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Abstract. This study presents and applies three separate processing methods to improve high-order moments estimated from 35-

GHz (Ka-band) vertically pointing radar Doppler velocity spectra. The first processing method removes Doppler shifted ground 

clutter from spectra collected by a US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program Ka-

band zenith pointing radar (KAZR) deployed at Oliktok Point, Alaska. Ground clutter resulted from multiple pathways through 15 

antenna side-lobes and reflections off a rotating scanning radar antenna located 2 m away from KAZR, which caused Doppler 

shifts in ground clutter returns from stationary targets 2.5 km away. After removing clutter in the recorded velocity spectra, the 

second processing method identifies multiple separate and sub-peaks in the spectra and estimates high-order moments for each 

peak. Multiple peaks and high-order moments were estimated for both original 2-s and 15-s averaged spectra. The third processing 

step improves the spectrum variance, skewness, and kurtosis estimates by removing velocity variability due to turbulent broadening 20 

during 15-s averaging intervals.  

Applying the multiple peak processing to Doppler velocity spectra during liquid-only clouds can identify cloud and drizzle 

particles and during mixed-phase clouds can identify liquid cloud and frozen hydrometeors. Consistent with previous studies, this 

work found that spectrum skewness assuming only a single spectral peak was a good indicator of two hydrometeor populations 

(for example, cloud and drizzle particles) being present in the radar pulse volume. Yet, after dividing the spectrum into multiple 25 

peaks, velocity spectrum skewness for individual peaks is near zero, indicating nearly symmetric peaks. This suggests that future 

studies should use velocity skewness of single peak spectra as an indicator of possible multiple hydrometeor populations and then 

use multiple-peak moments for quantitative studies. Three future activities will continue this work. First, KAZR spectra from 

several ARM sites have been processed and are available in the ARM archive as a PI Product. ARM programmers are evaluating 

these processing methods as part of future multiple peak products generated by ARM. Third, MATLAB code generating the 30 

Oliktok Point products has been uploaded as supplemental material for public dissemination.{338 words} 
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1 Introduction 

Vertically pointing radars operating in the Ka-band (35 GHz) are important remote sensing instruments providing 

quantitative and high-resolution observations for studying the vertical structure and dynamics of clouds and precipitation (Görsdorf 

et al., 2015). Vertically pointing radars increase their sensitivity by transmitting multiple pulses and produce Doppler velocity 

spectra for each range gate and dwell. The temporal evolution and vertical structure of these spectra contain microphysical and 5 

dynamical cloud and precipitation information.  

Using narrow beamwidth antennas reduces spectrum broadening due to sub-pulse volume turbulence. the resulting 

recorded spectra are often non-Gaussian shaped and contain multiple peaks due to the presence of different particle size 

distributions within the radar pulse volume (Kollias et al., 2016). Under certain atmospheric conditions, mixed phase clouds occur 

and contain both liquid and ice phase particles within the same radar pulse volume (Shupe et al., 2004; Kalesse et al., 2016). Thus, 10 

the number of spectrum peaks and their shape provide microphysical information of the particle size distributions. Estimating 

higher-order spectral moments, including velocity spectrum skewness and kurtosis, extracts microphysical information from the 

full Doppler spectrum (Luke and Kollias, 2013). These high-order moments are inputs to time-height analyses exploring 

microphysical and dynamical cloud processes (Maahn and Löhnert, 2017). One caveat for this analysis paradigm is the need for 

clean radar Doppler velocity spectra void of non-atmospheric signals, including ground clutter. Thus, pre-processing and cleaning 15 

of Doppler spectra are often needed before microphysical and dynamical information can be extracted from vertically pointing 

cloud radar observations.  

This study presents three separate methods to improve high-order moments estimated from Doppler spectra. First, Doppler 

velocity spectra are cleaned by removing ground clutter. Second, multiple peaks are identified within the Doppler spectra. Finally, 

spectrum skewness estimates are improved by removing turbulent broadening effects at the 15-s scale.  20 

Ground clutter in scanning and vertically pointing radar observations is a pervasive problem (Sato and Woodman, 1982). 

Ground structures (including buildings, trees, and power lines) act as hard targets reflecting radar waves back to the radar. Since 

these ground structures are stationary, except for oscillatory trees and power lines swaying due to wind (Barth et al., 1994), the 

ground clutter has a zero Doppler velocity shift. Bandpass filters can isolate clutter and hydrometeor signals as long as the 

hydrometeor signal has a non-zero velocity. As the weather signal approaches zero velocity, more sophisticated methodologies are 25 

needed to separate clutter from desired weather signals (Siggia and Passarelli, 2004).  

For scanning weather radars, both the clutter and weather signals have Gaussian shape peaks that enables removing the 

clutter signal and recovering any overlapping weather signal. Within the Doppler velocity spectrum domain, the Gaussian model 

adaptive processing (GMAP) method (Siggia and Passarelli, 2004) uses the saved coherent and quadrature time-series observations 

(i.e., I and Q voltages) to calculate multiple spectra to adaptively determine the Gaussian shaped clutter and remove it from the 30 

Gaussian shaped weather signal. The GMAP methodology applied to time-domain calculations (called GMAP-TD) accounts for 

scanning radars utilizing staggered pulse repetition time (PRT) sequences (Nguyen and Chandrasekar, 2013). Since vertically 

pointing radars in mixed-phased clouds routinely observe signals from two hydrometeor types (e.g., liquid clouds and falling ice 

particles, Shupe et al., 2004; Kalesse et al., 2016), the GMAP method cannot be implemented to remove clutter without 

significantly modifying the GMAP logic. In addition, the time-series I and Q voltages needed to resample the spectra with different 35 

amplitude weightings are often not available for reanalysis from vertically pointing radars. 

Receiving backscattered energy from moving trees and cars through antenna sidelobes is a common clutter problem with 

wind profilers (Barth et al., 1994). Due to the relatively large antenna beamwidths in wind profilers (e.g., 6-to-9 degrees for main 

beams and larger for sidelobes), clutter tends to be broad Gaussian-shaped features near zero velocity (May and Strauch, 1998). 

Birds and bats are often detected in higher frequency wind profilers (e.g. 915 MHz) with wavelet and time-domain Gabor 40 
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transforms have been effective in identifying and removing these short-time duration targets (Jordan et al., 1997; Lehmann, 2012). 

In addition, the Gabor transform technique has been shown to improve wind profiler horizontal wind estimates (Bianco et al. 2013). 

Note that clutter is dependent on the radar operating frequency. For example, longer wavelength radars (e.g., VHF) are not as 

susceptible to clutter from flying birds as shorter wavelength 915 MHz wind profilers (Wilczak et al. 1995). In contrast to wind 

profilers, Ka-band cloud radars have significantly higher frequencies and very narrow beamwidths (on the order of 0.3°) such that 5 

Doppler velocity spectrum broadening due to horizontal motion through the radar beam is negligible (Shupe et al., 2008; Kollias 

et al., 2007). These narrow beamwidths result in very narrow clutter peaks in the Ka-band cloud radar velocity spectra with insects 

appearing as very narrow spectral peaks (Luke et al., 2008). 

 Recent studies have shown that velocity spectrum skewness provides information of drizzle onset (Kollias et al., 2011; 

Luke and Kollias, 2013; Acquistapace et al., 2017) and for deriving properties of ice clouds (Maahn et al., 2015; Maahn and 10 

Löhnert, 2017). Since there is a trade-off between temporal resolution and spectrum noise variance, the spectral moment estimates 

tend to be noisy for short duration spectra (Giangrande et al. 2001; Luke and Kollias, 2013; Acquistapace et al. 2017). By shifting 

spectra to a reference velocity before averaging spectra, Luke and Kollias (2013) showed that spectrum skewness estimates 

improved and were more coherent in time and height.  

