Response to reviewer comments on “Is it feasible to estimate radiosonde
biases from interlaced measurements?” by S. Kremser et al.

We appreciate the suggestions and constructive comments provided by both reviewers.
Below, the reviewer’s comment is repeated in blue with our response in black.

Response to Reviewer #1

What | am missing as a reader are one or two vertical profiles of autocorrelation coefficients
calculated from radiosonde temperature time series in the Tropics and in the Extratropics.
This would be helpful for estimating which curve in Fig. 4 is the most relevant one. So far the
paper only states that the autocorrelation at Lindenberg is around 0.5. The autocorrelation
at other levels and regions may be quite different.

We thank the reviewer for this suggestion and we have now added a new figure to the
manuscript (Figure 5). This figure shows vertical profiles of autocorrelation coefficients
determined from ERAS reanalyses interpolated to the locations of 6 GRUAN sites, including
sites in the tropics, middle and high latitudes. We chose to calculate the autocorrelation
coefficients from ERAS data rather than from radiosondes as long-term continuous
measurements are required to obtain a robust estimate of the seasonal cycle of the
temperature time series before calculating the autocorrelation coefficients. Such continuous
observations, covering at least 2 years of daily radiosonde flights, are currently only
available at a small subset of GRUAN sites, which does not cover all latitude bands. ERAS is
the latest reanalysis data set provided by ECMWF and it is expected that the calculated
autocorrelation coefficients provide a good estimate of the autocorrelation coefficient at
each of the selected sites. The estimated autocorrelation coefficient at 300 hPa for the
radiosonde measurements made at Lindenberg (0.5 as described in the manuscript), agrees
very well with the coefficient determined from the ERAS reanalyses.

Response to Reviewer #2

Page 2, line 21: Kobayashi et al. (2012) also give a very good example of dual sounding
program (a total of 115 dual soundings for four different seasons) at a GRUAN site,
Tateno when they changed from Meisei RS2-91 to Vaisala RS92.

We added the reference to the revised manuscript as suggested by the reviewer.

Page 2, around line 21: WMO conducted several radiosonde intercomparison campaigns
in the past (e.g., Nash et al., 2011; Jeannet et al., 2008 and the references
therein). It would be fair to mention these and discuss its usefulness and/or limitations.

We included both references and the following sentences in the revised manuscript:

“In the past, WMO conducted several radiosonde intercomparison campaigns (e.g. Jeannet
et al. 2008 and Nash et al. 2011) with the objective of investigating the performance of
operational radiosonde systems. The results of these campaigns are used, in part, to
improve the accuracy of daytime operational radiosonde measurements and the associated
correction procedures to provide temperature and relative humidity accuracies currently
possible with night time measurements. The knowledge of the performance that can be
expected from various radiosonde systems allows the users to make a well informed



decision on the choice of future equipment. For a measurement network like GRUAN, it is
essential to have more than one good quality radiosonde type for operations.”

Figure 1, caption. Please add the explanation on the dotted and blue lines in the upper two
panels.

We have clarified what the dashed and blue lines in Figure 1 represent.

Page 4, Equation 4: Why the delta-hat is not E[ delta ]? A sentence explaining the reason for
this at line 28 may be useful for readers.

E[delta] is the expectation value (sometimes called ‘true’ value) of the constant offset delta,
conceived as a random variable. delta_hat is its estimator, used to obtain an estimate for
the unknown true value from observations.

Page 5, Equation 5: Why there is a phase component “-pi/2”? Also, in general, there should
be cosine components as well for both diurnal and semi-diurnal variations? If, for this
simulation study, it is enough to consider sine components only, mention that perhaps at
line 23.

Combining sine and cosine of the frequency w is equivalent to using sine OR cosine with a
phase shift phi, e.g. a*sin(w) + b*cos(w) = A*sin(w+phi) with A=sqrt(a? +b?) and
phi=atan2(b/a), see also the text book of Daniel Wilks Statistical Methods for the
Atmospheric Sciences (2010), Chap. 8.4.3

Page 5, lines 20-21: The key word “weather” has already appeared at line 10, but it would
be useful to mention it again when “a” first appears here, so that the readers are reminded
that “a” is the one related to the magnitude of high frequency weather variability which is
“noise” in this study. Something like: “(or the magnitude of weather related variability,
larger for smaller a)”

We followed the suggestion by the reviewer and added:

“Sa$ is the autocorrelation coefficient which describes the degree of persistence in the time
series at the weather time scale, e.g. the fluctuations show a day to day dependence, ...”

