
1 
 

Development of time-varying global gridded Ts-Tm model for precise 
GPS-PWV retrieval 

Peng Jiang1, 2, Shirong Ye2, Yinhao Lu1, Yanyan Liu3, 2, Dezhong Chen2, Yanlan Wu1 
1School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China, 
2GNSS Research Center, Wuhan University, Wuhan, Hubei, China, 5 
3Shenzhen Key Laboratory of Spatial Smart Sensing and Services, College of Civil Engineering, Shenzhen University, 

Shenzhen, Guangdong, China 

Correspondence to: Peng Jiang (jiangpeng@ahu.edu.cn) 

Abstract: Water-vapor-weighted mean temperature, Tm, is the key variable for estimating the mapping factor between GPS 

zenith wet delay (ZWD) and precipitable water vapor (PWV). For the near real-time GPS-PWV retrieving, estimating Tm from 10 

surface air temperature Ts is a widely used method because of its high temporal resolution and a fair degree of accuracy. Based 

on the estimations of Tm and Ts at each reanalysis grid node of the ERA-Interim data, we analyzed the relationship between Tm 

and Ts without data smoothing. The analyses demonstrate that the Ts–Tm relationship has significant spatial and temporal 

variations. Static and time-varying global gridded Ts–Tm models were established and evaluated by comparisons with the 

radiosonde data at 723 radiosonde stations in the Integrated Global Radiosonde Archive (IGRA). Results show that our global 15 

gridded Ts–Tm equations have prominent advantages over the other globally applied models. At over 17% of the stations, errors 

larger than 5 K exist in the Bevis equation (Bevis et al., 1992) and in the latitude-related linear model (Yao et al., 2014b), while 

these large errors are removed in our time-varying Ts–Tm models. Multiple statistical tests at the 5 % significance level show 

that the time-varying global gridded model is superior to the other models at 60.03 % of the radiosonde sites. The second-best 

model is the 1º × 1º GPT2w model, which is superior at only 12.86 % of the sites. More accurate Tm can reduce the contribution 20 

of the uncertainty associated with Tm to the total uncertainty of GPS-PWV, and the reduction augments with the growth of 

GPS-PWV. Our theoretical analyses with high PWV and small uncertainty in surface pressure indicate that the uncertainty 

associated with Tm can contribute more than 50 % of the total GPS-PWV uncertainty by using the Bevis equation, and it can 

decline to less than 25 % by using our time-varying Ts–Tm model. However, the uncertainty associated with surface pressure 

dominates the error budget of PWV (more than 75 %) when the surface pressure has error larger than 5 hPa. GPS-PWV 25 

retrievals using different Tm estimates were compared at 74 International GNSS Service (IGS) stations. At 74.32% of the IGS 

sites, the relative differences of GPS-PWV are within 1 % by applying the static or the time-varying global gridded Ts–Tm 

equations, while the Bevis model, the latitude-related model and the GPT2w model perform the same at respectively 37.84 %, 

41.89 % and 29.73 % of the sites. Compared with the radiosonde PWV, the error reduction in the GPS-PWV retrieval by using 

a more accurate Tm parameterization can be around 1~2 mm, which accounts for around 30 % of the total GPS-PWV error. 30 

1. Introduction 
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Water vapor is an important trace gas and one of the most variable components in the troposphere. The transport, 

concentration, and phase transition of water vapor are directly involved in the atmospheric radiation and hydrological cycle. It 

plays a key role in many climate changes and weather processes (Adler et al., 2016; Mahoney et al., 2016; Song et al., 2016). 

However, water vapor has high spatial-temporal variability, and its content is often small within the atmosphere. It is a 35 

challenge to measure water vapor content accurately and timely. For decades, several methods have been studied, such as 

radiosondes and water vapor radiometers, sun photometers, and GPS (Campmany et al., 2010; Ciesielski et al., 2010; Liu et 

al., 2013; Perez-Ramirez et al., 2014; Li et al., 2016). Compared with the traditional water vapor observations, ground-based 

GPS water vapor measurement has the advantages of high accuracy, high spatial-temporal resolution, all-weather availability, 

and low-cost (Haase et al., 2003; Pacione and Vespe, 2008; Lee et al., 2010; Means, 2013; Lu et al., 2015). Ground-based GPS 40 

water vapor products, mainly including precipitable water vapor (PWV), are widely used in many fields such as real-time 

vapor monitoring, weather and climate research, and numerical weather prediction (NWP) (Van Baelen and Penide, 2009; 

Karabatic et al., 2011; Rohm et al., 2014; Adams et al., 2017). 

GPS observations require some kinds of meteorological elements to estimate PWV. Zenith hydrostatic delay (ZHD) can 

be calculated using surface pressure Ps by equation (Ning et al., 2013) : 45 

   
2 2767 0 0015. .

,
sP

ZHD
f H

      (1) 

where   is the latitude, H is the geoid height in meters, and 

   3 71 2 66 10 2 8 10, . cos .f H H          (2) 

Then, zenith wet delay (ZWD) is generated by subtracting ZHD from zenith total delay (ZTD). ZTD can be directly 

estimated from precise GPS data processing. Finally, a conversion factor Q, which is used to map ZWD onto PWV, is 50 

determined by the water-vapor-weighted mean temperature Tm over a GPS station. The mapping function from ZWD to PWV 

is expressed as (Bevis et al., 1992):  

ZWD ZTD ZHD
PWV

Q Q


    (3) 

and Q is computed using following formula: 

 6
3 210 '/w v mQ R k T k      (4) 55 

where 
w  is the density of liquid water, Rv is the specific gas constant for water vapor, 1

2 (22 1 2 2)K mbar' . .k     and 

5 2 1
3 (3 739 0 012) 10 K mbar. .k      are physical constants (Ning et al., 2016) . Tm is the weighted mean temperature which 
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is defined as a function related to the temperature and water vapor pressure. It can be approximated as the following formula 

(Bevis et al., 1992): 
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where e and T respectively represent vapor pressure in hPa and temperature in Kelvin, i denotes the ith level and Δzi is the 

height difference of ith level . Vapor pressure e is calculated using equation e=esRH; RH is the relative humidity, and the 

saturation vapor pressure es can be estimated from the temperature observations using Goff-Gratch formula (Sheng et al., 2013).  

