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Abstract.

Atmospheric particulate matter (PM) is a complex mixture of many different substances, and requires a suite of instruments

for chemical characterization. Fourier Transform Infrared (FT-IR) spectroscopy is a technique that can provide quantification of

multiple species provided that accurate calibration models can be constructed to interpret the acquired spectra. In this capacity,

FT-IR has enjoyed a long history in monitoring gas-phase constituents in the atmosphere and in stack emissions. However,5

application to PM poses a different set of challenges as the condensed-phase spectrum has broad, overlapping absorption

peaks and contributions of scattering to the mid-infrared spectrum. Past approaches have used laboratory standards to build

calibration models for prediction of inorganic substances or organic functional groups and predicting their concentration in

atmospheric PM mixtures by extrapolation.

In this work, we review recent studies pursuing an alternate strategy, which is to build statistical calibration models for mid-10

IR spectra of PM using collocated ambient measurements. Focusing on calibrations with organic carbon (OC) and elemental

carbon (EC) reported from thermal optical reflectance (TOR), this synthesis serves to consolidate our knowledge for extending

FT-IR to provide TOR-equivalent OC and EC measurements to new PM samples when TOR measurements are not available.

We summarize methods for model specification, calibration sample selection, and model evaluation for these substances at

several sites in two US national monitoring networks: 7 sites in the Interagency Monitoring of PROtected Visual Environments15

(IMPROVE) network for the year 2011, and 10 sites in the Chemical Speciation Network (CSN) for the year 2013. We then

describe application of the model in an operational context for the IMPROVE network for samples collected in 2013 at 6 of

the same sites as 2011, and 11 additional sites. In addition to extending the evaluation to samples from a different year and

different sites, we describe strategies for error anticipation due to precision and biases from the calibration model to assess
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model applicability for new spectra a priori. We conclude with a discussion regarding past work and future strategies for

recalibration. In addition to targeting numerical accuracy, we encourage model interpretation to facilitate understanding of the

underlying structural composition related to operationally-defined quantities of TOR OC and EC from the vibrational modes

in mid-IR deemed most informative for calibration. The paper is structured such that the life cycle of a statistical calibration

model for FT-IR can be envisioned for any substance with IR-active vibrational modes, and more generally for instruments5

requiring ambient calibrations.

Copyright statement. TEXT

1 Introduction

Airborne particles are made of inorganic salts, organic compounds, mineral dust, black carbon, trace elements, and water

(Seinfeld and Pandis, 2016). While regulatory limits on airborne particulate matter (PM) concentrations are set by gravimetric10

mass determination, analysis of chemical composition is desired as it provides insight into source contributions, facilitates

evaluation of chemical simulations, and strengthens links between particle constituents and health and environmental impacts.

However, the diversity of molecular constituents pose challenges for characterization as no single instrument can measure all

relevant properties; an amalgam of analytical techniques are often required for comprehensive measurement (Hallquist et al.,

2009; Kulkarni et al., 2011; Pratt and Prather, 2012; Nozière et al., 2015; Laskin et al., 2018). Fourier transform infrared15

(FT-IR) spectroscopy is one analytical technique that captures the signature of a multitude of PM constituents that give rise to

feature-rich spectral patterns over the mid-infrared (mid-IR) wavelengths (Griffiths and Haseth, 2007). In the past decade, mid-

IR spectra have been used for quantification of various substances in atmospheric PM, and for apportionment of organic matter

(OM) into source classes including biomass burning, biogenic aerosol, fossil fuel combustion, and marine aerosol (Russell

et al., 2011). The quantitative information regarding the abundance of substances in each spectrum is limited only by the20

calibration models that can be built for it.

In principle, the extent of frequency-dependent absorption in the mid-IR accompanying induced changes in the dipole

moment of molecular bonds can be used to estimate the quantity of sample constituents in any medium (Griffiths and Haseth,

2007). Based on this principle, FT-IR has a long history in remote and ground-based measurement of chemical composition

in the atmospheric vapor phase (Griffith and Jamie, 2006). For ground-based measurement, gases are measured by FT-IR25

in an open-path in-situ configuration (Russwurm and Childers, 2006), or via extractive sampling into a closed, multi-pass

cell (Spellicy and Webb, 2006). These techniques have been used to sample urban smog (Pitts et al., 1977; Tuazon et al.,

1981; Hanst et al., 1982); smog chambers (Akimoto et al., 1980; Pitts et al., 1984; Ofner, 2011), biomass burning emissions

(Hurst et al., 1994; Yokelson et al., 1997; Christian et al., 2004), volcanoes (Oppenheimer and Kyle, 2008), and fugitive gases

(Kirchgessner et al., 1993; Russwurm, 1999; U.S. EPA, 1998); emission fluxes (Galle et al., 1994; Griffith and Galle, 2000;30

Griffith et al., 2002), greenhouse gases (Shao and Griffiths, 2010; Hammer et al., 2013; Schütze et al., 2013; Hase et al., 2015);

2



and isotopic composition (Meier and Notholt, 1996; Flores et al., 2017). For these applications, quantitative analysis has been

conducted using various regression algorithms with standard gases or synthetic calibration spectra with absolute accuracies on

the order of 1–5%. Synthetic spectra for calibration are generated from a database of absorption line parameters together with

simulation of pressure and Doppler broadening, and instrumental effects (Griffith, 1996; Flores et al., 2013).

1.1 Limits of conventional approaches to calibration5

Analysis of FT-IR spectra of condensed-phase systems are more challenging. PM can be found in crystalline solid, amorphous

solid, liquid, and semi-solid phase states (Virtanen et al., 2010; Koop et al., 2011; Li et al., 2017). Solid and liquid-phase

spectra do not have the same rotational lineshapes present in the vapor phase, but inhomogeneous broadening occurs due to

a multitude of local interactions of bonds within the liquid or solid environment (Turrell, 2006; Griffiths and Haseth, 2007;

Kelley, 2013). Lineshapes are particularly broad in complex mixtures of atmospheric PM, since the resulting spectrum is the10

superposition of varying resonances for a given type of bond. FT-IR has enjoyed a long history of qualitative analysis of

molecular characteristics in multicomponent PM based on visible peaks in the spectrum (e.g., Mader et al., 1952; Presto et al.,

2005; Kidd et al., 2014; Chen et al., 2016a), and study of relative composition or changes to composition under controlled

conditions (e.g., humidification, oxidation) has provided insight into atmospherically-relevant aerosol processes (e.g., Cziczo

et al., 1997; Gibson et al., 2006; Hung et al., 2013; Zeng et al., 2013). Quantitative prediction of substances in collected PM15

presents a separate task, and is conventionally pursued by generating laboratory standards and relating observed features to

known concentrations. This calibration approach has been predominantly used to characterize ambient and atmospherically-

relevant particles collected on filters or optical disks. The bulk of past work in aerosol studies have focused on using laboratory

standards to build semi-empirical calibration models for individual vibrational modes belonging to one of many functional

groups present in the mixture. In this approach, the observed absorption is related to a reference measurement (typically20

gravimetric mass) of the compounds on the substrate. In this way, calibration of nitrate and sulfate salts (Cunningham et al.,

1974; Cunningham and Johnson, 1976; Bogard et al., 1982; McClenny et al., 1985; Krost and McClenny, 1992, 1994; Pollard

et al., 1990; Tsai and Kuo, 2006; Reff et al., 2007), silica dust (Foster and Walker, 1984; Weakley et al., 2014; Wei et al.,

2017), and organic functional groups (Allen and Palen, 1989; Paulson et al., 1990; Pickle et al., 1990; Mylonas et al., 1991;

Palen et al., 1992, 1993; Holes et al., 1997; Blando et al., 1998; Maria et al., 2002, 2003; Sax et al., 2005; Gilardoni et al.,25

2007; Reff et al., 2007; Coury and Dillner, 2008; Day et al., 2010; Takahama et al., 2013; Faber et al., 2017) have been

studied. The organic carbon and organic aerosol mass reconstructed has typically ranged between 70–100% when compared

with collocated evolved-gas analysis or mass spectrometry measurements (Russell et al., 2009; Corrigan et al., 2013), though

many model uncertainties remain. One is that unmeasured, non-functionalized skeletal carbon can lead to less than full mass

recovery, and the second is the estimation of the detectable fraction due to the multiplicity of carbon atoms associated with each30

type of functional group. (Maria et al., 2003; Takahama and Ruggeri, 2017). The challenge in this type of calibration is in the

problem of extrapolating from the reference composition, which is necessarily kept simple, to that of the chemically complex

PM. Spectroscopically, this difference can lead to shifts in absorption intensity or peak locations, and a general broadening of
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absorption peaks on account of the same functional group appearing in many different molecules and in different condensed-

phase environments.

Synthetic spectra for condensed-phase systems can be generated by mechanistic and statistical means, but are not read-

ily available for quantitative calibration. Absolute intensities are typically even more difficult to simulate accurately for than

peak frequencies (Gussoni et al., 2006). Computational models that predict vibrational motion of molecules in isolation using5

quantum mechanical models (Barone et al., 2012) or by harmonic approximation for larger molecules (Weymuth et al., 2012)

suffer from two shortcomings: poor treatment of anharmonicity and lack of solvent effects in liquid solutions (Thomas et al.,

2013). Quantum mechanical simulations can parameterize interactions with an implicitly modeled solvent through a polariz-

able continuum model framework (Cappelli and Biczysko, 2011), but do not adequately represent specific interactions such as

hydrogen bonding (Barone et al., 2014). Microsolvation can be a better technique to describe hydrogen bonding environment10

but the high computational cost prevents application to large systems (Kulkarni et al., 2009). Gaussian dispersian analysis

has provided accurate spectrum reconstruction in pure liquids (water-ethanol mixtures) from their calculated dielectric func-

tions (MacDonald and Bureau, 2003), but has not been applied to more complex systems. Molecular dynamics (MD) provides

a general framework for addressing interactions with the solvent, large-amplitude motions in flexible molecules, and anhar-

monicities (Ishiyama and Morita, 2011; Ivanov et al., 2013). Electronic structure calculations relevant for predicting vibrational15

spectra can be incorporated by ab initio MD (Car and Parrinello, 1985; Marx, 2009; Thomas et al., 2013), and path integral

MD methods such as centroid or ring polymer MD (Witt et al., 2009; Ceriotti et al., 2016) that additionally considers nuclear

quantum effects (at higher computational cost). Ab initio MD is widely used for the simulating the spectra of water and a

range small organic and biological molecules in isolation (Silvestrelli et al., 1997; Aida and Dupuis, 2003; Gaigeot et al., 2007;

Gaigeot, 2008; Thomas et al., 2013; Fischer et al., 2016) Such calculations generally reproduce the shape of the spectrum well20

with respect to experimental ones at very high dilution, although C-H stretching peaks are known to be shifted towards higher

wavenumbers due to the lack of improper hydrogen bonding in vacuum simulations (Thomas et al., 2013). Bulk liquid phase

simulations are limited to a few tens of molecules (few hundreds of atoms), and have been performed for liquids, including

methanol (Thomas et al., 2013), water (Silvestrelli et al., 1997), and aqueous solutions of biomolecules (Gaigeot and Sprik,

2003). These simulations reproduce peak positions and relative intensities sufficiently well when compared to experimental25

spectra, albeit with lower accuracy in peak position at wavenumbers higher than 2000 cm−1. These methods have also been

shown to reproduce main features of vibrational spectra in solid (crystalline ice and naphthalene) systems (Bernasconi et al.,

1998; Putrino and Parrinello, 2002; Pagliai et al., 2008; Rossi et al., 2014b). Nuclear quantum effects not explicitly accounted

for by ab initio calculations become more important for hydrogen-containing systems, and have been investigated in liquid

water and methane for vibrational spectra simulation (Rossi et al., 2014a, b; Medders and Paesani, 2015; Marsalek and Mark-30

land, 2017). A recent approach improves upon the accuracy and speed of ab initio MD by combining a dipole moment model

(Gastegger et al., 2017) and potentials (Behler and Parrinello, 2007) derived from machine learning. Trained on only several

hundred reference electronic structure calculations, spectra of several alkanes and small peptides were simulated with accuracy

reflecting improved treatment of anharmonicities and proton transfer, with reductions in computational cost by three orders of

magnitude (Gastegger et al., 2017). However, this machine-learned method still inherits some common limitations of ab initio35
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calculations upon which models are trained. One example is the apparent blue shift of the C-H stretching peak, likely due to

an insufficient treatment of improper hydrogen bonding or the deficiency of the electron exchange functional (Thomas et al.,

2013). While such methods may be useful in aiding interpretation of environmental spectra (Kubicki and Mueller, 2010; Pe-

done et al., 2010), they are not yet mature for reproducing spectra of suitable quality for quantitative calibration or (white-box)

inverse modeling.5

Early applications of artificial intelligence to mid-IR spectra interpretation also included efforts to generate synthetic spec-

tra of individual compounds. Mid-IR spectra of new compounds were simulated from neural networks trained on three-

dimensional molecular descriptors (radial distribution functions) paired with corresponding mid-IR spectra, matched by simi-

larity (nearest neighbor) search in a structural database, or generated from substructure/spectral correlation databases (Dubois

et al., 1990; Weigel and Herges, 1996; Baumann and Clerc, 1997; Schuur and Gasteiger, 1997; Selzer et al., 2000; Yao et al.,10

2001; Gasteiger, 2006). Drawing upon internal or commercial libraries (Barth, 1993), predictions were made for compounds

in the condensed phase with a diverse set of substructures including including methanol, amino acids, ring-structured acids,

and substituted benzene derivatives. Many structural features including peak location, relative peak heights, and peak widths

were reproduced, provided that relevant training samples were available in the library. Much of the work was motivated by

pattern matching and classification of spectra for unknown samples (Robb and Munk, 1990; Novic and Zupan, 1995), and au-15

tomated band assignment and identification of the underlying fragments typically performed by trained spectroscopists (Sasaki

et al., 1968; Gribov and Elyashberg, 1970; Christie and Munk, 1988; Munk, 1998; Hemmer, 2007; Elyashberg et al., 2009).

This approach has been able to generate spectra for more complex molecules than mechanistic modeling relying on ab ini-

tio calculations. However, the extent of evaluation has been limited; extension to multicomponent mixtures and usefulness

for quantitative calibration is currently not known. While these research fields remain an active part of cheminformatics, we20

propose another approach for calibration model development that can be used for atmospheric PM analysis.

1.2 Use of collocated measurements

As an alternative to laboratory-generated mixtures and simulated spectra, collocated measurements of substances for which

there are IR-active vibrational modes can be used as reference values for calibration (also referred to as “in-situ” calibration).

This data-driven approach permits the complexity of atmospheric PM spectra with overlapping absorbances from both analytes25

and interferences to be included in a calibration model. For instance, Allen et al. (1994) demonstrated the use of collocated

ammonium sulfate measurements by ion chromatography to quantify the abundance of this substance from FT-IR spectra,

though some uncertainties arose from the time resolution between the sampling instruments.

The benefit of building data-driven calibration models to reproduce concentrations reported by available measurements is

twofold. One is to provide equivalent measurements when the reference measurements are expensive or difficult to obtain. For30

example, FT-IR spectra can be acquired rapidly, non-destructively, and at low cost from from Polytetrafluoroethylene (PTFE)

filters commonly used for gravimetric mass analysis in compliance monitoring and health studies. That vibrational spectra

contain many signatures of chemical constituents of PM (which also gives rise to challenges in spectroscopic interpretation)

provides the basis for quantitative calibration of a multitude of substances. This capability for multi-analyte analysis is benefi-
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cial when a single filter may be relied upon during short-term campaigns, or in network sites for which installation of the full

suite of instruments is prohibitive. The second benefit is the ability to gain a better understanding of atmospheric constituents

measured by other techniques by associating them with important vibrational modes structural elements of molecules identi-

fied in the FT-IR calibration model. Such an application can be enlightening for studying aggregated metrics such as carbon

content, or functional group composition in atmospheric PM quantified by techniques requiring more sample mass and user la-5

bor: ultraviolet-visible spectrometry or nuclear magnetic resonance spectroscopy (Decesari et al., 2003; Ranney and Ziemann,

2016).

In this paper, we demonstrate an extensive application of this approach in the statistical calibration of FT-IR spectra to

collocated measurements of carbonaceous aerosol content — organic carbon (OC) and elemental carbon (EC) — character-

ized by a particular type of evolved gas analysis (EGA). EGA includes thermal optical reflectance (TOR) and thermal optical10

transmittance (TOT), which apportions total carbon into OC and EC fractions according to different criteria applied to the

changing optical properties of the filter under stepwise heating (Chow et al., 2007a). EGA OC and EC are widely-measured

in monitoring networks (Chow et al., 2007a; Brown et al., 2017), with historical significance in regulatory monitoring, source

apportionment, and epidemiological studies. While EC is formally defined as sp2-bonded carbon bonded only to other carbon

atoms, EC measured by EGA is an operationally-defined quantity which is likely associated with low-volatility organic com-15

pounds (Chow et al., 2004; Petzold et al., 2013; Lack et al., 2014). EGA OC comprises a larger fraction of the total carbon

and therefore is less influenced by pyrolysis artifacts that affects quantification of EGA EC. In addition to OC estimates inde-

pendently constructed from laboratory calibrations of functional groups, prediction of EGA OC and EC from FT-IR spectra

will provide values for which strong precedent in atmospheric studies exist. Thus, use of collocated measurements comple-

ment conventional approaches in expanding the capabilities of FT-IR spectroscopy to extract useful information contained in20

vibrational spectra.

We review the current state-of-the art for quantitative prediction of OC and EC as reported by TOR using FT-IR in selected

sites of the Interagency Monitoring of PROtected Visual Environments (IMPROVE) monitoring network (Malm and Hand,

2007; Solomon et al., 2014) and the Chemical Speciation Network (CSN) (Solomon et al., 2014). This work is placed within

the context of overseeing the life cycle of a statistical calibration model more generally; reporting further developments in25

anticipating errors due to precision and bias in new samples, and describing a roadmap for future work. While partial least

squares (PLS) regression and its variants figure heavily in the calibration approach taken thus far, related developments in the

fields of machine learning, chemometrics, and statistical process monitoring are mentioned to indicate the range of possibilities

yet available to overcome future challenges in interpreting complex the mid-IR spectra of PM. We expect that many concepts

described here will also be relevant for the emerging field of statistical calibration and deployment of measurements in a broader30

environmental and atmospheric context (e.g., Cross et al., 2017; Kim et al., 2018; Zimmerman et al., 2018). In the following

sections, we describe the experimental methods for collecting data (Section 2), the calibration process (Section 3), assessing

suitability of existing models for new samples (Section 4.1), and maintaining calibration models (Section 4.2). Finally, we

conclude with a summary and outlook (Section 5). A table of contents is included in Section A and list of recurring acronymns

in Section B.35
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2 Background

First, we review the basic principles of FT-IR and how the measured absorbances can be related to underlying constituents,

including carbonaceous species (Section 2.1). We then describe the samples used for calibration and evaluation (Section 2.2).

We then conclude the section with discussion regarding quality assurance and quality control (QA/QC) of the FT-IR hardware

performance (Section 2.3). Under the assumption that these hardware QA/QC criteria are met, we dedicate the remainder of5

the paper outlining model evaluation on the assumption that the performance in prediction can be attributed to differences in

sample composition.

2.1 Fourier transform-infrared spectroscopy

In this section, we cover the background necessary to understand FT-IR spectroscopy in the analysis of PM collected onto PTFE

filter media, which is optically thin and permits an absorbance spectrum to be obtained by transmission without additional10

sample preparation (McClenny et al., 1985; Maria et al., 2003). The wavelengths of IR are longer than visible light (400–

800 nm) and FT-IR refers to a non-dispersive analytical technique probing the mid-IR, which is radiation from 2,500 nm to

25,000 nm or in the vibrational frequency units used by spectroscopists, wavenumbers, 4000 to 400 cm−1. Molecular bonds

absorb mid-IR at characteristic frequencies of their vibrational modes when interactions between electric dipole and electric

field induce transitions among vibrational energy states (Steele, 2006; Griffiths and Haseth, 2007). Based on this principle,15

the spectrum obtained by FT-IR represents the underlying composition of organic and inorganic functional groups containing

molecular bonds with a dipole moment.

In transmission-mode analysis where the IR beam is directed through the sample, absorbance (A) can be obtained by ratioing

the measured extinction of radiation through the sample (I) by a reference value (I0), also called the “background”, and taking

the negative value of their decadic logarithm (first relation of eq. 1).20

A(ν̃) =− log10

[
I(ν̃)

I0(ν̃)

]
= ε(ν̃)n(a) (1)

The sample is the PTFE filter (with or without PM) and the background is taken as the empty sample compartment. The quality

of the absorbance spectrum depends on how accurately the background reflects the conditions of the sample scan, and the

background is therefore acquired regularly as discussed in Section 2.3.

