s]o[1]1]2][3]8

Fraxinus o122 ]ofof7ms][2]1]2]3]|F

Corylus 4 8 0 0 0 0 [87] O 0 0

Pinus 0 0 0 0 0 0 0 (98| O 2

Poaceae 0 3 8 1 0 1 0 18| 4

Taxus 0 0 0 1 0 0 0 1 0 |97

Predicted label

It is interesting to note that, as expected, most errors occur within the Betulacae family, with an
extremely low recall for Alnus. It was hypothesised that, although calibrations were repeated, the
classifier may to some extend recognize the conditions under which the calibration was performed and
quality of the sample. Obtaining a classifier working only on the generic features of the taxa is a very
difficult task. A holistic validation procedure, going from the analysis of device raw outputs (Section
3.1) analysis to the comparison with reference measurements (Section 4.5), is therefore essential.

4 Discussion

4.1 Over-training — a problem?

The problem of potential over-training was addressed from two directions: via the standard training vs
test datasets evaluation, and via an explicit verification of homogeneity of the datasets.

4.1.1 Performance in the training and test datasets

Prior to starting the ANN training, all datasets were split to the training and test subsets. The test subset
in Siauliai consisted of 1000 particles picked at the end of every calibration event while all other
particles were used for training. The Siauliai ANN training continued until saturation of the recognition
quality for the training dataset (see example in Figure 9), thus including the overfitting range. The
maximum performance of the fluorescence-based recognition was obtained at the epoch of ~900, after
which the over-fitting gradually picked up. Therefore, the ANN parameters after this epoch were taken
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as the study outcome. For the scattering-image-based training, a similar consideration suggested the
epoch 3500 as the optimum.

2.50 2.50

\ — Train — Train
Validation Validation

2254 | 2.25

2.00 1

1751

Cost, %

1.50 4

1.254

1.00 4

0 2500 5000 7500 10000 12500 15000 17500 20000 0 1000 2000 3000 4000 5000
Epoch number Epoch number

Figure 9 Siauliai ANN multi-species cost function for scatter (left) and fluorescence-(right) based
recognition as a function of the training epoch.

— Train
Validation

L i i

0 500 1000 1500 2000 2500 3000
Epoch number

Figure 10 Novi Sad ANN overall cost as a function of the training epoch. The evaluation error is lower
than the training error due to dropout (0.5) in each convolutional and fully connected layer, not used in
the validation round.

For Novi Sad (Figure 10), the training was stopped before the overfitting picked up and thus the
parameters of the last trained epoch 3000 were used.

4.1.2 Test of homogeneity of the calibration datasets

One of the concerns regarding the fluorescence-based technology is the stability of the spectra for
different conditions of pollen grains, which are affected by ambient humidity, temperature, time they
spent in the air, chemical interaction and degradation, etc. Full-scale evaluation of this problem lies
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beyond the scope of this paper. Here, we only present a brief check demonstrating that it was not the
major issue.

As stated in the methodological section, the calibration set for each pollen type in Siauliai consisted of
up to 8 independent calibration sessions for four species, these sessions were performed in different
days and thus with pollen of different age. A simple check of homogeneity of the fluorescence spectra is
then to use the data of one of these days as the training set and those from another day as the test subset.
Substantial difference in the recognition quality would point at the inhomogeneous data. Distinguishing
the 4 species is simpler than 11 but important is the difference between the training and test recognition

quality.
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Figure 11 Performance of the Siauliai ANN for the test subset taken from different days than the
calibration subset. Unit: %.

Comparing the upper and lower rows of Figure 11, one can see that for the above epochs (3500 for
scattering- and 900 for fluorescence-based ANNS), the quality of recognition for the training subset (one
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day) and test subset (another day) differ by <5% for all 4 species. Therefore, we conclude that the
conditions during the different days of calibration did not affect the homogeneity of the dataset.

4.2 Comparison with other studies on pollen recognition

During recent years, a number of attempts to obtain information about pollen concentration in the air in
real time have been undertaken. However, even the most-successful tests carried out with WIBS-4
(O’Connor et al., 2014), Hund BAA500 (Oteros et a., 2015), Yamatronics KH-3000-01 (Kawashima et
al., 2017), and Plair PA-300 (Crouzy et al., 2016) devices, strongly advancing the pollen monitoring
field, left open the questions of scalability and replicability of the results. They also did not touch the
topics related to application of the tested systems in the operational context. Application of yet-another
new device — Plair Rapid-E — in our study was pursuing, apart from the scientific objectives, the
operational implementation as a mid- to long-term goal. However, having tested 14 different pollen
morphotypes, we found that significant work is still needed.

