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Abstract. Upper-air measurements of essential climate variables (ECVs), such as temperature, are crucial for climate moni-

toring and climate change detection. Because of the internal variability of the climate system, many decades of measurements

are typically required to robustly detect any trend in the climate data record. It is imperative for the records to be temporally

homogeneous over many decades to confidently estimate any trend. Historically, records of upper-air measurements were pri-

marily made for short-term weather forecasts and, as such, are seldom suitable for studying long-term climate change as they5

lack the required continuity and homogeneity. Recognizing this, the Global Climate Observing System (GCOS) Reference

Upper-Air Network (GRUAN) has been established to provide reference-quality measurements of climate variables, such as

temperature, pressure and humidity, together with well characterized and traceable estimates of the measurement uncertainty.

To ensure that GRUAN data products are suitable to detect climate change, a scientifically robust instrument replacement strat-

egy must always be adopted whenever there is a change in instrumentation. By fully characterizing any systematic differences10

between the old and new measurement system a temporally homogeneous data series can be created. One strategy is to operate

both the old and new instruments in tandem for some overlap period to characterize any inter-instrument biases. However,

this strategy can be prohibitively expensive measurement sites operated by national weather services or research institutes. An

alternative strategy that has been proposed is to alternate between the old and new instruments, so-called interlacing, and then

statistically derive the systematic biases between the two instruments. Here we investigate the feasibility of such an approach15

specifically for radiosondes, i.e. flying the old and new instruments on alternating days. Synthetic data sets are used to explore

the applicability of this statistical approach to radiosonde change management.

1 Introduction

Radiosondes are indispensable for monitoring the upper-air as they provide high vertical resolution in situ observations of

temperature, pressure and water vapour between the surface and the upper troposphere/lower stratosphere. Determining long-20

term temperature trends from radiosonde measurements is challenging because changes in instrumentation can, among other

things, introduce discontinuities in the measurement time series (see Fig. 1). Since radiosonde measurements are primarily

made to provide the data needed to constrain weather forecasts and not to detect long-term changes in climate, little attention has

been paid to ensuring the long-term homogeneity of the measurement record when changing from one instrument to another.

1



As a result, radiosonde data records typically fall short of the standard required to reliably detect changes in climate. Another

cause of inhomogeneities in the record is undocumented changes in data processing (Thorne et al., 2011b). While much effort

has been spent attempting to remove discontinuities in radiosonde data records (e.g. Sherwood et al., 2005; Randel and Wu,

2006; Haimberger et al., 2012), lack of confidence in the long-term homogeneity erodes confidence in derived trends. Seidel

and Free (2006) used upper-air temperatures from the NCEP-NCAR reanalysis (Saha et al., 2010) to investigate the effects5

of sampling frequency, changes in observation schedule, and the introduction of inhomogeneities, to the radiosonde climate

data record. Their results indicate that introducing inhomogeneities into a temperature time series provides the most significant

source of uncertainty on trend estimates. Maintaining the temperature measurement stability to within 0.1 K for periods of 20

to 50 years, avoids uncertainties in trend estimates in at least 99% of cases (Seidel and Free, 2006). With a weaker stability

requirement of 0.25 K, the uncertainty on a 50 year trend estimate increases by about 5% for twice-daily sampling. Rust et al.10

(2008) showed that inhomogeneities in temperature measurements can cause spurious memory, leading to larger uncertainty

for statistics derived from these series. The results of these studies demonstrate the need to account for any inhomogeneities in

the measurement time series prior to any trend analysis. The GCOS (Global Climate Observing System) Reference Upper-Air