When absorption is the dominant mode of extinction, the measured absorbance (A) is proportional to the areal density of25

molecules (n(a)) in the beam in the sample (eq. 1) (Duyckaerts, 1959; Kortüm, 1969; Nordlund, 2011). ε is the proportionality

constant and is called the molar absorption coefficient. Although scattering off of surfaces present in the sample can generate a

significant contribution to the absorbance spectrum, its effects can be modeled as a sum of incremental absorbances by a linear

calibration model, or minimized through spectral pre-processing procedures (baseline correction) as discussed in Section 3.3.1.

A composite metric of PM such as carbon content presumably results from contributions by a myriad of substances. The30

abundances of these underlying molecules concurrently give rise to the apparent mass of carbon (mC) (eq. 2) measured by
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evolved gas analysis and the absorbance spectrum (A) (eq. 3) measured by FT-IR (Ottaway et al., 2012):

m
(a)
C = 12.01 ·

∑
k

fC,kn
(a)
k (2)

A(ν̃) =
∑
k

εk(ν̃)n
(a)
k +

∑
k′

εk′(ν̃)n
(a)
k′ + {. . .} . (3)

fC,k denotes the number of (organic or elemental) carbon in molecule k, and 12.01 is the atomic mass of carbon. Non-

carbonaceous substances (e.g., inorganic compounds) that give rise to additional (possibly interfering) absorbance are indexed5

by k′. The superscript “(a)” denotes an area-normalized quantity. “{. . .}” indicates contributions from instrumental noise, am-

bient background, and additional factors such as scattering. Using TOR measurements from collocated quartz fiber filters, our

objective is to develop a calibration model for estimating the abundance of carbonaceous material (m(a)
C ) in the PTFE sample

that may have led to the observed pattern of mid-IR absorbances (A(ν̃)). A common approach is to explore the relationship

between response and absorbance spectra through a class of models which take on a multivariate, linear form (Griffiths and10

Haseth, 2007):

m
(a)
C,i =

∑
j

bjAi(ν̃j)+ ei . (4)

The set of wavelength-dependent regression coefficients bj comprise a vector operator that effectively extracts the necessary

information from the spectrum for calibration. These coefficients (bjs) presumably represent a weighted combination of coef-

ficients expressed in eqs. 2 and 3 (also correcting for non-carbonaceous interferences). The remaining term, ei, characterizes15

the model residual (in regression fitting) or prediction error (in application to new samples). The relationship with underlying

substances (k) that comprise OC and EC is implicit, though some efforts to interpret these constituents have been made through

examination of latent (or hidden) variables obtained from the calibration model (discussed in Section 3.4).

Using complex, operationally-defined TOR measurements as reference for calibration, some caution in interpretation and

application is warranted. For instance, these coefficients may not necessarily capture the true relationship expressed by eqs.20

2 and 3, but rather rely on correlated rather than causal variables for quantification. Particles and the PTFE substrate itself

can confer a large scattering contribution to the extinction spectrum (eq. 1), and additional sample matrix interactions among

analytes may challenge assumptions regarding the linear relationship (eq. 3) underlying the model for quantification (eq. 4)

(Geladi and Kowalski, 1986). Furthermore, the relationship between spectra and concentrations embodied by b is specific to

the the chemical composition of PM at the geographic location and sampling artifacts due to composition and sample handling25

protocols of the calibration samples. To address these concerns, extensive evaluation regarding model performance in various

extrapolation contexts are necessary to investigate the limits of our calibration models, and methods for anticipating prediction

errors provide some guidance on their general applicability in new domains. Regression coefficients and underlying model

parameters are inspected to determine important vibrational modes that provide insight into the infrared absorption bands that

drive the predictive capability of our regression models.30
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2.2 Sample collection (IMPROVE and CSN)

The IMPROVE network consists of approximately 170 sites in rural and pristine locations in the United States primarily

National Parks and Wilderness Areas (Malm and Hand, 2007). Data from the IMPROVE network is used to monitor trends

in particulate matter concentrations and visibility. IMPROVE collects ambient samples midnight to midnight every third day

by pulling air at 22.8 liters per minute through filters. Polytetrafluoroethylene (PTFE, 25 mm, Pall Corp.) or more commonly5

referred to as Teflon filters are routinely used for gravimetric, elemental, and light absorption measurements and are used in

this work for FT-IR analysis. Quartz filters are used for thermal optical reflectance (TOR) measurements to obtain organic and

elemental carbon. Nylon filters are used to measure inorganic ions, primarily sulfate and nitrate.

The CSN consists of about 140 sites located in urban and suburban area and the data is used to evaluate trends and sources

of particulate matter (Solomon et al., 2014). Ambient samples are collected in the CSN on midnight to midnight schedule10

one every third or one every sixth day. Quartz filters for TOR analysis are collected with a flowrate of 22.8 lpm. PTFE filters

(Whatman PM2.5 membranes, 47 mm, used through late 2015; MTL filters (Measurement Technology Laboratories, 47 mm)

have been used there after) and nylon filters are collected at a flowrate of 6.7 lpm. All sites in CSN have used TOR for carbon

analysis since 2010.

PTFE filters are used for gravimetric analysis on account of its low vapor absorption (especially water) and standardization15

in compliance monitoring, while quartz fiber filters are separately collected on account of its thermal stability (Chow, 1995;

Chow et al., 2007b; Malm et al., 2011; Solomon et al., 2014; Chow et al., 2015). TOR analysis consists of heating a portion of

the quartz filter with the IMPROVE_A temperature ramp and measuring the evolved carbon (Chow et al., 2007a). The initial

heating is performed with an inert environment and the material that is removed is ascribed to organic carbon (OC). Oxygen

is added at the higher temperatures and the measured material is ascribed to elemental carbon (EC). Charring of ambient20

particulate carbon is corrected using a laser that reflects off the surface of the sample (hence reflectance) (Chow et al., 1993).

The evolved carbon is converted to methane and measured with a flame ionization detector. Organic carbon data is corrected

for gas-phase adsorption using a monthly median blank value specific to each network (Dillner, 2018).

For this work, we examine a subset of these sites in which PTFE filters were analyzed for FT-IR spectra (Figure 1). For

model building and evaluation (Section 3), we use 7 sites consisting of 794 samples for IMPROVE in 2011, and 10 sites25

consisting of 1035 samples for CSN in 2013. Two sites in 2011 IMPROVE are samplers collocated at the same urban location

in Phoenix, AZ, and one site (Sac and Fox) that was discontinued mid-year. Additional IMPROVE samples were analyzed by

FT-IR during sample year 2013, which included 6 of the same sites and 11 additional sites. This data set is used for evaluation

of the operational phase of the model (Section 4).

Given the different sampling protocols that result in different spectroscopic interferences from PTFE (due to different filter30

types) and range of mass loadings (due to flowrates), and difference in expected chemical composition (due to site types), cali-

brations for the CSN and IMPROVE networks have been developed separately (Weakley et al., 2016). Advantages of building

such specialized models in favor of larger, all-inclusive models are discussed in Section 3.5. Therefore, TOR-equivalent carbon

predictions for 2011 and 2013 IMPROVE samples discussed for this paper are made with a calibration model using a subset of
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samples from 2011 IMPROVE, and TOR predictions for 2013 CSN samples are made with a calibration model using a subset

of samples from 2013 CSN. One exception is a special model constructed to illustrate how new samples can improve model

prediction (Section 4.2); a subset of samples from two sites — Fresno, CA (FRES) and Baengnyeong Island, S. Korea (BYIS)

— in 2013 IMPROVE are used to make predictions for the remaining samples at those sites. In all cases, analytical figures of

merit for model evaluation are calculated for samples that are not used in calibration.5

Calibration 2013, Test 2013

Calibration 2011, Test 2011, Test 2013

Calibration 2011, Test 2011

Prediction 2013

Figure 1. Map of IMPROVE and CSN sites used for this work. The Sac and Fox, KS, IMPROVE site was only operational for the first half

of 2011. Samples from Fresno, CA, South Korea were additionally used for a separate calibration.

2.3 Laboratory operations and quality control of analysis

IMPROVE and CSN PTFE sample and blank filters are analyzed without pretreatment on either Tensor 27 or Tensor II FT-

IR instruments (Bruker Optics, Billerica, MA) equipped with a liquid nitrogen-cooled detector. Filters are placed in a small,

custom-built sample chamber which reliably places each filter the same distance from the source. IR-active water vapor and

CO2 are purged from the sample compartment and instrument optics to minimize absorption bands of gas phase compounds10

in the aerosol spectra. Samples are measured in transmission mode and absorbance spectra, which are used for calibration

and prediction, are calculated using the most recent empty chamber spectrum as a reference (collected hourly). The total

measurement time for one filter is 5 minutes. Additional details on the FT-IR analysis are described by Ruthenburg et al.

(2014) and Debus et al. (2018).

Daily and weekly quality control checks are performed to monitor the comparability, precision and stability of the FT-15

IR instruments. Duplicate spectra are collected every fifty filters (once or twice per day) per instrument in order to evaluate

measurement precision. Measured precision values are low and smaller than the 95th percentile of the standard deviation of

the blanks for both TOR OC and EC indicating that instrument error has a relatively minor influence on the prediction of

TOR OC and EC and is smaller than the variability observed between PTFE filters. Quality control filters — blank filters and

ambient samples — are analyzed weekly to monitor instrument stability. Debus et al. (2018) conclude that predictions of TOR20
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OC and EC remain relatively stable over a two and a half year period based on analyses of quality control filters, and that

observed changes are small. These data enable us to track instrumental changes that will require re-calibration (Section 4.2). A

subset of ambient filters are analyzed on all FT-IR instruments to evaluate spectral dissimilarities and differences in prediction.

These samples show that differences in spectral response between instruments are small and due mainly to variability in PTFE.

In addition, these samples indicate that careful control of laboratory conditions and detector temperature, sample position,5

relative humidity (RH) and CO2 levels in the FT-IR instrument enables instrument-agnostic calibrations that predict accurate

concentrations independent of the instrument on which a spectrum is collected. The quality control data show that the TOR OC

and EC measurements obtained from multiple FT-IR instruments in one laboratory are precise, stable (over the 2.5 year period

evaluated) and agnostic to instrument used for analysis (Debus et al., 2018).

3 Model building, evaluation, and interpretation10

In this section, we describe the model building process for quantitative calibration. The relationship betwen spectra and refer-

ence values to be exploited for prediction can be discovered using any number of algorithms, method of spectra pretreatment,

and the calibration set of samples to be used for model training and validation. As the best choices for each of these categories

are not known a priori, the typical strategy is to generate a large set of candidate models and select one that scores well across

a suite of performance criteria against a test set of samples reserved for independent evaluation. The process of building and15

evaluating a model conceptualized in the framework of statistical process control is depicted in Figure 2. In the first stage,

various pathways to model construction are evaluated, and expectations for model performance are determined. The second

stage involves continued application and monitoring of model suitability for new samples (prediction set), which is discussed

in Section 4.1. Where applicable, the sample type in each data set should include several types of samples. For instance, the

calibration set can include blank samples in which analyte (but not necessarily interferent) concentrations are absent. Test and20

prediction set samples can include both analytical and field blank samples. Collocated measurements can be used for providing

replicates for calibration, or used as separate evaluation of precision. Immediately below, we describe the procedure for model

specification, algorithms for parameter estimation, and model selection in Section 3.1. Methods for spectra processing are de-

scribed in Section 3.3, and sample selection in Section 3.5. In each section, the broader concept will be introduced and then its

application to TOR will be reviewed.25

3.1 Model estimation

Many algorithms in the domain of statistical learning, machine learning, and chemometrics have demonstrated utility in build-

ing calibration models with spectra measurements: neural networks (Long et al., 1990; Walczak and Massart, 2000), Gaussian

process regression (Chen et al., 2007), support vector regression (Thissen et al., 2004; Balabin and Smirnov, 2011), principal

components regression (Hasegawa, 2006), ridge regression (Hoerl and Kennard, 1970; Tikhonov and Arsenin, 1977; Kalivas,30

2012), wavelet regression (Brown et al., 2001; Zhao et al., 2012), functional regression (Saeys et al., 2008), PLS (Rosipal and

Krämer, 2006); among others. There is no lack of algorithms for supervised learning with continuous response variables that
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Figure 2. Diagram of the model building, evaluation, and monitoring process. Sections and subsections covering the illustrated topics are

denoted in parentheses. Note that the any of the calibrations {1,2, . . . ,N} can be a multilevel model (Section 3.5.3) consisting of an ensemble

of models.

can potentially be adapted for such an application (Hastie et al., 2009). Each of these techniques map relationships between

spectral features and reference concentrations using different similarity measures, manifolds, and projections; largely in metric

spaces where the notion of distances among real-valued data points are well-defined (e.g., Zezula et al., 2006; Russolillo, 2012).

The best mathematical representation for any new data set is difficult to ascertain a priori, but models can be compared by their

fundamental assumptions and their formulation: e.g., linear or non-linear in form; globally parametric, locally parametric, or5

distribution free (random forest, nearest neighbor); feature transformations; objective function and constraints; and expected

residual distributions. Approaches that incorporate randomized sampling can return slightly different numerical results, but

reproducibility of any particular result can be ensured by providing seed values for the pseudo-random number generator. A

typical procedure for model development is to select candidate methods that have enjoyed success in similar applications and

empirically investigate which techniques provide meaningful performance and interpretability for the current task, after which10

implementation measures are then pursued (Kuhn and Johnson, 2013). In lieu of selecting a single model, ensemble learning

and Bayesian model averaging approaches combine predictions from multiple models (Murphy, 2012).

For FT-IR calibration targeting prediction of TOR-equivalent concentrations, we focus on finding solutions to the linear

model introduced in Section 2.1. Letting y = [mC,i/a], X= [Ai(ν̃j)], b= [bi], and e= [ei], we re-express eq. 4 in array

notation to facilitate further discussions of linear operations:15

y =Xb+ e . (5)

Equation 5 is an ill-posed inverse problem; therefore, it is desirable to introduce some form of regularization (method of in-

troducing additional information or assumptions) to find suitable candidates for b (Zhou et al., 2005; Friedman et al., 2010;

Takahama et al., 2016). In this paper, we summarize the application of PLS (Wold, 1966; Wold et al., 2001) for obtaining

solutions to this equation, with which good results have been obtained for our application and FT-IR spectra more generally20

(Hasegawa, 2006; Griffiths and Haseth, 2007). This technique has been a classic workhorse of chemometrics for many decades

and is particularly well suited for characteristics of FT-IR analysis, for which data are collinear (neighboring absorbances are

12



often related to one another) and high-dimensional (more variables than measurements in many scenarios). These issues are

addressed by projection of spectra onto an orthogonal bases of latent variables (LVs) that take a combination of spectral fea-

tures, and regularization by LV selection (Andries and Kalivas, 2013). Furthermore, PLS is agnostic with respect to assumption

of residual structure (e.g., normality) for obtaining b, which circumvents the need to explicitly account for covariance or er-

ror distribution models to characterize the residuals (Aitken, 1936; Nelder and Wedderburn, 1972; Kariya and Kurata, 2004).5

PLS is also used as a preliminary dimension reduction technique prior to application of non-linear methods (Walczak and

Wegscheider, 1993). Therefore, it is sensible that PLS should be selected as a canonical approach for solving eq. 5.

Mathematically, classical PLS represents a bilinear decomposition of a multivariate model in which both X and y are

projected onto basis sets (“loadings”) P and q, respectively (Wold et al., 1983, 1984; Geladi and Kowalski, 1986; Mevik and

Wehrens, 2007):10

X=TPT +EX

y =TqT + e .
(6)

T is the orthogonal score matrix and EX denotes the residuals in the reconstruction of the spectra matrix. Common solution

methods search for a set of loading weight vectors (represented in a column matrix W) such that covariance of scores (T)

with respect to the response variable (y) is maximized. The weight matrix can be viewed as a linear operator that changes the

basis between the feature space and FT-IR measurement space. These weights and their relationship to the score matrix and15

regression vector are expressed below:

R=W
(
PTW

)−1
T=XR

b=RqT .

(7)

For univariate y as written in eq. 5, a number of commonly used algorithms — Nonlinear Iterative PArtial Least Squares

(NIPALS; Wold et al., 1983), SIMPLS (deJong, 1993), kernel PLS (with linear kernel; Lindgren et al., 1993) — can be used

to arrive at the same solution (while varying in numerical efficiency). Kernel PLS can be further extended into modeling20

non-linear interactions by projecting the spectra onto a high-dimensional space and applying linear algebraic operations akin

to classical PLS, with comparative performance to support vector regression and other commonly-used non-linear modeling

approaches (Rosipal and Krämer, 2006). However, likely due to the linear nature of the underlying relationship (eq. 4), linear

PLS has typically performed better than non-linear algorithms for FT-IR calibration (Griffiths and Haseth, 2007). In addition,

the linearity of classical PLS regression has yielded more interpretable models than non-linear ones (Luinge et al., 1995).25

Therefore, past applications of PLS to FT-IR calibration of atmospheric aerosol constituents has focused on its linear variants

and will be the focus of this paper.

An optimal number of LVs must be selected to arrive at the best predictive model. A larger number of LVs is increasingly

able to capture the variations in the spectra, leading to reduction in model bias. Some of the finer variations in the spectra are

not part of the analyte signal which we wish to model; including LVs that model these terms lead to increased variance in its30
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predictions. A universal problem in statistical modeling is to find a method for characterizing model bias and variance such

that one with the lowest apparent error can be chosen. There is no shortage of methods devised to capture this bias-variance

tradeoff and their implications for model selection continue to be an active area of development (Hastie et al., 2009). With no

immediate consensus on the single best approach for all cases, the approach often taken is to select and use one based on prior

experience until found to be inadequate (as with model specification).5

One class of methods characterize the bias and variance using the information obtained from fitting of the data. For instance,

Akaike Information Criterion (AIC; Akaike, 1974) and Bayesian Information Criterion (BIC; Schwarz, 1978) consider the bal-

ance between model fidelity (fitting error, which monotonically decreases with number of parameters) with penalties incurred

for increasing model complexity (which serves as a form of regularization). The fitting error may be characterized by residual

sum of squares or maximum likelihood estimate (e.g., Li et al., 2002), and the penalty may be a scaled form of the number of10

parameters or norms of the regression coefficient vector. An effective degrees of freedom (EDF) or generalized EDF parameter

aims to characterize the resolvable dimensionality as apparent from the model fit to data (Tibshirani, 2014), though the EDF

may not always correspond to desired model complexity (Krämer and Sugiyama, 2011; Janson et al., 2015).

Another class of methods relies on assessment of the bias and variance contributions implicitly present in prediction errors,

which are obtained by application of regression coefficients estimated using a training data set and evaluated against a separate15

set of (“validation”) data withheld from model construction to fix its parameters. To maximize the data available for both

training and validation, modern statistical algorithms such as cross validation (Mosteller and Tukey, 1968; Stone, 1974; Geisser,

1975) and the bootstrap method (Efron and Tibshirani, 1997) allows use of the same samples for both training and validation,

which comprise what we collectively refer to as the calibration set. The essential principle is to partition the same calibration

set multiple times such that the model is trained and then validated on different samples over a repeated number of trials. In this20

way, a distribution of performance metrics for models containing different subsets of the data can be aggregated to determine

a suitable estimate of a parameter (number of LVs). The number and arrangement of partitions vary by method, with cross-

validation using each sample exactly once for validation and bootstrap resamples with replacement. Both have reported usable

results (Molinaro et al., 2005; Arlot and Celisse, 2010). For increasingly smaller number of samples, Leave-One-Out (LOO)

CV or bootstrap may be favored as it reserves a larger number of samples to train each model, though it is generally appreciated25

that LOO leads to suboptimal estimates of prediction error (Hastie et al., 2009). Evaluation metrics are calculated on samples

which have not been involved in the model-building process (Esbensen and Geladi, 2010). Examples of metrics include the

minimum root-mean-square error of cross validation (RMSECV) (one of the most widely used metrics; Gowen et al., 2011),

one standard deviation above RMSECV (Hastie et al., 2009), Wold’s R criterion (Wold, 1978), coefficient of determination

(R2), randomization p-value (van der Voet, 1994; Wiklund et al., 2007), among others. A suite of these metrics can also be30

considered simultaneously (Zhao et al., 2015). The final model is obtained by refitting the model to all of the available samples

in the calibration set and using the number of parameters selected in the CV process. Other strategies and general discussions

on the topic of performance metrics and statistical sampling are covered in many textbooks (e.g., Bishop, 2009; Hastie et al.,

2009; Kuhn and Johnson, 2013).
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Past work on TOR and FT-IR measurements have used V -fold CV, with Dillner and Takahama (2015a; 2015b) using min-

imum RMSECV and Weakley et al. (2016) using Wold’s R criterion for performance evaluation. In V -fold CV, the data is

partitioned into V groups, and V -1 subsets are used to train a model to be evaluated on the remaining subset (repeated for V

arrangements). Dillner and Takahama (2015a) found that V =2, 5, and 10 selected different number of LVs but led to similar

overall performance. To keep the solution deterministic (i.e., no random sampling) and representative (i.e., the composition5

of training sets and validation sets are representative of the overall calibration sets across permutations), samples in the cali-

bration set are ordered according to a strategy amenable for stratification. For instance, samples are arranged by sampling site

and date (used as a surrogate for source emissions, atmospheric processing, and composition, which often vary by geography

and season), or with respect to increasing target analyte concentration, and samples separated by interval V are used to create

each partition in a method referred to as Venetian blinds (also referred to as interleaved or striped) CV. An illustration of RM-10

SECV compared to the fitting errors represented by the root-mean-square error calibration (RMSEC) for TOR OC is shown in

Figure 3. Other strategies for arranging CV include maximizing differences among samples in each fold to reduce chances of

overfitting (Kuhn and Johnson, 2013) but has not been explored in this application.