One of the challenges to the automatic monitors is the rich mixture of pollen types in Europe that all
pose significant allergenic threat. This makes it particularly difficult for the monitors to satisfy the
needs of allergic people and allergologists — unlike in many other regions. For instance, Cryptomeria
japonica identified more than 10 years ago by Kawashima et al. (2007) is still the main pollen type
recognised by that system (Kawashima et al., 2007; Wang et al., 2013; Wang et al., 2014; Takahashi et
al., 2018). However, it seems to be more or less sufficient for that region.

Varying level of allergenicity of species within a single genus or a family raises the question if the intra-
genus classification is possible. Hirst-based manual techniques do not allow it: pollen grains are too
similar in the microscopic analysis. Our results show that such level of identification is not immediately
possible using Rapid-E information either. In particular, our data demonstrated that the fluorescence
spectra of the Salix alba and Salix fragilis species were almost identical. More promising were the
experiments with Pinus and Acer (Figure 6) and some grasses (Table 3) where the work should be
continued with different identification algorithms built for these very species after their separation from
other pollen types. Other genera should also be tested.

Fluorescence spectra can be similar not only between species of a particular genus but also between
different families. Several groups of otherwise unconnected species manifested very similar spectra, to a
degree that did not allow their reliable differentiation (Figure 8). Similar results were obtained in the
studies conducted by D. J. O’Connor with co-authors (2011). They assessed the fluorescence spectrum
of pollen of Betulaceae family and stated that “birch and alder spectra closely resemble each other
although there is a possibility that the birch pollen is less fluorescent than alder”. Our results show that
in the case of Alnus, the fluorescence amplitudes are higher than of Betula but the spectra are indeed
similar.

Similar spectra of Salix and Populus pollen (Figure 7) also resulted in poor differentiation between
them. At the same time, the degree of confusion was higher for Populus than for Salix (Tables 2 — 4).
This is in agreement with the results obtained with Hund BAA500 by Oteros et al. (2015), who
identified Salix pollen as the worst of pollen types analysed (Oteros et al., 2015). The BAA500
algorithm is based on recognition of the particle shape, which can be weakly related to the scattering
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images in our study — the very part that showed substantial confusion of almost all studied pollens with
Salix and Populus.

Crouzy et al. suggested that a non-zero fluorescence amplitude around 600 nm wavelength is
incompatible with pollen from the Betulaceae family (Alnus, Carpinus, Corylus and Betula) but could
possibly be observed for grass pollen (Dactylis and Phleum) (Crouzy et al., 2016). Our results support
this suggestion and in addition the test in Novi Sad shows that ANN could show some discriminatory
power between Dactylis and Cynodon. Noteworthy, recognition of the herbaceous plants (Festuca,
Artemisia) was considerably better than that of pollen of Betulaceae family also in Siauliai (Table 2).
One can note that the recognition accuracy of this study (just above 70%) is in an apparent contradiction
with the results of Crouzy et al. (2016), where the skills were significantly higher: 91% was obtained
with PA-300. However, there are several important differences between the approaches. Firstly, the pre-
filtering of the particles is substantially stricter and about 20% of classifications were filtered out as
uncertain (failed the threshold of the classification quality). Secondly, the accuracy of the recognition
depends significantly on the number of pollen morphotypes used for the test (8 by Crouzy et al). In an
extreme case, automated discrimination of just one species (Cryptomeria japonica) from non-pollen
particles using KH-3000 was high already 10 year ago (Kawashima et al., 2007; Kawashima et al.,
2017). Similarly, the high fraction of BAA500 true positive counts (93,3%) against manual analysis of
individual species by Oteros et al. (2015) went down to 65% when the recognition of 13 pollen
morphotypes was requested. It took an additional training of the algorithm to raise it up to the same
72% as in our study. Finally, it should also be noted that PA-300 delivers fewer parameters than Rapid-
E, possibly making it difficult to identify the important combinations in the raw signal in a single-level
many-to-many identification task. Application of additional levels of the discrimination filters can
improve the results.

4.3 Possible ways to improve the recognition skills

The dependence of the recognition quality on the number of categories is one of the directions of the
future research. It may be possible to consider independent groups of pollens that never (or very rarely)
appear in the air at the same time — but it can make the algorithm place-specific. It is vital however to
obtain improvement of the algorithm for reliable separation of pollens that can be in the air together
(e.g., Betulaceae, Quercus, and the like).

