

1 **Supplementary Information:**

2 **Real-time measurements of gas-phase organic acids using SF₆⁻ chemical ionization**
3 **mass spectrometry**

4
5 Theodora Nah,¹ Yi Ji,^{1,2} David J. Tanner,¹ Hongyu Guo,¹ Amy P. Sullivan,³ Nga Lee
6 Ng,^{1,2} Rodney J. Weber¹ and L. Gregory Huey^{1*}

7
8 ¹*School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA*

9 ²*School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA*

10 ³*Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA*

11

12 * *To whom correspondence should be addressed: greg.huey@eas.gatech.edu*

13

14 **Figure S1:** Diurnal trends of (a) relative humidity, (b) temperature, and (c) solar
 15 radiance. The lines within the shaded area represents the average values. The upper and
 16 lower boundaries of the shaded areas mark one standard deviation.

17

18 **Figure S2:** (a) Time series of $^{34}\text{SF}_6^-$ reagent ion signal and ambient water vapor
 19 concentration for the entire field study. The ambient water vapor mass concentrations are
 20 determined from ambient relative humidities and temperatures. (b) Time series of
 21 $\text{F}_2^{34}\text{SO}_2/\text{F}_2^{34}\text{SF}_6^-$ ion signal ratio obtained during calibration measurements. (c) $\text{F}_2^{34}\text{SO}_2^-$
 22 ion sensitivity obtained from calibration measurements as a function of ambient water
 23 vapor concentration. Data in panels (a) to (c) are displayed as 1-hour averages.

24

25 **Figure S3:** Time series of signals of (a) malonic, (c) succinic, and (e) glutaric acids
 26 measured during the field study. The data are displayed as 1-hour averages. Their
 27 corresponding diurnal profiles are shown in (b), (d) and (f), respectively. All the signals
 28 represent averages in 1-hour intervals and the standard errors are plotted as error bars.
 29 These organic acids were not calibrated so all the signals are presented here as Hz
 30 normalized by the instrument's sensitivity to $F_2^{34}SO_2$, which was the primary calibrant
 31 used in the field study.

32

33 **Figure S4:** Time series of (a) SO_2 and (b) HNO_3 concentrations measured during the
34 field study. All the data are displayed as 1-hour averages.

35

36 **Figure S5:** Scatter plots of concentrations (or signals) of (a) formic, (b) acetic, (c) oxalic,
 37 (d) butyric, (e) glycolic, (f) propionic, (g) valeric, (h) malonic, (i) succinic, and (j)
 38 glutaric acids with CO concentration. All the data are displayed as 1-hour averages. The
 39 data for malonic, succinic and glutaric acids are presented as Hz normalized by the
 40 instrument's sensitivity to $F_2^{34}SO_2$ since these organic acids were not calibrated. Red
 41 lines shown are linear fits to the data.

42

43 **Figure S6:** Scatter plots of concentrations (or signals) of (a) formic, (b) acetic, (c) oxalic,
 44 (d) butyric, (e) glycolic, (f) propionic, (g) valeric, (h) malonic, (i) succinic, and (j)
 45 glutaric acids with SO_2 concentration. All the data are displayed as 1-hour averages. The
 46 data for malonic, succinic and glutaric acids are presented as Hz normalized by the
 47 instrument's sensitivity to $\text{F}_2^{34}\text{SO}_2$ since these organic acids were not calibrated. Red
 48 lines shown are linear fits to the data.

49

50 **Figure S7:** Scatter plots of concentrations (or signals) of (a) formic, (b) acetic, (c) oxalic,
51 (d) butyric, (e) glycolic, (f) propionic, (g) valeric, (h) malonic, (i) succinic, and (j)
52 glutaric acids with O_3 concentration. All the data are displayed as 1-hour averages. The
53 data for malonic, succinic and glutaric acids are presented as Hz normalized by the
54 instrument's sensitivity to $F_2^{34}SO_2$ since these organic acids were not calibrated. Red
55 lines shown are linear fits to the data.

56

57 **Figure S8:** Scatter plots of concentrations (or signals) of (a) formic, (b) acetic, (c) oxalic,
 58 (d) butyric, (e) glycolic, (f) propionic, (g) valeric, (h) malonic, (i) succinic, and (j)
 59 glutaric acids with HNO_3 concentration. To exclude periods when the site was affected
 60 by urban or power plant emissions, data where $\text{HNO}_3 > 0.5$ ppb are excluded from these
 61 scatter plots. All the data are displayed as 1-hour averages. The data for malonic, succinic
 62 and glutaric acids are presented as Hz normalized by the instrument's sensitivity to
 63 $\text{F}_2^{34}\text{SO}_2$ since these organic acids were not calibrated. Red lines shown are linear fits to
 64 the data.

65

66 **Figure S9:** (a) Time series of isoprene concentration during the field study. (b) Diurnal
 67 profile of isoprene. All the concentrations represent averages in 1-hour intervals and the
 68 standard errors are plotted as error bars. (c) Scatter plot of isoprene concentration with
 69 ambient temperature. All the data are displayed as 1-hour averages.

70

71 **Figure S10:** Scatter plots of concentrations of (a) formic and (b) acetic acids with
 72 isoprene concentration. All the data are displayed as 1-hour averages. Red lines shown
 73 are linear fits to the data.