Page 6, line 13-14: “larger persistence lead to larger uncertainties” — isn’t it possible to
show an equation for this using “a”?

Such an equation is given in the text book of von Storch and Zwiers (1999), Chap. 17, which
we include as a reference. At this point we do not see it to be useful to discuss this basic
issue here. It refers to ‘arithmetic mean’ calculations as stated in the paper.

Page 7, lines 10-13: It would be nice to have some more explanation on the GAMs.

(Are the GAMs a class of statistical distributions that Tt,AB would follow? What factors/
components determine the degrees of freedom here?) This is in part because the authors
mention the GAMs again at the second line of the Conclusions, as a key component for this
study.

Generalized additive models are a fundamental class of regression models which, other than
generalized linear models, allow for nonlinear but smooth components — such as splines. A



very good introduction is given in the text book of Simon Woods which we cited. We
changed the text in Sect 2.3 to:

“The statistical model described in Eq. (12) belongs to the class of generalized additive
models (GAMs, e.g. Chambers and Hastie, 1992), a fundamental class of regression models.
GAMs extend generalized linear models (or “linear regression) by introducing additionally to
the classical linear components a smooth term s. This term can be estimated using a smooth
spline fit with its degrees of freedom (its flexibility of smoothness) determined by
generalized cross validation (Wood, 2006).”

Page 7, line 30: | assume that 300 hPa at Lindenberg (a midlatitude site) would give near-
largest weather-related variability, i.e., minimum “a”, compared to other height regions and
other latitude regions. But, | think it would be useful to actually show this by showing the

values of “a” for other height regions at Lindenberg (and perhaps at a tropical site as well).

We agree with the reviewer and we have now added a new figure to the manuscript (Figure
5). This figure shows vertical profiles of autocorrelation coefficients determined from ERA5
reanalyses interpolated to the locations of 6 GRUAN sites, including sites in the tropics,
middle and high latitudes. We chose to calculate the autocorrelation coefficients from ERA5
data rather than from radiosondes as long-term continuous measurements are required to
obtain a robust estimate of the seasonal cycle of the temperature time series before
calculating the autocorrelation coefficients. Such continuous observations, covering at least
2 years of daily radiosonde flights, are currently only available at a small subset of GRUAN
sites, which does not cover all latitude bands. ERAS is the latest reanalysis data set provided
by ECMWEF and it is expected that the calculated autocorrelation coefficients provide a good
estimate of the autocorrelation coefficient at each of the selected sites. The estimated
autocorrelation coefficient at 300 hPa for the radiosonde measurements made at
Lindenberg (0.5 as described in the manuscript), agrees very well with the coefficient
determined from the ERAS reanalyses.

Page 8, lines 9-10: Please also add explanation on M here.

We assumed that the reviewer referred to line 18 and included an explanation for M in the
revised manuscript.

Page 10, line 25, and lines 28-29: Showing a figure on this might be useful?

While we agree with the reviewer that an additional figure might be useful, we decided not
to perform additional calculations for other synthetic time series with increased
measurement noise as the focus of this paper is on describing the method for determining
the differences in the instrument bias, and an in-depth analysis of the applicability of this
method for different variances or persistence is considered to be beyond the scope of this
short paper. As the software used in this study can be obtained from the authors, the
calculations can be repeated by others for their specific measurement time series as
variance and persistence vary from site to site.

Also, stratospheric water vapor measurements may be an example for this?

We agree with the reviewer that stratospheric water vapour might have a higher
persistence than temperature and it could be tested whether or not the described
interlacing approached is applicable to deriving differences in biases in measurements



obtained from, e.g. frost point hygrometers. Radiosondes measurements of stratospheric
water vapour, however, are highly uncertain and have limited value in this context.
Therefore, we have not discussed the applicability of this interlacing method to water
vapour measurements in this paper, which focuses on radiosonde temperature
measurements.

Page 12, Competing interests: The period is missing at the end of the sentence.

Done.