 There is a long history of estimating multiple peaks in radar Doppler velocity spectra (Clothiaux et al., 1994). These 15 

multiple peaks need to be estimated before applying fuzzy logic (Cornman et al., 1998; Cohn et al., 2001; Morse et al., 2002), 

neural network (Gardner and Dorling, 1998), or wavelet (Lehmann and Teschke, 2001) frameworks to discriminate atmospheric 

signals from clutter and radio interference. Estimating multiple peaks is a form of data reduction, or feature extraction, that can be 

used as inputs to algorithms that estimate boundary layer heights (Allabakash et al., 2017) or horizontal winds (Liu et al., 2017).  

This paper has the following structure. Section 2 describes the radar deployment and operating parameters of a US 20 

Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program Ka-band zenith pointing radar (KAZR) 

installed at Oliktok Point, Alaska. Section 3 describes signatures of clutter and atmospheric signals observed in KAZR velocity 

spectra. Section 4 develops a clutter identification and mitigation method. This section also discusses how multi-path scattering 

from a nearby scanning radar antenna caused the clutter to have either approaching or receding radial motion. Section 5 describes 

a method to identify multiple peaks in the spectra and estimate high-order spectral moments. Section 5 also discusses a method of 25 

shifting individual spectra to the 15-s mean velocity before averaging. Section 6 provides concluding remarks. For completeness 

and repeatability, Appendix A provides the equations to estimate high-order spectral moments. The MATLAB code used to 

perform the analysis is available as supplemental material. 

2 Radar Observations 

Since the early 1990s, the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program has deployed 30 

atmospheric observing systems around the globe to measure and characterize the radiative properties of the atmosphere (Mather 

and Voyles, 2013). The radiative properties of clouds are dependent on many factors including cloud composition, cloud thickness, 

and temperature. Measurements from vertically pointing cloud radars, lidars, and radiometers provide the input observations 

needed to estimate and to better model the radiative properties of clouds (Clothiaux et al., 2000).   

In 2015, DOE installed their third ARM Mobile Facility (AMF-3) at Oliktok Point (OLI), on the North Slope of Alaska, 35 

which is approximately 264 km east-southeast of the long-term ARM North Slope of Alaska (NSA) core-observing site near 

Utqiaġvik (formally known as Barrow). The AMF-3 instrument suite includes a Ka-band (35 GHz) ARM zenith pointing radar 

(KAZR) and a Ka/W-band (35/94 GHz) scanning ARM cloud radar (SACR, until September 2017).  Both antennas are installed 
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on top of the same shipping sea-container as shown in Fig. 1. The SACR antennas are less than 2 m from the KAZR antenna with 

a direct line-of-sight to the KAZR feed-horn. As will be investigated in Section 3, the rotating SACR antennas are in the KAZR 

near-field which caused the stationary ground clutter targets to be Doppler shifted alternating between approaching and receding.  

 (Place Figure 1 near here: Fig 1. Photo of KAZR and SACR) 

The KAZR and SACR at Oliktok Point became operational after an intensive Calibration, Grooming, and Alignment 5 

(CGA) field campaign conducted by the ARM Radar Engineering Group in October 2015. The KAZR operates in three modes: 

general mode (GE), medium mode (MD), and precipitation mode (PR). The initial operating parameters recorded 256-point 

Doppler velocity spectra. On 16-June-2016, the number of incoherent integrations were reduced in order to record 512-point spectra 

and maintain the same time-on-target (Table 1). Raw spectra used in this study are available on the DOE ARM Archive (ARM 

Climate Research Facility, 2015). 10 

At Oliktok Point, oil refineries, pipelines, and powerlines within 2.5 km range are detected by KAZR as backscattered 

energy reflects back toward the radar and leaks into the radar system through antenna sidelobes. To mitigate the ground clutter 

observed in the KAZR spectra, a temporary clutter screen was installed around the KAZR antenna on 27-August-2016 (Fig. 1b). 

Thus, there are three different KAZR configurations partitioned by date: (prior to 16-June-2016) 256-point spectra with no clutter 

screen; (between 16-June-2016 and 26-August-2016) 512-point spectra with no clutter screen; and (after 26-August-2017) 512-15 

point spectra with clutter screen.    

3. Atmospheric and Non-Atmospheric Signal Signatures  

Stationary ground clutter will appear in the Doppler velocity spectra near zero velocity. This section examines and quantifies the 

characteristics, or signatures, of KAZR ground clutter and KAZR atmospheric signals due to clouds and precipitating particles. 

Appendix A provides details of calculating spectral moments from raw velocity spectra. 20 

 

3.1 Ground Clutter Contamination 

Figure 2 shows time-height cross-sections of measured radar reflectivity (Fig. 2a) and mean radial velocity (Fig.2b, positive values 

are approaching the radar) for 1 hour of observations starting at 12:00 UTC on 19-June-2016. For this figure, instead of imposing 

a user defined signal-to-noise ratio threshold to discriminate spectra with signal-plus-noise versus spectra with just noise, moments 25 

were estimated only for spectra containing at least three consecutive spectral points above the noise threshold. While the actual 

observations for this precipitation event extend above 6000 m, the vertical axis in Fig. 2 is limited to 2500 m to show details of the 

ground clutter signatures. There are four general areas of interest in this figure: one area contains atmospheric signals and the other 

three areas contain clutter signatures. The atmospheric signals are due to cloud and precipitating particles that are identifiable by 

reflectivities greater than approximately -10 dBZ and downward velocities greater than 1 m s-1 reaching the surface after minute 30 

25. There is also a brightband in reflectivity near 1500 m and a large gradient in downward motion near 1500 m indicating the 

melting of ice particles into raindrops (e.g., Williams et al., 1995).  

 (Place Figure 2 near here: Fig 2. Time-height cross-sections of original KAZR Doppler velocity spectral moments.) 

Clutter is visible in Fig. 2a and 2b within two height ranges prior to minute 20. Clutter signatures are either below 600 m 

or within 1500-to-2000 m. In both height regions, the clutter reflectivity is nearly constant at each height and the radial velocity is 35 

near zero. Note that the radar continuously detects clutter within these two height ranges throughout the hour. The clutter signature 

is not visible after minute 20 because signal power from the cloud and precipitation is larger than the clutter power and the spectral 
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peak picking routine is selecting the larger atmospheric peak. At a height near 500 m and minutes 30-to-60, there are intervals 

when the clutter peak is larger than the atmospheric peak such that the spectral peak picking routine has selected the clutter peak 

instead of the atmospheric peak. These clutter peaks appear near minutes 31 and 50-to-57 and are distinguished by discontinuities 

in reflectivity and near zero radial velocities.  