There are three main approaches to estimate Tm. They have respective advantages and disadvantages when they are applied 

for different purposes: 65 

(1) The integration of vertical temperature and humidity profiles are believed to be the most accurate method. The profile 

data can be extracted from radio soundings or NWP datasets (Wang et al., 2016). However, some inconveniences have to be 

endured. It usually takes considerable amounts of time to acquire the NWP data, which is normally released with large volumes 

every 6 hours. This limits the use of NWP data in the near real-time GPS-PWV retrieving. Radiosonde data is another profile 

data source, but it has low spatial and temporal resolution. At most of the radiosonde sites, sounding balloons are daily cast at 70 

00:00 UTC and 12:00 UTC. Furthermore, a large amount of GPS stations are not located close enough to the radio sounding 

sites. Therefore, such methods are appropriate for climate research or the study of long-term PWV trends, but do not meet the 

real-time requirements. 

(2) Several global empirical models of Tm are established based on the analyses of Tm time series from NWP datasets or 

other sources (Yao et al., 2012; Chen et al., 2014; Bohm et al., 2015). Tm at any time and any location can be estimated from 75 

these models. They are often independent of the current meteorological observations which are required to be observed together 

with the GPS data. However, some important real variations, which may be dramatic during some extreme weather events, can 

be lost without the constraints of current real data (Jiang et al., 2016). Therefore, these modeled estimates are not accurate 

enough for high-precision meteorological applications, such as providing GPS-PWV estimates for weather prediction. 

(3) Many studies indicated that the Tm parameter has a relationship with some surface meteorological elements, such as 80 

surface air temperature or surface air humidity (Bevis et al., 1992; Yao et al., 2014a). These surface meteorological parameters 

can be measured accurately and rapidly. Tm is then estimated using these surface measurements. However, these studies also 

revealed that the relationships are often weak, except the Ts-Tm relationship. For example, Bevis et al. (1992) introduced the 

equation Tm=0.72 Ts+70.2 [K] after analyzing 8712 radiosonde profiles collected at 13 sites in the U.S. over two years. This 

equation has been widely used in many other studies. 85 
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According to Rohm et al. (2014), GPS-ZTD can be estimated very precisely by real-time GPS data processing. This 

means that Tm is one of the key parameters in the near real-time GPS-PWV estimation. On the other hand, method (3) is the 

most suitable method for estimating Tm in near real-time because of its balance between timeliness and accuracy. The Ts-Tm 

relationship has spatial-temporal variations. Several regional Ts-Tm equations were established using the profile data over 

corresponding fields (Wang et al., 2012). However, a Ts-Tm model without spatial variation is not good enough for a vast field, 90 

e.g. the Indian region (Singh et al., 2014). Aside from this, some vast areas have no specific high-precision Ts-Tm model, for 

example over the oceans. In general, significant differences exist between oceanic and terrestrial atmospheric properties, 

especially near the surface layer and within the boundary layer. The change of Ts from land to ocean may be very different 

from that of Tm. Therefore it is necessary to model the Ts-Tm relationship over oceanic regions, since several ocean-based GPS 

meteorology experiments demonstrated the potential of such technique to retrieve PWV over the broad ocean (Rocken et al., 95 

2005; Kealy et al., 2012). A global gridded Ts-Tm model has been established by Lan et al. (2016). In this model, the 2.0° × 2.5° 

Tm data from “GGOS Atmosphere” and the 0.75° × 0.75° Ts data from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) reanalysis data are both smoothed to the resolution of 4° × 5°. However, the Ts-Tm relationship is varying 

in time (Yao et al., 2014a), while the Lan et al. (2016) model is static. 

The objective of this study is mainly to (1) develop global gridded Ts-Tm models without any smoothing of the data, then 100 

assess their precision, and (2) study the performances of GPS-PWV retrievals using our Ts-Tm models. Table 1 lists the main 

differences between the Ts-Tm model developed in this study and the other global used Tm models. In section 2, the data sources 

and determining methods of Tm are introduced in detail. Then, in section 3 we analyze the Ts-Tm relationships and their 

variations on a global scale. Global-gridded Ts-Tm estimating models in different forms are established and evaluated in section 

4. Section 5 assesses the accuracies of different PWV retrievals and section 6 presents conclusions based on our experiments. 105 

Table 1.  Main differences between Ts-Tm models developed in this study and other global used Tm estimation models 

Strategies \ Ts-Tm Models 
Bevis model 

(Bevis et al., 1992) 

Latitude-related linear 

model (Yao et al., 2014b)

Global-gridded model 

(Lan et al., 2016) 

Time-varying 

global gridded 

model (our study) 

GPT2w model 

(Bohm et al., 

2015) 

Applicable Regions Regional/Global Global Global Global Global 

Data Sources Radiosonde 

Ts from the 0.75° × 0.75° 

ERA-Interim, and Tm from 

the 2° × 2.5° “GGOS 

Atmosphere” 

Ts from the  0.75° × 0.75° 

ERA-Interim , and Tm 

from the 2° × 2.5° 

“GGOS Atmosphere” 

Ts and Tm both 

from the 0.75° × 

0.75° ERA-Interim 

Tm from the  

1° × 1° ERA-

Interim monthly 

mean data 

Data Processing 
Integrate 

radiosonde profiles 

4° × 5° Sliding window 

smooth 

4° × 5° Sliding window 

smooth 

Integrate ERA-

Interim profiles 

Integrate ERA-

Interim profiles 

Variations in model 
Static without any 

variations 

Spatial variations depend 

on only latitude(15°

latitude interval), but no 

temporal variations 

4° × 5° global gridded, 

but no temporal 

variations 

0.75° × 0.75° 

global gridded and 

considering time 

variations 

1° × 1° global 

gridded, 

considering time 

variations, but 

independent of 
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current surface 

observations 

2. Data Sources and Methodology 

As the definition of Tm in equation (5), ei parameter at the middle height of ith level is calculated by vertically exponential 

interpolation of the water vapor pressure of its two neighbor measurement points. The temperature is estimated by linear 

interpolation of the two neighbor temperatures. The integral intervals are from the earth surface to the top level of profile data. 110 

The height of top level depends on the data sources we employed. The essential profile data, including the temperature, height 

and relative humidity values through the entire atmospheric column, can be obtained from the radiosondes or NWP datasets. 