Even with specification of model and approach for parameter selection fixed, spectral processing and sample selection can

lead to differences in overall model performance. We first discuss how different models can be generated from the same15

set of samples according to these decisions before proceeding to protocols for model evaluation using the test set reserved for

independent assessment (Section 3.2). The test set is used to compare the merits of models built in different ways, and establish

control limits for the operational phase (Section 4).

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60

5
10

15
20

25
30

35

Number of latent variables

R
oo

t m
ea

n 
sq

ua
re

 e
rr

or

●

RMSEC
RMSECV

Figure 3. Illustration of RMSEC, which represents the fitting errors, and RMSECV, which represents the prediction error, calculated for

TOR OC using the same calibration set. 10-fold Venetian blinds CV was used for this calculation.
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3.2 Model evaluation

Statistical models can be evaluated using many of the same techniques also used by mechanistic models (Olivieri, 2015; Sein-

feld and Pandis, 2016). In this section, we describe methods for evaluating overall performance (Section 3.2.1) and occurrence

of systematic errors (Section 3.2.2).

3.2.1 Overall performance5

Predictions for a set of selected models for 2011 IMPROVE and 2013 CSN are shown in Figure 4. Details of sample selection

for calibration are provided in Section 3.5), but here we present results for the “base case” models which contain representa-

tions of all sites and season for each network. There are many aspects of each model which we wish to evaluate by comparing

predictions against known reference values. These aspects include the bias and magnitude of dispersion, but also our capability

to distinguish ambient samples from blank samples at the low end of observed concentrations. Metrics which capture these10

effects can effectively be derived from the term e in the multivariate regression equation (eq. 5) when predictions and observa-

tions are compared in the test set spectra. e is referred to as the residual when describing deviations from observations in fitted

values, and prediction error when describing deviations from observed values when the model is used for prediction in new

samples. However, by convention we often resort to the negative of the residual such that deviation in prediction is calculated

with respect to the observation, rather than the other way around. Example distributions for residuals and prediction errors for15

TOR OC in 2011 IMPROVE are shown in Figure 5.

While the use of the minimum root-mean-square error (RMSE) is pervasive in chemometrics and machine learning as a

formal parameter tuning or model selection criterion, another family of metrics are more commonly used in the air quality

community (Table 1). For instance, the mean bias and mean error and their normalized quantities are often used for model-

measurement evaluation of mechanistic (chemical transport) models (Seinfeld and Pandis, 2016). R2 is commonly used in20

inter-comparisons of analytical techniques. Many of the statistical estimators in Table 1 converge to a known distribution

from which confidence intervals can be calculated; or otherwise estimated numerically (e.g., by bootstrap). In addition to

conventional metrics, alternatives drawing upon robust statistics (Huber and Ronchetti, 2009) are also useful when undue

influence from a few extreme values may to lead to misrepresentation of overall model performance (Barnett and Lewis, 1994).

For instance, the mean bias is replaced by the median bias, and mean absolute error is replaced by median absolute deviation.25

Even if a robust estimator is unbiased, it may not have the same variance properties as its non-robust counterpart (Venables and

Ripley, 2003); therefore, comparison against a reference distribution for statistical inference may be less straightforward.

For TOR-equivalent values predicted by FT-IR, the median bias and errors have been typically preferred for characterizing

overall model performance, together with R2 and the minimum detection limit (MDL). Mean errors have been examined

primarily to make specific comparisons among models. Having derived these metrics, we place them in context by comparing30

them to those reported by the reference (TOR) measurement, which include collocated measurement precision and percent of

samples below MDL (Table 2).
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Figure 4. Illustration of model fits (“Calibration Set”, left column) and predictions (“Test Set”, right column) for the 2011 IMPROVE and

2013 CSN networks. Open circles for CSN EC indicate anomalous samples (discussed in Section 3.5.3). Note units are in areal mass density

on the filter.

3.2.2 Systematic errors

In addition to the aggregate metrics discussed above, we evaluate whether essential effects appear to be accounted for in the

regression by examining errors across different classes of samples. Systematic patterns or lack of randomness can be evaluated

by examining the independence of the individual prediction errors with respect to composition, or using time and location of

sample collection as surrogates for composition. For instance, high prediction errors elevated over multiple days may be asso-5

ciated with aerosols of unusual composition transported under synoptic scale meteorology that is not well-represented in the

calibration samples. Special exception is made for concentration, as errors can be heteroscedastic (i.e., non-constant variance)

on account of the wide concentration range of atmospheric concentrations that may be addressed by a single calibration model.
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The corresponding kernel density estimate of the distribution is shown on right.

Table 1. Definition for figures of merit for overall assessment of prediction error, samples to which they are applied, and their reference

distribution (if available) used for significance testing. y is the (mean-centered) response vector (i.e., TOR OC or EC mass loadings), and ŷ

is the predicted response (eq. 5). 〈·〉 is the sample mean, Med[·] is the sample median, and Var[·] is the unbiased sample variance. Nc is the

number of paired collocated samples.

Metric Samples Estimate Ref. dist.

root mean square error (RMSE) all
√
〈(ŷ−y)2〉 χ2

mean bias all 〈ŷ−y〉

median bias all Med[ŷ−y]

mean absolute error all 〈|ŷ−y|〉 t

median absolute deviation all Med[|(ŷ−y)−Med[ŷ−y]|]

coefficient of determination (R2) all 1− (ŷ−y)T (ŷ−y)/
(
yTy

)
F

minimum detection limit (MDL) blank 3
√

Var[(ŷ−y)] χ2

collocated precision collocated ‖ŷ1− ŷ2‖/
√
2Nc t

This heteroscedasticity leads to a distribution that is leptokurtic (i.e., heavy-tailed) compared to a normal distribution, as shown

in Figure 5. As solution algorithms for PLS are agnostic with respect to such residual structure, their application to this type of

problem is well-suited.

Given the propensity of prediction error distributions to be long-tailed, error and residual values are transformed to standard-

normal variates using inverse hyperbolic sine (IHS) functions (Johnson, 1949; Burbidge et al., 1988; Tsai et al., 2017) using5

parameters derived from samples with similar analyte (TOR) concentrations. Such a transformation aids identification of sys-

tematic errors in prediction related to sample collection time and location; a control chart is displayed for TOR-equivalent OC

in Figure 6. Each prediction error is then characterized by its Z-score, which gives an immediate indication of its relation to
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Table 2. Description and figures of merit for “base case” models. “Predictors” describe the number of wavenumbers and “Components”

describe the number of LVs. Bias and errors are estimated by ensemble medians.

Network FT-IR
Baseline

correction

Wavenumber

selection
Predictors Components

IMPROVE 2011 OC Spline None 1563 15

EC Raw None 2784 multilevel

CSN 2013 OC 2nd derivative BMCUVE 375 3

EC Spline BMCUVE multilevel multilevel

Network FT-IR R2 Bias Error MDL Below MDL Precision

(µgm−3) (µgm−3) (µgm−3) (%) (µgm−3)

IMPROVE 2011 OC 0.97 0.01 0.08 0.11 0.7 0.21

EC 0.96 0.00 0.03 0.01 2 0.06

CSN 2013 OC 0.95 0.04 0.15 0.49 3.0 0.19

EC 0.88 0.02 0.11 0.17 4.8 0.04

Network TOR MDL below MDL Precision

(µgm−3) (%) (µgm−3)

IMPROVE 2011 OC 0.05 1.5 0.14

EC 0.01 3 0.11

CSN 2013 OC 0.51 2.7 0.23

EC 0.03 16.7 0.09

other prediction errors for samples with similar concentrations. Because of the IHS transformation, the magnitude of errors do

not scale linearly in vertical distance on the chart, but conveys its centrality, sign, and bounds of the error (e.g., 3 units from the

mean encompasses 99% of errors in samples similar in concentration). In this data set, we can see that prediction errors for Sac

and Fox (SAFO) in each concentration regime are biased positively during the winter, but systematically trend toward the mean

toward the summer months. Other high error samples near the 99th percentile (±3 probits) occur in the urban environment of5

Phoenix, where the TOR OC concentrations are also highest. However, the prevalence of higher errors in only one of the

two Phoenix measurements (PHOE5) may be indicative of sampler differences, rather than unusual atmospheric composition.

Errors are negatively biased during the summer months in Trapper Creek, when TOR OC concentrations are typically low.

Systematic errors arising from under-representation of concentration or composition range in the calibration set of IM-

PROVE was investigated by deliberate permutations of calibration and test set samples by Dillner and Takahama (2015a;10

2015b). This study is discussed together with model interpretation (Section 3.5.1). Weakley et al. (2018b) a found systematic

errors with respect to OC/EC ratios when predicting TOR-equivalent EC concentrations in the CSN network. These samples

were found to originate from Elizabeth, NJ, (ELLA) which differed from the nine other examined sites on account of the high
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contributions from diesel PM and extent of reduced charring compared to other samples. The solution was to build a separate

calibration model (Section 3.5.3).
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Figure 6. Time series chart of TOR-equivalent OC residuals (for calibration samples) and prediction errors (for test set samples) separated by

site. Each value (residual: open circle, prediction error: filled circle) is mapped to a median-centered inverse hyperbolic sine function using

175 values (approximately 20% of the 2011 IMPROVE set) from neighboring TOR OC concentrations to derive distribution parameters so

that values are defined within a normal distribution (p-value > 0.2). Dotted horizontal lines indicate ±3 standard deviations of the standard

normal variate (Z-score).

3.3 Spectral preparation

Mid-IR spectra can be processed in many different ways for use in calibration. The primary reasons for spectral processing

are to remove influences from scattering such that calibration models follow the principles of the linear relation outlined in5

equation 4, and to remove unnecessary wavenumbers or spectral regions that degrade prediction quality or interpretability.

Scattering of particles manifests itself in a broad contribution to the signal that is present in the measured spectrum by FT-

IR and is addressed by a class of statistical methods referred to as baseline correction (Section 3.3.1). It is even possible

to model nonlinear relationships such as the scattering contribution to the signal by a linear model with additional LVs, but

these phenomena may not be mixed together with the noise (Borggaard and Thodberg, 1992; Despagne and Luc Massart,10
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1998). Elimination of unnecessary wavenumbers can reduce noise in the predictions and confer interpretation on the important

absorption bands used for prediction; the class of procedures used in this is referred to as variable selection, uninformative

variable elimination, among other names (Section 3.3.2). Some algorithms can separate the influence of the background and

select variables in the process of finding the optimal set of coefficients b in eq. 5. In each of the following sections, the each of

the topics in spectral processing will be introduced before describing their applications to TOR calibrations.5

3.3.1 Baseline correction

Baseline correction can be fundamental to the way spectra are analyzed quantitatively. Significant challenges exist in separating

the analyte signal from the baseline of mid-IR spectra, which include the superposition of broad analyte absorption bands (O-H

stretches in particular) to the broadly varying background contributions from scattering. The algorithm for baseline correction

may therefore depend on the type of analyte and the broadness of its profile; optimization of the correction becomes more10

important as concentrations decrease such that they become difficult to distinguish from the baseline. Approaches can be

categorized as reference-dependent or reference-independent (Rinnan et al., 2009), and can be handled within or outside of the

regression step. Reference-dependent methods define the baseline with respect to an external measurement, which may be a

reference spectrum (Afseth and Kohler, 2012) or concentrations of an analyte. For instance, orthogonal signal correction (OSC)

(Wold et al., 1998) isolates contributions to the spectrum that are uncorrelated with the analyte, and can be conceptualized as15

containing baseline effects. OSC can be incorporated into PLS in which the orthogonal contribution would be represented by

underlying LVs (Trygg, 2002). Even without explicit specification of orthogonal components, the influence of baseline effects

is accounted for by multiple LVs in the standard PLS model (Dillner and Takahama, 2015a). Reference-independent baseline

correction methods remove baseline contributions based on the structure of the signal without invocation of reference values.

Two examples described below include interpolation and derivative correction methods. A more comprehensive discussion on20

this topic is provided by Rinnan et al. (2009).

While theories for absorption peak profiles are abundant, the lack of corollaries for baselines (Dodd and DeNoyer, 2006) lead

to semi-empirical approaches for modeling their effects. If we conceptualize the broad baseline as anN -th order polynomial, we

can approximate this expression with an analytical function or algorithm. Models can be considered to be (globally) parameteric

(e.g., polynomial, exponential) across a defined region of a spectrum, or non-parameteric (e.g., spline or convex hull; Eilers,25

2004) in which case local features of the spectrum are considered with more importance. These approaches typically determine

the form of the curve by training a model on regions without significant analyte absorption, and interpolated through the analyte

region. The modeled baseline is then subtracted from the raw spectrum such that the analyte contribution remains. Model

parameters are selected such that processed spectra conform to physical expectations — namely, that blank absorbances are

close to zero and analyte absorbances are non-negative. In general, these approaches aim to isolate the absorption contribution30

to the spectra that are visually recognizable, and therefore most closely conform to traditional approaches for manual baseline

removal used by spectroscopists. In addition to quantitative calibration or factor analytic applications (e.g., multivariate curve

resolution, de Juan and Tauler, 2006), these spectra are more amenable for spectral matching.
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Alternatively, taking the first n-th derivatives of the spectrum will remove the first n terms of the N -th order polynomial

and transform the rest of the signal (DeNoyer and Dodd, 2006). Since Gaussian (and most absorption) bands are not well-

approximated by low order polynomials, they are not eliminated, i.e., their relative amplitudes and half-widths (ideally) remain

unaffected by the transformation. This ensures that their value is retained for multivariate FT-IR calibrations (Weakley et al.,

2016). Moreover, derivative-based methods can improve resolution of absorption bands after transformation (illustrated in5

Figure 7). Derivative transformations can affect the signal-to-noise (S/N) ratio, however; inflating the relative contribution of

small perturbations. Therefore, smoothed derivative methods such as the three-parameter Savitzky-Golay filter (Savitzky and

Golay, 1964) are favored in order to minimize this effect and, in practice, only first and second derivatives are generally used

with vibrational spectra to maintain a reasonable S/N ratio (Rinnan, 2014). In complex aerosol spectra caution must exercised

when interpreting the bands resolved by smoothed derivative filters since the filter parameters (i.e., bandwidth, kernel) all10

influence the outcome of the transformation. A major disadvantage of derivative filtering, in addition to the reduced visual

connection to the original spectrum, relates to the inadvertent removal of broad absorption bands (Griffiths, 2006). Tuning

filter parameters by trial-and-error may limit this type of band suppression to some extent. As a rule of thumb, the broad O-H

stretches of alcohols (3650–3200 cm−1), carboxylic acids (3400–2400 cm−1), and N-H stretches of amines (3500–3100 cm−1)

are likely to be sacrificed as a result of derivative filtering (Shurvell, 2006). A willingness to balance this type of information15

loss against the simplicity and rapidity afforded by derivative methods must be considered in practice.

Different approaches have been used for processing of spectra for TOR calibration, including two interpolation and one

derivative approach. Spectral processing is useful for spectra of PM collected on PTFE filters due to the significant contribution

of scattering from the PTFE (McClenny et al., 1985). Small differences in filter characteristics lead to high variation in its

contribution to each spectrum; a simple blank subtraction of similar blank filters or the same filter prior to PM loading is not20

adequate to obtain spectra amenable for calibration (Takahama et al., 2013). As the magnitude of this variability is typically

greater than the analyte absorbances, baseline correction models trained on a set of blank filters typically do not perform

adequately in isolating the non-negative absorption profile of a new spectrum. Accurate predictions made by PLS without

explicit baseline correction suggest that the calibration model is able to incorporate its interferences effectively within its

feature space if trained on both ambient samples and blank samples together, though visually interpretable spectra for general25

use is not necessarily retrievable from this model. For this purpose, models based on interpolation from the sample spectrum

itself has been preferred. Takahama et al. (2013) described semi-automated polynomial and linear fitting to remove PTFE

residuals remaining from blank-subtracted spectra, which was based on prior work for manual baseline correction by Maria

et al. (2003) and Gilardoni et al. (2007). This correction method had been used for spectral peak-fitting, cluster analysis, and

factor analysis (Russell et al., 2009; Takahama et al., 2011) previously, and was used for 2011 IMPROVE TOR OC and EC30

calibration shown in Table 2 (Dillner and Takahama, 2015a, b; Takahama et al., 2016). Kuzmiakova et al. (2016) introduced

a smoothing spline method which produced similar baseline corrected spectra (both visually and with respect to clustering

and calibration) in ambient samples to the polynomial method without need for PTFE blank subtraction. While the non-

analyte regions of the spectra are implicitly assumed, the flexibility of the local splines combined with an iterative method for

readjusting the non-analyte region effectively reduced the number of tuning parameters from four (in the global polynomial35
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approach) to one. The spline baseline method was used for TOR EC prediction in 2013 CSN (Weakley et al., 2018b). Second

derivative baseline correction method was applied to 2013 CSN TOR OC calibration (Weakley et al., 2016).

Overall, differences in calibration model performance in TOR prediction between spline corrected and raw spectra models

were minor for the samples evaluated in 2011 IMPROVE (results were comparable to metrics in Table 2). However, wavenum-

bers remaining after uninformative ones were eliminated (Section 3.3.2) differed when using baseline corrected and raw spectra5

— even while the two maintained similar prediction performance. Weakley et al. (2016) and Weakley et al. (2018b) used the

Savitzky-Golay method and spline correction method for TOR OC and EC, respectively, in the 2013 CSN network, but did

not systematically investigate the isolated effect of baseline correction on predictions without additional processing. A formal

comparison between the derivative method against raw and spline-corrected spectra has not been performed, but this is an area

warranting further investigation. Standardizing a protocol for spectra correction based on targeted analyte is a sensible strategy,10

as spectral derivatives are associated with enhancement in specific regions of the spectra. The selection of baseline correc-

tion method may also consider the areal density of the sample, since the S/N is reduced with derivative methods. However,

the success of derivative methods demonstrated for TOR OC in CSN samples (with systematically lower areal loadings than

IMPROVE samples) indicates that the reduction in S/N is not likely a limiting factor for quantification in this application.

The derivative method appears to have significant advantage in reducing the number of LVs as demonstrated for TOR OC15

(Table 2). The derivative-corrected spectra model for 2013 CSN resulted in only 4 components in contrast to the 35 selected by

the raw spectra model. While wavenumber selection and a different model selection criterion was simultaneously applied to the

derivative-corrected model, a large reason for the simplification is likely due to the baseline correction. For reference, reduced-

wavenumber raw spectra models for 2011 IMPROVE TOR OC and EC still required 7–9 components (the full-wavenumber

model required 15–28, depending on spectral baseline correction) (Takahama et al., 2016). A parsimonious model is desirable20

in that it facilitates physical interpretation of individual LVs as further discussed in Section 3.4.

The effect of baseline correction on reducing the scattering is illustrated by revisiting the TOR-equivalent OC predictions for

the 2013 IMPROVE data set. Reggente et al. (2016) found that the raw spectra 2011 IMPROVE calibration model performed

poorly in extrapolation to two new sites in 2013, particularly FRES and BYIS. When using baseline corrected spectra, the

median bias and errors are reduced from 0.28 µgm−3 and 0.43 µgm−3 and to 0.19 µgm−3 and 0.28 µgm−3, andR2 increases25

from 0.79 to 0.91 for samples from these sites (Figure for baseline corrected predictions shown in Section 4.1.1). As the filter

type remained the same, this improvement in prediction accuracy is likely due to the removal of scattering contributions in

PM2.5 particles in the new set that differs from the calibration set. Spectral signatures of nitrate and dust suggested the presence

of coarse particles different than those in the 2011 calibration (and test) set samples. 4.1).