Network (GRUAN) was established to provide reference-quality measurements of atmospheric ECVs, suitable for reliably

detecting changes in global and regional climate on decadal scales. To avoid compromising the integrity of the long-term15

climate record, it is essential that any change, e.g. in the instrumentation or data processing, is adequately assessed before the

change is implemented. For example, when transitioning from one radiosonde type to another, inter-comparison between both

radiosonde types is required to assess a potential systematic difference between the radiosondes and to correct for it, ensuring

a continuous homogeneous data set without any introduced discontinuities. Typically, intercomparisons of measurements from

dual or quadruple (two of each instrument-type) radiosonde flights are used to robustly detect systematic differences between20

the instruments (e.g. Luers and Eskridge, 1998; Steinbrecht et al., 2008; Kobayashi et al., 2012; Jensen et al., 2016). Results

presented in Steinbrecht et al. (2008) indicated that temperature biases often increase significantly with increasing altitude,

particularly in the lower stratosphere. In the past, WMO conducted several radiosonde intercomparison campaigns (e.g. Jeannet

et al., 2008; Nash et al., 2011) with the objective of investigating the performance of operational radiosonde systems. The

results of these campaigns are used, in part, to improve the accuracy of daytime operational radiosonde measurements and25

the associated correction procedures to provide temperature and relative humidity accuracies currently possible with night

time measurements. The knowledge of the performance that can be expected from various radiosonde systems allows the

users to make a well informed decision on the choice of future equipment. For a measurement network like GRUAN, it is

essential to have more than one good quality radiosonde type for operations. Instrument biases are also influenced by clouds

as shown in Jensen et al. (2016) who found systematic differences in temperature measurements greater than 2K between the30

Vaisala RS92 and RS41 radiosonde when exiting cloud layers. This large difference in temperature measurements between

the two radiosondes was attributed to the wet-bulb effect, where the temperature sensor gets wet while passing through a

cloud layer and is subject to evaporative cooling after entering dryer parts of the atmosphere. Below 28km altitude, Jensen

et al. (2016) found a mean systematic difference between the temperature measurements of the two radiosondes of 0.13K.

For radiosonde measurements performed at GRUAN sites, it is suggested that sites conduct dual sonde launches for at least 635
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Figure 1. Top two panels: Monthly temperature anomalies (smoothed with a 13-point running mean) during 1958-2009 from radiosonde

observations at Camborne, Cornwall, UK, at 200 hPa (near tropopause) and 700 hPa (lower-troposphere). Included are raw (black) and

adjusted (green) radiosonde temperature data from the Hadley Centre (HadAT). The smoothed difference series between the two (blue solid

line) shows the adjustments applied to the raw data (offset by 2.25 K (dashed grey line), indicating the zero line for the differences). Bottom

panel: the four radiosonde types used over this period (from left to right, with typical periods of operation): Phillips Mark IIb (1950–1970);

Phillips MK3 (mid 1970s to early 1990s); Vaisala RS-80 (early 1990s to 2005–2006); and Vaisala RS-92 (since 2005–2006). Dates of

radiosonde changes are indicated by red dotted lines. Five other potential sources of inconsistencies in the data sets include: Change in the

radiation correction procedure (cross); Change in the data cut-off (star); Change of pressure sensor (diamond); Change of wind equipment

(triangle); Change of relative humidity sensor (square). Figure adapted from Thorne et al. (2011b)
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months when changing from one instrument type to another (GCOS-171, 2013). However, analysis of data from dual sonde

launches conducted at the GRUAN Lead Centre suggests that at least 200 dual flights over a period of one year are required to

accurately assess the systematic difference between the two sonde-types (GCOS-171, 2013). The number of dual sonde flights

required may be site dependent and therefore, site specific analysis is likely required to determine the required number of dual

flights at any site. Furthermore, it is possible that instrument biases at one site may not be the same in different atmospheric5

conditions at other sites, though this has not been extensively evaluated. Therefore, it would be ideal if all GRUAN sites could

complete thorough radiosonde intercomparisons by performing dual radiosonde launches for at least 6 months prior to any

instrument change. However, the costs of such a measurement campaign can be significant, preventing some stations from

performing extensive dual launches.

In this study, we investigate the feasibility of quantifying the difference in biases of two instrument types by alternating10

between the two different instruments and then applying a statistical model to infer any systematic biases between the two in-

struments. For this study, we conduct the investigation by applying the statistical model developed to synthetic data sets, where

persistence of weather conditions is a controllable parameter, that represent such interlaced radiosonde flights. Specifically,

we investigate (i) if a combination of interlaced measurements together with an appropriate statistical model can be used to

estimate the differences in biases of two instrument types, and (ii) if so, how effective the approach is. This method, if feasible,15

could reduce the financial burden for sites seeking to manage such a transition, since an interlacing approach would not require

additional measurements above what is needed for normal daily operation.