We employed radiosonde data from the Integrated Global Radiosonde Archive (IGRA,   

ftp://ftp.ncdc.noaa.gov/pub/data/igra) to calculate Tm. Version 2.0 of the IGRA-derived sounding parameters provides pressure, 

geopotential height, temperature, saturation vapor pressure, and relative humidity observations at the observed levels. Bias 115 

may be introduced if the integrals were terminated at lower levels (Wang et al., 2005), thus the integrations were performed 

up to the topmost valid radiosonde data. According to our quality control processes, some radiosonde profile data were rejected. 

In each profile, the surface observations must be available and the top profile level should not be lower than 300 hPa standard 

level. Furthermore, the level number between the surface and the top level should be greater than 10 to avoid too sparse vertical 

profiles. At most of the radio sounding stations, sounding balloons are launched every 12 hours, and their ascending paths are 120 

assumed to be vertical. 

Profile data are usually provided by NWP products at certain vertical levels. The ERA-Interim product from ECMWF 

provides data on a regular 512 longitude by 256 latitude N128 Gaussian grid after the grid transforming performed by the 

NCAR Data Support Section (DSS). On each grid node of ERA-Interim, temperature, relative humidity and geopotential at 37 

isobaric levels from 1000 hPa to 1 hPa can be obtained. Dividing the geopotential by constant gravitational acceleration value 125 

(g≈9.80655 m/s2), we can determine the geopotential heights of the surface and levels. Datasets are available at 00:00, 06:00, 

12:00 and 18:00 UTC every day and have been covering a period from 1979.01 to present. 

 In theory, the computation of equation (5) should be integrated through the entire atmospheric column, and the 

geopotential height should be converted to the geometric height. However, water vapor is solely concentrated in the 

troposphere, and most of it is specifically located within the first 3 kilometers above sea-level. Moreover, in the two selected 130 

datasets, the geopotential heights of top pressure levels are approximately 30~40 km. Geopotential height is very close to 

geometric height in such height ranges. According to our computation, the relative difference between them is only between 

0.1 %~0.9 %. In fact, the height difference z   can be replaced by the geopotential height difference h  in equation (5), 

since the division can almost eliminate the difference between the two different height types. The Tm value nearly has no 

change after such height replacement. For the convenience of calculation, we directly employed the geopotential height 135 
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variable. In this paper, we denoted the Tm derived from ERA-Interim as Tm_ERAI. 

At each reanalysis grid node, the computation of equation (5) always starts from the surface height to the top pressure 

level. The pressure levels below surface height were rejected. Ts is defined as the variable of “temperature at 2 meters above 

ground”, and surface water vapor pressure can be derived from the “2 meter dewpoint temperature” variable in ERA-Interim. 

These Ts were also used in the regression analyses between Ts and Tm. 140 

3. Correlation between Ts and Tm 

Many studies have indicated the close relationship between Ts and Tm. However, Tm is also found not being closely related 

to Ts in some regions, e.g., in the Indian zone (Raju et al., 2007). Using the Tm and Ts generated from the global gridded 

reanalysis data, we are able to study the Ts-Tm relationship in detail. 

We first carried out a linear regression analysis on four years of Ts and Tm data generated from the radiosonde data and 145 

the global gridded ERA-Interim datasets, with data covering the period 2009\01 to 2012\12. The analysis results are shown in 

figure 1. Although the two datasets have different temporal resolutions (12 hours for the radiosonde data and 6 hours for the 

ERA-Interim data) and spatial resolutions, both analyses agree well with each other. This is expected because the radiosonde 

data have been assimilated into the ERA-Interim products. Our analyses also indicate that the Ts-Tm correlation coefficient is 

generally related to the latitude. The same conclusion has been drawn in other studies (Yao et al., 2014b). Significant positive 150 

correlation coefficients can be found at mid- and high- latitudes and reach a maximum in the polar regions. The correlation 

coefficients drop dramatically at low latitudes. This is because Tm is stable there, showing independency of the other parameters. 

To study the variations of Ts and Tm, we illustrated the denary logarithm values of their standard deviations in figure 2. It is 

evident that Tm varies to a lesser degree than Ts at low latitudes. Aside from the latitude-related features, there are obvious 

differences of the Ts-Tm correlation coefficients between land and ocean. We even found that negative correlation coefficients 155 

over certain oceans, e.g., low-latitude Western Pacific, Bay of Bengal or Arabian Sea (see figure 1). Unreliable regression 

analysis results may be derived when the Ts and Tm data both have small variations. In figure 3, scatter plots of Ts and Tm from 

ERA-Interim at two locations 0.35° N 180.00° E and 70.53° N 180.00° E are given. As the blue dots show, the Ts-Tm 

relationship is weak in the areas near the equator, because the entire variation ranges of Ts and Tm are both within 10 K. This 

results in a meaningless linear regression (see the magenta line). The Ts-Tm correlation coefficient is only -0.0893 there. Other 160 

than the large spatial variations, studies have revealed that the Ts-Tm relationship also has temporal variations (Wang et al., 

2005). Therefore, a good Ts-Tm model should take both the spatial and temporal variations into consideration, and this is the 

main aim in the following sections. 
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Figure 1: Correlation coefficients between Ts and Tm generated from radiosonde data (dots) and ERA-Interim reanalysis datasets 165 

(color-filled contours) over a period of 4 years from 2009 to 2012. 

 
Figure 2: Denary logarithm of the standard deviation of (top) Ts and (bottom) Tm generated from the ERA-Interim data covering 

the year 2009 to 2012. Temperature unit is Kelvin. 170 
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Figure 3: Ts-Tm scatter plots at two locations: (blue dots) 0.35° N 180.00° E and (red dots) 70.53° N 180.00° E, the magenta and green 

lines are their linear fitting curves. Temperature unit is Kelvin. 

4. Development of global-gridded Ts-Tm models 

Since the Ts-Tm relationship has large spatial variations, a global gridded Ts-Tm model is preferred for precise GPS-PWV 175 

estimations. In this section, a static global gridded model and a time-varying global gridded model are established and assessed. 

