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Abstract: Water-vapor-weighted mean temperature, Tm, is the key variable to estimate mapping factor between GPS zenith 

wet delay (ZWD) and precipitable water vapor (PWV). In near real-time GPS-PWV retrieving, estimating Tm from surface air 10 

temperature Ts is a widely used method because of its high temporal resolution and a fair degree of accuracy. Based on the Tm 

estimates and the extracted Ts parameters at each reanalysis grid node, analyses of the relationship between Tm and Ts were 

performed without smoothing of data which will produce superior results than other similar studies. Analyses demonstrate that 

Ts–Tm relationship has significant spatial and temporal variations. Then static and time-varying global gridded Ts–Tm equations 

were established and evaluated by comparisons with radiosonde data at radiosonde 758 stations in the Integrated Global 15 

Radiosonde Archive (IGRA). Results show that our global gridded Ts–Tm equations have prominent advantages than other 

globally applied models. Large biases of Bevis equation or latitude-related linear model at considerable stations are removed 

in gridded Ts–Tm estimating models. Multiple statistical tests at 5% significance levels show that time-varying global gridded 

model is superior to other Ts–Tm models at 60.15% of all radiosonde stations, while the second best model, GPT2w model, is 

superior at only 12.7% sites. No model is significantly better at 6.20% sites. GPS-PWV retrievals using different Tm estimates 20 

were compared at a number of IGS stations. By application of time-varying global gridded Ts–Tm equations, the relative 

differences of GPS-PWVs at most sites are within 1%. Such results are obviously superior to other Tm estimation models. The 

differences between GPS-PWVs and radiosonde PWVs are influenced by other comprehensive factors instead of single Tm 

parameter. However evident improvements still exist at special site by using more precise Ts–Tm equations. PWV errors could 

decrease by more than 30% during wetter seasons. 25 
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1. Introduction 

Water vapor is an important trace gas and one of the most variable components in the troposphere. Water vapor’s transport, 

concentration and phase transition directly involve in atmospheric radiation and the hydrological cycle, leading to its key role 

in many climate change and weather processes (Song et al., 2016;Mahoney et al., 2016;Adler et al., 2016). It is always a 

challenge to measure water vapor content accurately and timely due to its small amount and high spatial-temporal variability. 30 

Several methods have been studied for decades, such as radio sounding, water vapor radiometer, sun photometers, GPS and 

others(Ciesielski et al., 2010;Perez-Ramirez et al., 2014;Li et al., 2016;Campmany et al., 2010;Liu et al., 2013). Compared 

with traditional water vapor observations, ground-based GPS water vapor measurement has advantages in high accuracy, high 

spatial-temporal resolution, all-weather availability and low-cost (Pacione and Vespe, 2008;Haase et al., 2003;Lee et al., 

2010;Means, 2013;Lu et al., 2015). Therefore ground-based GPS water vapor products, mainly including precipitable water 35 

vapor(PWV) and slant water vapor(SWV), are widely used in many fields such as real-time vapor monitoring(Karabatic et al., 

2011), weather and climate research(Van Baelen and Penide, 2009;Adams et al., 2017), numerical weather prediction (NWP) 

(Rohm et al., 2014) and so on. However, besides GPS observations, it requires some other kinds of meteorological elements 

to remotely sense PWV/SWV at each GPS station. Saastamonien model is extensively adopted to compute zenith hydrostatic 

delay (ZHD), and surface pressure Ps is essential in the model equation (Saastamoinen, 1972). Then zenith wet delay (ZWD) 40 

is generated by deducting ZHD from zenith total delay (ZTD)，and ZTD can be directly estimated from precise GPS data 

processing. Finally a conversion factor Π, which is used to map ZWD onto PWV, is determined by water-vapor-weighted 

mean temperature Tm over a GPS station. Mapping function from ZWD to PWV is expressed as(Bevis et al., 1992):  

)( ZHDZTDZWDPWV    (1) 

and Π is computed using following formula: 45 
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where 
w  is the density of liquid water, Rv is the specific gas constant for water vapor, 1

2 mbarK)1017(' k  and 
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125

3 mbarK10)014.0776.3( k  are physical constants (Sheng et al., 2013).  

According to previous studies, error in Tm has significant influence upon the retrieval accuracy of PWV. The approximate 

relationship between the relative error of PWV and Tm is(Wang et al., 2005): 50 
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There are three main approaches to estimate Tm, which have respective advantages and disadvantages, for different 

applications: 

(1)Integral of vertical temperature and humidity profiles is believed to be the most accurate method. The profile data can 

be extracted from radio sounding observations or NWP datasets(Wang et al., 2016). However, some inconveniences of this 55 

method have to be endured. It usually costs considerable time to acquire NWP data which normally have large volumes and 

be released every 6 hours beginning with 00:00 UTC every day. This limits the use of NWP data in near real-time GPS-PWV 

retrieving. The radiosonde data, which also provide accurate vertical atmospheric profile, have low spatial and temporal 

resolution. At most of radiosonde sites, sounding balloons are daily casted at 00:00 UTC and 12:00 UTC, furthermore lots of 

GPS stations are not located close enough to any radio sounding site leading to no radiosonde data can be obtained for these 60 

stations most of time. Therefore such methods are appropriate for climate research or long-term PWV trends study but not 

meet real-time requirements.  