2 Methodology

2.1 Background

Any modification of instrumentation might introduce a systematic change to the measurement time series. This change is20

typically assumed to be a constant difference (∆) as a first order approximation, resulting from differences in the individual

instrument biases, i.e. their systematic deviations from the true value. As the true value of the quantity being measured is

unknown in practice, it is not possible to estimate each instrument’s individual bias. It is possible, however, to estimate the

difference ∆ = BiasA−BiasB in biases BiasA and BiasB of instruments A and B. If temporally and spatially coincident

measurements are made using instrument A and B (i.e. dual flights), this difference can be easily obtained: Consider some25

quantity of interest, e.g. air temperature (T ), measured with instrument A and instrument B at the same location and time t.

The bias of each instrument is the difference between the expectation value of the instrument’s measurement and the unknown

true value Tt:

Bias(Tt,A) = E[Tt,A]−Tt and Bias(Tt,B) = E[Tt,B ]−Tt. (1)

where Tt,A and Tt,B is the temperature at time t measured with instrument A and B, respectively. The difference in the30

instrumental bias is therefore:

∆t = Bias(Tt,A)−Bias(Tt,B) = E[Tt,A]−E[Tt,B ], (2)
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Consider now that Tt,B differs from Tt,A only by a constant offset ∆, i.e.:

Tt,A = Tt,B + ∆ (3)

which is independent of the true value and thus the measurement time t. Under this assumption, an estimate for the stationary

difference in biases can be obtained from N dual measurements according to:

∆̂ =
1

N

N∑
t=1

(Tt,A−Tt,B) =
1

N

N∑
t=1

((Tt,A−Tt)− (Tt,B −Tt)) , (4)5

with ∆̂ denoting an estimate of the constant offset ∆. This equation applies even if the true value Tt is changing with time as it

depends only on anomalies Tt,A/B −Tt. Under suitable conditions, the uncertainty (expressed in terms of standard deviation)

of this estimate decreases with
√
N and depends on the persistence (i.e. autocorrelation) of the time series (Wilks, 2011).

2.2 A statistical model for interlaced measurements

As dual measurements, using both instrument types, require additional resources, and therefore inherent additional costs,10

estimating a systematic difference between the instruments using interlaced measurements, i.e. using instrument A at odd days

t ∈ {1,3,5, . . .} and instrument B at even days t ∈ {2,4,6, . . .} is explored in this study. Using this approach, at every time t

only one measurement from one instrument is available, hence Eq. 4 is not applicable.

The underlying assumption for the approach outlined here to work is that the quantity of interest fluctuates around a smooth

climatological signal (i.e. a seasonal cycle) and the fluctuations show a certain degree of persistence at the weather time15

scale, e.g. the fluctuations show a day to day dependence. For a typical difference in the biases between radiosondes this

persistence (i.e. autocorrelation) is key to the idea of estimating a bias from interlaced measurements. The difference in the

biases tested here is smaller than the day-to-day fluctuations themselves as it carries information from the measurement A to

the measurement B.

In the following, a simplified model for air temperatures time series complying with the above mentioned assumptions is20

constructed. The true (unobserved) time series is represented by a smooth seasonal cycle with an auto-regressive process of

first order (AR[1], e.g. Box and Jenkins, 1976; Wilks, 2011) added to the time series, i.e.:

Tt = µ0 +µ1 sin

(
2π

dt
365
− π

2

)
+µ2 sin

(
2π

2dt
365
− π

2

)
+ εt (5)

εt = aεt−1 + ηt (6)

with dt ∈ [1, . . . ,365] giving the day in the year for date t, a is the autocorrelation coefficient which describes the degree of25

persistence in the time series at the weather time scale, e.g. the fluctuations show a day to day dependence, and ηt ∼N (0,σ2)

being the driving noise of the AR[1] process, selected randomly from a Gaussian distribution. The latter is taken to be Gaussian

white noise with zero mean and variance σ2. This is a well established model for the persistence of, e.g. daily air temperatures