10

15

20
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Correspondence to: Stefanie Kremser (stefanie @bodekerscientific.com)

Abstract. Upper-air measurements of essential climate variables (ECVs), such as temperature, are crucial for climate moni-
toring and climate change detection. Because of the internal variability of the climate system, many decades of measurements
are typically required to robustly detect any trend in the climate data record. It is imperative for the records to be temporally
homogeneous over many decades to confidently estimate any trend. Historically, records of upper-air measurements were pri-
marily made for short-term weather forecasts and, as such, are seldom suitable for studying long-term climate change as they
lack the required continuity and homogeneity. Recognizing this, the Global Climate Observing System (GCOS) Reference
Upper-Air Network (GRUAN) has been established to provide reference-quality measurements of climate variables, such as
temperature, pressure and humidity, together with well characterized and traceable estimates of the measurement uncertainty.
To ensure that GRUAN data products are suitable to detect climate change, a scientifically robust instrument replacement strat-
egy must always be adopted whenever there is a change in instrumentation. By fully characterizing any systematic differences
between the old and new measurement system a temporally homogeneous data series can be created. One strategy is to operate
both the old and new instruments in tandem for some overlap period to characterize any inter-instrument biases. However,
this strategy can be prohibitively expensive measurement sites operated by national weather services or research institutes. An
alternative strategy that has been proposed is to alternate between the old and new instruments, so-called interlacing, and then
statistically derive the systematic biases between the two instruments. Here we investigate the feasibility of such an approach
specifically for radiosondes, i.e. flying the old and new instruments on alternating days. Synthetic data sets are used to explore

the applicability of this statistical approach to radiosonde change management.

1 Introduction

Radiosondes are indispensable for monitoring the upper-air as they provide high vertical resolution in situ observations of tem-
perature, pressure and water vapour between the surface and the upper troposphere/lower stratosphere. Determining long-term
temperature trends from radiosonde measurements is challenging because changes in instrumentation can, among other things,
introduce discontinuities in the measurement time series (see Fig. 1). Since radiosonde measurements are primarily made to
provide the data needed to constrain weather forecasts and not to detect long-term changes in climate, little attention has been

paid to ensuring the long-term homogeneity of the measurement record when changing from one instrument to another. As a
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result, radiosonde data records typically fall short of the standard required to reliably detect changes in climate. Another cause
of inhomogeneities in the record is undocumented changes in data processing (Thorne et al., 2011b). While much effort has
been spent attempting to remove discontinuities in radiosonde data records (e.g. Sherwood et al., 2005; Randel and Wu, 2006;
Haimberger et al., 2012), lack of confidence in the long-term homogeneity erodes confidence in derived trends. Seidel and Free
(2006) used upper-air temperatures from the NCEP-NCAR reanalysis (Saha et al., 2010) to investigate the effects of sampling
frequency, changes in observation schedule, and the introduction of inhomogeneities, to the radiosonde climate data record.
Their results indicate that introducing inhomogeneities into a temperature time series provides the most significant source of
uncertainty on trend estimates. Maintaining the temperature measurement stability to within 0.1 K for periods of 20 to 50 years,
avoids uncertainties in trend estimates in at least 99% of cases (Seidel and Free, 2006). With a weaker stability requirement of
0.25 K, the uncertainty on a 50 year trend estimate increases by about 5% for twice-daily sampling. Rust et al. (2008) showed
that inhomogeneities in temperature measurements can cause spurious memory, leading to larger uncertainty for statistics
derived from these series. The results of these studies demonstrate the need to account for any inhomogeneities in the measure-
ment time series prior to any trend analysis. The GCOS (Global Climate Observing System) Reference Upper-Air Network
(GRUAN) was established to provide reference-quality measurements of atmospheric ECVs, suitable for reliably detecting
changes in global and regional climate on decadal scales. To avoid compromising the integrity of the long-term climate record,
it is essential that any change, e.g. in the instrumentation or data processing, is adequately assessed before the change is imple-
mented. For example, when transitioning from one radiosonde type to another, inter-comparison between both radiosonde types
is required to assess a potential systematic difference between the radiosondes and to correct for it, ensuring a continuous ho-
mogeneous data set without any introduced discontinuities. Typically, intercomparisons of measurements from dual or quadru-

ple (two of each instrument-type) radiosonde flights are used to robustly detect systematic differences between the instruments

. Results presented in Steinbrecht et al. (2008) indicated that temperature biases often increase significantly with increasing

altitude, particularly in the lower stratosphere. In the past, WMO conducted several radiosonde intercomparison campaigns
.g. Jeannet et al., 2008; Nash et al., 2011) with the objective of investigating the performance of operational radiosonde systems.
The results of these campaigns are used, in part, to improve the accuracy of daytime operational radiosonde measurements and
the associated correction procedures to provide temperature and relative humidity accuracies currently possible with night time
measurements. The knowledge of the performance that can be expected from various radiosonde systems allows the users to
make a well informed decision on the choice of future equipment, For a measurement network like GRUAN, it is essential
to have more than one good quality radiosonde type for operations. Instrument biases are also influenced by clouds as shown

in Jensen et al. (2016) who found systematic differences in temperature measurements greater than 2K between the Vaisala