(2) Several global empirical models of Tm are established based on analyses of Tm time series from NWP datasets or other 

sources (Chen et al., 2014;Yao et al., 2012;Bohm et al., 2015). Tm at any time and any location can be estimated from these 

models independent of real meteorological observations. But some important real Tm variations, which maybe dramatic during 65 

some extreme weather events, can be lost without constraints of real data. So these modeled Tm estimates are not accurate 

enough for high-precise meteorological applications, such as providing GPS-PWV estimates for numerical weather predictions, 

etc.  

(3)Many studies indicated that Tm parameter has evident relationships with some surface meteorological elements (e.g. 

surface air temperature Ts). These surface meteorological parameters can be measured accurately and rapidly. Tm then is 70 
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estimated in real time using these surface measurements. For example, Bevis introduced Bevis Ts-Tm equation, 

Tm=0.72Ts+70.2, according to analyzing 8712 radiosonde profiles collected at 13 sites in U.S. over two years(Bevis et al., 

1992), and this equation has been widely used in many other studies. 

According to Rohm’s research (Rohm et al., 2014), GPS-ZTD can be estimated very precisely by real-time GPS data 

processing. This means that Tm is a key parameter in near real-time GPS-PWV estimation. And method (3) is the most suitable 75 

means to estimate Tm in near real-time because of its balance between timeliness and accuracy. However, the relationship 

between Tm and Ts varies with location and time. Several regional Ts-Tm equations were established using profile data over 

corresponding fields (Wang et al., 2012). But it is not precise enough to apply the same Ts-Tm model in a vast field, e.g. in 

Indian region(Singh et al., 2014). Besides this, there are still vast areas, for example over the oceans, without high-precision 

specific Ts-Tm equations, and there exist large differences between the oceanic and terrestrial atmospheric properties. It is 80 

necessary to model Ts-Tm relationship over sea region, since several ocean-based GPS meteorology experiments were carried 

out and demonstrated the potential of such technique to retrieve PWV over the broad ocean (Rocken et al., 2005;Kealy et al., 

2012). A global gridded Ts-Tm model has been established by smoothing Tm data from “GGOS Atmosphere” and Ts data from 

ECMWF reanalysis data in Lan’s study(Lan et al., 2016). The model, which has relative lower spatial resolution with 4°×

5°, however is statistic and the estimated Tm residuals due to time variations are not fixed (Yao et al., 2014a).  85 

Table 1.  Main differences between the Ts-Tm developed in this study and other global used Ts-Tm models 

Strategies \ Ts-Tm Models 
Bevis model 

(Bevis et al., 1992) 

Latitude-related linear 

model (Yao et al., 2014b) 

Global-gridded model 

(Lan et al., 2016) 

Time-varying 

global gridded 

model (our study) 

Applicable Regions Regional/Global Global Global Global 

Data Sources Radiosonde 

Ts from 0.75°×0.75°

ERAI, and Tm from 2°×

2.5°“GGOS 

Atmosphere” 

Ts from 0.75°×0.75°

ERAI, and Tm from 2°×

2.5°“GGOS 

Atmosphere” 

Ts and Tm both 

from 0.75°×

0.75°ERAI 

Data Processing 
Integrate 

radiosonde profiles 

4°×5°Sliding window 

smooth 

4°×5°Sliding window 

smooth 

Integrate ERA-

Interim profiles 

Variations in model 
Static without any 

variations 

Spatial variations depend 

on only latitude(15°

latitude interval), but no 

4°×5°global gridded, 

but no temporal 

variations 

0.75°×0.75°

global gridded 

and considering 
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temporal variations time variations 

The objective of this study is mainly to (1) develop global gridded Ts-Tm models without any spatial smooth of data and 

assess their precisions; and (2) study the performances of GPS-PWV retrievals using our Ts-Tm models. The main differences 

between the Ts-Tm developed in this study and other global used Ts-Tm models are listed in Tab. (1). In section 2 the data sources 

and Tm determining methods are introduced in detail. Then in section 3 we analyze the Ts-Tm relationships and their variations 90 

on a global scale. Global-gridded Ts-Tm estimating models in different forms are established and evaluated in Section 4. Section 

5 compares different PWV retrievals and Section 6 presents conclusions based on our experiments. 