(e.g. Wilks, 2011).
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Pseudo-observations are now obtained from a realization of Tt (Eq. (5)) with an instrument bias and random measurement

noise added. Here, we aim for interlaced temperature measurements Tt,A and Tt,B from instruments A and B and thus add

the instrument biases cA and cB , respectively, and independent Gaussian measurement uncertainties εt,A ∼N (0,σ2
A) and

εt,B ∼N (0,σ2
B):

Tt,A = Tt + cA + εt,A t ∈ tA = {1,3,5 . . .} and (7)5

Tt,B = Tt + cB + εt,B t ∈ tB = {2,4,6 . . .} . (8)

For simplicity, we assume equal variances σ2
A = σ2

B for the measurement uncertainties. The continuous series of combined

interlaced measurements Tt,AB for t ∈ {1,2,3, . . .} is therefore:

Tt,AB = Tt + cAχ(t ∈ tA) + cB χ(t ∈ tb) + εt, (9)

with indicator function χ being 1 if t is a member of the set tA or tB , respectively, and 0 otherwise. Figure 2 shows an example10

of such a synthetic time series of interlaced measurements. This example is based on a simulated temperature time series

using a realization of an AR[1] process using an autocorrelation coefficient of a= 0.5 in Eq. (6), similar to the autocorrelation

coefficient of radiosonde measurements at 300hPa above Lindenberg, Germany (cf. Sec. 2.4).
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Figure 2. Example time series for interlaced measurements of instrument A (red dots) and instrument B (green dots). Horizontal lines are

the means of the measurements using instrument A (red) and instrument B (green). Smooth dashed lines (red for instrument A, green for

instrument B) are spline estimates with the differences being an estimate for the differences in the instrument biases.
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2.3 Estimating the difference in instrument biases

A direct approach to estimate the difference in instrument biases ∆ = cA− cB is an estimation using the differences in means

T̄A and T̄B of instrument A and B, respectively, over a common time period t1 to t2, i.e.

∆̂mean = T̄A− T̄B (10)

with5

T̄A =
1

NA

t≤t2∑
t≥t1

Tt,A for t ∈ tA and T̄B =
1

NB

t≤t2∑
t≥t1

Tt,B for t ∈ tB (11)

being the arithmetic means for the individual instruments; NA and NB are the number of measurements made by instrument A

and B, respectively, in the given time period. The uncertainty on this estimate of the difference in instrument biases decreases

with increasing NA and NB but depends also on the persistence of the underlying time series: larger persistence leads to larger

uncertainties when calculating arithmetic means (e.g. von Storch and Zwiers, 1999).10

Here, we exploit the persistence and suggest an approach based on the estimation of a slowly varying signal common to

both instruments. Imagine, for example, a smooth temperature time series in the absence of weather-induced noise. Measure-

ments are then made of that signal using instrument A and this measurement series is represented by s(t) and an additional

measurement noise εt. Analogously, measurements of the same slowly varying signal are made using instrument B and can be

represented by the same s(t) but with the difference in instrumental biases ∆ and again measurement noise εt; i.e. s(t)+∆+εt.15

A model for these interlaced measurements Tt,AB is constructed using the indicator function χ:

T̂t,AB = s(t) + ∆χ(t ∈ tB) + εt . (12)

For t ∈ tB , the indicator function χ(t ∈ tB) returns 1 and we obtain a measurement with instrumentB, i.e. T̂t,B = s(t)+∆+εt.

For other time steps t ∈ tA the indicator function returns 0 and we obtain a measurement of instrument A, i.e. T̂t,A = s(t)+εt,

excluding the difference in instrumental bias ∆. The statistical model described in Eq. (12) belongs to the class of generalized20

additive models (GAMs, e.g. Chambers and Hastie, 1992), a fundamental class of regression models. GAMs extend generalized

linear models (or linear regression) by introducing additionally to the classical linear components a smooth term s. This smooth

term can be estimated using a smooth spline fit with its degrees of freedom (i.e. its flexibility of smoothness) determined by

generalized cross validation (Wood, 2006). This functionality is implemented in the R-package mgcv (Wood, 2006).