3.3.2 Wavenumber selection30

Wavenumber or variable selection techniques aim to improve PLS calibrations by identifying and using only germane pre-

dictor variables (Balabin and Smirnov, 2011; Höskuldsson, 2001; Mehmood et al., 2012). Typically, such techniques remove

variables deemed excessively redundant, enhance the precision of PLS calibration, reduce collinearity in the variables (and

therefore model complexity) (Krämer and Sugiyama, 2011), and possibly improve interpretability of the regression. The sim-
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Figure 7. Three synthetic absorption spectra constructed with varying contributions from a polynomial baseline and two unresolved Gaussian

peaks (A), and their 2nd order, 5-point, second derivative, Savitzsky-Golay filter transformations (B). Absorption spectra were constructed

such that the additive, linear, and polynomial components of the baseline scale with the amplitude of the absorption bands.

plest variable selection method based on physical insight rather than algorithmic reduction is truncation, in which regions

for which absorbances are not expected or expected to be uninformative are removed a priori. Algorithmic variable selection

techniques fall into three categories: filter, wrapper, and embedded methods (Saeys et al., 2007; Mehmood et al., 2012).

Filter methods provide a one-time (single-pass) measure of a variable importance with important and redundant variables

distinguished according to a reliability threshold. Variables above such a threshold are retained and used for PLS calibration.5

Often, thresholds are either arbitrary or heuristically determined (Chong and Jun, 2005; Gosselin et al., 2010). In general, filter

methods are limited by their need to choose an appropriate threshold prior to calibration, potentially leading to a suboptimal

subset of variables.

The essential principle of wrapper methods is to apply variable filters successively or iteratively to sample data until only a

desirable subset of quintessential variables remain for PLS modeling (Leardi, 2000; Leardi and Nørgaard, 2004; Weakley et al.,10

2014). Wrappers operate under the implicit assumption that single-pass filters are inadequate, requiring a guided approach to

comprehensively search for the optimal subset of modeling variables. Since searching all 2p−1 combinations of wavenumbers

is not tractable for multivariate FT-IR calibration problems (p > 103), model inputs (or importance weights) are generally

randomized at each pass of the algorithm to develop importance criteria, foregoing an exhaustive variable search. Genetic

algorithms and backward Monte Carlo unimportant variable elimination (BMCUVE) are examples of two randomized wrapper15

methods (Leardi, 2000; Leardi and Nørgaard, 2004). Wrapper methods generally perform better than simple filter methods and

have an additional benefit of considering both variables and PLS components simultaneously during optimization. The major
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drawback to wrapper methods are generally longer runtimes (which may be on the order of hours for large-scale problems)

than filter methods.

As their name implies, embedded methods nest variable selection directly into the main body of the regression algorithm.

For example, sparse PLS methods (SPLS) eliminate variables from the PLS loading weights (w), which reduce the number

of non-zero regression coefficients (b) when reconstructed through eq. 5 (Filzmoser et al., 2012). The zero-valued coefficients5

obtained for each LV can possibly confer component-specific interpretation of important wavenumbers, but leads to a set of

regression coefficients which are overall not as sparse as methods imposing sparsity directly on the regression coefficients

(Takahama et al., 2016).

Many methods select informative variables individually, but for spectroscopic applications it is often desirable to select a

group of variables associated with the same absorption band. Elastic net (EN) regularization (Friedman et al., 2010) adds an L210

penalty to the regression coefficient vector in addition to the L1 penalty imposed by the least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996), thereby imparting a grouping effect in selection. Interval variable selection methods

(Wang et al., 2017) draw upon methods discussed previously but employ additional constraints or windowing methods to

target selection of contiguous variables (i.e., an algorithmic approach to truncation).

Takahama et al. (2016) evaluated two embedded (sparse PLS) algorithms and one hyphenated method in which EN used as a15

filtering method prior to PLS calibration (EN-PLS, Fu et al., 2011) for TOR OC and EC calibration in the IMPROVE network.

A suite of reduced-wavenumber models were considered by varying model parameters that controlled the sparsity, and eval-

uated using cross-validation and separate test set samples. Since full-wavenumber calibration models (both raw and baseline

corrected) for TOR OC and EC in the IMPROVE networks already performed well (Section 3.2.1), wavenumber selection did

not improve model predictions but served mostly to aid interpretation of the most important absorption bands. Takahama et al.20

(2016) found that these methods could use as little as 4–9% of the original wavenumbers (2784 for raw and 1563 for spline

corrected) to predict TOR-equivalent OC and EC. EN-PLS consistently achieved the sparsest solution (by more than a factor

of two in almost all cases) on account of the LASSO penalty applied directly to the regression vector. While all variable se-

lection methods generally performed well for TOR-equivalent OC and EC prediction in 2011 IMPROVE samples, calibrations

for organic functional groups built using sparse PLS algorithms appeared to be less robust in extrapolation to ambient sample25

spectra. While also being the most sparse, EN-PLS yielded similar predictions to the original PLS (full wavenumber) models

(Takahama and Dillner, 2015) that led to OC reconstruction from summed functional group contributions having better agree-

ment with TOR OC than other sparse calibration algorithms, including EN without PLS. This finding suggests that variables

eliminated for being uninformative in the calibration set samples may lead to undesirable oversimplification of a model that

may be used with samples with potentially different composition, though this hypothesis has yet to be tested with calibrations30

developed with ambient measurements as reference, where the extent of extrapolation may not be so severe as with calibrations

developed with laboratory standards. Weakley et al. (2016, 2018b) applied BMCUVE to second derivative or spline corrected

spectra in the CSN network. Improved MDL but otherwise similar performance metrics to the raw (full wavenumber) calibra-

tion model was obtained using the reduced model for TOR OC (performance described in Section 3.2.1), though the individual

contributions of baseline correction and wavenumber selection to improvement in MDL was not investigated. The impact of35
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wavenumber selection on model performance was not investigated for TOR EC, but the reduced-wavenumber model predicted

EC within TOR precision (Section 3.2.1). Interpretation of the selected wavenumbers are discussed in Section 3.4.

3.4 Interpretation of important variables and their interrelationships

Interpreting the relationships among variables being used by a statistical model to make predictions is a challenging topic

on account of their semi-empirical basis. In particular, it is possible to exploit statistical correlations among the variables to5

make predictions, which can be detrimental if the correlation changes or model is applied in a different context. Therefore,

model interpretation is strongly related to anticipation of model applicability and a priori identification of samples with po-

tentially high prediction errors (Section 4.1.2). Inspection of how LVs and absorption bands are used by a model can give

an indication of their importance, and possibly establish a physical basis between analyte concentrations and their relevant

vibrational modes. Existence of sample subgroups and potentially influential subgroups can initiate indentification of relevant10

sample characteristics that have a disproportionate role in prediction. To some extent, discussions in Sections 3.1 and 3.3.2

focusing on eliminating uninformative variables (LVs or wavenumbers) during the model selection process is also relevant in

this context (some of the same techniques are applicable to both tasks), but the focus will be on understanding the importance

of the remaining variables. The importance of samples and specific attributes (concentration or composition) associated with

them are addressed in Section 3.5.15

As with complex mechanistic models, a general investigation can be carried out through sensitivity analyses (Harrington

et al., 2000; Chen and Yang, 2011). One of the advantages of a PLS regression approach is that the contribution of each LV to

response (y) or spectra matrix (X) can be characterized by the explained Sum-of-Squares (SS) and its normalized surrogate,

Explained Variation (EV) (Martens and Næs, 1991; Abdi, 2010). The emphasis placed by a model on particular wavenumbers

can be examined through its regression coefficients b, Selectivity Ratio (SR) (Kvalheim, 2010), or the Variable Importance20

in Projection (VIP) metric (Wold, 1993; Chong and Jun, 2005). These quantities can be written using j and k as indices for

wavenumber and LV (with J as the total number of wavenumbers), respectively:

SSy,k = q2kt
T
k tk (8)

SSX,k = (pTk pk) · (tTk tk) (9)

SSX,j = pj
(
TTT

)
pTj (10)25

EVy,k = SSy,k/(y
Ty)× 100% (11)

EVX,k = SSX,k/(X
TX)× 100% (12)

SRj = SSX,j/
(
eTX,jeX,j

)
(13)

VIPjk =

(
J

∑k
`=1SSy,` (w`j/‖w`‖)2∑k

`=1SSy,`

)1/2

. (14)

Note that for new samples, the loadings (q and p), sum-of-squares (TTT) and the means used for centering of each array30

(y and X) are fixed according to the calibration set. For PLS, the EVX is not as commonly examined as for other factor
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analysis techniques as the primary objective is in explaining the variation in y. In addition to metrics characterizing the overall

importance of latent and physical variables, the (normalized Euclidean) distance of individual samples from the center of the

calibration space can be indicated by its leverage h. For mean-centered PLS, h is computed for row vector of new scores t

corresponding to sample i weighted by the inverse sum-of-squares of the calibration set (Martens and Næs, 1991):

hi = ti
(
TTT

)−1
tTi (15)5

The sample leverage is used to assess influential points in the model, identify outliers, and estimate prediction variance (predic-

tion intervals). Further discussion of leverage used in the last two objectives is discussed in Section 4.1. Regression coefficients

can oscillate between positive and negative numbers as higher number of LVs are used (Gowen et al., 2011) and their magni-

tude must be considered together with that of the absorbance (i.e., large regression coefficients coupled with small absorbances

may not have a large impact on the modeled outcome), metrics such as SR or VIP can be more useful to assess their relative10

importance (the two vary in ease of interpretability for different types of data and data sets, Farrés et al., 2015).

For TOR analysis, VIP scores have been used to interpret wavenumber importance (Dillner and Takahama, 2015a, b; Weak-

ley et al., 2016, 2018b). VIP scores can also be used as a filtering method (Section 3.3.2) for wavenumber selection (e.g.,

Gosselin et al., 2010; Lin et al., 2013; Liu, 2014), but here they have been used only for post hoc interpretation for this work.

The main principle is that the mean VIP score across all wavenumbers is unity, so those with more influence in explaining y15

carry values above and those with less influence fall below. However, Chong and Jun (2005) found that the actual importance

threshold can be data-specific, with dependence on the proportion of uninformative predictors, predictor correlation, and the

actual values of the regression coefficients. Meaningful threshold values varied between 0.8 and 1.2 in their work. VIP scores

for TOR models are summarized in Figure 8. Wavenumbers associated with TOR OC not surprisingly span a range of func-

tional group structures. Common functional groups interpreted for both 2011 IMPROVE and 2013 CSN include aliphatic C-H20

and carbonyls (carboxyl, ketone, ester, aldehyde), with possible contributions from various nitrogenated (amine, amide, nitro)

groups (Takahama et al., 2016; Weakley et al., 2016). Other candidate bonds are described but assigned with less certainly on

account of strong overlap of absorption bands in some spectral regions. Takahama et al. (2016) based their interpretation on

the selected wavenumbers and VIP scores for both raw and baseline corrected models under a “common bond” that the two

models are basing their prediction using the same set of functional groups rather than different ones. Based on this assumption,25

it appeared that the two models were using different vibrational modes (stretching or bending) for aliphatic C-H and alcohol O-

H, though bending modes typically exhibit weaker absorption signatures. The capability to accurately predict TOR-equivalent

OC concentrations in samples with different OM/OC ratios (determined by functional group calibration models with FT-IR) as

discovered through permutation analysis (Section 3.5.1) suggests that on average, there is some insensitivity to weighting of

functional groups that determine the degree of functionalization in the sample.30

For TOR EC, among other functional groups, wavenumbers selected between 1600–1500 cm−1 were attributed to C-C and

C=C stretching in skeletal ring structures of aromatic or graphitic carbon (Takahama et al., 2016; Weakley et al., 2018b). While

this absorption band corresponds to lattice vibrations in graphitic carbon (Tuinstra and Koenig, 1970) and commonly used

in Raman spectroscopy for characterization of soot particles (Sadezky et al., 2005; Doughty and Hill, 2017), a peak has been
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observed in mid-IR spectra only after crystalline structure is broken down through mechanical stress (Friedel and Carlson, 1971,

1972; Ţucureanu et al., 2016). Nonetheless, a peak of moderate to broad width in this region is observed in soot (Akhter et al.,

1985; Kirchner et al., 2000; Cain et al., 2010), soil black carbon (Bornemann et al., 2008; Cheng et al., 2008), and coal (Painter

et al., 1982). In constructing a PLS model to predict BC in soil by mid-IR spectra and PLS, Bornemann et al. (2008) further

removed the potential influence of correlation between EC and OC in soil samples by predicting the BC content normalized5

by OC with an R2 of 0.81. This analysis encouraged their interpretation that the aromatic structures visible in their first

PLS loading weight vector were specific to BC, which potentially supports the same interpretation for atmospheric samples.

However, Weakley et al. (2018b) found that a calibration model for ELLA did not require aromatic structures for prediction of

TOR-equivalent EC. This site was located in close proximity to a toll station on the New Jersey turnpike and was characterized

by high diesel PM loading, low OC/EC ratio, and low degree of charring compared to samples from other CSN sites in the10

2013 data set. The calibration model was able to predict TOR-equivalent EC concentrations primarily using absorption bands

associated with aliphatic C-H (also selected in the calibration model for the other 2013 CSN sites) and nitrogenated groups

believed to be markers for diesel PM. A standard method for quantification of soot (ASTM D7844-12, 2017) recommends

the use of scattering characterized at 2000 cm−1 (without baseline correction) on the assumption that there is no absorption

usable for quantification. Given that baseline corrected spectra (in which scattering at 2200-1900 cm−1 in addition to other15

wavenumbers with negligible absorption are forced to zero) are able to predict TOR-equivalent EC concentrations in both

2011 IMPROVE and 2013 CSN — and most relevant wavenumbers are in regions associated with visible absorption peaks

— the predictions do not appear to be based on scattering in this application. Early work by Pollard et al. (1990) reported a

calibration for collocated EGA EC using a peak located at 666–650 cm−1 in mid-IR spectra of PM collected onto PTFE filters

at Glendora, CA. However, what vibrational mode this peak corresponds to is unclear, as there is also IR interference from the20

PTFE substrate in this region (Quarti et al., 2013). The true nature of operationally-defined TOR EC and a definitive reason

that its concentration can be predicted from mid-IR spectra is an ongoing topic of investigation. Surface functionalization of

graphitic combustion particle surfaces (Cain et al., 2010; Popovicheva et al., 2014) are estimated to be a small fraction of the

functional groups from organic aerosol in the same sample, and therefore considered to be unlikely to be useful for calibration.

Soot emissions comprise both light-absorbing black carbon and organic carbon (Novakov, 1984; Petzold et al., 2013), and25

it is possible that both fractions exhibit mid-IR activity (some structures co-absorbing in the same region) that can be used

for quantification. Whether the functional groups used for prediction of TOR-equivalent EC are due to the organic fraction

associated with incomplete combustion or other indirect markers warrants further investigation in controlled studies.

While the large number of LVs used by the IMPROVE calibration models precluded attempts at identification of individual

components, Weakley et al. (2016) was able to do this for 2013 CSN TOR OC calibration models on account of their low30

complexity. Application of second-derivative baseline correction, BMCUVE wavenumber selection, and model selection by

Wold’s R criterion resulted in a 4-LV model for TOR OC. Further nuanced interpretation was aided by re-projection of LVs

onto PCA space which modeled much of the same variance as PLS scores, but were formulated and arranged according to their

capability to explain the remaining variance in the spectra instead of the covariance with respect to TOR OC. By visualizing

the sample spectra in two dimensions of this space using a conventional biplot, Weakley et al. (2016) identified a subset of35
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samples with extraneous variance in 2013 CSN spectra attributed to water vapor in the beam path present during spectra

acquisition in the laboratory. While the water vapor conferred minimal prediction error, loading this spectral interference onto

one dimension and excluding it the final calibration model improved interpretability with a more parsimonious model using

only the 3 remaining components. Surprisingly, a single component representing an organic mixture explained close to 90%

of the TOR OC variance, with the remaining two components attributed to interferents: PTFE substrate and ammonium nitrate5

(explained variation of 3–4 % each).

Model interpretation is a continual challenge but a necessary aspect of statistical modeling from a chemometrics perspective,

and remains an active area of investigation for TOR analysis. While the LVs are not constrained to be non-negative as factors

for Multivariate Curve Resolution, Positive Matrix Factorization and Non-negative Matrix Factorization (Paatero, 1997; Lee

et al., 1999; de Juan and Tauler, 2006), the relative variation of scores can be analyzed alongside auxiliary measurements to10

identify their importance toward specific PM samples. This association can be made in a correlative capacity (Russell et al.,

2009; Faber et al., 2017), or through more sophisticated means such as target transformation factor analysis (Henry et al.,

1984; Hopke, 1989). In addition, the way of obtaining LVs can be modified to accommodate features from TOR OC and EC

simultaneously. A variant of PLS that can potentially aid in this endeavor is “PLS2”, which uses a shared representation of LVs

for multiple response variables (Martens and Næs, 1991). Shared representations are commonly used in multi-task learning15

(Caruana, 1997) to build models that generalize from fewer, diverse training instances, and may additionally confer benefit in

this context for understanding the inter-relationship between these two substances and their thermal fractions. The univariate-

response formulation of PLS (“PLS1”) as described in Section 3.1 has been the focus of past work with TOR calibrations as it

typically achieves the same or better accuracy as PLS2 with fewer LVs (Martens and Næs, 1991), but the potential for PLS2 in

improved interpretation and robustness in a wider range of contexts is an area that can be further explored.20

3.5 Sample selection

To design a campaign to collect both FT-IR spectra and reference measurements or to select among available collocated

measurements in a database to construct a new calibration model, it is necessary to address the question of how many of

which type of samples do we need? Provided that the form of a data set can be fit by several models, it is possible for the

simpler ones with more training data to outperform more complex ones with less training data for new predictions (Halevy25

et al., 2009). This argument can be rationalized in a chemometric context by conceptualizing an ideal calibration model as

one built upon samples of identical composition and concentration (with replicates) for every sample in the prediction set.

Especially for complex PM components such as TOR OC and EC that have a multitude of absorption bands in the IR from

both target and interfering substances, enough samples must be included in the calibration set to span the range of multiple

attributes. For each unique sample removed from the calibration set, the corresponding composition in the prediction set must30

be estimated by mathematical interpolation or extrapolation from the remaining samples. Reducing the number of calibration

samples increases the dependence of the predictions on the functional form or weighting scheme (with respect to variables

and samples) of the selected model with possible consequences for prediction accuracy. Lacking mechanistic constraints,

predictions from data-driven models may exceed physical limits with increasing reliance on the underlying algorithm over
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Figure 8. Selected wavenumbers (blue points) overlayed on mean of calibration spectra (black lines). 2011 IMPROVE spectra remain

unprocessed (“raw”) or baseline corrected using smoothing splines (“baseline corrected”), while the 2013 CSN spectra are baseline corrected

using the Savitsky-Golay 2nd derivative approach. “Atypical” and “typical” categories for 2013 CSN EC refer to samples for Elizabeth, NJ,

and the remaining nine sites, respectively.

measurements. The obvious importance of chemical similarity in calibration can be related back to physical principles that

give rise to the observed mid-IR spectrum. First, for any given wavenumber, the absorption scales with analyte abundance

— simpler calibration models in analytical chemistry built on this principle dictate that the concentration range covered by

calibration samples should bound the concentrations in the new samples so that values are interpolated rather than extrapolated

to minimize prediction error. Second, complex absorption profiles arise from heterogeneous broadening of absorption bands5

in the condensed phase. Therefore, samples with a similar chemical composition to new samples are likely to have similar

patterns of absorbance and interferences that can be accounted for by the calibration model.

A basic premise follows that calibration models built with samples having similar spectroscopic profiles, specifically near the

most relevant absorption bands, are likely to yield better prediction results for new samples. For analysis of simple mixtures,

one common strategy pursued in experimental design is to prepare samples that populate the chemical coordinates (e.g., molar10

concentrations of its constituent species) of anticipated composition according to Euclidean distance (Kennard and Stone,

1969). However, this procedure does not guarantee that the training and prediction data will have similar distributions in the

feature space of an effective calibration model (i.e., similarity may not be best characterized by Euclidean distances). This

task is further complicated by the fact that chemical similarity is not easy to define for composite substances (TOR OC) or

chemically ambiguous quantities (TOR EC). Moreover, the samples for calibration at the level of chemical complexity of15
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atmospheric mixtures are typically limited by the availability of collocated measurements (e.g., TOR reference measurements

together with sample spectra from PTFE filters).