2. Data Sources and Methodology of Tm Determination 

2.1 Tm Definition 

Tm is defined as a function related to temperature and water vapor pressure. It can be approximated as following 95 

formula(Bevis et al., 1992): 
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where e and T respectively represents vapor pressure in hPa and temperature in Kelvin, i denotes the ith pressure level and Δ

zi is the height difference of ith levels . Vapor pressure e is calculated using equation e=esRH, RH is the relative humidity 

and saturation vapor pressure es can be estimated from temperature observations using Goff-Gratch formula (Sheng et al., 100 

2013). The integral intervals are from the earth surface to the atmospheric top. 

2.2 Data sources and Methodology of Tm Determination 

Equation (4) needs temperature, height and relative humidity values of several atmospheric levels through the entire 

atmosphere. These essential profile data can be obtained from radiosonde or NWP datasets. 

We employed radiosonde data from Integrated Global Radiosonde Archive (IGRA,   105 
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ftp://ftp.ncdc.noaa.gov/pub/data/igra) to calculate Tm. Version 2.0 of the IGRA-derived sounding parameters provides pressure, 

geopotential height, temperature, saturation vapor pressure and relative humidity observations at observed levels. Bias maybe 

introduced if integrals were terminated at lower levels(Wang et al., 2005), so the integrals were performed up to the topmost 

valid radiosonde data. According to our quality control processes some radiosonde profile data were rejected. Surface 

observation must be available, and top profile level should not be lower than 300 hPa standard level. Furthermore the level 110 

number between surface and top level is required to be greater than five levels to avoid too sparse vertical profile. At most 

radio sounding stations, sounding balloons are launched every 12 hours, and their ascending paths are assumed to be vertical. 

Profile data including same elements are usually provided by NWP products at certain vertical levels. ERA-Interim from 

ECMWF, provides data on a regular 512 longitude by 256 latitude N128 Gaussian grid after the grid transforming performed 

by NCAR’s Data Support Section (DSS). On each grid node of ERA-Interim, temperature, relative humidity and geopotential 115 

at 37 isobaric levels from 1000 hPa to 1 hPa can be obtained. Dividing the geopotential by constant gravitational acceleration 

value (g≈9.80655 m/s2), we can determine the geopotential heights of surface and levels. Datasets are available at 00:00, 

06:00, 12:00 and 18:00 UTC every day and has been covering a period from 1979.01 to present. 

 In theory, the computation of Eq. (4) should be operated through the entire atmosphere and geopotential height should 

be converted to geoid height. However, vast majority of the water vapor concentrate at the troposphere, moreover the 120 

geopotential heights of top pressure levels in the two selected reanalysis datasets are around 30~40 km. Geopotential height is 

very close to geoid height in such height range. According to our computation, relative difference between them with only 

0.1%~0.9%. In fact, the height difference z  can be replaced by geopotential height difference h  in Eq. (4), since the 

division operation can almost eliminate the difference between two different height types. The value change of Tm attributed 

to the height replacement will extremely approximate to zero. For convenience of calculations, we directly employed 125 

geopotential height variable of reanalysis datasets to estimate Tm. In this paper, we denoted the Tm derived from ERA-Interim 

as Tm_ERAI. 

At each model grid node of reanalysis data, the computation of Eq. (4) starts from the surface height to the top pressure 

level. Therefore the pressure levels below surface height were rejected in calculation. Near-ground air temperature Ts is defined 

as the variable of “temperature at 2 meters above ground”, and surface water vapor pressure can be derived from “2 meter 130 

ftp://ftp.ncdc.noaa.gov/pub/data/igra
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dewpoint temperature” variable in ERA-Interim. These Ts were also used in the regression analyses between Tm and Ts in 

following study. 

3. Correlation between Ts and Tm 

Many studies have indicated the close relationship between surface air temperature Ts and weighted mean temperature 

Tm. However, Tm is also found to be not closely related to Ts in some other regions, e.g. in Indian zone(Raju et al., 2007). Using 135 

Tm and Ts generated from global gridded reanalysis data, we are able to study the relationship between Ts and Tm in detail. 

We first carried on linear regression analyses on the four years long Ts and Tm data generated from point radiosonde data 

and global gridded ERA-Interim datasets. Analysis results are shown in Fig. (1). Although two datasets have different temporal 

resolutions (12 hours for radiosonde data and 6 hours for ERA-Interim data) and spatial resolutions, both analyses agree very 

well with each other. Our analyses also indicate that correlation coefficients between Ts and Tm are generally related to point’s 140 

latitude as well as other studies(Yao et al., 2014b). Significant positive correlation coefficients can be found in mid- and high 

latitudes, and reaches the maximum in Polar Regions. Then the correlation coefficients drop dramatically in low latitudes. We 

further analyzed the main reason for such change. Tm variable in low latitudes is stable and shows its independence of other 

parameters. To study the variations of Ts and Tm, we illustrated denary logarithm values of their standard deviations in Fig. (2). 