2.4 Simulation set-up25

To investigate whether interlaced measurements, diagnosed using the methodology described above, can be used to estimate

potential biases between instruments, we design a simulation study wherein an ensemble of synthetic upper-air temperature

time series is generated using a stochastic process. For each member of the ensemble, interlaced measurements for two in-

struments are obtained by adding a systematic measurement uncertainty (i.e. bias) for each instrument plus some random

measurement noise. As the instrument biases are known, their difference ∆ is also known. The questions to be answered in30

this study are:
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1. Can a combination of interlaced measurements, together with an adequate statistical model, be used to estimate the

difference in instrument biases?

2. If so, how effective is this estimation compared to an approach requiring dual measurements?

An analysis of the 300hPa temperatures measured by radiosondes at Lindenberg, Germany, forms the basis for this simulation

study. After subtracting the seasonal cycle, the temperature anomalies show a variance of about σ2
anomalies = 10K2 and can be5

adequately described with an AR[1] process as in Eq. (6) with a∼ 0.5. To provide a realistic synthetic time series for analysis,

we use driving Gaussian white noise η ∼N (0,σ2
a) with variance σ2

a = (1− a2)σ2
anomalies. This choice of σ2

a ensures that the

anomaly variance is fixed at σ2
anomalies = 10K2 independent of the value of a. This is necessary as we vary the persistence

parameter (i.e. the autocorrelation coefficient) a ∈ (0,1) to study time series with different persistence but identical anomaly

variance.10

The synthetic temperature series is generated using Eq. (9) that includes a seasonal cycle and a realization of an AR[1]

process. The instrument biases in Eq. (9), are prescribed at cA =−0.1K and cB = 0.2K and are added to the time series to-

gether with a measurement uncertainty being specified as Gaussian white noise ε∼N (0,σ2). The resulting two time series

for instruments A and B are combined to a) a synthetic time series of dual measurements, and b) an interlaced observational

counterpart. The difference in instrument biases between both time series is prescribed as ∆ = cA−cB =−0.1−0.2 =−0.3K.15

To investigate the influence of (i) persistence in the temperature series, (ii) measurement noise, and (iii) number of measure-

ments on our ability to estimate the difference in biases between two instruments, the following parameters are prescribed and

controlled in our study:

persistence of the time series a ∈ {0.5,0.7,0.8,0.9,0.95,0.99}

number of measurements N ∈ {50,100,250,500,1000,2000,3000},20

leading to 6× 7 = 42 combinations, i.e. 42 synthetic time series to be analysed. The instrument noise is fixed at σ2 ∈ 0.1. To

generate a synthetic time series for a given a, N and σ, the following steps were taken:

1. Generate a time series of length N consisting of an annual cycle and a realization of an AR[1] process as described

above.

2. Add an offset of -0.1K (instrument bias of instrument A) and Gaussian noise with variance σ2 = 0.1 to produce a25

synthetic time series for instrument A.

3. Add an offset of 0.2K (instrument bias of instrumentB) and Gaussian noise with variance σ2 = 0.1 to produce a synthetic

time series for instrument B.

4. Select measurements from A for odd days and from B for even days to generate an interlaced time series.

5. Repeat steps 1 to 4 many times (e.g. M = 1000, where M denotes the number of repetitions) to generate 1000 synthetic30

time series to derive statistically robust estimates of ∆̂.
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The difference in instrument biases is then estimated based on

1. the calculated mean values of N dual measurements (Eq. (10)), i.e. N measurements for A and N measurements for B

made simultaneously, and

2. results from the statistical model (Eq. (12) using the time series of N interlaced measurement, i.e. N/2 measurements

for A and N/2 measurements for B.5

3 Results

The box plots in Fig. 3 summarize the distribution ofM = 1000 bias estimates ∆̂ for a varying numbers of interlaced flightsN .