3.2 Drop in Power from Peak to Nearest Neighbour 5 

There are significant differences in the characteristics of backscattered return power from distributed targets and from point targets 

(Mahafza, 2017). In the case of distributed hydrometeor targets, the hydrometeors have different sizes and velocities that are 

constantly moving within the radar pulse volume. These motions cause the radar-received backscattered power to fluctuate from 

pulse-to-pulse (i.e., Swerling Type II targets). In addition, there is a distribution of different particle sizes falling at different 

velocities leading to a broad velocity distribution in the recorded Doppler velocity spectrum.  10 

In contrast, received power return from stationary point targets is nearly constant from pulse-to-pulse with small random 

statistical fluctuations (i.e., Swerling Type 0 or V targets). The constant path-length between the radar and the target results in zero 

Doppler motion. In an ideal signal-processing environment, the stationary target in the time domain would transform into a delta-

function of finite energy at zero velocity in the frequency domain. However, in real-world signal processors, the delta-function 

energy spreads over several velocity bins following a sinc function. The sinc function breadth and amplitude are determined by 15 

the windowing function applied to the time-series before performing a fast-Fourier transform, and by the delta function amplitude 

(Mafazha 2017).  

In general, distributed hydrometeor targets produce broader velocity spectra than stationary targets. To explore these 

attributes in the recorded spectra, Fig. 2c shows the drop in received power from the velocity bin with peak magnitude to its directly 

neighbouring velocity bin expressed in units of dBm (i.e., power relative to 1 mW). Since there are two neighbouring velocity bins 20 

bounding the peak value, all calculations use the largest power drop. Figure 2c shows that the power drop for the clutter signal is 

approximately 6 dBm (i.e., red colours) and occurs prior to minute 25, and near 500 m during minutes 31 and 51-57. For the spectra 

with clouds and precipitation, the drop in power is a distribution of values with a central value near approximately 2 dBm (i.e. blue 

colours). Figure 2c suggests that the power drop from the peak magnitude to the nearest neighbour is a good indicator of whether 

the spectrum peak is due to point-target scattering (approximately 6 dBm drop) or due to distributed hydrometeor target scattering 25 

(less than 2 dBm drop). 

 To explore details of how clutter signals appear in the recorded velocity spectra, Figure 3a shows a profile of spectra 

selected from Fig. 2 at 12:05:01 UTC on 19-June-2016. The radial velocity is on the abscissa and only extends from 1 m s-1 upward 

(left side) to 1 m s-1 downward (right side). The ordinate is height above the ground in meters and extends from the surface up to 

800 m. The pseudo-colours represent received power in dBm. In nearly all range gates, ground clutter power is identifiable as an 30 

increase in received power at zero velocity with additional power leaking into neighbouring velocity bins.  

 (Place Figure 3 near here: Fig 3. Doppler velocity spectra profile with interpolation.) 

The black line at 447 m in Fig. 3a indicates the height of the spectrum shown in Fig. 3c which contains both a clutter peak 

and an atmospheric peak due to cloud droplet particles (black line with pluses). An interpolation in linear units is performed across 

the three points centred about zero velocity and is shown in Fig. 3c with a red line and circles. It is important to note that the 3-35 

point interpolation only modifies power recorded at three velocity bins. Figure 3b shows stacked spectra after applying this 3-point 

interpolation to each spectrum. Note that this simple interpolation was sufficient to remove or suppress the clutter near zero velocity 

such that the atmospheric signal can be resolved.  
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To illustrate the relatively constant amplitude of the clutter signal with time, Fig. 4a shows 1774 consecutive spectra at 

447 m height for hour 12 UTC on 19-June-2016 (which is the same hour shown in Fig. 2). Radial velocity is on the abscissa with 

upward motion on the left and downward motion on the right. Time is on the ordinate with time increasing up the page. Pseudo-

colours represent measured return power in dBm. A clutter peak near zero velocity is present during the whole hour while there 

are two fluctuating atmospheric signals at this height. A liquid cloud is present for most of the hour with updraft / downdraft 5 

magnitudes less than 0.5 m s-1. After approximately minute 28, raindrops appear at this height with downward radial velocities 

ranging from approximately 0.25 to over 4 m s-1. The small magnitude power signals with upward motions after minute 28 are 

artefacts due to large magnitude downward power signals causing harmonics in the radar receiver. Figure 4b shows the spectra 

after applying the 3-point interpolation across the zero velocity. This simple 3-point interpolation is sufficient to remove the clutter 

peaks without disturbing the atmospheric signals. 10 

 (Place Figure 4 near here: Fig 4. Time-series of radial velocity spectra.) 

4. Clutter Identification and Mitigation 

As shown in Fig. 2 during the first 20 minutes of observations, without clutter peak mitigation, standard single-peak picking 

algorithms (e.g., Carter et al., 1995) will select ground clutter as a viable peak and will estimate the spectral moments of this clutter 

peak. If the clutter peak is in the middle of the atmospheric signal as in the example spectrum shown in Fig. 3c, then the estimated 15 

reflectivity will be biased high and the mean radial velocity will be biased toward zero velocity. If clutter mitigation is applied to 

all spectra regardless of whether clutter signals are present, then low magnitude atmospheric signals centred on zero velocity could 

be eliminated from the data set. Thus, this section examines the power drop near zero velocity in order to establish a threshold to 

determine when and when not to apply clutter mitigation. 

4.1 Clutter-to-Noise Ratio (CNR) 20 

To determine whether the spectrum contains point-target signatures, three statistics are calculated for each spectrum: the drop in 

power from the zero velocity bin to the nearest neighbour velocity bin (𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), the clutter-to-noise ratio (CNR), and the signal-to-

noise ratio (SNR) of the decluttered spectrum. 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is a clutter indicator while CNR quantifies the clutter power. Figure 5a shows 

a typical spectrum containing clutter power near zero velocity, collected at 00:14:33 UTC on 4-July-2016 at range 387 m. While 

the recorded spectrum extends to upward and downward Nyquist velocities of 5.9 m s-1, this figure only shows radial velocities 25 

out to 0.4 m s-1. A peak power of approximately -60 dBm occurs at zero velocity and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is approximately 6 dB. The thick 

dashed line shows the 3-point interpolation with the light grey shaded area indicating the clutter power. The dark shaded area 

represents noise power. The CNR is defined as the clutter power (light grey shaded area but expressed in linear units) divided by 

total noise power (dark grey shaded area extended to Nyquist velocities and expressed in linear units) with CNR expressed in 

decibel units [dB]. 30 

 (Place Figure 5 near here: Fig 5. Selected spectra to illustrate clutter signal.) 

In Fig. 5a, notice the large power drops between the zero velocity bin and the first and second neighbouring velocity bins. 

The power drops are approximately 6 and 25 dBm, respectively. These large power drops are consistent with the expected sinc 

function from point targets. A large power drop to the second neighbouring bin is not always observed because either 1) the 

spectrum power falls below the noise threshold or 2) the power drop is masked by an atmospheric signal power as in the case 35 

shown in Fig. 5c. In this dataset, the clutter peak was narrow enough that a 3-pt interpolation removed clutter power from the peak 

value and two neighbouring velocity bins was sufficient to remove most of the clutter power. For other radar datasets, a 3-pt 
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interpolation may not be sufficient to remove the clutter. Therefore, the clutter characteristics in other datasets should be examined 

before adjusting the width of the interpolation.   

After removing the clutter power using a 3-point interpolation (Fig. 5a), the spectral moments are estimated using the 

decluttered spectra (Fig. 5b) to determine whether or not the spectrum contains residual clutter or contains atmospheric signals. In 

Fig. 5b, the decluttered spectrum has eight consecutive spectral points above the noise threshold and is shaded medium grey. The 5 

signal-to-noise ratio (SNR) of this residual peak is -8.3 dB, the largest magnitude power occurs at one of the velocity bins used in 

the 3-point interpolation (indicated with a filled circle), and this velocity bin is called the ‘peak magnitude velocity’.  