It is evidently that Tm varies much less in low latitudes. However, besides latitude-related features, it is worth noting that there 145 

are obvious Ts-Tm correlation coefficient differences between lands and oceans. Analyses even demonstrate negative 

correlation coefficients over certain oceans, e.g. low-latitude Western Pacific, Bay of Bengal or Arabian Sea. It may be mainly 

attributed to the different thermodynamic properties of underlying surface, including the transfer of water latent heat, the 

different specific heat capacities, etc. These properties influence the Ts greatly, leading to the significantly smaller variations 

of Ts over the seas than over the lands. Unreliable regression analysis results may be derived by the Ts and Tm both with small 150 

variations. In Fig. (3), scatter plots of Ts and Tm from ERA-Interim datasets at two locations N 0.35°E180.00°and N70.53°

E180.00°are given. Compared with the other point, the Ts-Tm relationship at the point near the equator, as the blue dots show, 

is quiet obscure since the whole variation ranges of Ts and Tm are both below 10 K. The linear regression result, as the magenta 
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line shows, also makes less sense with low Ts-Tm correlation coefficient of only -0.0893. Besides complicated spatial variations, 

researches have revealed that Ts-Tm relationships also have temporal variations(Wang et al., 2005). So a good Ts-Tm model 155 

should take both spatial and temporal variations into consideration, which is the main work in the following sections. 

 

Figure 1: Correlation coefficients between Ts and Tm generated from radiosonde data (dots) and ERA-Interim reanalysis datasets 

(color-filled contours) over a period of 4 years from 2009 to 2012. 
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Figure 2: Denary logarithm of standard deviation of (top) Ts and (bottom) Tm generated from (left) NCEP FNL and (right) ERA-

Interim reanalysis datasets over a period of 4 years from 2009 to 2012 

 165 

Figure 3: Ts-Tm scatter plots at two locations: (blue dots)N 0.35°E180°and (red dots)N70.53°E180°, the magenta and green lines are 

their linear fitting curves 

4. Developments of Global-gridded Ts-Tm models 

Since Ts -Tm relationship has complicated spatial variations, it is necessary to establish detailed global gridded Ts -Tm 

estimating equations for precise GPS-PWV remote sensing. In this section, static and time-varying global gridded Ts -Tm 170 

models are established and assessed. 
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Linear formulas including Ts and Tm, which is expressed as bTaT sm  , are adopted in most studies, such as Bevis 

equation. Based on the Ts and Tm products from ERA-Interim reanalysis datasets, we performed linear fittings of Ts versus Tm 

on each grid point. Then slope constant (a) and intercept constant (b) of each linear expression and fitting RMSEs were 175 

calculated and contoured in Fig. (4). The a and b values are related to point’s latitude as well as its underlying surface. Constant 

a value varies from 0.6 to 0.8 when constant b about 100~50 over most continents in northern mid-high latitudes. The constants 

in Bevis equation, which are 0.72 and 70.2 respectively, are within such value ranges. Constant a is smaller (about 0.5~0.7) 

over lands in the southern mid-high latitudes. Specially, there are acute value changes of constant a and b from lands to seas 

in mid-high latitudes. The reason is the different variation features of surface air temperature while there are not much 180 

differences of Tm variations between seas and lands, which can be seen in Fig. (2). In low latitudes, the a value is smaller than 

other regions whether over lands or oceans because of the low Ts and Tm variations. Fitting RMSEs are within 2~4 K over mid-

high latitude lands, and relative lower values over the seas or low latitude areas. The reason for the low RMSE values over the 

oceans around equator is just the smaller fluctuations of Tm. Attributed to no spatial or temporal smooth of any data in our 

study, the precision and resolution of our static model, with no RMSE larger than 4.5 K, is clearly better than previous studies. 185 

(Lan et al., 2016). 
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Figure 4: Distribution of (top) slope constant a, (middle) intercept constant b, and (bottom) RMSE of static linear Ts-Tm equations 190 

at ERA-Interim grid nodes. The numbers in figures are contour values. 

4.2 Time-varying global-gridded Ts-Tm model  

Ts-Tm relationship has time variations which should also be considered in precise Ts-Tm model. Therefore a time-varying 

equation is applied for Ts-Tm regression at each grid node: 
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where doy represents the observed day of year and hr is the observed hour in UTC time; (m1, m2), (n1, n2) and (p1, p2) are the 

fitting coefficients of formula items to reflect amplitudes of annual, semiannual and diurnal variations in our Ts-Tm models.  