In the context of these challenges, the canonical (“base case”) strategy for TOR OC and EC calibration has been to use

space and time as a proxy for composition. A stratified selection approach — in which selected samples are evenly spaced

out over a full year at each measurement site — is used construct the calibration set, as there is reasonable expectation that an5

adequate representation of emission sources and extent of atmospheric processing can be captured. Blank PTFE filter spectra

are added to the calibration set and their corresponding reference concentrations are set to zero, as this value is equally valid

to the TOR-determined concentration for below-MDL samples. Excluding irregular events (e.g., wildfires), this approach can

be effective in building a general calibration model for atmospheric samples and has demonstrated good performance (Section

3.2). However, samples from the same site and season are not strictly required for successful prediction of each new sample.10

Reggente et al. (2016) demonstrate accurate prediction for a full year of TOR OC and EC concentrations at sites not included

in the calibration (also revisited in Section 4.1). The extent to which site, season, local emission, or meteorological regime of a

new sample affects prediction depends on how these factors contribute to deviation in chemical composition from calibration

samples. We further summarize our efforts in understanding which types of samples are important (Section 3.5.1) and how

many samples are needed (Section 3.5.2) for calibration. Lastly, we describe how specialized calibration models can better15

serve a specific set of samples that are not well-represented in the feature space of all calibration samples (Section 3.5.3).

3.5.1 Important attributes

Our findings indicate that many, though not all, methods for sample selection can lead to an acceptable calibration model

as determined by evaluation criteria described in Section 3.2. To investigate which aspects of similarity are important in this

regard, Dillner and Takahama (2015a; 2015b) performed permutation analyses on the available set of samples to study how20

differences between calibration and test set samples influenced prediction errors. Samples were grouped according to values

of descriptors chosen to capture the effect of analyte concentration (TOR OC, EC), source and degree of functionalization

(OC/EC and OM/OC), and inorganic interferences (ammonium/OC, ammonium/EC). Predictions were evaluated when the

distribution of these descriptors represented in the calibration set were selected to be either similar or different to those in the

test set. To construct calibration and test sets according to these specifications, samples were arranged in order of a particular25

attribute. For similar calibration and test set distributions, every third was reserved for the test set while the remainder was

used for calibration. To examine the effect of extrapolation with respect to any attribute, the calibration set was constructed

from samples with the lowest two-thirds or highest two-thirds of attribute values, and the remainder used for the test set. To

examine the effect of interpolation, the highest third and lowest third were used for calibration and predictions made on the

middle third of samples. Inadequate representation of any of these variables in the calibration set led to increased errors in30

model predictions, but with typically low bias in interpolation. TOR OC could be predicted with only marginal increase in bias

(median absolute bias of 0.1 µgm−3) and no increase in normalized error (∼10%) even when extrapolating predictions on

average three times higher, indicating a calibration that was effectively linear over the range tested (0–8 µgm−3). For samples

varying in OM/OC ratio between 1.4–2.5, normalized error in predicted TOR OC increased from ∼10% when the calibration
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and test sets were similar to 14–17% when they were forced to diverge according to the segmentation described above, but

the predictions remained unbiased. The largest increase in prediction error came when using calibration samples with low

ammonium interference (low ammonium/OC ratio) to high ammonium content, with an increase in normalized error of from

∼10% to 24%. For TOR EC, almost every extrapolation scenario resulted in an increase in either bias or normalized error (by

10 to 60 percentage points), suggesting its sensitivity to a large number of sample attributes.5

Such permutation analyses permit independent evaluation of attribute importance only to the extent that they are not corre-

lated in the samples. For instance, for 2011 IMPROVE, much of the variability across the entire data set was driven by the two

collocated urban sites in Phoenix, AZ, which contained higher concentrations of less functionalized PM in general than the

remaining rural sites. However, normalization strategies — e.g., of ammonium by OC or EC — reduced confounding effects.

Dillner and Takahama (2015a; 2015b) only tested each univariate case in turn, but multidimensional permutation analysis in10

which samples are partitioned according to differences across multiple variables for model building and testing may be possi-

ble with a large number of samples. Computational resources permitting, bootstrap sampling combined with post analysis may

provide another means of testing the importance of particular attributes in such instances.

3.5.2 Number of samples

The minimum number of samples required by a model is dependent on the capacity of its calibration samples to collectively15

represent the diversity of composition in new samples, and the algorithm to effectively interpolate or extrapolate into unpopu-

lated regions of the composition space. To illustrate this notion, we present the change in prediction metrics for TOR-equivalent

OC as a function of the number of ambient samples in the calibration set (Figure 9). Beginning with samples selected accord-

ing to the base case strategy (stratifying by space and time) as the initial reference, the number of ambient samples in the

calibration set are reduced while the number of blank samples are held constant. The set of test samples are also fixed for20

all evaluations. While the conclusions are not strikingly obvious, some overall trends can be noted. Figure 9 shows a general

decrease in prediction accuracy with fewer number of ambient samples, especially below ∼150 samples, though individual

differences among most models are not statistically significant. The gradual degradation in prediction accuracy is attributed

to difficulty in maintaining representativeness of important attributes with a small number of samples. Figure 10 shows the

increasing difference in empirical probability distributions of attributes in the calibration and test set samples as a function25

of the number of ambient samples using the Kolmogorov-Smirnov test statistic (higher values indicate higher dissimilarity

between the calibration and test set distributions). The increase in differences between the distributions in TOR OC, but par-

ticularly the ammonium/OC ratio, is the primary cause as it was determined to be a critical attribute for TOR OC prediction

(Section 3.5.1). Due to the diminising statistical power with fewer calibration samples, statistical significance is not established

in this regime; we therefore interpret these results qualitatively. The MDL is generally maintained or improved with decreasing30

number of ambient samples, which is sensible as the number of blank samples grows in proportion. On the other hand, the

number of blank samples (varied between 0 and 36) when included with 501 ambient samples in the calibration set (Dillner

and Takahama, 2015a, b) did not have a large effect on the MDL.
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We might conclude that larger calibration sets that more likely cover the range of attributes in new samples might lead

to better model performance. Reggente et al. (2016) shows an example for raw spectra. Without baseline correction, TOR

OC concentrations for two sites — FRES and BYIS —in 2013 IMPROVE were not predicted well by the original model.

Predictions were shown to improve when samples from these sites were included (Reggente et al., 2016). In this case, the

calibration set without FRES and BYIS was too small in that it did not contain the appropriate representation of specific5

sample characteristics. However, as with wavenumbers, populating the calibration set with increasing number of unrelated

or uninformative samples with respect to a targeted class of samples may lead to added noise or bias from unfavorable model

weighting. In such instances, smaller, dedicated models may be better for specific classes of samples provided that it is possible

to distinguish which model is best suited for each sample. In the next section, we describe cases in which a smaller subset of

samples for calibration have been found to be appropriate for improving specific performance targets.10
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Figure 9. The prediction accuracy for TOR OC as a function of the number of ambient samples in the calibration set (the number of blanks

were kept constant at 36). Using the 2011 IMPROVE base case calibration model, every nth sample was removed (which leaves spatial and

temporal representation of samples close to the original set). The performance metrics are computed on the same 286 test set samples for all

calibration models.

3.5.3 Smaller, specialized models

While a large, monolithic model may be most capable of accommodating diverse composition in prediction set samples,

models that assume underlying structure of the chemical domain for interpolation or extrapolation may be susceptible to undue

influence by one or more groups of (high leverage) samples and return biased predictions for a specific set of underrepresented

samples. Statistical localization is the process by which calibration models are built with samples that are closest in composition15
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Figure 10. Kolmogorov-Smirnov (KS) test statistic for different number of calibration samples used in Figure 9. The KS statistic characterizes

the difference between two empirical distribution functions; in this case determined for probability distributions of each variable between the

calibration and test set samples.

to samples for which predictions are desired. While the overall number of samples used for training in each localized model is

reduced, the distribution of the calibration model better reflects that of the subset of samples for which new predictions are to

be made. Together with a classifier capable of selecting the appropriate localized model for each new spectrum, several models

can collectively function as a single multilevel model to provide a best estimate of the targeted concentration.

This approach has been applied to TOR EC calibration in both networks studied (Dillner and Takahama, 2015b; Weakley5

et al., 2018b) (Figure 11). Dillner and Takahama (2015b) constructed a multilevel model consisting of calibrations for two

different concentration regimes for 2011 IMPROVE. A calibration model using only a third of the lowest concentration samples

(areal density <0.68 µg cm−2) led to an MDL of 0.01–0.02 µgm−3, while using the full range of areal loadings for calibration

led to an MDL of 0.03–0.08 µgm−3. Overall prediction errors for low samples were also reduced with a dedicated model,

but to a lesser extent than the MDL. The full range model served as a classifier; predictions that fell below the areal loading10

threshold according to this model were refined with the low-concentration calibration model. As discussed in Section 3.4,

ELLA was believed to be influenced by diesel emission sources that led to different PM composition and spectral characteristics

from the remaining nine CSN sites. Therefore, predicted concentrations for ELLA were systematically biased low compared

to observations. Weakley et al. (2018b) trained a partial least squares discriminant analysis (PLS-DA) model on geographical

location to segregate typical samples from atypical ones that resembled ELLA spectra. Spectra classified as being atypical were15

predicted using a model trained solely on ELLA samples, while the ones classified as typical were predicted using a model

trained on the rest of the samples. Considering the overall model performance for all samples, using this multilevel approach

led to an improvement in R2 from 0.76 to 0.88, and a decrease in bias from 5.2 to 2.7% (with corresponding improvements in

MDL, precision, and other figures of merit). The difference in metrics were largely due to improvement in ELLA predictions,

as the predictions for non-ELLA samples were similar in both approaches (mean errors of 0.15 and 0.16 µgm−3, and R2 of20

0.83 and 0.85 for the monolithic and multilevel model, respectively).
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Figure 11. Multilevel modeling strategies used for TOR EC in the IMPROVE and CSN network. In the left figure, “full range” denotes the

calibration model using the full range of TOR EC concentrations, while the “low conc.” denotes the model using only the lowest third. In the

right figure, “atypical” samples were taken from a particular site (ELLA) while the “typical” samples comprised the rest.

4 Operational phase of a calibration model

The operational phase of the model marks a departure from the building and evaluation phases (Figure 2) in that reference

measurements may no longer be available on a regular basis. However, this is the eventual use case for such calibration

models — for instance, to enable FT-IR to provide TOR-equivalent carbon values from a PTFE filter in new monitoring sites

or measurement campaigns where TOR analysis from a separate filter is not available. Without reference measurements, it is5

important to evaluate the appropriateness of available calibration models for new samples, continually monitor the performance

of the model by introspective means, and update the calibration as necessary. To this end, we describe methods for anticipating

prediction errors arising from precision and bias (Section 4.1), and strategies for calibration maintenance (Section 4.2).

4.1 Anticipating prediction errors for new samples

We dedicate this section to describe ways for anticipating prediction errors in new samples during the operational phase of a10

calibration model. Higher prediction errors may arise from a decrease in precision, or additional biases incurred for samples that

are not well-represented by the calibration samples. The former can be approximated from the measurement noise characterized

from the calibration set, while the latter is assessed on a more qualitative scale based on similarity of new samples to those

in the calibration set. Anticipating these errors is imperative for reporting estimated precision for new samples, monitoring

systematic changes in model performance, and selecting an alternate calibration model for new samples when prediction15

quality is questionable. For this task, we assume the unavailability of reference measurements for which evaluation methods

in Sections 3.2.1 and 3.2.2 would otherwise apply; and primarily rely on spectral characteristics. To this end, Section 4.1.1

discusses the construction of prediction intervals around point estimates, Section 4.1.2 covers the strategy for outlier detection,

and Section 4.1.3 illustrates the use of sample similarity assessment for comparing suitability of models. The raw-spectra TOR

EC calibration model for IMPROVE 2011 introduced by Dillner and Takahama (2015b) and evaluated for 2013 by Reggente20
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et al. (2016) is revisited on account of its high prediction error and difficulty anticipating prediction errors compared to TOR

OC.

4.1.1 Sample-specific prediction intervals

In Section 3, discussions focused around providing and evaluating point estimates of prediction. Additionally, interval estimates

for each sample can be obtained to determine prediction uncertainty under a fixed relationship between model and data assumed5

under conditions of the calibration. In effect, prediction intervals describe magnitude of errors that are similar to those in the

calibration set, and can be obtained from error propagation or resampling (bootstrap or jacknife) (Olivieri et al., 2006), or by

employing a Bayesian framework (Murphy, 2012). We will restrict our discussion to estimating prediction intervals as they

pertain to multivariate linear regression (including PLS). Provided that sufficient data exists, numerically-resampled intervals

can be generated free of assumptions regarding underlying distributions, but the error propagation approach is favored on10

account of its connection to the fundamental processes contributing to the errors. The standard error of prediction has two

primary contributions: the model contribution from calibration, and the measurement contribution from the prediction sample.

These contribute nonlinearly to the prediction error, but an approximate expression can be derived through local linearization

(i.e., neglecting higher-order terms typically assumed in error propagation) (Phatak et al., 1993; Denham, 1997; Faber et al.,

2003; Serneels et al., 2004). This approximation results in a tractable expression for the prediction standard error σŷ,i similar15

to that used by ordinary least squares regression, but considers heteroscedastic errors (Faber and Bro, 2002; ASTM E1655-17,

2017):

σŷ,i = s(1+hi)
1/2 . (16)

The point estimate of prediction can then be bounded by an interval defined as ±tα,νσŷ,i, where tα,ν denotes a t-distribution

with significance level α and degrees of freedom ν. s is estimated from the fitting error — the mean squared error of calibration20

(MSEC: squared error normalized by the degrees of freedom). While a common assumption is that s captures only the predic-

tion variance, the MSEC can implicitly include the prediction bias if present in the fit of the calibration set. h is the leverage

introduced in eq. 15, and its role can be rationalized by the fact that samples closer to the “average” calibration sample are

more precisely estimated than those which are further away. The approximations made for eq. 16 results in a method that is

most applicable for small noise and small range of FT-IR absorbances (Faber and Kowalski, 1997a, b). Furthermore, prediction25

standard error can be refined by subtracting the precision of the reference measurement (Faber and Bro, 2002; Faber et al.,

2003), but is not considered here.

The prediction intervals given by eq. 16 calculated for TOR-equivalent OC and EC are shown in Figure 12. Low standard

errors of predictions anticipate low prediction errors, but prediction errors for higher concentrations (3–85 µg cm−2) are more

variable than indicated by the precision error. While deviations from observations in calibration are mostly explained by eq.30

16, Reggente et al. (2016) and Weakley et al. (2018b) found that actual prediction errors do not always scale with computed

leverage. This phenomenon is also reported in other applications (Zhang and Garcia-Munoz, 2009), and indicates the possible

role of bias due to differences in composition that is not well-captured by this metric.
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It is also relevant to consider the standard errors of prediction for the TOR measurements (Chow et al., 2007a). Naïve

propagation of reported errors across the relevant thermal fractions (including pyrolized carbon) leads to estimates of relative

precision that approach 7 and 14% for TOR OC and EC, respectively, for the highest concentrations observed for this IM-

PROVE data set. As the errors are not truly independent for each sample, a simple summation of prediction variances may

lead to an underestimation. However, these calculated errors are close in magnitude to the average collocated precision er-5

ror estimated for 2011 IMPROVE (15 and 23% for TOR OC and EC, respectively, Table 2), and the combined uncertainty

estimated from analytical, cross-laboratory, and cross-sampler effects (Brown et al., 2017). The relative precision estimated

for their respective calibration models using eq. 16 converges toward values which are approximately 3 times lower for both

variables. The standard errors of prediction of a multivariate model can be lower than the reference measurements from which

it is derived, as random errors from the latter are averaged out in the calibration process — especially when a large number of10

calibration samples are used (Difoggio, 1995). However, given that the apparent collocated precision for model predictions are

on a par with TOR (Table 2), it is likely that model uncertainties calculated from eq. 16 are underestimated on account of un-

accounted variations. Nonetheless, a general conclusion can still be drawn that many samples are predicted within uncertainty.

There remain a samples (167 for TOR OC and 126 for TOR EC, out of 2177 total) that can be identified (in red, Figure 12) as

having prediction errors which fall outside the anticipated range of uncertainty of both model and measurement. We describe15

procedures for algorithmically detecting these samples in the absence of reference measurements in Section 4.1.2.
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Figure 12. Point estimates and prediction intervals for the TOR-equivalent concentrations in the 2013 IMPROVE prediction set. Gray shades

indicate extent of areal mass densities in the calibration samples. Triangles represent samples associated with burning (scaled spectra shown

in right column). Red samples correspond to those for which the difference between predicted and observed concentrations exceed the

combined uncertainties at the α= 0.05 significance level.
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4.1.2 Outlier detection

As described in Section 3.5, a calibration model that is likely to be suitable for a new sample is that which is trained on samples

with similar concentration and composition. Therefore, identifying samples which are different from those in the calibration

set of a particular model is closely tied to anticipation of potentially high prediction errors due to incurred bias. We first review

possible categorizations of samples in a Venn diagram (Figure 13). Within a multivariate space encompassing all samples, some5

will lie at the edge of the domain (extreme values), while others will lie in sparsely populated regions of the interior (inliers).

Some of these extreme values and inliers will be statistically surprising given the rest of the points, and are typically labeled as

outliers or anomalous samples (Barnett and Lewis, 1994; Jouan-Rimbaud et al., 1999; Aggarwal, 2013). We note that inliers

are sometimes used to refer to statistically different samples which lie within the composition domain, but we reserve the

word outlier for all statistically significant samples in this paper. New samples in furthest proximity from calibration samples10

in this composition space require aggressive extrapolation or interpolation (i.e., they are least constrained by data), and are

most likely to suffer in prediction performance. However, the actual increase in prediction error (if any) will depend on the

functional relationship among variables and how well they are represented by the model — e.g., a linear relationship modeled

by a linear mapping may perform adequately in interpolation and extrapolation. For instance, samples with OM/OC and OC/EC

composition and TOR OC concentrations out of range with respect to calibration samples were predicted without substantial15

increase in errors (Section 3.5.1). Therefore, not all outliers may be associated with high prediction errors.

Dissimilarity can be expressed as a measure of distance or a discrete label of normal/anomalous resulting from an unary

(one-class) classification (Brereton, 2011). Identification of dissimilar observations is the subject of many disciplines including

chemometrics, machine learning, and statistical process control and are referred under various names: anomaly detection, fault

detection, novelty detection, and outlier detection (e.g. Wise and Gallagher, 1996; Montgomery, 2013; Pimentel et al., 2014).20

Together with knowledge regarding “prediction outliers” (samples with surprisingly high prediction errors), decisions can be

grouped into the following outcomes (Figure 13): True Negative (TN; samples are classified as being similar and prediction

error is low), True Positive (TP; samples are classified as being dissimilar and prediction error is high), False Negative (FN;

samples are classified as being similar while prediction error is high), and False Positive (FP; samples are classified as being

dissimilar while prediction error is low). The realization of these outcomes by a classifier can be used to judge its performance.25

We note that in contrast to the multilevel modeling strategy described in Section 3.5.3, the problem of error anticipation is

to build a classifier that identifies all samples not similar to those in the training set (i.e., outliers, some of which may have

anomalously high magnitude of prediction error) without exhaustive knowledge or separate training sets comprising the new

sample types.

Without reference measurements, many external indicators might be used to characterize differences between new samples30

and those in the calibration set, especially with respect to attributes identified to be important (Section 3.5.1). For instance, the

fraction of inorganic to total PM may give an indication of ammonium to OC ratio, or NOx may be a valid surrogate for EC in

many urban situations. However, our primary objective is to rely on indicators of composition and concentration that can be ex-

tracted directly from the FT-IR spectrum to determine the appropriateness of an existing calibration model to the new samples.
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Figure 13. Venn diagram (not to scale), left, and confusion matrix, right, depicting the relationship between detected outliers and magnitude

of prediction errors.