Considering improvements of the recognition algorithms, Matsuda and Kawashima (2018) suggested
the “extract window” method of analysis of the scattering images, which enabled to distinguish unique
ranges of light scattering intensities for each taxon. However, the reliability of the algorithm is known
only for 5 pollen morphotypes. Development of this and similar approaches for the Rapid-E scattering
images may eventually improve this line of analysis and, subsequently, push up the overall scores.

Since the output of the ANN can be transformed to give a vector of probabilities, where each element i
of the vector represents the probability that the sample belongs to class c;, we expect improvement of
the classification accuracy if we demand that the classification occurs only if the highest probability in
that vector is greater than some probability threshold, but with the price of discarding the samples below
the defined threshold. This direction was initially explored by Crouzy et al (2016) and showed high
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potential: discarding 20% of samples led to an increase of precision of about 10% (see also Section
2.2.4).

As a more radical approach, one can challenge the usage of ANNs without a-priori relations derived
from physical or chemical features of each pollen type. Even generic considerations of scattering and
fluorescence theories might hint on quantities, which show enhanced contrast in comparison with the
raw data. The idea was tried in the Payerne algorithm and showed its potential.

4.4 Lessons from the comparison of the Hirst and Rapid-E measurements

Comparison of the Rapid-E of MeteoSwiss with the operational Hirst measurements in Payerne from
February to June 2018 extended the results of Crouzy et al. (2016) to more important taxa (Figure 12),
but also showed that robust determination of the sampling still needs to be achieved.
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Betula, Fraxinus, Pinaceae, Poaceae.
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In order to obtain pollen concentrations, large particles presenting bimodal fluorescence spectra with
position and intensity of maxima compatible with the observations made from calibrations (see Section
3.1) were first selected. Then, the classifier presented in Section 2.2.3 was applied. The effective
sampling of Rapid-E is the result of a series of physical and algorithmic processes: the sampling
efficiency of the Sigma-2 head, the imperfect targeting by lasers and the drop-offs due to the below-
threshold classification. In Figure 12, the Rapid-E data are scaled with species-dependent factors
(constant over the season) bringing the seasonal mean to that of the Hirst time series. The issue deserves
attention since, as shown by the Novi Sad results, tightening the thresholds improves the recognition
skills but increases the drop-offs at the recognition stage. Sampling with Poaceae is the highest,
Pinaceae present a 2% decrease of sampling and Betula presents a 33% decrease in sampling with
respect to Poaceae. False positive is a significant issue with Fraxinus: the sampling is dramatically
reduced (75%) for higher fluorescence thresholds. As a consequence of those limitations, the results
presented here should not be taken as a complete demonstration of operational capabilities.

The suppression of the false-positive detections as described in Section 2.2.4 worked quite efficiently
but still an evident false-positive event resulting from the Betula misinterpretation as Poaceae is visible
in the beginning of April. Further work is required to completely remove such events, and, as a last
resort, expert supervision could be used in an operational setup.

4.5 Opinion of the Rapid-E producer

During the work, we have been in periodic contact with the Plair company regarding features and issues
of the Rapid-E devices used by our groups. Having the paper finalised, we asked their feedback.

D. Kiselev, Plair: “Our impression concerning the presented material is mixed. While I see some
positive and encouraging results, my main critics would be addressed to your calibration sets, which
cleaning and filtering falls short of the actual needs. Our results are 5-10 % better without overfitting
the data or other special processing. Time series Plair gets for "problematic pollens” like Betula,
Corylus and Alnus are actually very good. Our goal is to obtain high quality time series calculated in
real-time by the instruments and the good calibration is essential for that.”

We agree with importance of the calibration datasets; the procedures ensuring their quality are
described in the Methodology section and further explained in the discussion above. Noteworthy, our
groups were working largely independently using local pollen and original methods of the data
collection and processing. Therefore, the similarities in the observed features provide additional support
for our conclusions. Unfortunately, details of the Plair analysis were not available when the paper was
prepared. Therefore, independent evaluation of that algorithm against the common criteria described in
this paper was not possible.

5 Conclusions

We conducted the first analysis of the pollen monitoring capabilities of the new automatic pollen
detector Plair Rapid-E. Using the very limited data pre-processing and basic ANN classification it was
shown that, if comparatively large number of pollen types is considered, stand-alone scattering- and
fluorescence- based recognition algorithms fail to produce reliable results for majority of species. The
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combination of these algorithms performed better exceeding 80% accuracy for 5 out of 11 species.
Therefore, this combination can be considered as the first-stage classification of pollen types. It should
be followed by more in-depth discrimination efforts, including also life time of florescence into the
classification model, etc.