RS92 and RS41 radiosonde when exiting cloud layers. This large difference in temperature measurements between the two
radiosondes was attributed to the wet-bulb effect, where the temperature sensor gets wet while passing through a cloud layer
and is subject to evaporative cooling after entering dryer parts of the atmosphere. Below 28km altitude, Jensen et al. (2016)
found a mean systematic difference between the temperature measurements of the two radiosondes of 0.13K. For radiosonde

measurements performed at GRUAN sites, it is suggested that sites conduct dual sonde launches for at least 6 months when

e.g. Luers and Eskridge, 1998; Steinbrecht et al., 2008; Koba
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Figure 1. Top two panels: Monthly temperature anomalies (smoothed with a 13-point running mean) during 1958-2009 from radiosonde

observations at Camborne, Cornwall, UK, at 200 hPa (near tropopause) and 700 hPa (lower-troposphere). Included are raw (black) and

adjusted (green) radiosonde temperature data from the Hadley

line) shows the adjustments applied to the raw data (offset by 2.25 K (dashed grey line)

Centre (HadAT). The smoothed difference series between the two (blue solid

, indicating the zero line for the differences). Bottom

panel: the four radiosonde types used over this period (from left to right, with typical periods of operation): Phillips Mark IIb (1950-1970);
Phillips MK3 (mid 1970s to early 1990s); Vaisala RS-80 (early 1990s to 2005-2006); and Vaisala RS-92 (since 2005-2006). Dates of

radiosonde changes are indicated by red dotted lines. Five other potential sources of inconsistencies in the data sets include: Change in the

radiation correction procedure (cross); Change in the data cut-off (star); Change of pressure sensor (diamond); Change of wind equipment

(triangle); Change of relative humidity sensor (square). Figure

adapted from Thorne et al. (2011b)
3
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changing from one instrument type to another (GCOS-171, 2013). However, analysis of data from dual sonde launches con-
ducted at the GRUAN Lead Centre suggests that at least 200 dual flights over a period of one year are required to accurately
assess the systematic difference between the two sonde-types (GCOS-171, 2013). The number of dual sonde flights required
may be site dependent and therefore, site specific analysis is likely required to determine the required number of dual flights at
any site. Furthermore, it is possible that instrument biases at one site may not be the same in different atmospheric conditions
at other sites, though this has not been extensively evaluated. Therefore, it would be ideal if all GRUAN sites could complete
thorough radiosonde intercomparisons by performing dual radiosonde launches for at least 6 months prior to any instrument
change. However, the costs of such a measurement campaign can be significant, preventing some stations from performing
extensive dual launches.

In this study, we investigate the feasibility of quantifying the difference in biases of two instrument types by alternating
between the two different instruments and then applying a statistical model to infer any systematic biases between the two in-
struments. For this study, we conduct the investigation by applying the statistical model developed to synthetic data sets, where
persistence of weather conditions is a controllable parameter, that represent such interlaced radiosonde flights. Specifically,
we investigate (i) if a combination of interlaced measurements together with an appropriate statistical model can be used to
estimate the differences in biases of two instrument types, and (ii) if so, how effective the approach is. This method, if feasible,
could reduce the financial burden for sites seeking to manage such a transition, since an interlacing approach would not require

additional measurements above what is needed for normal daily operation.

2 Methodology
2.1 Background

Any modification of instrumentation might introduce a systematic change to the measurement time series. This change is
typically assumed to be a constant difference (A) as a first order approximation, resulting from differences in the individual
instrument biases, i.e. their systematic deviations from the true value. As the true value of the quantity being measured is
unknown in practice, it is not possible to estimate each instrument’s individual bias. It is possible, however, to estimate the
difference A = Biasy4 —Biasp in biases Bias4 and Biasp of instruments A and B. If temporally and spatially coincident
measurements are made using instrument A and B (i.e. dual flights), this difference can be easily obtained: Consider some
quantity of interest, e.g. air temperature ("), measured with instrument A and instrument B at the same location and time t.
The bias of each instrument is the difference between the expectation value of the instrument’s measurement and the unknown

true value 7;}:
Bias(Ty,a) = E[Ty, 4] —T: and Bias(Ti ) = E[T},g] — T} (1

where T} 4 and T} p is the temperature at time ¢ measured with instrument A and B, respectively. The difference in the

instrumental bias is therefore:

At = BiaS(Tt’A) — BiaS(Tt’B) = E[Tt’A] — E[Tt,B]7 (2)
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Consider now that T} g differs from T} 4 only by a constant offset A, i.e.:
Tha=Tip+A 3)

which is independent of the true value and thus the measurement time ¢. Under this assumption, an estimate for the stationary

difference in biases can be obtained from /N dual measurements according to:
1 N N
=NZ Tya—Tp) = Z (Tra—T)— (Ti,5—Th)), )
t=1 t=1

with A denoting an estimate of the constant offset A. This equation applies even if the true value T} is changing with time as it
depends only on anomalies T; 4, — T;. Under suitable conditions, the uncertainty (expressed in terms of standard deviation)

of this estimate decreases with v/ IV and depends on the persistence (i.e. autocorrelation) of the time series (Wilks, 2011).
2.2 A statistical model for interlaced measurements

As dual measurements, using both instrument types, require additional resources, and therefore inherent additional costs,
estimating a systematic difference between the instruments using interlaced measurements, i.e. using instrument A at odd days
t €{1,3,5,...} and instrument B at even days ¢t € {2,4,6,...} is explored in this study. Using this approach, at every time ¢
only one measurement from one instrument is available, hence Eq. 4 is not applicable.

The underlying assumption for the approach outlined here to work is that the quantity of interest fluctuates around a smooth
climatological signal (i.e. a seasonal cycle) and the fluctuations show a certain degree of persistence at the weather time
scale, e.g. the fluctuations show a day to day dependence. For a typical difference in the biases between radiosondes this
persistence (i.e. autocorrelation) is key to the idea of estimating a bias from interlaced measurements. The difference in the
biases tested here is smaller than the day-to-day fluctuations themselves as it carries information from the measurement A to
the measurement 5.

In the following, a simplified model for air temperatures time series complying with the above mentioned assumptions is
constructed. The true (unobserved) time series is represented by a smooth seasonal cycle with an auto-regressive process of
first order (AR[1], e.g. Box and Jenkins, 1976; Wilks, 2011) added to the time series, i.e.:

. dt dt Vs
T, = sin [ 2w — — — 27T — — — 5
} uo—|—,u151n< 77365 2)+ugsm( 7T365 2)+et 5
€& =a€—1+, (0)
with d; € [1,...,365] giving the day in the year for date ¢, a is the autocorrelation coefficient which describes the degree of

persistence in the time series ;-at the weather time scale, e.g. the fluctuations show a day to day dependence, and 7y ~ N (0, 02)

being the driving noise of the AR[1] process, selected randomly from a Gaussian distribution. The latter is taken to be Gaussian
white noise with zero mean and variance 2. This is a well established model for the persistence of, e.g. daily air temperatures
(e.g. Wilks, 2011).
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Pseudo-observations are now obtained from a realization of T} (Eq. (5)) with an instrument bias and random measurement
noise added. Here, we aim for interlaced temperature measurements 7; 4 and T} p from instruments A and B and thus add
the instrument biases c4 and cp, respectively, and independent Gaussian measurement uncertainties €; 4 ~N (O,aj) and
et 5 ~N(0,0%):

Tia=Ti+catea teta={1,35...} and (7)

Tt,B:Tt+CB+€t7B tEtB:{2,4,6...}. (8)

For simplicity, we assume equal variances 04 = 0% for the measurement uncertainties. The continuous series of combined

interlaced measurements T} 4p for ¢t € {1,2,3,...} is therefore:

Tiap=Ti+cax(teta)+epx(t €ty)+ e, 9

with indicator function y being 1 if ¢ is a member of the set ¢ 4 or ¢ g, respectively, and 0 otherwise. Figure 2 shows an example
of such a synthetic time series of interlaced measurements. This example is based on a simulated temperature time series
using a realization of an AR[1] process using an autocorrelation coefficient of @ = 0.5 in Eq. (6), similar to the autocorrelation

coefficient of radiosonde measurements at 300hPa above Lindenberg, Germany (cf. Sec. 2.4).
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Figure 2. Example time series for interlaced measurements of instrument A (red dots) and instrument B (green dots). Horizontal lines are
the means of the measurements using instrument A (red) and instrument B (green). Smooth dashed lines (red for instrument A, green for

instrument B) are spline estimates with the differences being an estimate for the differences in the instrument biases.
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2.3 Estimating the difference in instrument biases

A direct approach to estimate the difference in instrument biases A = ¢4 — cp is an estimation using the differences in means

T4 and T of instrument A and B, respectively, over a common time period ¢ to o, i.e.