4.1 Static global-gridded Ts-Tm model 

A linear formula 
m sT aT b   for the relation between Tm and Ts has been adopted in many studies. Based on the Ts and 

Tm products from the ERA-Interim data covering the year 2009 to 2012, we performed linear fittings of Tm versus Ts on each 

grid point. Then, the slope constant (a), the intercept constant (b) and the fitting root mean square error (RMSE) of each linear 180 

expression were calculated and contoured in figure 4. The a and b values are related to the latitude as well as the underlying 

surface (e.g. land, ocean). In the mid-high latitudes over the Northern Hemisphere, constant a value varies from 0.6 to 0.8, and 

constant b is approximately 100~50 over most of the continents. The constants in the Bevis equation are within these value 

ranges. Constant a is smaller (approximately 0.5~0.7) over land at the mid to high latitudes over the Southern Hemisphere. 

Especially, there are abrupt changes in the values of constants a and b from land to ocean at the mid to high latitudes due to 185 

the different variation features of Ts and Tm (see figure 2). At the low latitudes, the a value is smaller than over the other regions, 

because of the low variations of Ts and Tm. The fitting RMSEs are within 2~4 K over the mid to high latitude lands, and lower 

values are obtained over the oceans or at the low latitudes. The reason for the low RMSE around the equator is the smaller 

fluctuation of Tm. Meanwhile, there is no RMSE larger than 4.5 K in the results of our model. As we did not perform any 

spatial or temporal smoothing of the data during the data processing, both the precision and resolution of our static model is 190 

better than other models (e.g. Lan et al., 2016).  
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Figure 4: Distributions of the (top) slope constant a, (middle) intercept constant b, and (bottom) RMSE of static linear Ts-Tm 195 

equations at ERA-Interim grid nodes. Temperature unit is Kelvin. 

4.2 Time-varying global-gridded Ts-Tm model  

The time variation of Ts-Tm relationship should also be considered in a precise Ts-Tm model. Therefore, a time-varying 

equation is applied for Ts-Tm regression at each grid node: 
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 (6) 200 

where doy represents the observed day of year and hr is the observed hour in UTC time; (m1, m2), (n1, n2) and (p1, p2) are fitting 

coefficients. These equations can reflect the amplitudes of annual, semiannual and diurnal variations in our Ts-Tm models.  

Our new regression model found similar values for the coefficients a and b (of its static term) as for the static model in 

section 4.1, except for some differences over the oceans. In figure 5, besides these constants a and b, we also illustrate the 

amplitudes of annual, semiannual, and diurnal terms. We can see that there are large annual variations (amplitude > 5 K) in the 205 

vast regions from Tibet to North Africa, and in some places of the Siberia and Chile. Large diurnal variations (amplitude > 3 

K) mainly occur over the mid-latitude lands such as Northeast Asia or North America. Semiannual variations, however, are 

small in most of areas except some high-latitudes (amplitude > 3 K). All variations are smaller over the oceans due to the 

slower temperature changes over water than over land. The estimated Tm RMSE is also contoured in figure 5, and we can see 

that the RMSE dropped significantly in the regions with large annual or diurnal variations. 210 
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Figure 5: （top）The slope constant a, (second) intercept constant b, amplitudes of Tm (third) annual, (forth) semiannual and 

(fifth)diurnal terms in our time-varying global gridded Ts -Tm model, and (bottom) the model estimated Tm RMSE distribution. 

Temperature unit is Kelvin. 220 

4.3 Assessments of Ts-Tm models  

To further assess the precision of the Ts-Tm models using other independent data sources, we generated Tm and Ts from 

the radiosonde data at 723 radiosonde stations in the year 2016. These data are not assimilated into the 2009~2012 ERA-

Interim datasets. As a result, we can regard them as independent of our model. At each radiosonde site, different Ts-Tm models 

were employed to calculate Tm. In addition, we also estimated Tm using the 1º × 1º GPT2w model (Bohm et al., 2015), 225 

which is a global gridded Tm empirical model independent of the surface meteorological observation data. Then, these 

calculated Tm will be evaluated by comparing them with the integrated Tm of radiosondes (denoted as Tm_RS) twice a day. 

The model estimations of Tm are denoted as Tm_Bevis, Tm_LatR, Tm_static, Tm_varying, and Tm_GPT2w from respectively the Bevis 

equation, the latitude-related model, our static global gridded model, time-varying global gridded model, and the GPT2w 

model. When the global gridded models are employed, the radiosonde station may not be located at a grid node. Therefore, we 230 

interpolated the coefficients in the Ts-Tm equations from the neighboring grids to the radiosonde sites. The interpolation formula 

is expressed as (Jade and Vijayan, 2008) : 

4

1

i i
site grid

i

C w C


   (7) 

Csite and Ci
site represent the coefficients in Ts-Tm equations at the radiosonde site location and its neighboring grids, respectively. 

wi are the interpolation coefficients, which are determined using the equation: 235 
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where R=6378.17 km is the mean radius of the earth,   is the scale factor which equals one in our study, and 
i  is the 
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angular distance between the ith grid node and the station’s position. i  are computed using following formula ( with latitude 

φ and longitude θ ): 

 cos sin sin cos cos cosi i i i            (9) 240 

Considering the fact that the reanalysis grids are definite, and every radiosonde site is in situ; we can compute the interpolation 

coefficients in equation (7) for all of the radiosonde stations. Then, these coefficients are stored as constants to avoid 

reduplicating the calculation. 

Taking Tm_RS as the reference values, we calculated the biases and RMSEs of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying , and 

Tm_GPT2w at each radiosonde site. The results are illustrated in figure 6. Obviously, in many regions, the Bevis equation has a 245 

bad precision with the absolute bias and RMSE both larger than 5 K. Tm_LatR can reduce the estimated biases in many areas, 

but the RMSEs remain large. Large biases still exist at quite a few radiosonde stations, e.g. in Africa or West Asia. Tm_static and 

Tm_GPT2w remove the large Tm biases at most of the radiosonde stations. Tm_varying performs significantly better over the world, 

especially in the Middle East, North America , Siberia region, etc. 