The fluorescence spectra showed similarities among several tested species ending up with three groups:
(Alnus, Corylus, Betula and Quercus), (Salix and Populus), and (Festuca, Artemisia, Juniperus) — as
identified from the Siauliai data. The classification between the groups was comparatively easy.
Attempts to distinguish between the species of the same genus showed certain potential for some genera
but more work is needed.

The results obtained in Siauliai and Novi Sad with very similar experimental setup but independent
analysis, showed comparable results confirming the overall conclusions. They also pointed out at
certain limitations of replicability of the raw data features between the devices, which will require an
additional conversion step to make them compatible. In this line, the comparison performed at
MeteoSwiss shows a reasonable potential for automatic monitoring of important taxa, however it is not
clear to which extent algorithms can be transposed from one device to another.

The in-depth discussion and improvement of the methodology and the extension to more taxa goes
beyond the scope of this paper. We decided to communicate early the current results, as well as the
methods developed independently by the three teams currently working with the Rapid-E counters, in
order to stimulate parallel developments by the user community of the Rapid-E devices. The emergence
of such community is a good opportunity to address generalization and replicability of the device-
specific results. We also believe that moving from expert supervision or calendar methods to the
approach presented here and based only on device outputs for, e.g., elimination of false-positive
detections could be of help for other automatic monitoring systems.

Among the main challenges to be resolved in the future work, the most important ones are:

- to obtain reliable recognition skills at least for the pollen types that can be in the air at same time

- to reach full replicability of the algorithms and results across the different copies of the same
monitors (we are thankful to the Plair team for suggesting the scripts addressing this problem,
which are now under evaluation)

- to resolve specific questions related to the algorithm construction and training — including the
minimal sample volume, problems of over- and under-fitting, preprocessing and pre-filtering of
the data, false-positive identifications, etc.

Successful resolution of these questions will open the way for wide applications of the automatic
particle counters for pollen observations.

Code and data availability

All data and algorithms presented in the paper are experimental and subject to further development.
They are available for research purposes on-request basis from the authors of the manuscript. Work is in
progress to harmonise the algorithms and make them public together with the data via open software
and data repositories. Possibility of GPL-type license is being evaluated.
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Supplement

Table S1. Confusion table for pollen taxa identification by using ANN based on scattering image.
Multiclass accuracy 44 %

(G (2]

5|23 o E 5|3
Plant genus % é g é E % § E g_ § é

L|l<|OoO||oa|H|la|ls|3|S|a
Festuca 52 |1 1 2 1 3 3 5 5 9 19
Artemisia |2 |58 |1 |1 |4 |13 |3 |4 |9 |3 |2
Corylus 3 1 |38 (2020 |1 1 |5 1 9 1
Alnus 4 |3 |21 129 |19 |3 1 |6 |1 11 |2 _
Betula 4 |4 |19 |15 |37 |3 |1 |5 |1 |9 |2 |38
Salix 5 |8 [1 |o [5 |s1[13]3 [6 |7 [1 |3
Populus 16 |4 |0 |1 [1 |16 |28 |4 |16 |8 |6 E
Acer 8 5 6 7 4 4 5 29 | 4 23 | 5
Juniperus |16 {19 |0 |0 |0 |4 10 |2 |36 |3 10
Quercus 7 2 10 | 6 3 3 3 14 | 2 48 | 2
Pinus 13|12 0 1 1 1 1 1 3 1 76

Predicted label

Table S2. Confusion table for pollen taxa identification using fluorescence spectrum.
Multiclass accuracy 67 %
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L < o < m (%) o < ) C | a
Festuca 84 | 2 0 0 0 0 1 5 3 0 5
Artemisia |2 |80 |0 |0 |0 |1 |3 |6 |8 |0 |O
Corylus 2 |0 |53 |15 |7 |6 1 10 1 14 |1
Alnus 1 |0 14 145 119 |3 |4 1 1 10 | 2 _
Betula 3 |1 |7 [29]38 |3 |4 |0 |1 |12 |2 |3
Salix 0O |2 |7 |2 |3 |72]9 |0 |1 |4 |O P
Populus 2 |9 |3 |2 |2 |17 |53 |4 |4 |3 |1 E
Acer 6 3 1 0 1 0 2 84 | 2 1 0
Juniperus |6 |5 |0 |0 |1 |O |3 |0 |8 |0 1
Quercus 1 0 12 113 | 9 6 2 0 1 55 |1
Pinus 11 |0 0 0 1 0 0 0 1 1 86

Predicted label