Baseline corrected spectra have been used in the past to characterize similarity among ambient aerosol spectra through cluster

analysis (e.g., Takahama et al., 2011; Ruthenburg et al., 2014), and can also be used for classification (Fearn, 2006; Isaksson

and Aastveit, 2006). For instance, many of samples with large deviations in predictions of TOR-equivalent OC from observed

values are spectroscopically similar (Figure 12) and exhibit sharp methylene peaks and large carbonyl absorbances present

in spectra of biomass burning samples (Hawkins and Russell, 2010; Russell et al., 2011). Locations and dates of some these5

samples are consistent with known periods of wildfires, and will be the topic of future investigation. The underrepresentation

of these types of samples in the 2011 IMPROVE calibration (and test) sets, or simply the higher concentrations beyond the

calibration range may explain the proportionally high prediction errors incurred for these samples. The highest TOR EC con-

centrations in 2013 are associated with FRES, an urban site, and BYIS, an international site, both of which were not part of the

2011 calibration set. Spectral matching combined with model interpretation (Section 3.4) can identify particular sample types10

that may be problematic for a calibration model a priori. However, as sparse calibration modeling has shown (Section 3.3.2),

not all spectral features are likely to be relevant for prediction of TOR OC or EC concentrations. Therefore, transformations

specific for the target analyte (which can include but are not limited to spectral processing techniques described in Section 3.3)

are likely to reveal the discriminating spectral features for distinguishing samples that are different from those in the calibration

set.15

Projection of the spectra in the feature space of the calibration model (i.e., factor scores and residuals of PLS or PCA, kernel

distances, latent encoding in Gaussian process) after appropriate spectra processing and wavenumber selection can provide

spectral comparisons that are specifically meaningful for prediction of the response variable (Nomikos and MacGregor, 1995;

MacGregor and Kourti, 1995; Camci et al., 2008; Ge and Song, 2010; Serradilla et al., 2011). For PLS regression, the feature

vectors (scores) can be combined into a single metric called the Mahalanobis distance (Mahalanobis, 1936) or Hotelling’s T 220

statistic (Hotelling, 1931), which are both proportional to the leverage introduced in eq. 15. The two terms are often used

synonymously (e.g., Kourti and MacGregor, 1995; ASTM E1655-17, 2017), but can also be defined differently according to

rank approximation of X or a coefficient making the T 2 comparable to the F -distribution (e.g. De Maesschalck et al., 2000;

Brereton and Lloyd, 2016; Brereton, 2016). We will adopt the convention of defining T 2 ≡D2
M , but reserve Hotelling’s T 2

statistic for use with its eponymous test to determine out-of-limit samples (e.g., in statistical process control) and D2
M for a25
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general distance measure (which is also used in classification methods built upon different criteria). Outside of this feature

space, the Q(X)-statistic estimated using residuals E of spectra reconstructed from its latent variables (eq. 7) (Jackson, 2004)

can additionally indicate variations orthogonal to the feature space, and hence variations which are orthogonal to the modeled

portion of the response variable (Höskuldsson, 1996; Bro and Eldén, 2009). Therefore, Q(X) is typically monitored over time

alongside T 2. The two metrics for mean-centered PLS can be written as follows:5

T 2
i =D2

M,i = (N − 1) ·h

Q
(X)
i = eX,ie

T
X,i = xi

(
I−PPT

)
xTi

N is the number of samples in the calibration and h is the leverage from eq. 15. P is the matrix of loadings (eq. 6) and eX

denotes the row vector of residuals associated with each sample (eq. 5), equivalent to the product of latent variables unused for

calibration. In an analytical chemistry context, high values of T 2 result from extreme values or unusual combinations of the10

same chemical components as those in the calibration set, whereas introduction of new analytes or interferences that result in

spectroscopic response lying outside of the modeled domain would be carried in the residuals (Wise and Roginski, 2015). In

practice, the separation of unfamiliar contributions to the spectra is likely not as clean, particularly with respect to nonlinear

phenomena (e.g., scattering) which can be spread over multiple factors, and the portion of the spectroscopic signal associated

with new substances may not be entirely apportioned to the residuals.15

For classification purposes, thresholds for T 2 and Q(X) are determined from the F distribution and χ-square distribution,

respectively, at different significance levels (Kourti and MacGregor, 1995). Classification and dissimilarity characterization by

T 2 for a given data set performs best when the points converge toward a multivariate normal distribution. Such a distribution

becomes less representative of the data set when the problem increases to proportions of extremely high dimensionality, where

points become sparsely dispersed throughout the vast composition space rather than clustered around a single centroid (Domin-20

gos, 2012). To alleviate this problem, it is useful to conceptualize different relationships of training data in the column space of

T and E against which new samples are compared. This task can be fulfilled by unary classifiers that learn patterns from the

data without imposition of global structure (e.g., normality). These approaches may employ superposition of local potential

or kernel density functions (Jouan-Rimbaud et al., 1999; Latecki et al., 2007), kernel methods (Schölkopf et al., 1999), or

recursive partitioning of the chemical space (Liu et al., 2008) for detection of points separated from the from the remainder of25

the samples.

For the 2013 IMPROVE data set, Reggente et al. (2016) used the 2011 IMPROVE calibration models developed by Dillner

and Takahama (2015a; 2015b) and applied the Mahalanobis distance metric. Heuristic thresholds for D2
M and the prediction

error were determined as their respective maximum values in the 2011 IMPROVE test set for purposes of classification. The

number of samples in 2013 which had prediction errors greater than the selected threshold was small for both TOR OC and30

EC — for paired samples above detection limit across 17 sites, only 36 out of 2189 (TOR OC) and 22 out of 2177 (TOR EC)

samples (1–2% of total) were determined as having high-errors according to this criterion. The overall accuracy (fraction of

TN and TP out of total) was high, with 98% for both TOR OC and EC. These numbers are enviable for any classifier but

was largely aided by the low number of high-error samples, which resulted in high overall accuracy from a permissive D2
M
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threshold and a limited number of FP classifications. When considering prediction intervals of both prediction and reference

measurement, some of these high prediction errors are within anticipated uncertainties of the samples, while a few anomalous

samples with errors outside of the range of uncertainties occur with lower absolute prediction errors (Section 4.1.1 and Figure

12). Therefore, we first correlate the results of outlier analysis to samples with prediction errors that lie outside of expected

agreement (i.e., prediction outliers). We then revisit the topic of using these classification algorithms to identify samples with5

the highest magnitude of prediction errors.

For this discussion, it is useful to define two additional metrics: True Positive Rate (TPR) is the fraction of samples with

high error correctly identified as such, and the False Positive Rate (FPR) is the fraction of samples with low errors that are

incorrectly identified as having high error. In a coordinate space with TPR as the ordinate and FPR as the abscissa (Figure

14), the perfect model lies at (0, 1). For detecting new or anomalous spectra, we explore classifiers introduced above (potential10

function method, one-class SVM, and isolation forest) and consider their tradeoffs in TPR, FPR, and overall accuracy. For the

potential function method, the radial basis function (RBF) is selected; the free parameters are the number of nearest neighbors

used to determine the kernel width parameter and the confidence level for the thresholds. For one-class SVM, the RBF kernel

is also used with the kernel coefficient and effective thresholding parameter varied. For isolation forest, the randomization seed

and number of iterations is varied. For any given model, parameters or effective thresholds determine an approximate envelope15

in the space of TPR and FPR referred to as a Receiver Operating Characteristic (ROC) curve (Fawcett, 2006). For simplicity,

the solutions with highest accuracy (fewest false classifications) and nearest proximity to the (0,1) coordinate is shown in

Figure 14, alongside T 2 and Q(X) for the α= {0.01,0.05,0.1} significance levels. For reference, the heuristic threshold for

T 2 from Reggente et al. (2016) is also shown.

For TOR OC, classification performance using residuals (E) is slightly but consistenty better than than using LVs (T). The20

TPR ranges between 10–88% and FPR between 1–36% using T and TPR ranges between 36–87% and FPR between 4–28%

using E. For TOR EC, the selected results are clustered together with a few exceptions; TPRs and FPRs are typically higher

(56–85% and 8–38%, respectively). Regarding systematic differences between methods over parameters studied, the potential

function and SVM methods can span a wide range of solutions in the ROC space that follows the arc delineated by the selected

points shown (up to TPR and FPR of 100%), while all isolation forest solutions remained in close proximity to the points25

depicted in Figure 14. Both T 2 and Q(X) metrics with the significance levels explored are restricted to the upper left corner of

the ROC space as depicted.

The tradeoff in TPR and FPR is in part determined by what are designated as prediction outliers. The stratification of pre-

diction errors by classification is illustrated in Figure 15. A classifier that is able to identify all samples with prediction errors

greater than expected uncertainties would result in segregation by color in this figure. However, we see that the prediction out-30

liers are only partially correlated with the absolute magnitude of prediction error (especially for TOR EC, where the pyrolized

fraction adds a variable contribution to precision error across samples), while samples labeled as spectroscopic outliers are

more aligned with the latter. Furthermore, samples with the lowest prediction errors are also not flagged as outliers. That spec-

tral outliers are primarily correlated with magnitude of prediction errors (more than deviation outside of expected precision) is

sensible. Greater prediction errors are anticipated by sample leverage (eqs. 15 and 16) used explicitly or implicitly by classifi-35
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cation algorithms, and high leverage can be related to extreme concentrations for which heteroscedastic measurement errors are

also greater. Biomass burning samples previously mentioned can be identified visually (and by spectral matching), but they are

not necessarily flagged as outliers with respect to the calibration models. This is not surprising as prediction errors for burning

samples are not systematically higher, except for the few samples with highest TOR OC loadings. Revisiting the classification

problem posed by Reggente et al. (2016) and considering only the samples with highest prediction errors exceeding those of5

the 2011 IMPROVE test set as prediction outliers, it is possible to achieve TPR of 81% and FPR of 12% for TOR OC, and TPR

of 91% and FPR of 8% for TOR EC (both with the potential function method) as the solutions closest to (0,1) on the ROC

curve. Outlier detection for TOR EC is better served by alternative methods to T 2 on account of the strong non-normality in

the multivariate feature space (Reggente et al., 2016). For this scenario, selecting a classifier with high TPR comes at a cost of

lowering the overall accuracy significantly because of the small proportion of high-error samples. For instance, moving from10

the max D2
M classifier of Reggente et al. (2016) to the potential function solution for TOR EC as described above, an increase

in TPR from 59% to 91% (a difference of 7 samples) accompanied by an increase in FPR from 1% to 8% (a difference of

142 samples) drops the overall accuracy from 98% to 92% on account of the large number of low-error samples that would

be detected as being different. The desired criterion for the optimal classifier may depend on the purpose of classification. For

the purposes of flagging suspicious samples during routine application of a calibration model, it may be desirable to select a15

classifier with high overall accuracy to keep the total number of FN and FP to a minimum. A conservative classifier with higher

TPR than low FPR is, however, likely to be more useful for model selection against a specific sample (Section 4.1.3).

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

●

TOR OC

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●

●

●

●

TOR EC

Data

scores
residuals

●

Method

reference
potential
SVM
isolation forest

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 14. Receiver Operating Characteristic (ROC) curves for the 2013 IMPROVE data set. Symbol colors are grouped according to the

data used for detection (either scores T or residuals E). Symbol shapes indicate method of estimation. “Reference” denotes Hotelling’s T 2

statistic for scores and the Q(X) statistic for residuals, for which three open circles are shown for the α= {0.1,0.05,0.01} significance

levels. The filled purple symbol indicates the performance determined by the maximum T 2 of the 2011 IMPROVE test set, as originally used

by Reggente et al. (2016). For other methods, two symbols are drawn and connected by dotted lines to indicate the solution with highest

accuracy (fraction classified correctly) and the solution which lies closely to the coordinate (0,1).
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Figure 15. Prediction error distribution (top row) and classification results using the Q(X) classifier with α= 0.05 significance level applied

to model residuals (bottom row) for the 2013 IMPROVE data set. 1 corresponds to outliers and 0 as those not classified as outliers. Triangles

and red samples correspond to same sample specification as Figure 12; rest of the individual prediction errors are symbolized with open

circles.

4.1.3 Model selection without reference measurements

Methods for error anticipation may also be used for evaluating among a set of candidate models when reference measurements

are not available to provide a full evaluation. To illustrate such an application, we revisit the apparent increase in mean pre-

diction error shown for decreasing number of ambient samples in the calibration set displayed in Figure 9. The corresponding

increase in mean squared Mahalanobis distance between the fixed set of 253 test set spectra and those of the changing calibra-5

tion set is shown in Figure 16. As D2
M increases linearly with the number of components, only the first 10 LVs are considered

in each model for the purpose of a fair comparison. This example provides indication that the loss in representativeness of

composition or concentration between the 253 predicted samples and calibration samples as the latter numbers are diminished

(Figure 10) is reflected in the FT-IR spectra, and can be appropriately extracted after projecting them onto factor scores of their

respective PLS models.10

While we have demonstrated use of D2
M to provide a qualitative comparison among several models, in principle it would be

possible to use the classifiers introduced in Section 4.1.2 to find a set of models for which a new sample is not determined to be

dissimilar. As mentioned in Section 4.1.2, a conservative classifier with higher TPR than low FPR is likely to be more useful for

model selection for any specific sample. A sample-specific calibration model in which individual compounds from an available

database for each new prediction sample is in principle possible using concepts described in this section. However, without a15

priori knowledge, the most relevant features and measure of similarity among individual samples is necessarily defined through

the process of calibrating a model. Therefore, it is at present time necessary to hypothesize or propose several candidate models

and select among them for any new prediction sample or set of samples for possible improvements in prediction.
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Figure 16. Mean squared Mahalanobis distance (D2
M ) between spectra of the fixed test set and changing calibration set, constructed as

described in caption of Figure 9). Error bars span ± one standard deviation. The first 10 latent variables are used for estimation of D2
M in

this example to reduce the dimensionality the factor space (Brereton and Lloyd, 2016).

4.2 Updating the calibration model

Calibration maintenance and transfer learning addresses the problem of updating a calibration model developed under one set

of conditions to continue providing accurate predictions for samples measured under new conditions (Feudale et al., 2002;

Torrey and Shavlik, 2009; Pan and Yang, 2010; Wise and Roginski, 2015). This topic has not yet been addressed for TOR

OC and EC calibrations using FT-IR, but we can nonetheless make a few remarks for future research needs. Difference in5

sampled or measured conditions can arise from changes in hardware, changes in (PTFE filter) substrate, or atmospheric aerosol

composition, and imply a possible difference introduced into distributions between training and prediction data in the feature

space of the model. During the operational phase of the calibration, it is therefore necessary to continuously monitor model

performance and appropriateness for new samples using protocols described in Section 3.2 and Section 4.1. Notable changes

may be registered by trends in the magnitude of prediction errors compared against available reference measurements, or10

increasing instances of spectral outliers. The role of hardware performance in these changes can be assessed separately using

the analytical protocols summarized in Section 2.3 — specifically, through the repeated analysis of laboratory check standards.

The strategy for model updating can be different according to the cause and nature of the change, but a basic premise is

that the original condition still holds useful information that can be transferred to the new condition such that an entirely new

calibration is not warranted. In this way, a significant investment of resources required by model building (consisting of data15

collection and evaluation) may be avoided. For changes in instrument performance or installation of a separate spectrome-

ter, commonly applied modifications range from simple linear corrections of predictions to calibration transfer algorithms to

convert spectra to resemble that which may have been acquired from the primary instrument in its original state so that the

original model remains applicable (Wise and Roginski, 2015; Chen et al., 2016b; Malli et al., 2017). The contribution from

PTFE can presumably be removed with the appropriate baseline correction technique (Section 3.3.2). Though not been tested20

extensively across various filter types, successful prediction has been reported between two PTFE filter types (Weakley et al.,

2018a). Treating the PTFE signal as an interferent, training the model with additional blank (zero-analyte) samples from dif-
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ferent filter types may be an effective approach (Ottaway et al., 2012; Kalivas, 2012; Wise and Roginski, 2015), though also

requires evaluation. Changing atmospheric composition can be addressed by updating the calibration set with new samples

which contain new analytes or different regimes in concentration. While there are recursive algorithms for online updating

(reweighting) of models with new samples (Hayes, 1996; Helland et al., 1992; Qin, 1998; Binfeng and Haibo, 2015; Ma et al.,

2015; Chen et al., 2016b), recalibration with the appropriate proportion of old and new samples will recreate a feature space5

that accommodates both groups of samples. When new samples are needed, active learning strategies seek the potentially most

informative samples and minimize the requirement of new calibration samples (Douak et al., 2012).

Additional strategies from transductive learning aim to avoid the requirement of obtaining new samples for recalibration,

but rather search for common feature representations between calibration and prediction set (“unlabeled”) samples (Chapelle

et al., 2010). While these methods are more typically based on non-PLS based algorithms and applied to classification problems10

(Zadrozny, 2004; Cortes et al., 2005; Arnold et al., 2007; Bickel et al., 2007), some results in multivariate calibration tasks

give an indication of their applicability. One approach is to reattribute weights in calibration samples to have the closest feature

distribution to new samples (Huang et al., 2006; Sugiyama et al., 2008; Kim et al., 2011; Hazama and Kano, 2015; Zhang et al.,

2017). New estimates weighted by their uncertainty can be furthermore be used for re-estimation of model parameters in an

iterative fashion (Culp and Michailidis, 2008; Marcou et al., 2017). Another approach is to re-estimate a feature representation15

in which the calibration and prediction samples are in closer proximity in this space (Culp and Michailidis, 2008; Gujral et al.,

2011; Pan et al., 2011). Limited studies with PLS regression report mixed results regarding the value of incorporating unlabeled

data into the calibration over simply using the original model (Culp and Michailidis, 2008; Gujral et al., 2011; Paiva et al.,

2012; Bao et al., 2015). The benefit of such efforts not surprisingly depend on both the specific characteristics of the calibration

model and unlabeled data (Culp and Michailidis, 2008).20

In the context of FT-IR measurements, TOR reference measurements may not be available for short-term campaigns at new

sites and some aspects of transfer learning and transductive learning strategies (sample reweighting or basis-set rederivation)

may be the only option for improvement if prediction errors from existing calibration models are expected to be high (Section

4.1.2). For long-term operation at a fixed site, collecting a limited number of reference samples for recalibration initially or

periodically can be a viable strategy if sample characteristics substantially differ from those available for calibration. For25

instance, Reggente et al. (2016) showed that a recalibration strategy can improve predictions for new types of samples for the

IMPROVE network. TOR predictions for samples collected in 2013 from FRES and BYIS sites had not only high instances

of prediction errors, but also systematic biases when using the 2011 IMPROVE model. A dedicated calibration model built

with two-thirds of the available data set at the two new sites improved prediction performance for samples reserved for testing

(Table 3). Whether to incorporate new types of samples into the original calibration set to build a monolithic model, or to unify30

the calibrations through a multilevel modeling framework may depend on the number and leverage of new samples. A model

derived from including new samples with old may cease to perform adequately for the original types of samples. From a case

study in 2013 CSN (Weakley et al., 2018b), including ELLA samples in the calibration did not seem to affect the non-ELLA

samples, but ELLA samples were also found to have not have much leverage within the scope of all samples. When updating

an existing model, it is necessary to re-evaluate the model for old as well as new types of samples.35
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Table 3. Figures of merit for selected FRES (Fresno, CA) and BYIS (Baengnyeong Island, S. Korea) samples using base case 2011 IMPROVE

calibration and a “dedicated” model built only using samples from FRES and BYIS.

Model Variable Samples Bias Error R2

(µgm−3) (µgm−3)

2011 IMPROVE OC FRES, BYIS 0.28 0.43 0.79

Dedicated OC FRES, BYIS -0.03 0.16 0.96

2011 IMPROVE EC FRES 0.05 0.10 0.85

Dedicated EC FRES 0 0.06 0.93

2011 IMPROVE EC BYIS 0.13 0.17 0.60

Dedicated EC BYIS -0.07 0.11 0.66 / 0.84[*]
[*] one outlier removed.

5 Conclusions

The FT-IR spectra of PM is rich in chemical information, and quantitative information such as TOR-equivalent OC and EC can

be extracted from it provided that we can find the appropriate combination of training samples and algorithms for extraction.

In this manuscript, we review procedures for spectral processing and data-driven calibration, where the data are taken from

collocated measurements of TOR OC and EC. In this effort, procedures for initial steps for model building and evaluation, and5

later steps for monitoring of model behavior during the operational phase of a calibration model are described.

The number and types of samples required for calibration is determined by the diversity of composition in the prediction

set. When samples are selected from the same sites as the prediction set, FT-IR calibration models could predict with virtually

no bias and errors within 0.15 µgm−3 for TOR OC and 0.11 µgm−3 for TOR EC for areal loadings in the 2011 IMPROVE

and 2013 CSN networks. Less than 5% of samples fell below the estimated detection limit. These metrics are on a par with10

the reference measurement evaluated for the same year. For the 2011 IMPROVE data set, the number of ambient calibration

samples can be reduced from the canonical number of 501 down to approximately 150 samples and maintain similar prediction

performance for the diversity in composition represented by 237 samples. To the extent that we have experimented (virtually)

for TOR OC, the limitation is likely due to the difficulty in maintaining the same distribution of ammonium to OC ratio in the

calibration set as in the test set with fewer number of samples obtained by the temporal and spatial stratified sample reduction15

approach illustrated.