Detailed statistics of the distributions of the bias and RMSE using different models are shown in figure 7 and table 2. At 250 

over 97.37 % of the radiosonde stations, the biases of Tm_varying are within -3~3 K. Large positive biases (> 3 K) nearly disappear 

in Tm_varying. In contrast, there are significant large biases in Tm_Bevis and Tm_LatR. Improvements in RMSE are more evident. The 

RMSEs of Tm_varying are smaller than 4 K at over 91 % of the radiosonde sites, while few sites (<1 %) have RMSEs larger than 

5 K. This is clearly better than the other models. In Tm_Bevis and Tm_LatR, there are more than 17 % of the radiosonde sites have 

RMSEs larger than 5 K. The overall performance of Tm_GPT2w is very close to Tm_Bevis, except that its absolute bias is smaller 255 

than the other Ts-Tm models. 
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 260 

 

Figure 6: (left) The bias and (right) the RMSE of the estimated Tm from respectively (top) the Bevis equation, (second) the latitude-

related model, (third) our static global gridded model, (forth) our time-varying global gridded model and (bottom) the GPT2w 

model at each radiosonde station. Reference data are the radiosonde data of the year 2016. Temperature unit is Kelvin. 
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 265 

1) Bias distribution                                        2) RMSE distribution 

Figure 7: The distributions of (left) the biases and (right) the RMSEs of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying and Tm_GPT2w compared 

with the radiosonde data at 723 stations in the year 2016. Temperature unit is Kelvin. 

Table 2: Statistics of Tm estimates from different models. Reference data are the radiosonde Tm derivations. 

Statistics Tm_Bevis Tm_LatR Tm_static Tm_varying Tm_GPT2w 

Average value of absolute Tm bias (K) 

Average value of Tm RMSE (K) 

Average relative RMSE of Tm ( %) 

Max Relative RMSE of mean Tm ( %) 

1.88 1.30 1.13 1.08 1.06 

3.95 3.81 3.36 3.01 3.80 

1.44 1.39 1.22 1.09 1.39 

3.69 4.26 2.40 2.19 4.31 

% of sites with Tm RMSE < 4 K 55.19 61.00 76.49 91.01 53.94 

% of sites with Tm Relative RMSE less than 1.5 % 59.47 64.73 78.01 89.76 56.43 

To identify the superior Tm estimation model at each radiosonde site, we employed the following statistical tests under 270 

the assumption of a normal distribution of the estimated Tm error: 

(1) First, Brown-Forsythe tests (Brown and Forsythe, 1974) of equality of variances were carried out at each site for 

estimating the Tm errors from two different models, e.g., model A and B. The purpose of this step is to determine whether there 

is significant variance difference between the Tm results. If the test rejects the null hypothesis at a 5 % significance level that 

the errors of model A and B have the same variance, the model with the smaller sample variance is regarded as the better one. 275 

However, if the test does not reject the homogeneity of variances, analysis of variance (ANOVA) is performed in the next step.  

(2) ANOVA is a technique used to analyze the differences among group means (Hogg, 1987). It evaluates the null 

hypothesis that the samples all have the same mean against the alternative that the means are not the same. If the null hypothesis 

is rejected at a 5 % significance level, the Tm sample with smaller absolute mean value is believed to be better. Otherwise, we 

think that two models perform almost the same at this radiosonde site. 280 

(3) After multiple tests and comparisons, the best model at each radiosonde station may be identified. However, at some 

sites no superior model can be confirmed. All the models are believed to have equivalent performances. 
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Finally, we counted the number of sites at which each Tm model respectively performed the best. The results are given in 

table 3. The time-varying global gridded model is superior to the others at 434 radiosonde stations (60.03 % of all sites), while 

the second-best estimation, Tm_GPT2w, is superior at only 12.86 % of the sites.  285 

Table 3: Number of radiosonde sites at which the five global applied Tm estimation models respectively perform superiorly 

Superior model None Tm_Bevis Tm_LatR Tm_static Tm_varying Tm_GPT2w 

Number of sites 50 46 61 39 434 93 

In figure 8，the Tm series at the IGRA station No.62378 (29.86° N 31.34° E, in Egypt) are given. We can see that large 

negative biases (< -5 K) between Tm_Bevis (or Tm_LatR) and Tm_RS exist. Tm_static performs only slightly better from July to October. 

However, Tm_varying and Tm_GPT2w can eliminate most of the seasonal errors. Different properties of Tm series appear at another 

IGRA station No.40841 (30.25° N 56.97° E, in Iran). Some observation data are missing, but we can still see that there are 290 

large positive differences (> 5 K) between Tm_Bevis (or Tm_LatR) and Tm_RS throughout the year. The biases of Tm_static are much 

smaller, but some large errors still appear in many months. The Tm_varying, however, performs as well as the Tm calculated from 

the radiosonde data, with small biases and capturing the variations well. The time series of Tm_GPT2w are smoother and cannot 

capture the fluctuations of the Tm time series, causing a worse accuracy than Tm_varying. 

On the other hand, even Tm_varying have large differences from Tm_RS at a few IGRA stations. This can be explained by the 295 

fact that our fitting analyses are based on the Tm values derived from ERA-Interim profiles. The quality of ERA-Interim data 

can be very poor in the regions with sparse observation data (Itterly et al., 2018). 
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Figure 8: Tm series of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying, Tm_GPT2w and Tm_RS at the IGRA station (top) No.62378 and (bottom) 300 

No.40841. Temperature unit is Kelvin. 

5. GPS-PWV retrieving experiments 

GPS-PWV has different error sources with different properties. It is complicated to evaluate the GPS-PWV uncertainty 

here due to the lack of collaborated additional independent techniques to monitor water vapor at the GPS site. 