Our regression indicated that the static terms in Eq. (5), which are determined by coefficients a and b, are similar to the 

static models in section 4.1 expect a little differences over some oceans. Besides a and b, we also illustrated the amplitudes of 

annual, semiannual and diurnal terms. We can see that there are large annual variations (amplitude > 5 K) in the vast regions 200 

from Tibet to North Africa, and some places in Siberia and Chile, while diurnal variations (amplitude > 3 K) mainly occurs in 

mid-latitude lands such Northeast Asia or North America. Semiannual variations, however, are small in most areas expect 

some high-latitudes (amplitude > 3 K). All variations are smaller over the seas due to the slower temperature changes over 

waters than lands. By using time-varying Ts-Tm models the estimated Tm’s RMSEs, which are also contoured in Fig. (5), 

dropped significantly in the regions with large annual or diurnal variations. 205 
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 210 

 

Figure 5: （top）slope constant a, (second) intercept constant b, amplitudes of Tm (third) annual, (forth) semiannual and (fifth)diurnal 

terms in our time-varying global gridded Ts -Tm models, and (bottom) the model estimated Tm ’s RMSE distribution. The numbers 

in figures are contour values. 

4.3 Assessments of Ts-Tm models  215 

In order to assess the Ts-Tm models precisions further using other independent data sources, we generated Tm and Ts from 

radiosonde data at 758 radiosonde stations in the year 2016. These data are not assimilated into 2009~2012 ERA-Interim 

datasets which we used in Ts-Tm modeling process, so we can regard them as independent data to our model. At each radiosonde 

site, different Ts-Tm models were employed to calculate Tm. In contrast, we also estimated Tm using GPT2w model (Bohm et 

al., 2015), which is a global gridded Tm empirical model independent of surface meteorological observation data. Then these 220 
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calculated Tm will be evaluated by comparisons with the integrated Tm values by radiosonde profiles (denoted as Tm_RS) twice 

a day. 

We compared our Ts-Tm models with other globally applied models in Tab. (1). The model estimated Tm are denoted as 

Tm_Bevis, Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w respectively from Bevis equation, Yao’s latitude-related model, our static global 

gridded model, time-varying global gridded model and GPT2w model. The Lan’s global gridded model(Lan et al., 2016) is 225 

replaced by our static global gridded model because of its much lower spatial resolution(4°×5°) than our model (0.75°×

0.75°). Actually Bevis model is established using regional radiosonde data so it should be a regional model, but it has been 

adopted in many other regional research so we regraded it as a global applicable equation. When global gridded models are 

employed, there is a problem that the radiosonde station always are not located at any grid node. Therefore the coefficients in 

Ts-Tm equations at radiosonde site’s location should be horizontal interpolated from neighboring grids. The interpolation 230 

formula is expressed as (Jade and Vijayan, 2008): 

4

1

i i

site grid

i

C w C


  (6) 

Csite and Ci
site respectively represent the coefficients in Ts-Tm equations at radiosonde site location and its neighboring grids. wi 

is the interpolation coefficients, which is determined using equation: 

 

 
4

1

i

i

j

j

R
w

R


















  (7) 235 

where R=6378.17 km is the mean radius of the earth,  is the scale factor which equals one in our study, and 
i is the angular 

distance between the ith grid node and the station’s position. i is computed using following formula related to latitude φ and 

longitude θ: 

 cos sin sin cos cos cosi i i i              (8) 

Considering the reanalysis grids are definite and every radiosonde site is in situ, we can computed these interpolation 240 
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coefficients in Eq. (6) for all radiosonde stations, then these coefficients are stored as constants to avoid reduplicate calculation. 

Taking Tm_RS as reference values, we calculated the bias and root mean square error (RMSE) of Tm_Bevis, Tm_LatR, Tm_static, 

Tm_varying and Tm_GPT2w at each radiosonde site and illustrated them in Fig. (6). Obviously Bevis equation has bad precisions in 

many regions with absolute bias and RMSE larger than 5 K. Tm_LatR can reduce estimated biases in many regions, but the 

RMSEs remain large. And there still exist large biases at quite a few radiosonde stations, e.g. in the Africa or West Asia. Tm_static 245 

and Tm_GPT2w can clearly remove large Tm biases at most of radiosonde stations. Tm_varying perform better significantly all over 

the world, especially in the Middle East area, North America or Siberia region, etc.  

Detailed statistics on the bias’s and RMSE’s distributions of different models are shown in Fig. (7) and Tab. (2). At over 

96% radiosonde stations, biases of Tm_varying are within -3~3 K and large positive biases (>3K) nearly disappear, while there are 

considerable large ones in Tm_Bevis and Tm_LatR. Improvements in RMSEs are more evidently. Tm_varying’s RMSEs are smaller than 250 

4 K at over 90% radiosonde sites while few sites (<1%) have RMSEs larger than 5 K, which is clearly better than other models. 