As evaluated for the IMPROVE network, TOR-equivalent concentrations in new samples collected for a later year (2013)

and more sites (11 additional ones) have similar performance metrics overall, with exception to samples from two new sites

(FRES and BYIS) not in the calibration set. Higher prediction errors for TOR OC occur largely due to specific types of samples

not well-represented in the calibration year. While these samples are predicted without bias, their errors are higher on account20

of the higher areal loadings of TOR OC beyond the range of original calibration. Estimates of prediction intervals for both

TOR and model predictions suggest that more than 92% of samples are predicted within anticipated precision errors. Outlier

detection methods can be used to detect samples which are different with respect to the modeled domain to provide some
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indication of the magnitude of prediction errors. However, accurate detection of high-error samples comes with a tradeoff of

increased false positive rates; the outlier detection method can be selected based on the application and desired tolerance for

each type of detection error (false positive or negative). An obvious solution for reducing prediction errors in different samples

is to acquire new samples for recalibration, though judicious calibration maintenance strategies (e.g., sample reweighting) can

potentially minimize the number of new samples needed.5

The procedure for quantitative prediction of TOR-equivalent OC and EC is a statistical one and depends the ability of

an algorithm to resolve the overlapping absorption bands in the mid-IR and relate relevant features to the concentration of

the target analyte. Given the evolving diversity in aerosol composition, it is not clear that arriving at an invariant, universal

calibration model applicable for every new sample is practical. However, in describing the broader context of chemometrics

and machine learning algorithms that are available for addressing each stage of the model life cycle, challenges for calibrating10

complex spectra are not insurmountable provided that they are systematically handled as described in this paper. We can use

a wide range of statistical quality control procedures at our disposal to assess similarity of relevant features among spectra to

continually monitor model performance, to anticipate appropriateness of existing calibration models, and to propose revisions.

Construction of calibration models specific to individual or groups of samples may be envisioned provided that we are further

able to identify the most important spectral features to assess similarities relevant for TOR OC and EC estimation.15

In parallel to ensuring numerical accuracy of a calibration, understanding how the calibration relates spectral absorbances

to TOR concentrations is critical for anticipating model applicability. Identification of important vibrational modes used in the

calibration facilitates understanding of how the model relates absorbances to concentrations of the target analyte. Moreover,

this association can be used to gain a better understanding of molecular structure in complex substances underlying the OC

and EC concentrations reported by TOR. For TOR-equivalent OC, functional groups typically associated with atmospheric20

organic matter were found: aliphatic CH, carbonyls, and nitrogenated functional groups. For TOR-equivalent EC prediction,

the vibrational mode associated with C-C stretch of aromatic rings typically observed in mid-IR spectra of soot appears to be

an important absorption band, but a model for Elizabeth, NJ, was able to predict TOR-equivalent EC concentrations accurately

without use of this spectroscopic region. While attempts to understand model LVs have thus far been limited, some work by

Weakley et al. (2016) indicate that 2013 CSN aerosols could be modeled with a surprisingly few LVs, with nearly 90% of the25

variation in TOR OC explained by one variable. Further analysis of constituent samples using source apportionment techniques

and analysis of chemical composition (e.g., using functional groups) are bound to benefit overall model interpretation.

In summary, this manuscript outlines a general perspective and specific practices for model building; encompassing judicious

specification of algorithm, spectra processing procedure, and sample selection. Taking a systematic approach toward calibration

with a diverse set of reference measurements allows us to expand the suite of information extractable from FT-IR spectra, to30

complement functional group analysis from laboratory calibrations, which has long been the focus. Given the demonstrated

simplicity and non-destructive nature of acquiring spectra from PTFE filters, this technique can expand TOR-equivalent OC and

EC measurements (which has a long history) to new campaigns and new locations in which only PTFE samples are collected

for gravimetric reference measurements. Therefore, we anticipate that the procedure outlined in this paper can complement

existing methods for PM monitoring with TOR-equivalent OC and EC, and provide guidance in extracting composition of35
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substances from FT-IR spectra of atmospheric PM. Given that a wide range of inorganic and organic substances display mid-

IR activity, further exploration of data sources and algorithms for quantitative analysis can continue to expand the cost-effective

application of FT-IR in chemical speciation measurements.
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Appendix B: Acroynoms

Table B1 includes pervasive acronyms used in multiple sections.

Table B1. List of acronyms and their definitions.

Type Acronym Definition

Measurements FT-IR Fourier transform infrared

OM organic matter

PM particulate matter

TOR thermal optical reflectance

OC organic carbon

EC elemental carbon

MDL minimum detection limit

PTFE Polytetrafluoroethylene (Teflon)

IMPROVE Interagency Monitoring of PROtected Visual Environments

CSN Chemical Speciation Network

Site abbrev. BYIS Baengnyeong Island, S. Korea (IMPROVE)

ELLA Elizabeth, NJ (CSN)

FRES Fresno, CA (IMPROVE)

Chemometrics PLS partial least squares

LV latent variable

RMSE root mean square error

BMCUVE backward Monte Carlo unimportant variable elimination

Appendix C: Elements of model building and evaluation

A brief summary of model elements are shown in Table C1.
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Table C1. Model elements and their descriptions.

Type Element Description

Data calibration used for model estimation

test used for model evaluation and performance benchmarking

prediction new samples to which model is to be applied

Model (PLS) physical variables wavenumbers

latent variables PLS components

estimation NIPALS, SIMPLS, kernel PLS, or other training algorithm

parameter selection CV or bootstrap using calibration samples

spectra preparation baseline correction or wavenumber reduction

overall evaluation figures of merit

systematic evaluation diagnostic plots: dependence of errors on concentration, site/season

interpretation understand most important physical and latent variables; influential samples
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Iinuma, Y., Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. D.,

Szidat, S., Szmigielski, R., and Wisthaler, A.: The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art

and Challenges, Chemical Reviews, 115, 3919–3983, https://doi.org/10.1021/cr5003485, 2015.

Ofner, J.: Formation of secondary organic aerosol and its processing by atmospheric halogen species — a spectroscopic study, Ph.D. thesis,

University of Bayreuth, http://opus.ub.uni-bayreuth.de/volltexte/2011/915/, 2011.15

Olivieri, A. C.: Practical guidelines for reporting results in single- and multi-component analytical calibration: A tutorial, Analytica Chimica

Acta, 868, 10–22, https://doi.org/10.1016/j.aca.2015.01.017, 2015.

Olivieri, A. C., Faber, N. M., Ferré, J., Boqué, R., Kalivas, J. H., and Mark, H.: Uncertainty estimation and figures of merit for multivariate

calibration (IUPAC Technical Report), Pure and Applied Chemistry, 78, 633–661, https://doi.org/10.1351/pac200678030633, 2006.

Oppenheimer, C. and Kyle, P. R.: Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas20

emissions, Journal of Volcanology and Geothermal Research, 177, 743–754, https://doi.org/10.1016/j.jvolgeores.2007.08.022, 2008.

Ottaway, J., Farrell, J. A., and Kalivas, J. H.: Spectral Multivariate Calibration without Laboratory Prepared or Determined Reference Analyte

Values, Analytical Chemistry, 85, 1509–1516, https://doi.org/10.1021/ac302705m, 2012.

Paatero, P.: Least squares formulation of robust non-negative factor analysis, Chemometrics and Intelligent Laboratory Systems, 37, 23–35,

https://doi.org/10.1016/S0169-7439(96)00044-5, 1997.25

Pagliai, M., Cavazzoni, C., Cardini, G., Erbacci, G., Parrinello, M., and Schettino, V.: Anharmonic infrared and Raman spectra in Car-

Parrinello molecular dynamics simulations, The Journal of Chemical Physics, 128, 224 514, https://doi.org/10.1063/1.2936988, 2008.

Painter, P. C., Snyder, R. W., Starsinic, M., Coleman, M. M., Kuehn, D. W., and Davis, A.: Fourier Transform IR Spectroscopy, in: Coal

and Coal Products: Analytical Characterization Techniques, vol. 205 of ACS Symposium Series, pp. 47–76, AMERICAN CHEMICAL

SOCIETY, https://doi.org/10.1021/bk-1982-0205.ch003, dOI: 10.1021/bk-1982-0205.ch003, 1982.30

Paiva, J. G. S., Schwartz, W. R., Pedrini, H., and Minghim, R.: Semi-Supervised Dimensionality Reduction based on Partial Least

Squares for Visual Analysis of High Dimensional Data, Computer Graphics Forum, 31, 1345–1354, https://doi.org/10.1111/j.1467-

8659.2012.03126.x, 2012.

Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S. E., Seinfeld, J. H., and Flagan, R. C.: Fourier-transform Infrared-analysis of

Aerosol Formed In the Photooxidation of Isoprene and Beta-pinene, Atmospheric Environment Part A-general Topics, 26, 1239–1251,35

https://doi.org/10.1016/0960-1686(92)90385-X, 1992.

64

https://doi.org/10.1080/00401706.1995.10485888
https://doi.org/10.1016/0048-9697(84)90241-9
https://doi.org/10.1021/ci00025a013
https://doi.org/10.1021/cr5003485
http://opus.ub.uni-bayreuth.de/volltexte/2011/915/
https://doi.org/10.1016/j.aca.2015.01.017
https://doi.org/10.1351/pac200678030633
https://doi.org/10.1016/j.jvolgeores.2007.08.022
https://doi.org/10.1021/ac302705m
https://doi.org/10.1016/S0169-7439(96)00044-5
https://doi.org/10.1063/1.2936988
https://doi.org/10.1021/bk-1982-0205.ch003
https://doi.org/10.1111/j.1467-8659.2012.03126.x
https://doi.org/10.1111/j.1467-8659.2012.03126.x
https://doi.org/10.1111/j.1467-8659.2012.03126.x
https://doi.org/10.1016/0960-1686(92)90385-X


Palen, E. J., Allen, D. T., Pandis, S. N., Paulson, S., Seinfeld, J. H., and Flagan, R. C.: Fourier-transform Infrared-analysis of Aerosol Formed

In the Photooxidation of 1-octene, Atmospheric Environment Part A-General Topics, 27, 1471–1477, https://doi.org/10.1016/0960-

1686(93)90133-J, 1993.

Pan, S. J. and Yang, Q.: A Survey on Transfer Learning, IEEE Transactions on Knowledge and Data Engineering, 22, 1345–1359,

https://doi.org/10.1109/TKDE.2009.191, 2010.5

Pan, S. J., Tsang, I. W., Kwok, J. T., and Yang, Q.: Domain Adaptation via Transfer Component Analysis, IEEE Transactions on Neural

Networks, 22, 199–210, https://doi.org/10.1109/TNN.2010.2091281, 2011.

Paulson, S. E., Pandis, S. N., Baltensperger, U., Seinfeld, J. H., Flagan, R. C., Palen, E. J., Allen, D. T., Schaffner, C., Giger, W., and Portmann,

A.: Characterization of Photochemical Aerosols From Biogenic Hydrocarbons, Journal of Aerosol Science, 21, GESELL AEROSOL-

FORSCH; ETH, https://doi.org/10.1016/0021-8502(90)90230-U, 1990.10

Pedone, A., Biczysko, M., and Barone, V.: Environmental Effects in Computational Spectroscopy: Accuracy and Interpretation,

ChemPhysChem, 11, 1812–1832, https://doi.org/10.1002/cphc.200900976, 2010.

Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S. . M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli,

C., Wiedensohler, A., and Zhang, X. . Y.: Recommendations for reporting "black carbon" measurements, Atmospheric Chemistry and

Physics, 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013.15

Phatak, A., Reilly, P. M., and Penlidis, A.: An approach to interval estimation in partial least squares regression, Analytica Chimica Acta,

277, 495–501, https://doi.org/10.1016/0003-2670(93)80461-S, 1993.

Pickle, T., Allen, D. T., and Pratsinis, S. E.: The sources and size distributions of aliphatic and carbonyl carbon in Los Angeles aerosol,

Atmospheric Environment. Part A. General Topics, 24, 2221–2228, https://doi.org/10.1016/0960-1686(90)90253-J, 1990.

Pimentel, M. A., Clifton, D. A., Clifton, L., and Tarassenko, L.: A review of novelty detection, Signal Processing, 99, 215–249,20

https://doi.org/10.1016/j.sigpro.2013.12.026, 2014.

Pitts, J. N., Finlayson-Pitts, B. J., and Winer, A. M.: Optical systems unravel smog chemistry, Environmental Science & Technology, 11,

568–573, https://doi.org/10.1021/es60129a014, 1977.

Pitts, J. N., Sanhueza, E., Atkinson, R., Carter, W. P. L., Winer, A. M., Harris, G. W., and Plum, C. N.: An investigation of the dark formation of

nitrous acid in environmental chambers, International Journal of Chemical Kinetics, 16, 919–939, https://doi.org/10.1002/kin.550160712,25

1984.

Pollard, M., Jaklevic, J., and Howes, J.: Fourier Transform Infrared and Ion-Chromatographic Sulfate Analysis of Ambient Air Samples,

Aerosol Science and Technology, 12, 105–113, https://doi.org/10.1080/02786829008959330, 1990.

Popovicheva, O. B., Kireeva, E. D., Shonija, N. K., Vojtisek-Lom, M., and Schwarz, J.: FTIR analysis of surface functionalities on particulate

matter produced by off-road diesel engines operating on diesel and biofuel, Environmental Science and Pollution Research, 22, 4534–4544,30

https://doi.org/10.1007/s11356-014-3688-8, 2014.

Pratt, K. A. and Prather, K. A.: Mass spectrometry of atmospheric aerosolsuRecent developments and applications. Part I: Off-line mass

spectrometry techniques, Mass Spectrometry Reviews, 31, 1–16, https://doi.org/10.1002/mas.20322, 2012.

Presto, A. A., Hartz, K. E. H., and Donahue, N. M.: Secondary organic aerosol production from terpene ozonolysis. 2. Effect of NOx

concentration, Environmental Science & Technology, 39, 7046–7054, https://doi.org/10.1021/es050400s, 2005.35

Putrino, A. and Parrinello, M.: Anharmonic Raman Spectra in High-Pressure Ice from Ab Initio Simulations, Physical Review Letters, 88,

176 401, https://doi.org/10.1103/PhysRevLett.88.176401, 2002.

65

https://doi.org/10.1016/0960-1686(93)90133-J
https://doi.org/10.1016/0960-1686(93)90133-J
https://doi.org/10.1016/0960-1686(93)90133-J
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1016/0021-8502(90)90230-U
https://doi.org/10.1002/cphc.200900976
https://doi.org/10.5194/acp-13-8365-2013
https://doi.org/10.1016/0003-2670(93)80461-S
https://doi.org/10.1016/0960-1686(90)90253-J
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1021/es60129a014
https://doi.org/10.1002/kin.550160712
https://doi.org/10.1080/02786829008959330
https://doi.org/10.1007/s11356-014-3688-8
https://doi.org/10.1002/mas.20322
https://doi.org/10.1021/es050400s
https://doi.org/10.1103/PhysRevLett.88.176401


Qin, S. J.: Recursive PLS algorithms for adaptive data modeling, Computers & Chemical Engineering, 22, 503–514,

https://doi.org/10.1016/S0098-1354(97)00262-7, 1998.

Quarti, C., Milani, A., and Castiglioni, C.: Ab Initio Calculation of the IR Spectrum of PTFE: Helical Symmetry and Defects, The Journal

of Physical Chemistry B, 117, 706–718, https://doi.org/10.1021/jp3102145, 2013.

Ranney, A. P. and Ziemann, P. J.: Microscale spectrophotometric methods for quantification of functional groups in oxidized organic aerosol,5

Aerosol Science and Technology, 50, 881–892, https://doi.org/10.1080/02786826.2016.1201197, 2016.

Reff, A., Turpin, B. J., Offenberg, J. H., Weisel, C. P., Zhang, J., Morandi, M., Stock, T., Colome, S., and Winer, A.: A functional group

characterization of organic PM2.5 exposure: Results from the RIOPA study RID C-3787-2009, Atmospheric Environment, 41, 4585–4598,

https://doi.org/10.1016/j.atmosenv.2007.03.054, 2007.

Reggente, M., Dillner, A. M., and Takahama, S.: Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from in-10

frared spectra: extending the predictions to different years and different sites, Atmospheric Measurement Techniques, 9, 441–454,

https://doi.org/10.5194/amt-9-441-2016, 2016.

Rinnan, Å.: Pre-processing in vibrational spectroscopy — when, why and how, Analytical Methods, 6, 7124–7129,

https://doi.org/10.1039/C3AY42270D, 2014.

Rinnan, Å., Nørgaard, L., Berg, F. v. d., Thygesen, J., Bro, R., and Engelsen, S. B.: Chapter 2 - Data Pre-processing, in: Infrared Spectroscopy15

for Food Quality Analysis and Control, edited by Sun, D.-W., pp. 29–50, Academic Press, San Diego, http://www.sciencedirect.com/

science/article/pii/B978012374136300002X, 2009.

Robb, E. W. and Munk, M. E.: A neural network approach to infrared spectrum interpretation, Microchimica Acta, 100, 131–155,

https://doi.org/10.1007/BF01244838, 1990.

Rosipal, R. and Krämer, N.: Overview and Recent Advances in Partial Least Squares, in: Subspace, Latent Structure and Feature Selection,20

edited by Saunders, C., Grobelnik, M., Gunn, S., and Shawe-Taylor, J., vol. 3940 of Lecture Notes in Computer Science, pp. 34–51,

Springer Berlin Heidelberg, https://doi.org/10.1007/11752790_2, 2006.

Rossi, M., Ceriotti, M., and Manolopoulos, D. E.: How to remove the spurious resonances from ring polymer molecular dynamics, The

Journal of Chemical Physics, 140, 234 116, https://doi.org/10.1063/1.4883861, 2014a.

Rossi, M., Liu, H., Paesani, F., Bowman, J., and Ceriotti, M.: Communication: On the consistency of approximate quantum dy-25

namics simulation methods for vibrational spectra in the condensed phase, The Journal of Chemical Physics, 141, 181 101,

https://doi.org/10.1063/1.4901214, 2014b.

Russell, L. M., Bahadur, R., Hawkins, L. N., Allan, J., Baumgardner, D., Quinn, P. K., and Bates, T. S.: Organic aerosol charac-

terization by complementary measurements of chemical bonds and molecular fragments, Atmospheric Environment, 43, 6100–6105,

https://doi.org/10.1016/j.atmosenv.2009.09.036, 2009.30

Russell, L. M., Bahadur, R., and Ziemann, P. J.: Identifying organic aerosol sources by comparing functional group composition in cham-

ber and atmospheric particles, Proceedings of the National Academy of Sciences of the United States of America, 108, 3516–3521,

https://doi.org/10.1073/pnas.1006461108, 2011.

Russolillo, G.: Non-Metric Partial Least Squares, Electronic Journal of Statistics, 6, 1641–1669, https://doi.org/10.1214/12-EJS724, 2012.

Russwurm, G. M.: Compendium Method TO-16: Long-path Open-path Fourier Transform Infrared Monitoring of Atmospheric Gases, pp.35

16.1–16.41, US Environmental Protection Agency, 1999.

Russwurm, G. M. and Childers, J. W.: Open-Path Fourier Transform Infrared Spectroscopy, in: Handbook of Vibrational Spectroscopy, John

Wiley & Sons, Ltd, https://doi.org/10.1002/0470027320.s2112, 2006.

66

https://doi.org/10.1016/S0098-1354(97)00262-7
https://doi.org/10.1021/jp3102145
https://doi.org/10.1080/02786826.2016.1201197
https://doi.org/10.1016/j.atmosenv.2007.03.054
https://doi.org/10.5194/amt-9-441-2016
https://doi.org/10.1039/C3AY42270D
http://www.sciencedirect.com/science/article/pii/B978012374136300002X
http://www.sciencedirect.com/science/article/pii/B978012374136300002X
http://www.sciencedirect.com/science/article/pii/B978012374136300002X
https://doi.org/10.1007/BF01244838
https://doi.org/10.1007/11752790_2
https://doi.org/10.1063/1.4883861
https://doi.org/10.1063/1.4901214
https://doi.org/10.1016/j.atmosenv.2009.09.036
https://doi.org/10.1073/pnas.1006461108
https://doi.org/10.1214/12-EJS724
https://doi.org/10.1002/0470027320.s2112


Ruthenburg, T. C., Perlin, P. C., Liu, V., McDade, C. E., and Dillner, A. M.: Determination of organic matter and organic matter to organic

carbon ratios by infrared spectroscopy with application to selected sites in the IMPROVE network, Atmospheric Environment, 86, 47–57,

https://doi.org/10.1016/j.atmosenv.2013.12.034, 2014.

Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U.: Raman microspectroscopy of soot and related carbonaceous mate-

rials: Spectral analysis and structural information, Carbon, 43, 1731–1742, https://doi.org/10.1016/j.carbon.2005.02.018, 2005.5

Saeys, W., De Ketelaere, B., and Darius, P.: Potential applications of functional data analysis in chemometrics, Journal of Chemometrics, 22,

335–344, https://doi.org/10.1002/cem.1129, 2008.

Saeys, Y., Inza, I., and Larrañaga, P.: A review of feature selection techniques in bioinformatics, Bioinformatics, 23, 2507–2517,

https://doi.org/10.1093/bioinformatics/btm344, 2007.

Sasaki, S., Abe, H., Ouki, T., Sakamoto, M., and Ochiai, S.: Automated structure elucidation of several kinds of aliphatic and alicyclic10

compounds, Analytical Chemistry, 40, 2220–2223, https://doi.org/10.1021/ac50158a061, 1968.

Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures., Analytical Chemistry, 36,

1627–1639, https://doi.org/10.1021/ac60214a047, 1964.

Sax, M., Zenobi, R., Baltensperger, U., and Kalberer, M.: Time resolved infrared spectroscopic analysis of aerosol formed by photo-oxidation

of 1,3,5-trimethylbenzene and alpha-pinene, Aerosol Science and Technology, 39, 822–830, https://doi.org/10.1080/02786820500257859,15

2005.

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., and Platt, J.: Support Vector Method for Novelty Detection, in: Proceedings of

the 12th International Conference on Neural Information Processing Systems, NIPS’99, pp. 582–588, MIT Press, Cambridge, MA, USA,

http://dl.acm.org/citation.cfm?id=3009657.3009740, 1999.

Schütze, C., Lau, S., Reiche, N., Sauer, U., Borsdorf, H., and Dietrich, P.: Ground-based Remote Sensing with Open-path Fourier-20

transform Infrared (OP-FTIR) Spectroscopy for Large-scale Monitoring of Greenhouse Gases, Energy Procedia, 37, 4276–4282,

https://doi.org/10.1016/j.egypro.2013.06.330, 2013.

Schuur, J. and Gasteiger, J.: Infrared Spectra Simulation of Substituted Benzene Derivatives on the Basis of a 3D Structure Representation,

Analytical Chemistry, 69, 2398–2405, https://doi.org/10.1021/ac9611071, 1997.

Schwarz, G.: Estimating the Dimension of a Model, The Annals of Statistics, 6, 461–464, 1978.25

Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, New York, 3rd

edn., 2016.

Selzer, P., Gasteiger, J., Thomas, H., and Salzer, R.: Rapid Access to Infrared Reference Spectra of Arbitrary Organic Compounds: Scope

and Limitations of an Approach to the Simulation of Infrared Spectra by Neural Networks, Chemistry – A European Journal, 6, 920–927,

https://doi.org/10.1002/(SICI)1521-3765(20000303)6:5<920::AID-CHEM920>3.0.CO;2-W, 2000.30

Serneels, S., Croux, C., and Van Espen, P. J.: Influence properties of partial least squares regression, Chemometrics and Intelligent Laboratory

Systems, 71, 13–20, https://doi.org/10.1016/j.chemolab.2003.10.009, 2004.

Serradilla, J., Shi, J., and Morris, A.: Fault detection based on Gaussian process latent variable models, Chemometrics and Intelligent

Laboratory Systems, 109, 9–21, https://doi.org/10.1016/j.chemolab.2011.07.003, 2011.

Shao, L. and Griffiths, P. R.: Information Extraction from a Complex Multicomponent System by Target Factor Analysis, Analytical Chem-35

istry, 82, 106–114, https://doi.org/10.1021/ac901246x, 2010.

Shurvell, H.: Spectra–Structure Correlations in the Mid- and Far-Infrared, in: Handbook of Vibrational Spectroscopy, John Wiley & Sons,

Ltd, https://doi.org/10.1002/0470027320.s4101, 2006.

67

https://doi.org/10.1016/j.atmosenv.2013.12.034
https://doi.org/10.1016/j.carbon.2005.02.018
https://doi.org/10.1002/cem.1129
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1021/ac50158a061
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1080/02786820500257859
http://dl.acm.org/citation.cfm?id=3009657.3009740
https://doi.org/10.1016/j.egypro.2013.06.330
https://doi.org/10.1021/ac9611071
https://doi.org/10.1002/(SICI)1521-3765(20000303)6:5%3C920::AID-CHEM920%3E3.0.CO;2-W
https://doi.org/10.1016/j.chemolab.2003.10.009
https://doi.org/10.1016/j.chemolab.2011.07.003
https://doi.org/10.1021/ac901246x
https://doi.org/10.1002/0470027320.s4101


Silvestrelli, P. L., Bernasconi, M., and Parrinello, M.: Ab initio infrared spectrum of liquid water, Chemical Physics Letters, 277, 478–482,

https://doi.org/10.1016/S0009-2614(97)00930-5, 1997.

Solomon, P. A., Crumpler, D., Flanagan, J. B., Jayanty, R., Rickman, E. E., and McDade, C. E.: U.S. National PM2.5 Chemical Speciation

Monitoring Networks—CSN and IMPROVE: Description of networks, Journal of the Air & Waste Management Association, 64, 1410–

1438, https://doi.org/10.1080/10962247.2014.956904, 2014.5

Spellicy, R. L. and Webb, J. D.: Atmospheric Monitoring Using Extractive Techniques, in: Handbook of Vibrational Spectroscopy, John

Wiley & Sons, Ltd, https://doi.org/10.1002/0470027320.s2111, 2006.

Steele, D.: Infrared Spectroscopy: Theory, in: Handbook of Vibrational Spectroscopy, John Wiley & Sons, Ltd,

https://doi.org/10.1002/0470027320.s0103, 2006.

Stone, M.: Cross-Validatory Choice and Assessment of Statistical Predictions, Journal of the Royal Statistical Society. Series B (Method-10

ological), 36, 111–147, 1974.

Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V., and Kawanabe, M.: Direct Importance Estimation with Model Selection and Its

Application to Covariate Shift Adaptation, in: Advances in Neural Information Processing Systems 20, edited by Platt, J. C., Koller, D.,

Singer, Y., and Roweis, S. T., pp. 1433–1440, Curran Associates, Inc., 2008.

Takahama, S. and Dillner, A. M.: Model selection for partial least squares calibration and implications for analysis of atmospheric organic15

aerosol samples with mid-infrared spectroscopy, Journal of Chemometrics, 29, 659–668, https://doi.org/10.1002/cem.2761, 2015.

Takahama, S. and Ruggeri, G.: Technical note: Relating functional group measurements to carbon types for improved model–measurement

comparisons of organic aerosol composition, Atmospheric Chemistry and Physics, 17, 4433–4450, https://doi.org/10.5194/acp-17-4433-

2017, 2017.

Takahama, S., Schwartz, R. E., Russell, L. M., Macdonald, A. M., Sharma, S., and Leaitch, W. R.: Organic functional groups in aerosol20

particles from burning and non-burning forest emissions at a high-elevation mountain site, Atmospheric Chemistry and Physics, 11, 6367–

6386, https://doi.org/10.5194/acp-11-6367-2011, 2011.

Takahama, S., Johnson, A., and Russell, L. M.: Quantification of Carboxylic and Carbonyl Functional Groups in Organic Aerosol Infrared

Absorbance Spectra, Aerosol Science and Technology, 47, 310–325, https://doi.org/10.1080/02786826.2012.752065, 2013.

Takahama, S., Ruggeri, G., and Dillner, A. M.: Analysis of functional groups in atmospheric aerosols by infrared spectroscopy:25

sparse methods for statistical selection of relevant absorption bands, Atmospheric Measurement Techniques, 9, 3429–3454,

https://doi.org/10.5194/amt-9-3429-2016, 2016.

Thissen, U., Pepers, M., Üstün, B., Melssen, W. J., and Buydens, L. M. C.: Comparing support vector machines to PLS for spectral regression

applications, Chemometrics and Intelligent Laboratory Systems, 73, 169–179, 2004.

Thomas, M., Brehm, M., Fligg, R., Vöhringer, P., and Kirchner, B.: Computing vibrational spectra from ab initio molecular dynamics,30

Physical Chemistry Chemical Physics, 15, 6608, https://doi.org/10.1039/c3cp44302g, 2013.

Tibshirani, R.: Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society Series B (Methodological), 58,

267–288, 1996.

Tibshirani, R. J.: Degrees of Freedom and Model Search, ArXiv e-prints, 2014.

Tikhonov, A. N. and Arsenin, V. I.: Solutions of ill-posed problems, Halsted Press, New York, 1977.35

Torrey, L. and Shavlik, J.: Transfer learning, Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods,

and Techniques, 1, 242, 2009.

68

https://doi.org/10.1016/S0009-2614(97)00930-5
https://doi.org/10.1080/10962247.2014.956904
https://doi.org/10.1002/0470027320.s2111
https://doi.org/10.1002/0470027320.s0103
https://doi.org/10.1002/cem.2761
https://doi.org/10.5194/acp-17-4433-2017
https://doi.org/10.5194/acp-17-4433-2017
https://doi.org/10.5194/acp-17-4433-2017
https://doi.org/10.5194/acp-11-6367-2011
https://doi.org/10.1080/02786826.2012.752065
https://doi.org/10.5194/amt-9-3429-2016
https://doi.org/10.1039/c3cp44302g


Trygg, J.: O2-PLS for qualitative and quantitative analysis in multivariate calibration, Journal of Chemometrics, 16, 283–293,

https://doi.org/10.1002/cem.724, 2002.

Tsai, A. C., Liou, M., Simak, M., and Cheng, P. E.: On hyperbolic transformations to normality, Computational Statistics & Data Analysis,

115, 250–266, https://doi.org/10.1016/j.csda.2017.06.001, 2017.

Tsai, Y. I. and Kuo, S.-C.: Development of diffuse reflectance infrared Fourier transform spectroscopy for the rapid characterization of5

aerosols, Atmospheric Environment, 40, 1781–1793, https://doi.org/10.1016/j.atmosenv.2005.11.023, 2006.

Tuazon, E. C., Winer, A. M., and Pitts, J. N.: Trace pollutant concentrations in a multiday smog episode in the California South

Coast Air Basin by long path length Fourier transform infrared spectroscopy, Environmental Science & Technology, 15, 1232–1237,

https://doi.org/10.1021/es00092a014, 1981.

Tuinstra, F. and Koenig, J. L.: Raman Spectrum of Graphite, The Journal of Chemical Physics, 53, 1126–1130,10

https://doi.org/10.1063/1.1674108, 1970.

Turrell, G.: Theory of Infrared Spectroscopy, in: Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd,

https://doi.org/10.1002/9780470027318.a5607/abstract, dOI: 10.1002/9780470027318.a5607, 2006.

U.S. EPA: Method 320 Measurement of vapor phase organic and inorganic emissions by extractive Fourier transform infrared (FTIR) spec-

troscopy, 1998.15

van der Voet, H.: Comparing the predictive accuracy of models using a simple randomization test, Chemometrics and Intelligent Laboratory

Systems, 25, 313–323, https://doi.org/10.1016/0169-7439(94)85050-X, 1994.

Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, Springer, 2003.

Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P., Leskinen, J., Makela, J. M., Holopainen, J. K., Poeschl, U., Kulmala, M.,

Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824–827,20

https://doi.org/10.1038/nature09455, 2010.

Walczak, B. and Massart, D.: Local modelling with radial basis function networks, Chemometrics and Intelligent Laboratory Systems, 50,

179–198, https://doi.org/10.1016/S0169-7439(99)00056-8, 2000.

Walczak, B. and Wegscheider, W.: Non-linear modelling of chemical data by combinations of linear and neural net methods, Analytica

Chimica Acta, 283, 508–517, https://doi.org/10.1016/0003-2670(93)85264-K, 1993.25

Wang, L.-L., Lin, Y.-W., Wang, X.-F., Xiao, N., Xu, Y.-D., Li, H.-D., and Xu, Q.-S.: A selective review and comparison for interval variable

selection in spectroscopic modeling, Chemometrics and Intelligent Laboratory Systems, https://doi.org/10.1016/j.chemolab.2017.11.008,

2017.

Weakley, A., Miller, A., Griffiths, P., and Bayman, S.: Quantifying silica in filter-deposited mine dusts using infrared spectra and partial least

squares regression, Analytical and Bioanalytical Chemistry, 406, 4715–4724, https://doi.org/10.1007/s00216-014-7856-y, 2014.30

Weakley, A. T., Takahama, S., and Dillner, A. M.: Ambient aerosol composition by infrared spectroscopy and partial least-squares in the

chemical speciation network: Organic carbon with functional group identification, Aerosol Science and Technology, 50, 1096–1114,

https://doi.org/10.1080/02786826.2016.1217389, 2016.

Weakley, A. T., Takahama, S., and Dillner, A. M.: Thermal/optical reflectance equivalent organic and elemental carbon determined from

federal reference and equivalent method fine particulate matter samples using Fourier transform infrared spectrometry, Aerosol Science35

and Technology, 52, 1048–1058, https://doi.org/10.1080/02786826.2018.1504161, 2018a.

69

https://doi.org/10.1002/cem.724
https://doi.org/10.1016/j.csda.2017.06.001
https://doi.org/10.1016/j.atmosenv.2005.11.023
https://doi.org/10.1021/es00092a014
https://doi.org/10.1063/1.1674108
https://doi.org/10.1002/9780470027318.a5607/abstract
https://doi.org/10.1016/0169-7439(94)85050-X
https://doi.org/10.1038/nature09455
https://doi.org/10.1016/S0169-7439(99)00056-8
https://doi.org/10.1016/0003-2670(93)85264-K
https://doi.org/10.1016/j.chemolab.2017.11.008
https://doi.org/10.1007/s00216-014-7856-y
https://doi.org/10.1080/02786826.2016.1217389
https://doi.org/10.1080/02786826.2018.1504161


Weakley, A. T., Takahama, S., Wexler, A. S., and Dillner, A. M.: Ambient aerosol composition by infrared spectroscopy and partial least

squares in the chemical speciation network: Multilevel modeling for elemental carbon, Aerosol Science and Technology, 52, 642–654,

https://doi.org/10.1080/02786826.2018.1439571, 2018b.

Wei, S., Kulkarni, P., Ashley, K., and Zheng, L.: Measurement of Crystalline Silica Aerosol Using Quantum Cascade Laser-Based Infrared

Spectroscopy, Scientific Reports, 7, 13 860, https://doi.org/10.1038/s41598-017-14363-3, 2017.5

Weigel, U. M. and Herges, R.: Simulation of infrared spectra using artificial neural networks based on semiempirical and empirical data,

Analytica Chimica Acta, 331, 63–74, https://doi.org/10.1016/0003-2670(96)00203-6, 1996.

Weymuth, T., Haag, M. P., Kiewisch, K., Luber, S., Schenk, S., Jacob, C. R., Herrmann, C., Neugebauer, J., and Reiher, M.: MOVIPAC:

Vibrational spectroscopy with a robust meta-program for massively parallel standard and inverse calculations, Journal of Computational

Chemistry, 33, 2186–2198, https://doi.org/10.1002/jcc.23036, 2012.10

Wiklund, S., Nilsson, D., Eriksson, L., Sjostrom, M., Wold, S., and Faber, K.: A randomization test for PLS component selection, Journal of

Chemometrics, 21, 427–439, https://doi.org/10.1002/cem.1086, 2007.

Wise, B. M. and Gallagher, N. B.: The process chemometrics approach to process monitoring and fault detection, Journal of Process Control,

6, 329–348, https://doi.org/10.1016/0959-1524(96)00009-1, 1996.

Wise, B. M. and Roginski, R. T.: A Calibration Model Maintenance Roadmap, IFAC-PapersOnLine, 48, 260–265,15

https://doi.org/10.1016/j.ifacol.2015.08.191, 2015.

Witt, A., Ivanov, S. D., Shiga, M., Forbert, H., and Marx, D.: On the applicability of centroid and ring polymer path integral molecular

dynamics for vibrational spectroscopy, The Journal of Chemical Physics, 130, 194 510, https://doi.org/10.1063/1.3125009, 2009.

Wold, H.: Estimation of Principal Components and Related Models by Iterative Least squares, in: Multivariate Analysis, pp. 391–420,

Academic Press, 1966.20

Wold, S.: Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models, Technometrics, 20,

397–405, https://doi.org/10.1080/00401706.1978.10489693, 1978.

Wold, S.: Discussion: PLS in Chemical Practice, Technometrics, 35, 136–139, https://doi.org/10.2307/1269657, 1993.

Wold, S., Martens, H., and Wold, H.: The Multivariate Calibration-problem In Chemistry Solved By the PLS Method, Lecture Notes In

Mathematics, 973, 286–293, 1983.25

Wold, S., Ruhe, A., Wold, H., and Dunn, III, W. J.: The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach

to Generalized Inverses, SIAM Journal on Scientific and Statistical Computing, 5, 735–743, https://doi.org/10.1137/0905052, 1984.

Wold, S., Antti, H., Lindgren, F., and Öhman, J.: Orthogonal signal correction of near-infrared spectra, Chemometrics and Intelligent Labo-

ratory Systems, 44, 175–185, https://doi.org/10.1016/S0169-7439(98)00109-9, 1998.

Wold, S., Trygg, J., Berglund, A., and Antti, H.: Some recent developments in PLS modeling, Chemometrics and Intelligent Laboratory30

Systems, 58, 131–150, https://doi.org/10.1016/S0169-7439(01)00156-3, 2001.

Yao, J., Fan, B., Doucet, J.-P., Panaye, A., Yuan, S., and Li, J.: SIRS-SS: A System for Simulating IR/Raman Spec-

tra. 1. Substructure/Subspectrum Correlation, Journal of Chemical Information and Computer Sciences, 41, 1046–1052,

https://doi.org/10.1021/ci010010z, 2001.

Yokelson, R. J., Susott, R., Ward, D. E., Reardon, J., and Griffith, D. W. T.: Emissions from smoldering combustion of biomass35

measured by open-path Fourier transform infrared spectroscopy, Journal of Geophysical Research-Atmospheres, 102, 18 865–18 877,

https://doi.org/10.1029/97JD00852, 1997.

70

https://doi.org/10.1080/02786826.2018.1439571
https://doi.org/10.1038/s41598-017-14363-3
https://doi.org/10.1016/0003-2670(96)00203-6
https://doi.org/10.1002/jcc.23036
https://doi.org/10.1002/cem.1086
https://doi.org/10.1016/0959-1524(96)00009-1
https://doi.org/10.1016/j.ifacol.2015.08.191
https://doi.org/10.1063/1.3125009
https://doi.org/10.1080/00401706.1978.10489693
https://doi.org/10.2307/1269657
https://doi.org/10.1137/0905052
https://doi.org/10.1016/S0169-7439(98)00109-9
https://doi.org/10.1016/S0169-7439(01)00156-3
https://doi.org/10.1021/ci010010z
https://doi.org/10.1029/97JD00852


Zadrozny, B.: Learning and Evaluating Classifiers Under Sample Selection Bias, in: Proceedings of the Twenty-first International Conference

on Machine Learning, ICML ’04, pp. 114–, ACM, New York, NY, USA, https://doi.org/10.1145/1015330.1015425, 2004.

Zeng, G., Holladay, S., Langlois, D., Zhang, Y., and Liu, Y.: Kinetics of Heterogeneous Reaction of Ozone with Linoleic Acid and its

Dependence on Temperature, Physical State, RH, and Ozone Concentration, The Journal of Physical Chemistry A, 117, 1963–1974,

https://doi.org/10.1021/jp308304n, 2013.5

Zezula, P., Amato, G., Dohnal, V., and Batko, M.: Similarity Search: The Metric Space Approach, Advances in Database Systems, Springer

US, 2006.

Zhang, L. and Garcia-Munoz, S.: A comparison of different methods to estimate prediction uncertainty using Partial

Least Squares (PLS): A practitioner’s perspective, Chemometrics and Intelligent Laboratory Systems, 97, 152–158,

https://doi.org/10.1016/j.chemolab.2009.03.007, 2009.10

Zhang, X., Kano, M., and Li, Y.: Locally weighted kernel partial least squares regression based on sparse nonlin-

ear features for virtual sensing of nonlinear time-varying processes, Computers & Chemical Engineering, 104, 164–171,

https://doi.org/10.1016/j.compchemeng.2017.04.014, 2017.

Zhao, N., Wu, Z.-s., Zhang, Q., Shi, X.-y., Ma, Q., and Qiao, Y.-j.: Optimization of Parameter Selection for Partial Least Squares Model

Development, Scientific Reports, 5, 11 647, https://doi.org/10.1038/srep11647, 2015.15

Zhao, R., Lee, A. K. Y., and Abbatt, J. P. D.: Investigation of Aqueous-Phase Photooxidation of Glyoxal and Methylglyoxal by Aerosol

Chemical Ionization Mass Spectrometry: Observation of Hydroxyhydroperoxide Formation, Journal of Physical Chemistry A, 116, 6253–

6263, https://doi.org/10.1021/jp211528d, 2012.

Zhou, L. M., Hopke, P. K., Stanier, C. O., Pandis, S. N., Ondov, J. M., and Pancras, J. P.: Investigation of the relationship between chemical

composition and size distribution of airborne particles by partial least squares and positive matrix factorization, Journal of Geophysical20

Research-Atmospheres, 110, D07S18, https://doi.org/10.1029/2004JD005050, 2005.

Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and Subramanian, R.: A ma-

chine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmospheric

Measurement Techniques, 11, 291–313, https://doi.org/10.5194/amt-11-291-2018, 2018.
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