5.1 Theoretical analysis of the GPS-PWV uncertainty  305 

A comprehensive research on the uncertainty of GPS-PWV has been carried out by Ning et al. (2016). The uncertainties 

of the ZTD, ZHD and conversion factor Q have been studied in detail. The total uncertainty of GPS-PWV is: 
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where  PWV ,  ZTD ,  Ps , and Q  are respectively the uncertainties of GPS-PWV, ZTD estimation, Ps observations and 

conversion factor Q. c =0.0015 denotes the uncertainty of constant C = 2.2767 in equation (1), PWV is the value of GPS-310 
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where 
3

5 2 -1=0.012 10  K  hPak  , 
2

-1=2 2 K hPa' .
k

 , and 
mT  denote respectively the uncertainties of k3, 2

'k  and Tm in 

equation (4). The variation of Q  with the value of Tm and 
mT  is depicted in figure 9. Assuming the Tm is 280 K, we find 

that the Q  increases by over 60 % (from 0.069 to 0.112) as the 
mT  raises from 3.0 K to 5.0 K. However, the Q  is less 315 

sensitive to the value of Tm. The Q  raises only by 17.96 % (about from 0.061 to 0.075) as the value of Tm drops from 300 K 

to 270 K with 
mT  = 3.0 K. 

Ning et al. (2016) assumed the Tm were obtained from NWP models so the uncertainty of Tm was set to be small 

( = 1 1 K.
mT ). However, as shown in section 4.3, the uncertainties of Tm from different Tm models are significantly larger at 

the radiosonde stations. For each radiosonde station, we calculated the mean value of Tm and assigned the 
mT  with the 320 

RMSEs of Tm given in figure 6. Then we obtained the Q  in equation (11). Our statistics indicate that the Q  using our 
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varying Ts-Tm model decreases by average 19.26 %, 17.77 %, 7.79 % and 18.67 % with respect to the Q  respectively using 

the Tm_Bevis, Tm_LatR, Tm_static, and Tm_GPT2w. For example, at the IGRA station No.42724 (22.88° N 91.25° E, in India), Q  drops 

by 53 % from 0.141 of the Tm_Bevis to 0.066 of the Tm_varying. 

 325 
Figure 9. Variation of the uncertainty of Q with the value of Tm and the uncertainty of Tm 

The uncertainty of Q will be propagated to the total uncertainty of GPS-PWV according to equation (10). We obtained 

the contributions of the different terms in equation (10) to the total GPS-PWV uncertainty. The contribution of one term is 

measured by the percentage it accounts for the total  PWV . The percentages are computed using formulas: 
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where ZTD
p , Psp , Cp  and Qp  indicate respectively the contribution of the uncertainty associated with ZTD, Ps, constant 

C and factor Q to the total  PWV . Following the summaries of Ning et al. (2016), we assumed that = 4 mmZTD  and 

 = 0.0015C . Tm identically equals to 280 K since the Q  is less sensitive to the value of Tm with respect to the  Tm . Table 

4 gives five sets of the typical values which are assigned respectively to the Ps , Tm , Ps and PWV in equations (10)~(12). 

Table 4. Different typical values for 
Ps , 

Tm , Ps and PWV 335 

Set of typical values  Ps  [hPa] Tm  [K] Ps [hPa] PWV [mm] 

(a)  0.5 0 K ~ 7 K 1013.25 50 

(b) 0.5 0 K ~ 7 K 850 50 

(c) 0.5 0 K ~ 7 K 1013.25 20 

(d) 5 0 K ~ 7 K 1013.25 50 

(e) 5 0 K ~ 7 K 1013.25 20 
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Figure 10. Contributions of different terms to the total uncertainty of GPS-PWV with the different typical values shown in table 4 

The 
Ps  equals 0.2 hPa in Ning et al. (2016), however we enlarged its typical value to 0.5 hPa in consideration of the 

possible worse performance of the surface barometers. In figure 10, we illustrated the contributions of the terms in equation 

(12) based on the assumptions (a) ~ (e) in table 4. Some variation features of the contributions of different terms can be found 340 

from the comparisons between different subplots: 

(1) No significant difference exists between the figure 10(a) and 10(b). Because of the small value of c  in equation 

(10), the  PWV  is not sensitive to the value of Ps. Meanwhile, the uncertainty associated with c  contributes less than 10 % 

of the  PWV . 

(2) With the typical values in table 4(a) and 4(b), a reduction of  Tm  can reduce the Qp  significantly. For example in 345 

figure 10(a), the Qp  accounts for 69.54 % with  Tm = 6 K, and it declines to 38.19 % with  Tm = 3 K.  

(3) As figure 10(c) shows, the uncertainty associated with  ZTD  accounts for the main part of  PWV  when the values 

of PWV and  Ps  are not high. With the typical values in table 4(c), the ZTD
p  can be up to 74.21 % with  Tm = 3 K. And the 

pQ, however, can drop from 26.76 % to 9.00 % as the  Tm  decreases from 6 K to 3 K. Although the pQ is not large under this 

situation, a smaller  Tm  can still reduce the contribution of Q  to the  PWV . 350 

(4) The uncertainty associated with  Ps  dominates the error budget of PWV when the  Ps  is large. In figure 10(d~e), 

the Psp  is over 80 % with  Tm < 3 K and  Ps = 5 hPa. In figure 10(d), the Qp  increases from 7.55 % to 23.19 % as the 

 Tm  raises from 3 K to 6 K. However, in figure 10(e), the Qp  only grows from 1.29 % to 4.61 % with the same variation of 

 Tm .  
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Theoretical analyses on  PWV  were also carried out at two representative stations. At the IGRA station No.42971 (20.25° 355 

N 85.83° E, in India), the mean value of PWV is 53.88 mm. The RMSEs of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying, and Tm_GPT2w are 

respectively 4.30 K, 3.15 K, 2.41 K, 1.93 K and 1.97 K. The  Tm  in equation (11) was replaced by the calculated RMSEs, 

and the ZTDp , Psp , Cp  and Qp  were generated with two typical values, 0.5 hPa and 5 hPa, assigned to the  Ps . With 

 Ps = 0.5 hPa, the Cp  accounts for around 7 % while the Psp  accounts for around 4 % of the total PWV . By using different 

Tm estimations, the variations of Cp  and Psp  are both within 4 %. However, the Qp  varies more evidently. It accounts for 360 

average 55.69 %, 40.77 %, 30.70 %, 23.53 %, and 24.11 % of the  PWV  respectively with the estimations of Tm_Bevis, Tm_LatR, 

Tm_static, Tm_varying, and Tm_GPT2w. The ZTDp  raises with the reduction of Qp , e.g. from 36.23 % of Tm_Bevis to 62.53 % of Tm_varying. 