In Tm_Bevis and Tm_LatR, there are more than 17% radiosonde sites have RMSE larger than 5 K. The overall performance of 

Tm_GPT2w, however, is very close to Tm_Bevis except that its absolute bias is smaller than Ts-Tm models. 

 

 255 
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Figure 6: (left) bias and (right) RMSE of estimated Tm using Ts-Tm equations from (top) Bevis equation, (second) Yao’s latitude-

related model, (third) static global gridded model, (forth) time-varying global gridded model and (bottom) GPT2w model at each 

radiosonde station comparing with radiosonde data of the year 2016. 

 

1) Bias distribution                                        2) RMSE distribution 265 

Figure 7: (left) bias’s and (right) RMSE’s distributions of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w compared with respect to 

radiosonde data at 758 stations in 2016 

Table 2: Statistics of Tm estimates from different Ts-Tm models and GPT2w model comparing with radiosonde Tm derivations 

Statistics Tm_Bevis Tm_LatR Tm_static Tm_varying Tm_GPT2w 

Average value of absolute Tm bias (K) 

Average value of Tm RMSE (K) 

Average relative RMSE of Tm (%) 

Max Relative RMSE of mean Tm (%) 

1.90 1.31 1.17 1.13 -0.74 

3.95 3.83 3.37 3.02 3.83 

1.44 1.39 1.23 1.10 1.40 

3.69 4.26 2.57 2.40 4.31 

% of sites with Tm RMSE < 4 K 55.67 61.35 75.86 90.11 53.43 

% of sites with Tm Relative RMSE less than 1.5% 59.50 64.78 77.70 88.92 56.60 

 

To verify the superior Tm estimation model at each radiosonde site, we employed following statistical tests under the 270 

assumption of normal distribution of estimated Tm’s error: 

(1) Firstly, Brown-Forsythe’s tests(Brown and Forsythe, 1974) of equality of variances were carried out at each site for 
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estimated Tm errors from two different models, e.g. model A and B. The purpose of this step is to determine that whether there 

is significant variance difference between two Tm results. If the test rejects the null hypothesis at 5% significance level that the 

errors of model A and B have the same variance, the model with smaller sample variance is regarded as the better one. However, 275 

if the test doesn’t reject the homogeneity of variances, analysis of variance (ANOVA) is performed in the next step.  

(2) ANOVA is a technique to analyze the differences among group means(Hogg, 1987). It evaluates the null hypothesis 

that the samples all have the same mean against the alternative that the means are not the same. If the null hypothesis is rejected 

at 5% significance level, the Tm sample with smaller absolute mean value is believed to be better. Otherwise we think that two 

models perform almost the same at this radiosonde site. 280 

(3) After multiple tests and comparisons, the best model at each radiosonde stations may be determined. However, at 

some sites no superior model can be confirmed so all models are believed to have equivalent performances. 

Finally we counted the number of sites at which each Ts-Tm model respectively performed superiorly, and the results are 

given in Tab. (3). At 456 radiosonde stations (60.16% of all sites), the time-varying global gridded model is superior to others, 

while the second best estimations, Tm_GPT2w, is superior at only 12.66% sites.  285 

Table 3: Number of radiosonde sites at which the five global applied Tm estimation models respectively perform superiorly 

Superior model None Tm_Bevis Tm_LatR Tm_static Tm_varying Tm_GPT2w 

Number of sites 47 48 70 41 456 96 

In Fig. (8)，Tm series at IGRA station NO.62378 ( N29.8628°E31.3492°) are given. We can see that large negative biases 

(< -5 K) between Tm_Bevis (or Tm_LatR) and Tm_RS exist, while Tm_static perform only slightly better from July to October. But 

Tm_varying and Tm_GPT2w can eliminate most of the seasonal errors. Different properties of Tm series appear at another IGRA station 

NO.40841 ( N30.2500°E56.9667°) shown in Fig. (8). Some observation data are missing but we can still see there are large 290 

positive differences (> 5 K) between Tm_Bevis (or Tm_LatR) and Tm_RS all through the year. Tm_static’s biases are much smaller than 

Tm_Bevis but still have some big errors in many months. The Tm_varying, however, still perform as well as at NO.62378 IGRA 

station, with small biases and good capturing of Tm’s variations. Both time series of Tm_GPT2w are smooth so they cannot capture 

the large fluctuations of Tm time series leading to Tm_GPT2w’s worse accuracy than Tm_varying. 

On the other hand, even Tm_varying also have large differences from Tm_RS at a few IGRA stations especially in Central Asia. 295 
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It is because that our fitting analyses were based on the Tm values derived from reanalysis datasets, and reanalysis Tm did not 

agree well with radiosonde data at these IGRA sites during specific seasons. So improvements on reanalysis data in these 

region should be performed in future. 

