Preprints
https://doi.org/10.5194/amt-2018-45
https://doi.org/10.5194/amt-2018-45
23 Mar 2018
 | 23 Mar 2018
Status: this preprint has been withdrawn by the authors.

Sensitivity of a Q-ACSM to chamber generated SOA with different oxidation states

Xiaoxiao Li, Yan Ma, Hui Chen, Youling Jiang, Xin Ma, Rujin Yin, Dongsen Yang, Xiaowen Shi, Jiming Hao, Jingkun Jiang, and Jun Zheng

Abstract. The accuracy in quantification of secondary organic aerosols (SOA) using a Q-ACSM has been comprehensively investigated in this work. SOA samples were generated under simulated photochemical oxidation conditions in a 4.5 m3 Teflon chamber from three different volatile organic compounds (VOC) of atmospheric relevant concentrations (dozens of ppbv): α-pinene, isoprene, and toluene, representing both biogenic and anthropogenic VOC. Different SOA oxidation states were achieved by changing the relative ratio of the VOC precursor to the oxidants (O3 or OH). A scanning mobility particle sizer (SMPS) and an aerosol particle mass analyzer (APM) were used to determine the number-size distribution and the exact mass of the chamber-generated SOA, which were then used to deduce the SOA effective density and mass concentration. Results showed that aerosol mass concentration measured by the Q-ACSM based on SMPS calibration alone may be associated with considerable errors due to the fact that the effective density of SOA at different oxidation state can change substantially. More importantly, the sensitivity of the Q-ACSM to a specific type of SOA was found to be anti-correlated with the aerosol oxidation state regardless of the VOC precursors. This may be due to the decreasing of relative ionization efficiency (RIE) or the collection efficiency (CE) of the Q-ACSM for more oxidized SOA. To pinpoint the actual cause, ammonium sulfate ((NH4)2SO4) seed particles were injected into the chamber before SOAs were produced and the CE for a specific SOA sample was hence determined with reference to the changes in sulfate signals. Our experiment results along with previous literature reports strongly implied that as the SOA oxidation state increases, SOA will transform gradually from a liquid state (CE ≈ 1) into a solid (or glassy) state with a CE of 0.2~0.5. Meanwhile, the RIE of OA decreased substantially when SOA transformed from hydrocarbon-like OA (HOA) into more oxygenated OA (OOA) and may further decrease as O/C continued to increase. Our results indicated that the current Q-ACSM calibration procedure using a constant RIE may lead to somewhat underestimation of more oxidized OOA but overestimation of less oxidized HOA, i.e., a variable RIE shall be applied, most likely as a function of the SOA oxidation state.

This preprint has been withdrawn.

Xiaoxiao Li, Yan Ma, Hui Chen, Youling Jiang, Xin Ma, Rujin Yin, Dongsen Yang, Xiaowen Shi, Jiming Hao, Jingkun Jiang, and Jun Zheng

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Xiaoxiao Li, Yan Ma, Hui Chen, Youling Jiang, Xin Ma, Rujin Yin, Dongsen Yang, Xiaowen Shi, Jiming Hao, Jingkun Jiang, and Jun Zheng
Xiaoxiao Li, Yan Ma, Hui Chen, Youling Jiang, Xin Ma, Rujin Yin, Dongsen Yang, Xiaowen Shi, Jiming Hao, Jingkun Jiang, and Jun Zheng

Viewed

Total article views: 2,210 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,691 470 49 2,210 56 60
  • HTML: 1,691
  • PDF: 470
  • XML: 49
  • Total: 2,210
  • BibTeX: 56
  • EndNote: 60
Views and downloads (calculated since 23 Mar 2018)
Cumulative views and downloads (calculated since 23 Mar 2018)

Viewed (geographical distribution)

Total article views: 2,026 (including HTML, PDF, and XML) Thereof 2,017 with geography defined and 9 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 28 Mar 2024
Download

This preprint has been withdrawn.

Short summary
The ACSM calibration method using a constant RIE with reference to inorganic salt standards may be oversimplified to reflect the SOA properties in the real atmosphere. In this work, a Q-ACSM was calibrated with SOA standards generated from both anthropogenic and biogenic VOCs in ppbv level inside a smog chamber. The sensitivity of the Q-ACSM to SOA was found to be anti-correlated with the aerosol oxidation state regardless of the VOC precursors, indicating that a variable RIE shall be applied.