On the other hand, with  Ps = 5 hPa, the Psp  accounts for more than 75 % of the  PWV  while the Qp  decreases from 

14.21 % of Tm_Bevis to 3.9 % of Tm_varying. 

At another representative station, the IGRA station No.50557 (49.17° N 125.22° E, in Northeast China), the mean PWV 365 

is only 12.17 mm. The RMSEs of Tm_Bevis, Tm_LatR, Tm_static, Tm_varying, and Tm_GPT2w are respectively 5.16 K, 3.94 K, 3.54 K, 2.99 

K and 5.10 K. We can see that the accuracy of Tm has been improved significantly. However, because of the low average value 

of PWV, the ZTDp  averagely contributes over 73.5 % of the  PWV  while the Qp  averagely contributes less than 10.5 % 

assuming 
Ps = 0.5 hPa and less than 1.5 % assuming 

Ps = 5 hPa. But such discussion only concerns the average values. In 

fact, even at this station there are still some high values of PWV, for example at UTC 12:00 July 22th of 2016, the PWV 370 

reached 48 mm. For the observations with high PWV, the improvement in the accuracy of Tm can still exert significant positive 

impact on the reduction of Qp . 

It is worth mentioning that the uncertainty of ZHD may be underestimated in some situations. There are two reasons for 

this. Firstly, the calculation of ZHD assumes that the water vapor is not contributed to the mass of the atmosphere. The ZHD 

error introduced by this assumption is often negligible. But in some very wet regions, the mass of water vapor could produce 375 

significant errors to the ZHD calculation. Secondly and more importantly, the error of Ps in equation (1) can be very large 

sometime. Small 
Ps   is reasonable when the surface barometer is calibrated routinely and equipped together with the GPS 

antenna. However, if there were significant height difference between the GPS antenna and the barometer, the error of ZHD 

would increase significantly. Snajdrova et al.(2006) found that 10 m of height difference approximately causes a difference of 

3 mm in the ZHD. On the other hand, Ps can be generated from NWP data if there were no nearby barometer to GPS site. The 380 

error of Ps could be very large using this method (Means and Cayan, 2013; Jiang et al., 2016). In these cases, the GPS-PWV 

error reduction due to the more precise Tm estimation will be very limited. 

5.2 Impact of real Tm estimation 
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To study the impact of Tm on the real GPS-PWV retrieval, we first downloaded GPS ZTD products (Byun and Bar-Sever, 

2009) at 74 IGS sites in the year 2016 from the NASA Crustal Dynamics Data Information System (CDDIS) ftp address 385 

(ftp://cddis.gsfc.nasa.gov/pub/gps/products/troposphere/zpd). These selected GPS sites were equipped with meteorological 

sensors so that the surface pressure and temperature measurements could also be obtained. ZHD was calculated using equation 

(1). It is subtracted from ZTD to obtain ZWD. Then, Tm was generated with six approaches: the first five Tm series were Tm_Bevis, 

Tm_LatR, Tm_static, Tm_varying , and Tm_GPT2w. The sixth Tm was integrated from the ERA-Interim profiles and interpolated to each 

GPS site (Jiang et al., 2016; Wang et al., 2016). Finally, the GPS-PWV was generated from the ZWD and the six different Tm 390 

estimates leading to over one hundred compared points for each GPS-PWV series. We denoted these GPS-PWV sets as 

PWVBTm, PWVLTm, PWVSTm, PWVVTm, PWVGTm, and PWVETm. The only difference between these GPS-PWV estimations is 

the Tm estimation model; therefore, the impact of other errors is excluded. 

The Tm from ERA-Interim is believed to be the most accurate among our Tm estimates at the selected GPS sites. We 

therefore took the PWVETm as reference values to assess the other PWV. The relative RMSEs of PWVBTm, PWVLTm, PWVSTm, 395 

PWVVTm and PWVGTm at these selected stations were calculated and are illustrated in figure 11. The detailed statistics are 

given in table 5. The mean relative error of all sites drops from 1.18 % of the PWVBTm to 0.91 % of the PWVVTm. PWVVTm 

has the minimum mean relative errors at 51.35 % of the sites, while PWVSTm is superior at 27.03 % of the sites. PWVSTm and 

PWVVTm obtain relative RMSE smaller than 1.0 % at 55 sites, while only 28 sites of PWVBTm, 31 sites of PWVLTm and 22 sites 

of PWVGTm perform similarly. For example, at ALIC site (23.67° S 133.89° E, in Australia), with a mean PWV of 400 

approximately 23 mm, the relative RMSE dropped from 1.97 % of PWVBTm to 1.10 % of PWVVTm. The time series of the 

relative differences of PWVBTm, PWVLTm, PWVSTm, PWVVTm, and PWVGTm are given in figure 12. We found that some relative 

RMSEs could reduce more than 2 % from PWVBTm to PWVVTm. Obviously, PWVBTm and PWVLTm have larger relative errors 

throughout the year while the PWV differences are significantly larger only in the summer season (when the PWV values are 

highest). Apparently, the Tm variations in summer are not modeled well by both Bevis model and the latitude-related model. 405 

PWVSTm eliminate those large differences but still retain some residual errors, which are removed by more than 0.5 mm in 

PWVVTm. PWVGTm has some large errors during the period from May to July. All of these results demonstrate that our time-

varying model has precision advantages. 