3mean = TA - TB (10)
with
1 t<ts t<to
Ty=— T, f tet d Tg=— T, f tet 11
A=W t;: 4 for A an B= N, ; t,p for B (11)
Zt1 Zl1

being the arithmetic means for the individual instruments; N 4 and Npg are the number of measurements made by instrument A
and B, respectively, in the given time period. The uncertainty on this estimate of the difference in instrument biases decreases
with increasing N4 and Np but depends also on the persistence of the underlying time series: larger persistence leads to larger
uncertainties when calculating arithmetic means (e.g. von Storch and Zwiers, 1999).

Here, we exploit the persistence and suggest an approach based on the estimation of a slowly varying signal common to
both instruments. Imagine, for example, a smooth temperature time series in the absence of weather-induced noise. Measure-
ments are then made of that signal using instrument A and this measurement series is represented by s(¢) and an additional
measurement noise €;. Analogously, measurements of the same slowly varying signal are made using instrument B and can be
represented by the same s(t) but with the difference in instrumental biases A and again measurement noise €;; i.e. s(t) +A+¢;.

A model for these interlaced measurements T} 4 g is constructed using the indicator function x:
Tiap =s(t)+Ax(t€tp) +e. (12)

For t € tp, the indicator function x (¢ € ¢p) returns 1 and we obtain a measurement with instrument B, i.e. Ttﬁ B =38(t)+A+e.
For other time steps ¢ € t 4 the indicator function returns 0 and we obtain a measurement of instrument A, i.e. Tu A=8(t)+e,
excluding the difference in instrumental bias A. The statistical model described in Eq. (12) belongs to the class of generalized
additive models (GAMs, e.g. Chambers and Hastie, 1992)and-the-, a fundamental class of regression models. GAMs extend
generalized linear models (or linear regression) by introducing additionally to the classical linear components a smooth term
s. This smooth term can be estimated using a smooth spline fit with its degrees of freedom (i.e. its flexibility of smoothness)
determined by generalized cross validation (Wood, 2006). This functionality is implemented in the R-package mgcv (Wood,
2006).

2.4 Simulation set-up

To investigate whether interlaced measurements, diagnosed using the methodology described above, can be used to estimate
potential biases between instruments, we design a simulation study wherein an ensemble of synthetic upper-air temperature
time series is generated using a stochastic process. For each member of the ensemble, interlaced measurements for two in-

struments are obtained by adding a systematic measurement uncertainty (i.e. bias) for each instrument plus some random
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measurement noise. As the instrument biases are known, their difference A is also known. The questions to be answered in

this study are:

1. Can a combination of interlaced measurements, together with an adequate statistical model, be used to estimate the

difference in instrument biases?
2. If so, how effective is this estimation compared to an approach requiring dual measurements?

An analysis of the 300hPa temperatures measured by radiosondes at Lindenberg, Germany, forms the basis for this simulation
study. After subtracting the seasonal cycle, the temperature anomalies show a variance of about o2 ... = 10K? and can be

adequately described with an AR[1] process as in Eq. (6) with a ~ 0.5. To provide a realistic synthetic time series for analysis,

we use driving Gaussian white noise 7 ~ N (0,02) with variance 02 = (1 — a?) 02 This choice of o2 ensures that the

anomalies

2

2 malies = 10K? independent of the value of a. This is necessary as we vary the persistence

anomaly variance is fixed at o
parameter (i.e. the autocorrelation coefficient) a € (0,1) to study time series with different persistence but identical anomaly
variance.

The synthetic temperature series is generated using Eq. (9) that includes a seasonal cycle and a realization of an AR[1]
process. The instrument biases in Eq. (9), are prescribed at c4 = —0.1K and cp = 0.2K and are added to the time series to-
gether with a measurement uncertainty being specified as Gaussian white noise € ~ N'(0,02). The resulting two time series
for instruments A and B are combined to a) a synthetic time series of dual measurements, and b) an interlaced observational
counterpart. The difference in instrument biases between both time series is prescribed as A = c4 —cp = —0.1-0.2 = —0.3K.
To investigate the influence of (i) persistence in the temperature series, (ii) measurement noise, and (iii) number of measure-
ments on our ability to estimate the difference in biases between two instruments, the following parameters are prescribed and

controlled in our study:
persistence of the time series « € {0.5,0.7,0.8,0.9,0.95,0.99}
number of measurements N € {50,100,250,500,1000,2000,3000},

leading to 6 x 7 = 42 combinations, i.e. 42 synthetic time series to be analysed. The instrument noise is fixed at 02 € 0.1. To

generate a synthetic time series for a given a, N and o, the following steps were taken:

1. Generate a time series of length N consisting of an annual cycle and a realization of an AR[1] process as described

above.