The upper panel of Fig. 3 is based on the simulated temperature time series with an AR[1] coefficient a= 0.5, being similar to

the autocorrelation coefficient found for temperature measurements at 300hPa above Lindenberg. The middle and bottom rows

are examples for stronger persistence, i.e. a= 0.8 and a= 0.9, respectively. All panels show that the spread in the estimated10

difference in bias between instruments A and B (∆̂) converges towards the true value (∆ =−0.3) for increasing N in all

cases. The rate at which this converges with increasing N depends on the persistence (i.e. autocorrelation) in the underlying

time series. Weak persistence (small a) leads to slower convergence (Fig. 3, top row), while strong persistence (a approaching

1) shows faster convergence.

The standard deviation of ∆̂ (see Fig. 4), representing the uncertainty with which the difference in the bias between instru-15

ments A and B can be estimated, depends on the number of interlaced flights and on the AR[1] coefficient a (coloured lines

in Fig. 4). The standard deviation can be used to construct asymptotic confidence intervals for the estimates using the standard

normal assumption (e.g. Wilks, 2011, Chapt. 5), i.e. for a 95% confidence interval, the estimated bias needs to be within 1.96

times the standard deviation. For all a, the standard deviation decreases with increasing N ; however, the standard deviation is

generally larger for weak persistence (small a ∈ (0,1)) and smaller for strong persistent (large a ∈ (0,1)).20

The synthetic time series of dual flights performed with instrument A and B simultaneously at N times (i.e. 2N measure-

ments, solid black line in Fig. 4) provides the most reliable estimate of the biases between the instruments, i.e. the standard

deviation is smallest for any N . To provide a robust comparison of the results from the dual flights to the results from N inter-

laced measurements, the results from the dual flights need to be compared to the results of doubled N interlaced flights. For

a time series with an autocorrelation coefficient of a= 0.5, at least 2000 days of consecutive interlaced daily measurements25

would be required to estimate the difference in instrument’s biases with a standard deviation of 0.22 K. Consider the following

example, a station operator seeks to detect the difference in bias between two radiosondes in a temperature time series showing

an autocorrelation coefficient of 0.95. The station operator requires a standard deviation of ∆̂≤ 0.05K which leads to a 95%

confidence interval of about 0.1 K (≈ 0.05 ∗ 1.96), then, from Fig. 4 it can be inferred that 500 interlaced measurements are

required to achieve this. Furthermore we conclude that, if an operator has a given amount of two types of radiosondes available30

from which the difference in instrument biases needs to be estimated, it is clear from Fig. 4 that dual flights result in better

estimates (i.e. smaller standard deviation in Fig. 4) than to interlace the instrument types from one day to the next. The results
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Figure 3. Box and whisker plots of bias estimates (∆̂) against number of interlaced flightsN (50 flights means 25 flights of instrumentA and

25 flights of instrument B) as derived from M = 1000 simulations using an autocorrelation coefficient of a= 0.5 (top), a= 0.8 (middle)

and a= 0.9 (bottom) and a measurement noise of σ2 = 0.1. The boxes show the inter-quartile range. The upper and lower whiskers represent

the maximum (excluding outliers) and minimum (excluding outliers). Suspected outliers are shown as dots and are located outside the fences

(“whiskers”) of the boxplot (e.g: outside 1.5 times the interquartile range above the upper quartile and below the lower quartile). The true

difference in biases ∆ = −0.3K is marked with a red line.
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Figure 4. Standard deviation of ∆̂ against number of flightsN for different AR[1] coefficients a. The black solid line represents the reference

experiment with dual flights of instruments A and B, i.e. 2 N measurements. To compare the results from the dual flights (black solid line)

with the results obtained from interlaced flights, the number of dual flights have to be doubled. Note the logarithmic vertical scale.
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presented here (from dual and interlaced flights) also depend on the variance of the signal; for a higher measurement noise, the

number of required days will increase and vice versa (not shown).

Figure 5. Vertical profiles of calculated autocorrelation coefficients for six GRUAN sites (color coded as shown in the legends). Autocorre-

lation coefficients were calcualted from ERA5 temperature data, interpolated to the location of the GRUAN sites.