Table 5: Statistics about the relative errors of different PWV retrievals 

Statistics PWVBTm PWVLTm PWVSTm PWVVTm PWVGPT2w 

Mean relative RMSE of all sites 

Number of sites with relative errors < 1.0 % 

1.18 % 1.12 % 0.93 % 0.91 % 1.32 % 

28 31 55 55 22 
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 410 

Figure 11: Relative RMSEs of PWVBTm, PWVSTm, PWVVTm and PWVGTm compared with PWVETm at 74 IGS stations in the year 

2016 

 

Figure 12: (top) PWV differences and (bottom) relative differences of PWVBTm, PWVLTm, PWVSTm, PWVVTM and PWVGTm 

compared with PWVETm at the ALIC station in the year 2016. PWV unit is mm. 415 

5.3 Comparisons between GPS-PWV and radiosonde PWV 

Among our selected 74 IGS sites, there are only 11 sites located within 5 km to a nearby IGRA radiosonde station. At 

these common stations, we generated PWV from the radiosonde data (PWVRS) by adjusting the sounding profiles to the heights 

of IGS sites. It is worth noting that geoid undulation correction should be carried out on each IGS site geoid height (Jiang et 

al., 2016). Then, we compared PWVBTm, PWVLTm, PWVSTm, PWVVTm, PWVGTm, and PWVETm with PWVRS. Figure 13 shows 420 

the statistics. The RMSEs of GPS-PWV are approximately 1~5 mm. Comparisons indicate that the RMSEs of different GPS-

PWV retrievals are very close (differences < 0.2 mm) regardless of the applied Tm sources at most of the selected sites. This 
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means that other errors (e.g. ZTD estimation errors or sounding sensors errors) instead of the Tm make up the bulk of the 

differences between the GPS-PWV and the radiosonde PWV. Actually, each sounding does not represent the vertical sounding 

centered at the radiosonde site because of the complex path of the balloon. And GPS-PWV represents the averaged value of 425 

the water vapor zenithal projection from all the slant signal paths during the observation period. Such differences can introduce 

significant uncertainty to our comparisons. However, we still found obvious gaps between PWV at NRIL station (88.36° N 

69.36° E, 4.1 km away from the IGRA station No.23078 in Russia). The RMSE decreases from 2.29 mm of PWVBTm to 

1.84mm of PWVVTm and 1.42 mm of PWVETm. As shown in figure 14, the large PWV differences appear mainly from May to 

September. During those five months, the mean GPS-PWV difference to PWVRS decreases by over 30 % from 2.52 mm of 430 

PWVBTm to 1.67 mm of PWVVTm, and the reductions of GPS-PWV error are mainly around 1~2 mm. This is attributed to the 

wetter atmosphere in these months. As indicated by the uncertainty analysis in section 5.1, the improvement in the accuracy 

of Tm can be translated in more error reduction in the GPS-PWV retrieval with higher value of PWV. 

 

Figure 13: RMSEs of the PWVBTm, PWVSTm, PWVVTm, PWVGTm and PWVETm compared with the PWVRS at 11 IGS stations in 435 

2016. PWV unit is mm. 

 

Figure 14: PWV differences of the PWVBTm, PWVLTm, PWVSTm, PWVVTm , PWVGTm and PWVETm compared with the PWVRS at 

NIRL station in the year 2016. PWV unit is mm.  

6. Summary and conclusion 440 

We developed two global gridded Ts-Tm models which are respectively static and time-varying with a spatial resolution 

of 0.75° × 0.75°. The models are established by analyzing the ERA-Interim reanalysis datasets covering the year 2009~2012, 
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which indicated the significant spatial-temporal variations in Ts-Tm relationship as well as the radiosondes covering the same 

period. The annual, semiannual, and diurnal variations in Ts-Tm relationship are considered in the time-varying model. The 

time-varying global gridded Ts-Tm model has a significant global precision advantage over the other global applied models, 445 

including the Bevis equation, the latitude-related model and the GPT2w model. Average RMSE of Tm reduces by 

approximately 1 K. At over 90 % of the radiosonde sites, our time-varying model has RMSE smaller than 4 K, while the RMSE 

larger than 5 K nearly disappear. On the other hand, in the Bevis model or in the latitude-related model, there are more than 

17 % of the radiosonde sites having RMSE larger than 5 K. Multiple statistical tests at the 5 % significance level identified the 

significant superiority of our varying model at more than 60 % of the radiosonde sites. Analyses at the specific stations 450 

demonstrate that the errors larger than 5 K in the estimated Tm series can be eliminated by our varying Ts-Tm model.  

More precise Tm estimation can reduce around 20 % of the uncertainty in the conversion factor Q which maps GPS-ZWD 

to GPS-PWV, and the reduction can be even more than 50 % at some stations. The contribution of the uncertainty associated 

with Q to the total GPS-PWV uncertainty also declines by using a more precise Tm model. The reduction is related to the value 

of PWV and the uncertainty of surface pressure. With GPS-PWV higher than 50 mm, the uncertainty associated with Q 455 

contributes more than 55 % of the uncertainty of GPS-PWV by using the Bevis equation and less than 25 % by using our 

varying Ts-Tm model, assuming the ZTD and the surface pressure are measured accurately respectively with the uncertainties 

of 4 mm and 0.5 hPa. However, the uncertainty in ZTD or in surface pressure would dominate the error budget of GPS-PWV 

(> 70 %) if the value of GPS-PWV were small or the uncertainty of surface pressure were large. In these cases, the uncertainty 

associated with Q only contributes around 10 % of the GPS-PWV uncertainty or even smaller. Taking the GPS-PWV using 460 

ERA-Interim Tm estimates at 74 IGS sites as the references, we found that the GPS-PWV using our time-varying Ts-Tm model 

obtained the minimum mean relative error at 51.35 % of the sites, while the GPS-PWV using the static gridded Ts-Tm model 

is superior at only 27.03 % of the sites. The differences between GPS-PWV and radiosonde PWV are approximately 1~5 mm. 

And our varying Ts-Tm model can reduce 30 % (around 1~2 mm) of the error in GPS-PWV retrieval with respect to the Bevis 

equation. 465 

According to our experiments, we are confident that the time-varying global gridded Ts-Tm models presented here will 

help us to retrieve GPS PWV more precisely and to study the precise PWV variations in high temporal resolution. Matlab 

array file consisting of the global gridded coefficients in our model, as well as codes to interpolate coefficients at any given 

location, are provided as the supplement of this study. 

 470 

Data sets 

Radiosonde data: ftp://ftp.ncdc.noaa.gov/pub/data/igra 

ERA-Interim Project:  https://doi.org/10.5065/D6CR5RD9 

GPS-ZTD Product: ftp://cddis.gsfc.nasa.gov/pub/gps/products/troposphere/zpd 
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Our model Supplement: https://www.atmos-meas-tech-discuss.net/amt-2018-67/amt-2018-67-supplement.zip 475 
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