The spectrum shown in Fig. 5c contains both clutter and atmospheric signals (range 387 m at 17:14:31 UTC on 7-July-

2016). The clutter peak is clearly identifiable in the spectrum. A thick dashed line shows the 3-point interpolation across zero 

velocity and the clutter power is shaded in light grey. Figure 5d shows the decluttered spectrum with the residual signal power and 10 

noise power indicated with the medium and dark grey shadings, respectively. For this spectrum, the residual peak SNR is 3.3 dB 

and the peak magnitude velocity (indicated with a filled circle) occurs away from the 3-point interpolation velocity bins and is 

associated with the atmospheric signal.  

In order to determine when to apply the 3-point interpolation across zero velocity, we need to compare the drop in power 

in spectra with and without ground clutter. Figure 6 shows a time-series of radial velocity spectra at a range of 987 m for the same 15 

1-hour interval shown in Fig. 4a. There is no clutter in the raw spectra at 987 m shown in Fig. 6 so it can be used as a reference. 

Note that there are no saved spectra prior to minute 21 because the automated data reduction and archiving algorithm did not detect 

any spectral points (clutter or atmospheric signals) with power greater than the Hildebrand and Sekhon (1974) noise threshold.  

 (Place Figure 6 near here: Fig 6. Time-series of radial velocity spectra at 987 m.) 

The power drop from zero velocity to the nearest neighbour 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and CNR statistics were calculated for all spectra shown 20 

in Fig. 6. Only 210 spectra had a positive power drop with Fig. 7a showing a scatter plot of CNR vs. power drop (squares). The 

CNR vs. power drop for the simultaneous 210 spectra at 477 m (Fig. 4a) are shown in Fig. 7a using circles. The CNR for the 

spectra with and without ground clutter are approximately +10 dB and -25 dB, respectively. Figure 7b shows the power drop 

cumulative distribution functions (CDFs) and illustrates that clutter-free spectra have a broad distribution ranging from 0 to 4 dBm 

(dashed line) and the clutter spectra have a narrow distribution centred around 6 dBm (solid line). Note that all clutter spectra 25 

power drops are greater than 3 dBm (Fig. 7a) and that 90% of the clutter-free spectra have power drops less than 3 dBm (Fig. 7b). 

Thus, this study used a 3 dBm power drop threshold as a criteria to identify clutter pixels. This threshold needs to be estimated for 

every radar dataset, as clutter statistics are different for different datasets. To help determine appropriate thresholds in other radar 

datasets, the MATLAB code used in this study is available as supplemental material.  

 (Place Figure 7 near here: Fig 7. Scatter plot of CNR vs. power drop and CDF power drop.) 30 

4.2 Ground Clutter Doppler Shift 

Time-height clutter patterns occurred with a repeatable temporal cadence. Specifically, there were periods of narrow-symmetric 

clutter and periods of broader-asymmetric clutter. While the peak magnitude velocity rarely deviated from zero velocity, the 

asymmetry caused the mean velocity moment to deviate from zero velocity. Figure 8 shows an hour’s worth of observations on 

3-July-2016 (hour 20 UTC) when no hydrometeors were above the radar. Figure 8a shows the clutter-to-noise ratio (CNR) [dB], 35 

Fig. 8b shows the residual peak SNR [dB] and Fig. 8c shows the residual peak magnitude velocity expressed in m s-1. Note that 

the peak magnitude velocity alternates between negative and positive radial velocities suggesting that the stationary ground clutter 

has a Doppler motion component and is either receding or approaching the radar, respectively.  

(Place Figure 8 near here: Fig 8. Time-height cross-section of clutter statistics.) 
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Figure 9 shows the pointing direction of the SACR scanning radar antennas (solid line) for minutes 20-to-30 during hour 

20 UTC on 3-July-2016. During this 10-minute interval, the SACR antennas were rotating at 2°/minute in a clockwise direction. 

The white and grey shading in Fig. 9 represents the column median residual peak magnitude velocity estimated from Fig. 8c and 

is either receding (white) or approaching (grey). There is a clear relationship between clutter Doppler motion and the SACR antenna 

pointing direction. As the SACR antennas complete one rotation, the clutter motion completes one receding-approaching cycle. 5 

We postulate that the pulse-to-pulse change in path-length between the KAZR antenna and the stationary targets via multi-path 

reflections off the rotating SACR antenna caused the Doppler shift. The different durations and occurrences of residual peak 

magnitude velocities shown in Fig. 8c correspond to the different SACR scanning modes (not shown here). While a relationship 

between clutter occurrence and SACR scanning mode is interesting, the focus of this work is to identify and mitigate clutter 

signatures occurring in the spectra. 10 

(Place Figure 9 near here: Fig 9. SACR antenna azimuth pointing direction.) 

4.3 Clutter Mitigation Logic Diagram 

This section describes a clutter mitigation routine that identifies and removes static and non-static clutter signals from recorded 

velocity spectra. Over the course of analysing clutter signatures, several complex clutter removal routines were developed. After 

comparing the results from these routines, the clutter removal methodology was simplified until this final routine has only three 15 

conditionals based on two thresholds: 

1) Is power 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 greater than a threshold?  
2) Are there enough spectral points above the noise threshold to estimate moments? 
3) After interpolating across the clutter peak, is the new peak magnitude velocity at an interpolation edge velocity? 

 20 
The use of static thresholds is simple to implement, but not easily transferred to other radar systems that have different clutter 

statistics. Thus, the MATLAB code used to process the Oliktok Point KAZR dataset is made available as supplemental material. 

Figure 10 shows a flow diagram for the clutter mitigation routine. Starting with box #1, a single spectrum is loaded into the routine. 

The power drop from zero velocity to the nearest neighbour is calculated 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (box #2). If 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is greater than a threshold as 

derived from Figure 7b (box #3), then this spectrum is flagged to contain clutter and passed to box #5; else, this spectrum does not 25 

contain clutter (box #4) and is saved for future spectral and moment processing (box #13). If the spectrum gets into box #5, the 3-

point interpolation is performed across zero velocity and the residual moments are estimated in box #6.  

(Place Figure 10 near here: Fig 10. Clutter identification and mitigation flow diagram.) 

Box #7 requires that at least five consecutive spectral points have magnitudes greater than the noise threshold. Note that 

there are trade-offs using a fixed number of consecutive spectral points above the noise threshold. First, increasing the number of 30 

spectral points increases the minimum detected SNR. Second, a fixed number of spectra bins corresponds to a minimum velocity 

range, expressed in m s-1, which is dependent on spectrum velocity resolution and number of FFT points. Third, high-order 

moments of velocity skewness and kurtosis require four and five spectral points, respectively, to make physical sense. The pros 

and cons of these trade-offs must be considered when analysing a dataset. Due to the clutter in the Oliktok Point dataset, the five-

point threshold eliminated narrow clutter signals at the expense of a higher minimum detected SNR. Since the MATLAB code is 35 

available as supplemental material, users can change thresholds and reprocess the Oliktok Point dataset. Without enough spectral 

points in Box #7, this spectrum is flagged as not containing an atmospheric signal (box #8) and is barred from being used in any 

temporal spectral averaging techniques discussed in Section 4 (box #9). If there are five or more spectral points above the noise 

threshold, then an evaluation is performed to see whether the residual peak magnitude velocity is at the edge of either 3-point 

interpolation edge velocity (box #10). If it is, then this residual likely still contains clutter (box #11) and the spectrum is barred 40 
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from further analysis (box #9). If the peak magnitude velocity is different from either 3-point interpolation edge velocity, then this 

spectrum likely contains an atmospheric signal (box #12) and is saved for future spectral and moment estimations (box #13).  