 

 300 
Figure 8: Tm series of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying, Tm_GPT2w and Tm_RS at (top) EGM00062378 and (bottom) IRM00040841 

IGRA sites. 

5. GPS-PWV retrieving experiments 

GPS-PWV has different error sources with different properties, including GPS ZWD error, surface temperature and 

pressure measurement errors, and Tm estimation error (Ning et al., 2016), etc. It is complicated to evaluate GPS-PWV 305 

uncertainty due to the lack of collaborated additional independent techniques to monitor water vapor at GPS site. Therefore 
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several experiments were carried out to investigate GPS-PWV precisions carefully. 

5.1 Impact of Tm estimation 

In order to study to actual impacts of Tm on GPS-PWV retrievals, we firstly downloaded GPS ZTD products (Byun and 

Bar-Sever, 2009) at several IGS sites in the year 2016 from CDDIS FTP address 310 

(ftp://cddis.gsfc.nasa.gov/pub/gps/products/troposphere/zpd). These selected GPS sites were equipped with meteorological 

sensors so surface pressure and temperature measurements could be also obtained. ZHDs were calculated using surface 

pressures and Saastamonien model and deducted from ZTDs to obtain ZWDs. Then Tm were generated through six approaches: 

the first four Tm series were Tm_Bevis, Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w, while the sixth Tm were integrated from ERA-Interim 

profiles and interpolated to GPS site locations(Wang et al., 2016;Jiang et al., 2016). Finally, GPS-PWVs were generated from 315 

ZWD and six different Tm estimates. We denoted these GPS-PWV sets as PWVBTm, PWVLTm, PWVSTm, PWVVTm, PWVGTm and 

PWVETm. The only differences between these GPS-PWVs are the Tm estimates, so impacts of other errors could be excluded. 

Because the Tm from ERA-Interim is believed to be the most accurate, so we regarded the PWVETm as reference values to 

assess other PWVs. Finally PWVs at 74 IGS sites which have over one hundred compared points were obtained. The relative 

RMSEs of PWVBTm, PWVLTm, PWVSTm, PWVVTm and PWVGTm at these selected stations were calculated and illustrated in Fig. 320 

(9), and detailed statistics are given in Tab. (4). Mean relative error of all sites drops from 1.18% of PWVBTm to 0.91% of 

PWVVTm. Obviously at most sites PWVVTm, which have minim relative errors, are prior to other PWV retrievals. At 55 sites 

PWVSTm and PWVVTm obtain relative RMSE smaller than 1.0%, while at only 28 sites of PWVBTm, 31 sites of PWVLTm and 22 

sites of PWVGTm perform similarly. Some relative RMSEs were remarkably reduced. For example, at ALIC site which located 

in Australia with mean PWV of about 23 mm, the relative RMSE dropped from 1.97% of PWVBTm to 1.10% of PWVVTm. The 325 

time series of relative differences of PWVBTm, PWVLTm, PWVSTm PWVVTm and PWVGTm at ALIC station are given in Fig. (10). 

Obviously PWVBTm and PWVLTm have bigger relative errors although the year while PWV differences are evidently larger only 

in summer season. It is attributed to the wetter atmosphere in summer than in winter. PWVSTm eliminate those large differences 

but still retain some residual errors, which are removed more than 1.0 mm in PWVVTm further. PWVGTM has some large errors 

during period from May to July. All these results demonstrate that our time-varying global gridded has precision advantages. 330 
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Figure 9: Relative RMSEs of PWVBTm, PWVSTm, PWVVTm and PWVGTm compared with PWVETm at 74 IGS stations in the year 

2016 

 

Figure 10: (top) PWV differences and (bottom) relative differences of PWVBTm, PWVLTm, PWVSTm, PWVVTM and PWVGTm 335 

compared with PWVETm at ALIC station in the year 2016. 
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Table 4: Statistics about relative errors of different PWV retrievals 

Statistics PWVBTm PWVLTm PWVSTm PWVVTm PWVGPT2w 

Mean relative RMSE of all sites 

Number of sites with relative errors < 1.0% 

1.18% 1.12% 0.93% 0.91% 1.32% 

28 31 55 55 22 

5.2 Comparisons between GPS-PWVs and radiosonde PWVs 

Among our selected 74 IGS sites, there are only 11 sites located within 5 km to nearby IGRA radiosonde stations. At 

these common stations, we generated PWVs from radiosonde data (PWVRS) by adjusting sounding profiles to the heights of 340 