2. Add an offset of -0.1K (instrument bias of instrument A) and Gaussian noise with variance 0? = 0.1 to produce a

synthetic time series for instrument A.

3. Add an offset of 0.2K (instrument bias of instrument B) and Gaussian noise with variance o = 0.1 to produce a synthetic

time series for instrument B.

4. Select measurements from A for odd days and from B for even days to generate an interlaced time series.
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5. Repeat steps 1 to 4 many times (e.g. M = 1000, where M denotes the number of repetitions) to generate 1000 synthetic

time series to derive statistically robust estimates of A.
The difference in instrument biases is then estimated based on

1. the calculated mean values of N dual measurements (Eq. (10)), i.e. N measurements for A and N measurements for B

made simultaneously, and

2. results from the statistical model (Eq. (12) using the time series of N interlaced measurement, i.e. N/2 measurements

for A and N/2 measurements for B.

3 Results

The box plots in Fig. 3 summarize the distribution of M = 1000 bias estimates A fora varying numbers of interlaced flights V.
The upper panel of Fig. 3 is based on the simulated temperature time series with an AR[1] coefficient a = 0.5, being similar to
the autocorrelation coefficient found for temperature measurements at 300hPa above Lindenberg. The middle and bottom rows
are examples for stronger persistence, i.e. a = 0.8 and a = 0.9, respectively. All panels show that the spread in the estimated
difference in bias between instruments A and B (3) converges towards the true value (A = —0.3) for increasing N in all
cases. The rate at which this converges with increasing N depends on the persistence (i.e. autocorrelation) in the underlying
time series. Weak persistence (small a) leads to slower convergence (Fig. 3, top row), while strong persistence (a approaching
1) shows faster convergence.

The standard deviation of A (see Fig. 4), representing the uncertainty with which the difference in the bias between instru-
ments A and B can be estimated, depends on the number of interlaced flights and on the AR[1] coefficient a (coloured lines
in Fig. 4). The standard deviation can be used to construct asymptotic confidence intervals for the estimates using the standard
normal assumption (e.g. Wilks, 2011, Chapt. 5), i.e. for a 95% confidence interval, the estimated bias needs to be within 1.96
times the standard deviation. For all a, the standard deviation decreases with increasing N; however, the standard deviation is
generally larger for weak persistence (small a € (0,1)) and smaller for strong persistent (large a € (0,1)).

The synthetic time series of dual flights performed with instrument A and B simultaneously at N times (i.e. 2 N measure-
ments, solid black line in Fig. 4) provides the most reliable estimate of the biases between the instruments, i.e. the standard
deviation is smallest for any V. To provide a robust comparison of the results from the dual flights to the results from N inter-
laced measurements, the results from the dual flights need to be compared to the results of doubled N interlaced flights. For
a time series with an autocorrelation coefficient of a = 0.5, at least 2000 days of consecutive interlaced daily measurements
would be required to estimate the difference in instrument’s biases with a standard deviation of 0.22 K. Consider the following
example, a station operator seeks to detect the difference in bias between two radiosondes in a temperature time series showing
an autocorrelation coefficient of 0.95. The station operator requires a standard deviation of A < 0.05K which leads to a 95%
confidence interval of about 0.1 K (= 0.05 * 1.96), then, from Fig. 4 it can be inferred that 500 interlaced measurements are

required to achieve this. Furthermore we conclude that, if an operator has a given amount of two types of radiosondes available
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Figure 3. Box and whisker plots of bias estimates (ﬁ) against number of interlaced flights N (50 flights means 25 flights of instrument A and
25 flights of instrument B) as derived from M = 1000 simulations using an autocorrelation coefficient of a = 0.5 (top), a = 0.8 (middle)
and a = 0.9 (bottom) and a measurement noise of o2 = 0.1. The boxes show the inter-quartile range. The upper and lower whiskers represent
the maximum (excluding outliers) and minimum (excluding outliers). Suspected outliers are shown as dots and are located outside the fences
(“whiskers”) of the boxplot (e.g: outside 1.5 times the interquartile range above the upper quartile and below the lower quartile). The true

difference in biases A = —0.3K is marked with a red line.
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from which the difference in instrument biases needs to be estimated, it is clear from Fig. 4 that dual flights result in better
estimates (i.e. smaller standard deviation in Fig. 4) than to interlace the instrument types from one day to the next. The results
presented here (from dual and interlaced flights) also depend on the variance of the signal; for a higher measurement noise, the

number of required days will increase and vice versa (not shown).