To illustrate the performance of the clutter identification and mitigation routine, the same spectra used to construct Fig. 2 

were processed through the flow diagram shown in Fig. 10. Figure 11 shows the decluttered spectra calculations of reflectivity 

(Fig. 11a), mean radial velocity (Fig. 11b), and power drop from peak power to nearest neighbour (Fig. 11c). Figure 11 shows a 5 

vertically thin cloud layer just below 500 m that was not visible in Fig. 2 because of the contaminating ground clutter. This is 

consistent with the spectra analysis shown in Figs. 3 and 4 that showed an oscillatory cloud layer near 500 m. In addition to 

providing the MATLAB code as supplemental material, the processed Oliktok Point KAZR datasets are available on the ARM 

Archive (see Data Available Section for details). These netCDF datasets also include a 3x3 time-height continuity filter quality 

flag so that the user can choose to remove isolated pixels (see Appendix B for details).  10 

(Place Figure 11 near here: Fig 11. Time-height cross-section of decluttered moments.)     

5. Multiple Peaks and High-Order Spectral Moments 

After identifying and removing clutter in the effected spectra, this section describes how to identify multiple-peaks in the spectra, 

how to estimate high-order moments for each spectral peak, and how to construct 15-s average spectra using a ‘shift-then-average’ 

procedure.  15 

5.1 Identifying Multiple Peaks 

One advantage of processing radar velocity spectra is that different hydrometeor habits can be identified by their velocity 

signatures. For example, Fig. 12a shows a velocity spectra profile when both cloud particles and ice particles are occurring in the 

same height between 500 to 800 m. This profile was collected on 15-October-2016 at 11:55:55 UTC with the pseudo-colours 

representing received power in dBm. By eye, we can see two return power patterns in the spectra profile. One pattern is limited in 20 

height between 500 to 800 m and has downward motions between 0 and 0.4 m s-1 that correspond to signals from cloud particles. 

Another return signal extends from the top of the panel to the surface with downward motions ranging from 0 to 2 m s-1. While 

more analysis is needed to determine whether these return signals are from liquid or ice phase particles (e.g., cross-pol spectra 

could provide Linear Depolarization Ratio (LDR) estimates to discriminate spherical (likely liquid) particles from non-spherical 

particles), we can confidentially state that faster falling particles are larger than the cloud particles that are confined to the 500 to 25 

800 m range. 

(Place Figure 12 near here: Fig 12. Spectra profile with multiple peaks.) 

Super imposed on the spectra in Fig. 12a are the mean velocity  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (black vertical ticks) and +/- one velocity spectrum 

standard deviation 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 (horizontal black lines) estimated assuming that one spectral peak exists in each spectrum (see Appendix 

A for spectrum moment equations). These moments are known as ‘single peak’ moments and have a long lineage in vertically 30 

pointing radar research (see Carter et al., 1995) and the DOE ARM community (see Clothiaux et al., 2000). We can see that the 

single-peak moments do not represent the dual-peak nature of the recorded spectra. To overcome this limitation, multiple spectral 

peaks are identified with  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 estimated for each peak and shown in Fig. 12d. The black symbols are from single peak 

moments while the blue and red symbols are from sub-peaks and separate peaks identified in the spectra. 

Identifying multiple peaks (Luke and Kollias, 2013) is a process of identifying boundaries, or integration limits, which 35 

will be used in the spectrum moment equations. To help describe how boundaries are identified, Fig. 13 shows how single peaks, 

sub-peaks, and separate peaks are identified in example spectra pulled from heights 807 and 777 m in Fig. 12. Table 2 provides a 
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description of the three types of peaks. Every spectrum with at least five consecutive spectral points above the noise threshold will 

have a single peak. However, not every spectrum with a single peak will have sub-peaks or separate peaks.  

(Place Figure 13 near here: Fig 13. Velocity spectra with multiple peak integration limits.)  

The spectrum from 807 m (Fig. 13a) has two spectral peaks. The peak on the right is the most significant peak because it 

contains the spectral point with the largest magnitude. The integration limits for the single peak extend over all consecutive points 5 

above the noise threshold. The triangles in Fig. 13a indicate the single peak integration limits and  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 are plotted near 

0.8 m s-1 downward velocity. Since there are spectral points below the noise threshold between the single peak and the left peak, 

the left peak is called a separate peak. Circles indicate the integration limits for this separate peak. The separate peak must have 

five consecutive spectral points above the noise threshold. 

Figure 13b shows the spectrum from 777 m. The single peak is very broad and extends from approximately 0.25 m s-1 10 

upward to 1.3 m s-1 downward as indicated with the triangles. Sub-peaks are peaks within the single peak separated by a local 

minimum, or valley. It is important that the valley is deeper than the bin-to-bin variability observed in the velocity spectrum. From 

Figs. 2 and 7, the variability from the peak magnitude value to the nearest neighbour exceeds 4 dB. Thus, this study used a valley 

threshold of  at least 6 dB of concavity to limit the number of falsely identified sub-peaks. The circles indicate the integration limits 

for two sub-peaks in Fig. 13b. The 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for all three peaks are shown with triangles and circles with ±𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 shown with lines. 15 

Similar to the other peaks, sub-peaks must have five consecutive spectral points above the noise threshold. 

5.2 High-Order Spectral Moments 

After identifying integration limits for all spectral peaks, the high-order moments are calculated for each peak using the equations 

shown in Appendix A. The spectral moments range from the signal-to-noise ratio (the zeroth moment) to the velocity spectrum 

kurtosis (the fourth moment).   20 

The scatter-plot profiles on the right side of Fig. 12 show the spectral moments of reflectivity and velocity skewness for 

the single, sub-, and separate peaks. The top row shows only the single peak moments while the bottom row shows moments from 

different peaks. Note that if sub-peaks exist in a spectrum, then the single peak moments are not plotted in the bottom row. The 

reflectivity vertical structure for the multiple peaks (Fig. 12e) shows both a continuous pattern with height and two patterns that 

are limited in height. The continuous pattern mimics the single peak reflectivity pattern shown in Fig. 12b and has a local maximum 25 

near 400 m. The two height-limited patterns occur near 700 and 1400 m where there are two distinct hydrometeor populations in 

the spectra profile (Fig. 12d). Near 700 m, the smaller reflectivity values correspond to the cloud particles with mean velocities 

near 0.2 m s-1 downward. 

With regard to the velocity skewness, the single peak estimates (Fig. 12c) show large negative values below 800 m with 

maximum value near 600 m. A negative velocity skewness indicates that the long distribution tail is on the negative velocity side 30 

of the peak, which is upward motion in this dataset. Yet, Fig. 12f shows near-zero velocity skewness for the sub-peaks between 

500 and 800 m. This suggests that large magnitude single peak velocity skewness could indicate the existence of multiple sub-

peaks. Yet, after identifying sub-peaks, velocity skewness represents the asymmetry of each individual spectral peak. Thus, single 

peak velocity skewness could be used to identify the existence of multiple sub-peaks and moments from multiple peaks should be 

used to perform quantitative microphysical analyses. 35 

5.3 Shift-then-Average Spectra 

As discussed in Luke and Kollias (2013), the velocity spectrum skewness can be a noisy estimator due to velocity bin-to-bin 

spectrum power fluctuations. To improve the velocity spectrum skewness estimate, Luke and Kollias (2013) suggested shifting 



11 
 

consecutive spectra to a common reference, averaging the shifted spectra, and then estimating the velocity spectrum variance and 

skewness. Shifting the spectra before averaging reduces the spectrum broadening and smearing due to vertical air motion variability 

that occurs during the averaging interval (Giangrande et al., 2001). Several different averaging intervals were tested ranging from 

4-s (similar the KAZR-ARSCL resolution) to 60-s. The 4-s interval only contained two profiles, while the cloud system often 

evolved and changed shape during the 60-s interval. A compromise of 15-s is used assuming that the atmospheric microphysical 5 

processes (e.g., evaporation, breakup, and coalescence) are stationary over this interval, yet, dynamical processes (e.g., air motions 

and turbulence) are not stationary. 