IGS sites. It worth noticing that geoid undulation corrections should be carried out on each IGS site’s geoid height (Jiang et 

al., 2016). Then we compared PWVBTm, PWVLTm, PWVSTm, PWVVTm, PWVGTm and PWVETm with PWVRS. Statistics are shown 

in Fig. (11). The RMSEs of GPS-PWVs are around 1~5 mm. Comparisons indicate that at most selected sites the RMSEs of 

different GPS-PWV retrievals are very close ( differences < 0.2 mm) regardless of the Tm sources applied, which means that 

other errors (e.g. ZTD estimation errors or sounding sensors errors) instead of Tm occupied the differences between GPS-PWVs 345 

and radiosonde PWVs. However, we still found obvious gaps between PWVs at NRIL (N88.3598°E69.3618°, 4.1km to 

nearby radiosonde NO.23078 sites). RMSEs decrease from 2.29 mm of PWVBTm to 1.84mm of PWVVTm and 1.42 mm of 

PWVETm. As shown in Fig. (12), the large PWV differences mainly appeared from May to September. During such five months, 

mean GPS-PWV differences to PWVRS decreased by over 30% from 2.52 mm of PWVBTm to 1.67 mm of PWVVTm. Accuracy 

of PWVGTm is close to PWVVTm at this site, and it indicates that the spatiotemporal variations of Tm is also modeled very well 350 

by GPT2w model. 
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Figure 11: RMSEs of PWVBTm, PWVSTm, PWVVTm, PWVGTm and PWVETm compared with PWVRS at 11 IGS stations in 2016 

 

Figure 12: PWV differences of PWVBTm, PWVLTm, PWVSTm, PWVVTm , PWVGTm and PWVETm compared with PWVRS at NIRL 355 

station in the year 2016 

6. Summary and conclusion 

In this study, we estimated Tm using temperature and humidity profile data from IGRA radiosonde data and ERA-Interim 

reanalysis datasets over a four-years-long period from year 2009 to 2012. Surface air temperature Ts were also extracted from 

the two data sets. Then we analyzed the relationship between Ts and Tm at each grid node of reanalysis data and radiosonde 360 

station. Analyses indicated that: (1) Tm has stronger relationship with Ts in mid-high latitudes than in low latitudes; (2) In low 

latitudes, Ts-Tm correlation coefficients are higher over lands than over oceans; (3) the Ts-Tm relationship’s variation properties 

is much more complicated rather than only dependence on point’s latitude, and (4) Ts-Tm relation has strong annual, semiannual 

and diurnal variations in many areas. 

Using global gridded ERA-Interim datasets from 2009 to 2012, we developed static and time-varying global gridded Ts-365 

Tm models. Annual, semiannual and diurnal variations in Ts-Tm relationship are considered in time-varying model. Then we 

evaluated Tm results from different Ts-Tm models and GPT2w model by comparing them with radiosonde data in 2016. Results 

demonstrate time-varying global gridded Ts-Tm model has significant global precision advantage over other global applied 

models. Average Tm RMSE reduces by about 1 K. The proportion of sites with small biases and RMSEs increases significantly. 

At over 90% radiosonde sites, time-varying global gridded model has RMSE smaller than 4 K, and the RMSEs larger than 5 370 
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K nearly disappear, while by applying Bevis or latitude-related models there are more than 17% radiosonde sites have RMSEs 

larger than 5 K. Multiple statistical tests at 5% significance level verify the significant superiority of the new time-varying 

model at more than 60% of radiosonde sites. Analyses at specific stations also demonstrate that time-varying global model can 

eliminate large errors in estimated Tm series.  

More precise Ts-Tm models also have positive impacts on GPS-PWV retrievals. Regarding the GPS-PWVs using ERA-375 

Interim Tm estimates as references, relative errors of GPS-PWV using time-varying global gridded Ts-Tm models are within 

1.0% at more than 74% of IGS sites, which is better most of other models. The differences between GPS-PWVs and radiosonde 

PWVs are around 1~5 mm and mainly influenced by comprehensive error sources rather than single Tm. But at special site, 

such differences could decrease by more than 30% in wetter conditions.  

According to our experiments, we are confident that the time-varying global gridded Ts-Tm models presented here will 380 

help us to retrieve GPS PWV more precisely, or to study precise PWV variations in high temporal resolution as well as Ts 

observations which is much greater than of conventional reanalysis datasets (6 hours) or radiosonde data (12 hours). Matlab 

array file consisting of global gridded coefficients in our model, as well as Matlab codes to interpolate coefficients to any given 

location, are provided as the supplements of this study. It is convenient to use for researchers and applicants in relevant fields.  

 385 

Data sets 

Radiosonde data: ftp://ftp.ncdc.noaa.gov/pub/data/igra 

ERA-Interim Project:  https://doi.org/10.5065/D6CR5RD9 

GPS-ZTD Product: ftp://cddis.gsfc.nasa.gov/pub/gps/products/troposphere/zpd 
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