10 . T v T . T y
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E —— Lindenberg
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5 100 | | —— Lauder :
7] —— Davis
[}
o
o
1000 L .
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Autocorrelation coefficient

Figure 5. Vertical profiles of calculated autocorrelation coefficients for six GRUAN sites (color coded as shown in the legends).
Autocorrelation coefficients were calcualted from ERAS temperature data, interpolated to the location of the GRUAN sites.

The results indicate that for typical difference in biases between radiosonde types, the presented method on interlaced
measurements is unlikely to provide a robust estimate of the difference in biases for a reasonable length of the measurement
period (reasonable is considered as 2 years here). That said, there might be cases of larger instrument biases and/or larger
persistence where the interlaced method could provide an alternative method to dual measurements, requiring fewer resources.

TFhisr-howeveris-outside-the-Vertical profiles of autocorrelation coefficients as calculated from temperature data obtained from

s://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era5) are shown in Fig. 5.

Temperature data were interpolated to the locations of six GRUAN sites, including sites in the tropics, middle and high latitudes.
Here we calcualted the autocorrelation coefficient from ERAS data rather than from radiosonde measurements, as long-term
continuous measurements are required to obtain a robust estimate of the seasonal cycle of the temperature time series before
calculating the autocorrelation coefficients. Such continuous observations, covering at least 2 years of daily radiosonde flights,
are currently only available at a small subset of GRUAN sites, which does not cover all latitude bands. ERAS is the latest
reanalyses provided by ECMWE and it is expected that the calculated autocorrelation coefficients provide a good estimate of
the autocorrelation coefficient at each of the selected sites. Figure 5 shows that the persistence varies strongly with altitude
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and if the interlacing method is used, it has to be applied at different altitudes seperately. For lower altitudes (pressure levels
increasting at higher altitudes (below 250 hPa), ranging from 0.7 in
the difference in biases for high altitudes at e.g. Ny Alesund, a GRUAN site showing the highest autocorrelation coefficients.
However, a detailed case study needs to be performed to investigate potential benefits, which is beyond the scope of this study,
which focuses on radiesende-temperature-measturementsdescribing and presenting the methodolody.

latitudes (e.g. Lauder, New Zealand). The persistence is

4 Conclusions

We have used synthetic time series representing temperature measurements to investigate the possibility of using interlaced
measurements performed with two different instruments types together with Generalized Additive Models to obtain an estimate
of the difference in the bias between the two instrument types. Performing dual radiosonde flights with both instrument types
is costly, and therefore we investigated the feasibility of using interlaced flights to obtain an estimate of the difference in
the bias. This would be more sustainable and less costly. Information about typically small differences in instrument biases
can be obtained from non-simultaneous measurements using a persistence assumption, i.e. some information of some day’s
measurement is carried over to the next day. As atmospheric temperatures tend to be autocorrelated in time (e.g. Wilks, 2011;
Maraun et al., 2004), the persistence assumption is justifiable. However, the strength of the autocorrelation depends, in part, on
the geographical location of the measurement site and on altitude. Here we investigated how a statistical approach to estimate
the difference between two instrument biases is affected by the persistence of a time series.

The results presented here indicate that while it is in principle possible to estimate the difference between two instrument’s
biases from interlaced measurements, the number of interlaced flights required to obtain a satisfying accuracy is very large for
reasonable values of the autocorrelation coefficient. Strongly autocorrelated signals require fewer data for an accurate estimate
of the difference in biases and therefore fewer interlaced flights, than time series with low autocorrelation. The results show that
for very strong persistence (e.g. -an AR[1] coefficient of 0.99) about twice the number of measurements is needed compared
to parallel measurements to obtain a comparable uncertainty in estimates for interlaced measurements. Hence, the described
approach may be used for measurements with very strong persistence or where the costs for sufficient parallel measurements
exceeds the costs for sufficient interlaced measurements to confidently infer the difference in the instrument bias. However, if,
for example, it would be possible to derive a robust estimate of the difference in instrument biases from interlaced measurements
in some reasonable time period (e.g. 2 years) and even if this period was more than 2 or 3 times longer than would be required
from a dual measurement strategy to achieve the same level of confidence, the interlacing approach would present a case saving

over an approach that would start with dual flights and then continue with flights using only the new instrument.

Code availability. The code can be obtained by contacting the corresponding author.
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