The method of shifting all spectra to line-up all peak magnitude velocities appeared to work well for the maritime drizzle 

clouds (Luke and Kollias 2013), but it did not work well with Arctic mixed-phase clouds observed at Oliktok Point because the 

peak magnitude sometimes jumped to a different spectral peak during the 15-s integration interval. To overcome this occasional 10 

issue, the spectra were shifted to the 15-s mean velocity. Specifically, shift-then-average processing consisted of nine steps 

performed at each range gate: 

1) Estimate the single peak mean velocity for each 2-s spectrum 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2𝑠𝑠   
2) Incoherently average (no shifting) all spectra within a 15-s interval  
3) Identify the single peak in this 15-s averaged spectrum 15 
4) Estimate the single peak mean velocity 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚15𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 and velocity spectrum variance 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣15𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 for this 15-s incoherent 

averaged spectrum 
5) Shift each 2-s spectrum by 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 so that: 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2𝑠𝑠 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚15𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖  

6) Average the shifted spectra 
7) Identify multiple peaks in this shifted-then-averaged spectra 20 
8) Estimate high-order moments for each identified peak  
9) Save all multiple peak moments as well as the incoherent averaged spectra mean velocity 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚15𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 and velocity 

spectrum variance 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣15𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖  
 

As an example of the shifting process, Fig. 14a shows eight spectra (thin lines) collected at 447 m on 15 October 2016 25 

during the 15-s interval starting at 11:55:45 UTC. The average of these eight spectra is shown with a thick line. The spectral 

moments of this averaged spectrum are listed in Table 3. The mean radial velocity 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
15𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 is used as the reference velocity. Each 

spectrum is shifted as shown in Fig. 14b (thin lines). The mean of these shifted spectra is shown in Fig. 14b with a thick line and 

the spectral moments are listed in Table 3. The shift-then-averaged spectrum (thick line in Fig. 14b) has a narrower breadth than 

the simple incoherent averaged spectrum (thick line in Fig. 14a).. In addition, velocity spectrum skewness and kurtosis become 30 

more pronounced and have larger magnitudes after shifting and then averaging the spectrum. One benefit of shifting the individual 

spectra to the 15-s mean velocity before averaging is that there is an additional spectrum breadth estimate available for turbulence 

studies. Namely, the spectrum breadth of the shift-then-average spectrum does not have the broadening caused by 2-s velocity 

shifts during the 15-s interval. 

6. Concluding Remarks 35 

This study is a combined science and engineering effort designed to improve high-order moments estimated from Ka-band (35-

GHz) vertically pointing radar Doppler velocity spectra by developing three different signal-processing methods. First, a 

decluttering method identifies and removes clutter in the Doppler spectra. Hard targets produce narrow spectral peaks. Identifying 

clutter peaks is based on identifying large power drops between neighbouring velocity bins.. In our observations, the narrow clutter 

peak occurred near zero velocity. After identifying narrow spectral peaks, a linear interpolation is performed to remove the narrow 40 

peak from the velocity spectra. All spectra void of clutter and those mitigated of clutter are used in the subsequent processing 
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methods. As an interesting side note, we found that a rotating antenna within 2 meters of the Ka-band vertically pointing radar is 

causing the clutter to be Doppler shifted. We postulate reflected waves bouncing off the rotating antenna cause the path length 

between the Ka-band antenna feed horn and the stationary targets to change from pulse-to-pulse, which artificially changes the 

target range during the 2-sec dwell producing a Doppler shift. Note that insects are hard targets and produce narrow peaks in Ka-

band spectra with non-zero velocities as shown in Luke et al. (2008). Thus, insect clutter can be removed from spectra by 5 

identifying large drops in power between neighbouring velocity bins and then interpolating across these narrow peaks.   

The second method developed in this study identifies multiple peaks and calculates high-order moments for each single 

peak, sub-peak, and separate peak. Identifying multiple peaks is a process of identifying the integration limits that are used in the 

high-order moment calculations. The high-order moments included velocity spectrum skewness and kurtosis. This work found that 

spectrum skewness from the single spectral peak is a good indicator of whether two hydrometeor populations are present in the 10 

radar pulse volume. Yet, the sub-peak and separate peaks are symmetric with skewness estimates near zero. This suggests a two-

step process of using single peak velocity skewness as an indicator of possible multiple peaks and multiple-peak moments for 

quantitative studies. 

 The third method developed in this study is shifting individual 2-s spectra during 15-s intervals to the mean velocity 

before averaging the spectra. This shift-then-average method improves the velocity spectrum skewness estimates by removing the 15 

spectrum turbulent broadening effects at the 2-s temporal scale.  

 

Data availability. Original raw KAZR spectra are available on the DOE ARM archive (https://www.arm.gov/data), doi: 

10.5439/1025218 (ARM Climate Research Facility, 2015). Also, six months (May-Oct 2016) of Oliktok Point KAZR spectra were 

processed using the clutter mitigation, multiple peak, and shift-then-average techniques discussed in this study and are available 20 

at the DOE ARM archive as Evaluation Data.   

 

Source code availability. The MATLAB code used to generate the Oliktok Point moments stored on the DOE ARM archive is 
available via supplemental material and on GitHub (https://github.com/ChristopherRWilliams/Oliktok_Point_KAZR_spectra). 
With this source code, users can start with the thresholds used for Oliktok Point KAZR spectra and adapt the thresholds to fit the 25 
characteristics of their recorded spectra. 

Appendix A – High-Order Spectral Moment Equations  

This appendix defines the equations used to calculate high-order spectral moments. The spectral moments are calculated for each 

recorded radial velocity spectrum 𝑆𝑆(𝑖𝑖) which has a length 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝, indices 𝑖𝑖 range from 1 to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝, and has units of Watts. The radial 

velocity 𝑣𝑣(𝑖𝑖) for this spectrum has velocity resolution Δ𝑣𝑣, velocity range from receding Nyquist velocity (𝑣𝑣(1) = −𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) to 30 

maximum approaching velocity (𝑣𝑣�𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝� = 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − Δ𝑣𝑣), and has units of m s-1. Zero velocity has the index 𝑖𝑖𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝
2

+ 1. Note that the sign of the radial velocity is negative for receding targets (𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣) < 0) and positive for approaching targets 

(𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣) > 0). This physical notation insures that falling particles have positive radial velocities that correspond to positive 

physical diameters.  