The results indicate that for typical difference in biases between radiosonde types, the presented method on interlaced

measurements is unlikely to provide a robust estimate of the difference in biases for a reasonable length of the measure-

ment period (reasonable is considered as 2 years here). That said, there might be cases of larger instrument biases and/or5

larger persistence where the interlaced method could provide an alternative method to dual measurements, requiring fewer

resources. Vertical profiles of autocorrelation coefficients as calculated from temperature data obtained from ERA5 reanalyses

(https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era5) are shown in Fig. 5. Temperature data

were interpolated to the locations of six GRUAN sites, including sites in the tropics, middle and high latitudes. Here we cal-

cualted the autocorrelation coefficient from ERA5 data rather than from radiosonde measurements, as long-term continuous10

measurements are required to obtain a robust estimate of the seasonal cycle of the temperature time series before calculating the

autocorrelation coefficients. Such continuous observations, covering at least 2 years of daily radiosonde flights, are currently

only available at a small subset of GRUAN sites, which does not cover all latitude bands. ERA5 is the latest reanalyses provided

by ECMWF and it is expected that the calculated autocorrelation coefficients provide a good estimate of the autocorrelation

coefficient at each of the selected sites. Figure 5 shows that the persistence varies strongly with altitude and if the interlacing15

method is used, it has to be applied at different altitudes seperately. For lower altitudes (pressure levels above 250 hPa), the

autocorrelation coefficients vary between 0.4 and 0.8, with the lowest coefficients at the southern middle latitudes (e.g. Lauder,
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New Zealand). The persistence is increasting at higher altitudes (below 250 hPa), ranging from 0.7 in the tropics to 0.95 at

higher latitudes. The results indicate, that the interlacing method may be able to provide an estimate of the difference in biases

for high altitudes at e.g. Ny Alesund, a GRUAN site showing the highest autocorrelation coefficients. However, a detailed

case study needs to be performed to investigate potential benefits, which is beyond the scope of this study, which focuses on

describing and presenting the methodolody.5

4 Conclusions

We have used synthetic time series representing temperature measurements to investigate the possibility of using interlaced

measurements performed with two different instruments types together with Generalized Additive Models to obtain an estimate

of the difference in the bias between the two instrument types. Performing dual radiosonde flights with both instrument types

is costly, and therefore we investigated the feasibility of using interlaced flights to obtain an estimate of the difference in10

the bias. This would be more sustainable and less costly. Information about typically small differences in instrument biases

can be obtained from non-simultaneous measurements using a persistence assumption, i.e. some information of some day’s

measurement is carried over to the next day. As atmospheric temperatures tend to be autocorrelated in time (e.g. Wilks, 2011;

Maraun et al., 2004), the persistence assumption is justifiable. However, the strength of the autocorrelation depends, in part, on

the geographical location of the measurement site and on altitude. Here we investigated how a statistical approach to estimate15

the difference between two instrument biases is affected by the persistence of a time series.

The results presented here indicate that while it is in principle possible to estimate the difference between two instrument’s

biases from interlaced measurements, the number of interlaced flights required to obtain a satisfying accuracy is very large for

reasonable values of the autocorrelation coefficient. Strongly autocorrelated signals require fewer data for an accurate estimate

of the difference in biases and therefore fewer interlaced flights, than time series with low autocorrelation. The results show that20

for very strong persistence (e.g. an AR[1] coefficient of 0.99) about twice the number of measurements is needed compared

to parallel measurements to obtain a comparable uncertainty in estimates for interlaced measurements. Hence, the described

approach may be used for measurements with very strong persistence or where the costs for sufficient parallel measurements

exceeds the costs for sufficient interlaced measurements to confidently infer the difference in the instrument bias. However, if,

for example, it would be possible to derive a robust estimate of the difference in instrument biases from interlaced measurements25

in some reasonable time period (e.g. 2 years) and even if this period was more than 2 or 3 times longer than would be required

from a dual measurement strategy to achieve the same level of confidence, the interlacing approach would present a case saving

over an approach that would start with dual flights and then continue with flights using only the new instrument.

Code availability. The code can be obtained by contacting the corresponding author.
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