Noise statistics are determined after sorting the spectrum magnitudes using the method described in Hildebrand and 35 

Sekhon (1974). Essentially, this method sorts all spectrum values and then determines a threshold that divides the data into either 

noise-only data or noise-plus-signal data. Using the noise-only data, three noise statistics are defined: mean noise 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, noise 

standard deviation 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠, and noise threshold 𝑛𝑛𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 which is the largest magnitude noise-only data point. The mean noise 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

is used for moment power calculations (i.e., noise power and SNR). The noise threshold 𝑛𝑛𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜  is used to identify spectral 
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points containing signal power. Before estimating the spectral moments, integration limits, or summation limits for discretely 

sampled spectra, need to be determined. Following Carter et al. (1995), the largest magnitude spectral value is determined 

(𝑆𝑆(𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) = max (𝑆𝑆)) and a logical pointer is positioned at this velocity 𝑣𝑣(𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚). The left integration index 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is determined by 

moving the pointer down the left side of the spectrum until the spectrum magnitude is less than the noise threshold. Since the 

integration limit needs to start above the noise threshold, the left index is incremented so that 𝑆𝑆�𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� >  𝑛𝑛𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑙𝑙𝑑𝑑. The right 5 

integration limit is determined in a similar way by starting at the largest magnitude value and progressing the pointer down the 

right side of the spectrum. Thus, spectral moments are calculated using the consecutive spectra and velocities from 𝑆𝑆(𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) and 

𝑣𝑣(𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) to 𝑆𝑆(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡) and 𝑣𝑣(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡). 

As discussed in the section 5, identifying multiple spectral peaks is a procedure to identify integration limits for each 

single peak, sub-peak, and separate peak. After identifying the left and right indices, 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡, for each peak, the following 10 

moments are calculated for each peak. 

Noise Power: 

  𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝        (A1) 

Signal to noise ratio: 

  (𝑆𝑆𝑆𝑆𝑆𝑆)𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝑙𝑙𝑙𝑙 �
∑ (𝑆𝑆(𝑖𝑖)−𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝Δ𝑣𝑣
�  [dB]     (A2) 15 

Reflectivity weighted mean velocity:  

  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
∑ 𝑆𝑆(𝑖𝑖)𝑣𝑣(𝑖𝑖)Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∑ 𝑆𝑆(𝑖𝑖)Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

  [m s-1]       (A3) 

Velocity spectrum variance:  

  𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 =
∑ 𝑆𝑆(𝑖𝑖)(𝑣𝑣(𝑖𝑖)−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∑ 𝑆𝑆(𝑖𝑖)Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

   [m2 s-2]     (A4) 

Velocity spectrum standard deviation: 20 

  𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣]0.5 = �
∑ 𝑆𝑆(𝑖𝑖)(𝑣𝑣(𝑖𝑖)−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∑ 𝑆𝑆(𝑖𝑖)Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

�

0.5

  [m s-1]    (A5) 

Velocity spectrum skewness: 

  𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 = 1
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠
3 �

∑ 𝑆𝑆(𝑖𝑖)(𝑣𝑣(𝑖𝑖)−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)3Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∑ 𝑆𝑆(𝑖𝑖)Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� [dimensionless]    (A6) 

Velocity spectrum kurtosis: 

  𝑉𝑉𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 1
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠
4 �

∑ 𝑆𝑆(𝑖𝑖)(𝑣𝑣(𝑖𝑖)−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)4Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

∑ 𝑆𝑆(𝑖𝑖)Δ𝑣𝑣
𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

� [dimensionless]    (A7) 25 

Spectrum peak magnitude 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and index 𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 : 

  𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑆𝑆(𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆)        (A8) 

Velocity at spectrum peak magnitude 

  𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑉𝑉(𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)         (A9) 

 30 
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Appendix B – 3x3 Time-Height Continuity Filter  

A 3x3 time-height continuity filter was applied to processed moments to identify observations that were not continuous in time 

and height. For every 3x3 (time-by-height) matrix of observations, each pixel was assigned to be either a valid or invalid 

observation using a binary flag. If the centre pixel is valid and there were not enough valid neighbouring observations in the 3x3 

matrix, then the centre pixel was set to invalid. In this study, in order to remove pixels that did not have any temporal neighbours, 5 

at least three neighbouring pixels were needed to retain a valid centre pixel. The 3x3 filter does not modify the moments saved in 

the netCDF data file, but the binary 3x3 filter flag available for the end user in the saved netCDF data file. Note that the 3x3 time-

height filter is not part of the decluttering procedure described in Fig. 10, but is a standalone quality control procedure.  
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Tables  

Table 1. Operating parameters for AMF-3 KAZR deployed at Oliktok Point, Alaska, from 1-October-2015 through 31-October-2017 (at 
the time of publishing, the radar was still operating at Oliktok Point, Alaska). Operating modes included General Purpose (GE), Medium 5 
Sensitivity (MD), and Precipitation (PR) modes. Tabulated parameters include: pulse repetition frequency (𝑷𝑷𝑷𝑷𝑷𝑷) [Hz], inter-pulse period 
(𝑰𝑰𝑰𝑰𝑰𝑰) [𝝁𝝁sec], number of points in FFT (𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭), number of averaged spectra (also known as number of incoherent integrations) (𝑵𝑵𝒂𝒂𝒂𝒂𝒂𝒂), 
unambiguous velocity (𝑽𝑽𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖) [m s-1], velocity resolution (𝚫𝚫𝒗𝒗) [m s-1], range to first range gate [m], range resolution [m], time-on 
target (which is calculated using 𝑰𝑰𝑰𝑰𝑰𝑰 𝑵𝑵𝑭𝑭𝑭𝑭𝑭𝑭 𝑵𝑵𝒂𝒂𝒂𝒂𝒂𝒂) [s], and time between samples [s]. Radar operating modes changed on 16-June-2016 at 
14 UTC. A clutter screen was installed on the antenna on 27-August-2016. 10 

 

 

Parameter     before 16-June-2016 (on/after 16-June-2016) 

      GE   MD   PR 

Pulse Repetition Frequency (𝑃𝑃𝑃𝑃𝑃𝑃) [Hz]  2777   2777  2777 15 

Inter-Pulse Period (𝐼𝐼𝐼𝐼𝐼𝐼) [𝜇𝜇sec]   360  360  360 

Number of points in FFT (𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹)   256 (512) 256 (512) 256 (512) 

Number of incoherent integrations 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ  18 (9)  18 (9)  4 (2) 

 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 [m s-1]     5.97  5.97  5.97 

 Δ𝑣𝑣 [cm s-1]     4.67 (2.33) 4.67 (2.33)  4.67 (2.33) 20 

Range to first range gate 𝑅𝑅1 [m]   40 (57)  707 (737) 40 (57) 

Range resolution Δ𝑅𝑅 [m]    30  30  30 

Time-on Target 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐼𝐼𝐼𝐼𝐼𝐼 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹  𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ [s] 1.66  1.66  0.37 

Time between samples 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 [s]    2.0  2.0   2.0 

 25 
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Table 2. Attributes and integration limits for three spectral peak regimes: single peak, sub-peak, and separate peak. All spectral peaks 
need at least 5 consecutive spectral points with magnitudes greater than the noise threshold (Hildebrand and Sekhon 1974). 

 

 

Peak Name    Attributes        Integration limits 5 

 

Single Peak Contains the largest magnitude 

spectral point  

 

(Every valid spectrum has a 

single peak) 

Determined by noise threshold 

Sub-Peak Sub-peaks are within integration 

limits of the single peak 

Determined by noise threshold 

or 

Determined by valley of at least 

6 dB between sub-peaks 

Separate Peak There are spectrum points below 

the noise threshold separating 

this peak from the single peak 

Determined by noise threshold 
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Table 3. Spectral moments of averaged spectrum after averaging eight (8) spectra using two different methods. All eight (8) spectra were 
collected during 15-s interval on 15-Oct-2016 between 11:55:45 and 11:56:00 UTC and are shown in Fig. 14. The averaged spectrum was 
constructed by averaging individual spectra as shown in Fig. 14a. The mean radial velocity from this averaged spectrum is used as the 
reference velocity. The shifted-then-averaged spectrum was constructed by first shifting individual spectra to a reference mean radial 5 
velocity and then averaging as shown in Fig. 14b. 

 

 

Spectral Moment     Averaged Spectrum  Shifted-then-Averaged Spectrum 

 10 

Signal-to-Noise Ratio, (𝑆𝑆𝑆𝑆𝑆𝑆)𝑑𝑑𝑑𝑑 [dB]   23.24   23.24 
1Mean Radial Velocity, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

15𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖 [m s-1]  1.22   1.22 

Velocity spectrum standard deviation, 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 [m s-1]   0.32   0.28  

Velocity spectrum skewness, 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  [unitless]  -1.11   -1.44  

Velocity spectrum kurtosis, 𝑉𝑉𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 [unitless]  4.63    5.38  15 
115-s averaged spectrum mean velocity used as reference velocity in shifted-then-averaged procedure. 
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Figures 

 

 
Figure 1: (a) Photo of AMF-3 Ka-/W-band Scanning ARM Cloud Radar (Ka/W-SACR) antennas (left) and Ka-band ARM Zenith Radar 
(KAZR) antenna (right) as deployed at Oliktok Point, Alaska (Photo credit: Gijs de Boer). (b) Photo of clutter screen mounted around 5 
KAZR antenna with snow on the KAZR radome (Photo credit: Joe Hardin) 
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Figure 2: Time-height cross-sections of original KAZR Doppler velocity spectral moments and attributes from 19-June-2016 during hour 
12 UTC. (a) Reflectivity [dBZ], (b) mean radial velocity of dominant single peak [m s-1] (positive values are approaching the radar), and 
(c) maximum power drop from peak magnitude to either nearest neighbour [dB]. At least three consecutive spectral points needed to be 5 
above the noise threshold before estimating the moments. Large power drop from peak to nearest neighbour is an indicator that clutter 
peak was selected as dominant peak. 
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Figure 3: Doppler velocity spectra for profile collected on 19-June-2016 at 12:05:01 UTC. (a) Original Doppler velocity spectra at each 
range gate as a function of radial velocity. (b) Similar to panel (a), expected spectra were interpolated across DC (zero velocity) to mitigate 
the clutter signal. (c) Original spectrum (black line and pluses) and decluttered spectral points (red line and circles) at 447 m range 5 
(black line in (a) and (b)). 
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Figure 4: Time-series of radial velocity spectra on 19-June-2016 during hour 12 UTC at 447 m range. First spectrum of hour is at the 
bottom of the panel (minute 0) and last spectrum of the hour is at the top of the panel (minute 60). Horizontal axis is upward (left side) 
and downward (right side) radial velocity. (a) Original spectra and (b) decluttered spectra.  5 
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Figure 5: Selected spectra to illustrate clutter signal, 3-point interpolation, and residual signal power. (a) Original spectrum from 4-July-
2016 at 00:14:33 UTC at 387 m range with clutter power shaded in light grey. (b) Same spectrum as in (a) except 3-point linear 
interpolation across zero velocity to remove clutter power with residual signal peak power shaded in middle grey colour. The noise power 
is shaded the darkest grey in all panels. Panels (c) and (d) are similar as panels (a) and (b) except spectra were collected on 7-July-2016 5 
at 17:14:31 UTC. The solid circle in panels (b) and (d) indicate the velocity of the peak magnitude in the residual spectra. Due to this 
peak magnitude velocity, the residual signal in panels (b) and (d) are deemed residual clutter and atmospheric signal, respectively.  
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Figure 6: Similar to Fig. 4a except for 987 m range. In contrast to range gate at 447 m shown in Fig. 4, this range gate does not contain 
ground clutter for this hour and does not contain any atmospheric signal before minute 21. Since no signal was detected above the noise 
threshold before minute 21, the data reduction and storage algorithm did not save any spectra before minute 21.  5 
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Figure 7: (a) Scatter plot of clutter-to-noise ratio (CNR) vs power drop 𝑷𝑷𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 from zero velocity to nearest neighbor for the same profiles 
at ranges 477 m (circles) and 987 m (squares) for hour 12 of 19-June-2016. Spectra at 477 m contained clutter and spectra at 987 m did 
not have clutter. (b) Cumulative distribution function (CDF) of power drop for estimates shown in (a). These estimates were derived 
from spectra shown in Fig. 4a and Fig. 6. There are 210 simultaneous samples during this rain event.  5 
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Figure 8: Time-height cross-section of clutter statistics from spectra collected on 3-July-2016 during hour 20 UTC. (a) Clutter-to-noise 
ratio (CNR) based on clutter power from three points centred around zero velocity (see Fig. 6), (b) signal-to-noise ratio of residual peak 5 
after removing clutter peak, and (c) velocity of spectral peak in the residual spectrum indicates a skewness of the residual peak. Positive 
peak velocities correspond to targets approaching the radar.  
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Figure 9: Diagram showing SACR antenna azimuth pointing direction (solid line) and Doppler shift of residual clutter (shading) for 10 
minutes of observations shown in Fig. 7. With a rotation rate of 2 °/min, the Ka/W-SACR antenna completed a rotation every 3 minutes. 
The residual clutter Doppler shift contained two-phases per rotation indicating the antennas receding and approaching  5 
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Figure 10: Clutter identification and mitigation flow diagram. Processing is performed on individual spectra without knowledge of 
clutter being identified in neighbouring spectra.  

 5 
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Figure 11: Similar to Fig. 2 except spectra were decluttered (see section 3) before estimating (a) reflectivity, (b) mean radial velocity, and 5 
(c) power drop from peak power to nearest neighbour.  

 

  



33 
 

 

 
Figure 12: Profile of spectra and moments collected on 15-Oct-2016 at 11:55:55 UTC. Top row corresponds to single-peak moments and 
bottom row corresponds to multiple-peak moments. Top row: (a) Pseudo-colour represent spectral power [dBm] with mean velocity 
shown with black pluses and +/- spectrum bread shown with black lines, (b) reflectivity, and (c) velocity skewness. Bottom row: similar 5 
as top row, except blue symbols represent sub-peaks and red symbols represent separate peaks.  
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Figure 13: Radial velocity spectra on 15-October-2016 at 11:55:55 UTC at ranges (a) 807 m and (b) 777 m. The spectrum in (a) contains 
two peaks separated with spectral power below the noise threshold. The single peak is the dominant peak due to the larger peak 
amplitude. The spectrum in (b) contains a single peak that spans from approximately 0.25 m s-1 upward to 1.3 m s-1 downward. This 5 
single peak contains two sub-peaks with a valley (or local minimum) near 0.3 m s-1 downward.  
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Figure 14: Eight radial velocity spectra collected on 15 October 2016 during 15-s interval starting at 11:55:45 UTC at 447 m range. (a) 
The eight spectra (thin lines) were averaged to form an averaged 15-s spectrum (thick line). The spectral moments for the averaged 
spectrum are calculated with the mean radial velocity used as the reference velocity. In (b), each spectrum is shifted to have the same 5 
reference velocity (thin lines) and the mean value (thick line) is the shifted-then-averaged 15-s spectrum. The spectral moments are 
tabulated in Table 3.  
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